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1 Introduction

Partial linear models represent now a flexible and growing class of models for statistical
applications. In the present paper we will deal with the simplest partial linear model

Yi=0"Zi+m(X))+ &, i=1,...,n, (1)

where § € R? is a column-vector of unknown parameters, §; are i.i.d. random variables
with zero mean and the finite variance o? = E £2. The regressors X; € [0, 1] are assumed
to be i.i.d. random variables with a strictly positive density g(z) on [0,1]. We will also
assume that they do not depend on &;. The nuisance function m(z), = € [0, 1] is unknown
but such that the random variables m(X;) have zero mean.

It is well known that if m(z), = € [0,1] is sufficiently smooth then 6 can be estimated
with the ordinary parametric rate Heckman (1986), Rice (1986), Robinson (1987), Speck-
man (1988), Bhattacharia and Zhao (1997), Mammen and Van de Geer (1997), Chen
(1998). Further references and applications of partially linear models can be found in
the recent book by Hardle, Liang and Gao (2000). Roughly speaking almost all first
order effects in these models can be explained at a heuristic level if one assumes that the
nuisance function m(x) is known. In Golubev and Hardle (2000) the second order term
of quadratic minimax risk was found up to a constant (see Theorems 1, 2 below).

This paper continues Golubev and Hardle (2000) concentrating on data driven choice
of smoothing parameters for penalized least-square estimators. Usually this problem is
considered as a problem of minor importance in the modern theory of semi-parametric
estimation. But from a practical point of view this problem plays the same role as a data
driven choice of the bandwidth in density estimation problem. There is a vast math-
ematical literature on data driven choice of smoothing parameters (see Akaike (1973),
Mallows (1973), Efroimovich and Pinsker (1984), Lepski (1991), Lepski (1992), Golubev
and Nussbaum (1992), Kneip (1994), Lepski and Spokoiny (1997), Nemirovskii (1998),
Tsybakov (1998), Barron, Birgé and Massart (1999), among others). The problem of
adaptive choice of smoothing parameters in the framework of the second order minimax
theory for distribution function estimation was considered in Golubev and Levit (1996).

To simplify some technical details we will assume that the nuisance function m(z)
belongs to the Sobolev ball

W, = {m : /Ol[m(ﬁ)(g;)]Z dr < L, /01 q(z)m(z)de = 0},

where the smoothness 3 is positive integer.

Our consideration is based on the so-called orthogonal series approach. The corner-
stone idea of this approach is to parameterize the functional class W,. We do this by
constructing an orthonormal system in the Hilbert space LE[O, 1] which is equipped with



Adaptive smoothing 3

the norm ||-||, and with the inner product <-,->, defined by

Hijz/O q(x) f*(x) dz, <f,g>q:/0 q(z) f(z)g(x) dx.

Let ¥y, k =0,...,3—1 be the first orthonormal polynomials in Lg[(), 1]. The remainder
functions ¥, k& > [ are defined as solutions of the following boundary value problem

(see e.g. Speckman (1985))
d*

(_1)5 A28
dk
praslsd

¢S($) = ASQ($)¢S($)7 (2)

dk

:W¢s($) =0, k=p4,....206-1L

r=1

‘z:O

The eigen functions ©s(z) are uniformly bounded in z and s. The asymptotic behavior
of the eigen values A\ plays a very important role in splines theory and it is well-known

that
203

Ao = [1+0(1)](ns)* {/01 ¢/ %) (z) dw} , S — 00. (3)

We refer the interested reader to the book by Tikhomirov (1986) for geometric inter-
pretation of this basis. Details about asymptotic behavior of the eigen values can be
found in Utreras (1980), Speckman (1985). Notice that any function m € Wy can be
represented as the Fourier series

m(l) = Zyk¢k(t), where v, = <m,¢;>, and sz)\k < L. (4)
k=1

k=1

Now we are ready to construct a penalized least-square estimator. Let ¥ be an
arbitrary diagonal matrix with the entries ¥y = o5 # 0 and let the matrix ¥ be defined
as Wy = ¥p(X;). We estimate the parameter 6 by

g:argminmin{HY—ZTG—\IITVHQ—I— HE_IVHQ}. (5)

feRd v

Our further considerations will be essentially based on the second order theory of semi-
parametric estimation. The next two theorems describe the performance of # up to the
second order terms (for more details see Golubev and Hardle (2000)). Denote

H=nY?(nY?+ E)!, (6)

where F is identity matrix, and let

2
IMSE[H, V] = |(E - Hy|? + Ztr H?
n
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be the integrated mean-square error of recovering the function m(z) in the model (1)
provided that # is known. In other words

IMSE[H,v] = [1 + o(1)]E (vx — Huie)?,
k=1

where

T

o = %Z(Yi — 0T Z)hr(X).

=1

Theorem 1 Suppose that E|&|*+° < oo for some § > 0 and

lim log!/? nmax 7% Z 7 =0, max H(ZZT)_IH mgxz 7} < o0, (7)

n—oo -
=1 =1

lim tr?H log"/*n/n = 0.

n—r00
Then as n — oo uniformly in m € Wy

-~

E(0—0)(0—0)" =(22T)"{o? + [1 + o(1)][IMSE[H, v]}.

This theorem demonstrates how the risk of 8 depends on the nuisance function m(-)
and the penalization matrix ¥~!. We see that the first order term of the risk does not
depend on the nonparametric nuisance function whereas the second order term in the
risk expansion coincides with the integrated mean square error of recovering m(z) in the
model (1) provided 0 is known. This is why we are interested in the analysis of the second
order theory. One can maximize the second order term over all nuisance functions from
Wy and then minimize it over all penalizations ¥ or equivalently over all H. Thus one
obtains the following result about the minimax penalization (see also Pinsker (1980)).

Theorem 2 Let 0 be the estimator defined by (5) with ¥ = HY*(E — H) V%0 /\/n,

where H is the diagonal matrix

= [1-wvAl,. (8

where [z]; = max(z,0), and w be a root of the equation

%gxs {%\/A_s—leL. (9)
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Under the conditions of Theorem 1 as n — oo

sup B0 —0)(0—60)T = (227) "> {1+ [1 + o(1)]n""trH }.

mEWO
If & are Gaussian then for any B > 0
inf sup sup E(0 —0)(0 —0)" = (ZZ7)'0*{1 + [L + o(1)]n""tr H},
f meWjp gcRd
where inf is taken over all estimators of the parameter 6.
This result shows that the optimal regularization matrix ¥ strongly depends on the
parameter [, which defines the functional class Wy. In practice this parameter is hardly

known. Therefore our next step is to construct a practically feasible data-driven method
for adaptive penalization.

2 An adaptive estimator

The goal of adaptation is to chose the regularization matrix ¥ in (5) based on the
observations in order to minimize the covariance matrix E(é\— 9)(@\— 0)T. Theorem 1
plays an essential role in a such choice since it says that the second order risk of f is
controlled by IMSFE[H,v]|. Thus we see that in order to minimize the second order risk
we have to minimize M SFE[H,v] with respect to H. This functional depends on the
nuisance parameters v, which are of course not known. The ordinary way to perform
minimization in this situation is based on the principle of unbiased risk estimation. The
main idea is well known and commonly used in nonparametric estimation (see e.g. Akaike
(1973), Mallows (1973)). Heuristic arguments for adaptive choice of H are the following,.
Let u = (0y,...04,11,...)T. Define an estimator of this vector by

(H) = agmin { |V = QTu||* +n||H(E - H) P4l }, Q= ( ¢ ) . (10)
Simple algebra reveals that fi( H) can be computed as
A(H) =[QQ" +nH ™' (£ — H)|7'QY. (11)
With U(H) = QT[QQT + nH'(E — H)]'Q we easily see that
BV — QT = B |Q7[(H) — | - 20* U(H). (12)

Noticing that by the law of large numbers

7277 0
QQT“( 0 nE>
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we arrive at
_ _ E 0
QQT +nH (B — H)|'QQT ~ ( v )
and
UH)~ 7ZY(Z272") 72 + YTH /n.
So with this in mind we obtain omitting the terms of the order O(1)

E||QT[i(H) — )|’ ~ E||WT(E - H)v||” + o*Etr U*(H) (13)

~n Z(l — Hkk)Qz/i + c’tr H? + o%tr ZT(ZZT)_lZ(l + 2trH/n)

Thus to minimize the risk of the estimator one could choose (cf. (12))

~

H = argmin { v = QTa(H)|* + 202trU(H)} , (14)

where H is a set in 15(0, 00), which must not be very rich. For instance we will assume
that H is a finite set. We discuss the required properties H in more detail in the sequel.
Examples of commonly used classes H are projection smoothers with Hy, = 1{k < w},
for integer parameter w € [1,n], the Pinsker (1980) or minimax filters (see Theorem 2)

Hyy, = [1 - (k/w)ﬁh-a w € [1,71] (15)
and smoothing splines Wahba (1990)
Hye = (14 pie)™", p >0, (16)

where A are the eigen values of the boundary value problem (2). We would like to
remind that in the last case the estimator has the form

f = arg m@inn}nin{i[)ﬁ — 077 — m(X))? + /01[771@)(.1:)]2 da:} (17)

and there exist very fast computational algorithms for finding 0 (see for more details
Green and Silverman (1994) and Schimek (2000)).

Unfortunately in partial linear models the empirical risk n(@\— 9)(@\— 0)T is non-
degenerate. The variance of this random variable is of the order of the mean. This leads
to some difficulties in evaluation of the performance of 0 with H from (14). To overcome
these difficulties we use the idea of splitting by Nemirovskii (1998). Only a part of the
whole sample say Yi,..., Yy, where N <« n will be used to construct the matrix H.
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Once H is chosen the whole sample Yi,...,Y, is used to compute the estimator. Thus
our main idea is to estimate the right-hand side in (14) based on the data Yi,..., ¥x.
We do this in the following way. Let

fin (H) = axgmin {[[Y = Q|3 + N [[H2(E — 1)y}

be the estimator of the parameter y based on the data Yj,...,Y¥y. With (12) and (13)
we obtain

E|Y - Qa(H)|" +20* e U(H) ~ nY (1 — Hy)E + o*tr U(H)

k=1
n = n
= = N;(l—Hkk)Qu,f—l—JZtrUfV(H) + (1—ﬁ) otr UZ(H)
~ o B[y = QUi (H)|[} + 20w Un ()| + (1 - ) o™t UR(H).

Thus we can replace (14) by
X ) ~ 2
H* = arg min { [V = Q%fin(H)|[% + 207t Un(H) — >t UL (H) (1 — N/n)} (18)
and the adaptive estimator of # is defined now by
o = argminmin { [V — 270 — 0Tv||* 40 (B2 - 1) | (19)

Our further analysis is essentially based on some properties of the smoothing matrix
H. We will assume that the set H is finite, its cardinality is less then O(n) and uniformly
in H e H:
0 < Hy <1,
Hy =1, fork=1,...,6-1,
tr H < Cytr H?,
tr’H < Cyn/logn, (20)

Y HELE < Cyn,
E>n
where (' 1s some constant.
In order to simplify some technical details we assume also that the regressors are such
that for some sufficiently large constant C'z the following conditions are hold

N n n
max 22 < 2 2 <0 2| Y <cn )
=1

t€[1,N - n -
[ ] =1 k=1

The following theorem is the main result of the paper.
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Theorem 3 Lel & be Gaussian and N = n/log't"n, & > 0. Then under conditions
(20-21) uniformly in m € Wy and such that |m||, < M < co as n — oo

E(0* —0)(0" —0)" = (2Z")""{o* 4+ [1 + o(1)] Jnf IMSE[H,v]}.

This theorem could be interpreted as an oracle inequality (see Nemirovski (1998))
in the following way. Suppose we are allowed to make use of only the estimators 0
defined by (5), (6) with H € H. Let us assume that there is an oracle which says the
nuisance function m(-). If we know this function or equivalently v then according to
Theorem 1 we can minimize the risk of 4 up to a second order term choosing H* =
arg mingey IMSE[H,v]. It is clear with this family of estimators we cannot do better.
On the other hand Theorem 3 says that we can achieve almost the same performance
without oracles.

Remark 1. There is no other way to compute H* from (18) except the complete
search. Thus from a computational point of view it is better to have cardinality of H as
small as possible. But if H is not sufficiently rich the risk of the adaptive estimator 8* may
increase substantially. So there is a compromise between computational and statistical
efficiency. The simplest way to resolve this problem is to use so-called exponential grids.
As an example consider the family of minimax smothers defined by (15). Let us chose a
sufficiently small number ¢, say ¢ = 0.1 and consider the grid of bandwidths

ws=(1+¢)°, s=0,...,logn/e.
Let H® be a corresponding class of smoothers having the elements
Hy, = [1 — (kjw,)’]y, s=0,...,logn/e.

Cardinality of H* is logn/e, which is much smaller than the cardinality H. On the other
hand for any H € H we can find H* € H® such that uniformly in v € 15(0, 00)

IMSE[H*,v] < (1 +¢)IMSE[H,v].

Indeed let Hy = [1 — (k/w)’]4 for some w € [1,n]. Take Hy = [1 — (k/w®)?]4, where
w® = min{w; : ws > w}. Since Hf, > Hy; we evidently have ||(1— H®)v||*> < ||[(1- H)v|?
and it is easy to see that ||[H||*> < (1 + ¢)||H®||*>. Thus using H® instead of H we may
have only a little increment of the risk but we improve significantly the computational
efficiency. The same remark concerns of course the spline estimator.

Remark 2. In order to construct #* we divide the sample in to two parts. From a
practical point of view this idea is of course not very attractive. As a rule we use the
estimator

0 = arg minmin{||y’ - 276 — 97?4 on||HV2(E — H)'?|%}
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with H from (14). So it would be very interesting to find out whether this estimator is
adaptive in the sense of Theorem 3. Unfortunately, our arguments applied in the proof
of this theorem cannot be used to answer this question because of a strong dependence
between the estimators of parametric and nonparametric parts in the partial linear model.

3 Proof of Theorem 3

We start the proof of Theorem 3 with some auxiliary results. First, using the Taylor
formula we will find an asymptotic expansion for the risk of the estimator # defined by

(5). Rewrite (11) as
A(H) — = nS™ H7 (B — H) + S7Q, (22)

where S = A + B, with

77T 0 0 AL
A_< 0 nE—I—JQE_2>’ B_<\IIZT \I/\IIT—nE>' (23)

In order to compute
ST = ATHE 4+ ATVPBATYA)TIATYE, (24)

we use the Taylor expansion with respect to A='/2BA~1/? in the right-hand side of the
above equation. Denote for brevity H = (E + 0?X7%/n)~". Thus we have to check that
the operator norm of the matrix

(25)

A—I/QBA—I/Q _ 0 (ZZT)_l/QZ\I/THl/Q/ﬁ
H'Y2 7T (72722 HYA(WWT [n — E)H'/?

is sufficiently small. Denote also by #H cardinality of H and HZSH]ZV = Zf\il Z2.
Lemma 1 For any z <n

P‘{H/—X_UQBA_I/QH2 > C(1+ :z:)trQH/n} < #Hexp(—2*/C),
where C' is a sufficiently large constant.

Proof directly follows from Lemma 2 in Golubev and Hardle (2000). W

The next lemma gives an asymptotic expansion for the risk of 0 defined by (5) with

the penalization ¥ = H'/2(E — H)~'?/\/n depending on the data (Y;, X;).
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Lemma 2 Uniformly in |m|, < M < oo as n — oo we have

E(0-0)(0-0)" =EAgAL + 07" |[(227)7 1 O(E), (26)
where
Ag = (ZZNY'ZE+ [E+o(E)(ZZT) ' ZVT(E — H)v (27)
+ 07 E+oE)(Z2Z0) ' 29T HY ZT (2727 ¢

I
— 0 HE 4 o) (22T 2Vt Hu¢
+ 07 E+ o B (Z2ZT) ' ZUTH(YYT /n — E)HUE,
)

O(FE) is a bounded d x d-matriz and o( F) is a d x d-matriz with the operator norm tending
to ) as n — oco.

Proof. Notice that in view of (5) HZT(a— 0)|| < ||€ +¥Tv||. Therefore for any § > 0
we have

E||6 — 0]+ < C(8)n"F||(Z2T) 7127
and we get by the Holder inequality and Lemma 1 with z = (2C 10g(n7§£7—[))1/2
E(e —0)(6—0)" =E(@—0)(0 —0)"1{|A/*BAT| < &} (28)
E(0—0)0—-0)T1{|A72BAT?Y > ¢}
< E(e—e) 0—0)"1{| A" 2BAY?| < &}
_I_ nH(ZZT) 1/2H 2P5/ 1+5 {HA I/QBA 1/2H > 5}0
< E(@-0)(0-0)T1{||A7/2BA?| s€}+n-1u<ZZT> "I-ro(E),

Next one obtains by (24), (25) and by the Taylor formula when HA“I/QBA_I/QH <e

(P )t BOETE) @

UZT (22T (W7 /n — E) )

* *

+ (E+O0(E)n (225 29T H <

where # denotes a matrix that is not needed in further calculations. Thus once again
using Lemma 1, which says that P {||A="/2BA~1/2|| > ¢} is exponentially small, we arrive
from (22) and (27-29) at the assertion of the lemma. O

In the sequel we will use the following very simple auxiliary fact. Let V' be a finite
set in 13(1, 00) with cardinality #V and let n; be zero mean random variables, such that
for any given v € V

o0

(Z U}J]k) = Z v Enpm < oo.

k=1 k=1
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Suppose now that v € V' are random variables depending on n;, £ = 0,... and we want

2
to evaluate from above E(ZZOZO vknk> . The next lemma provides a solution of this

problem.

Lemma 3 Assume that for A = \/log(S#V)/2 (S > 1) and for any given v € V

A - 2
Eexp{m;vknk} < exp(2A7). (30)
Then .
E (Z vknk> < 8log(S#V)ED(v) + 2 max D(v)/S. (31)

Proof. By the Markov inequality for any ) > 0 we have

{i Uknk} = { N VETk < E D(v) Iglea‘;({\/li i vknk}

k=1 k: k=1

< Q*E D(v )—|—maxD { Fkank‘>Q}

< Q°E D(v) + 24V eXp(—/\Q +2)0%) max D(v).

Finally choosing @ = 2+/2log(S#V) we arrive at (31). B

Lemma 4 Lel ny = Zf\il Zsihk(X:). Then uniformly in v € Wq and in H € H
o0 (o @] L
{Z (1 — Hip) V,msk} < Clog(n#H)| Z,|1% {E S -H)wE+Z (32)
k=1 k=1

Proof. Since |1 — Hy| < 1 one obtains by the Cauchy-Schwarz inequality that for
any M > 1

2
(1= Hyvina| +20M L) 205, (33)

E

© 2
{Z (1 — Hgr) ansk} <2E {
k=1

Ee
Il
—

Next we apply Lemma 3 to the first term in right-hand side of (33). So we put

M

(1 - Hkk Vk7 Z Zsﬂvbk D(U) = HZSHJZV Z(l - Hkk)2’/]3'

k=1
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Check now (30). With A = y/log(n#H)/2 and M = N/[Cyzlog(n#H)] we get by the
Cauchy-Schwarz inequality and (21)

Amax; | Zyi| ool (1 — Hyp)ve| A max; | Zy | M2

1/2 — 7
1 (S, 0 — Hie7) |71l

With this in mind since X; are independent we have by the Taylor formula

EGXP{\/%E;W%} HE Xp{\/)\Zizl_Hkk vt (X )}

< (14 veX)2) < expW)-
Hence using (33) and Lemma 3 we finish the proof. O
Lemma 5 Let & be i.i.d. N(0,0%). Then

< ACPMVENT <

B {i g :(i Zatr(X)) —WZIR] } < Clostmprll Z 4B e 12, (30
B {3 i (zwk X)) =N} < ClogupNECEE,  (39)
E{gg,gk_@wk X)) - 5ot|) < Clognpr) VB, (30)
B {i Hi ﬁ;wzo{» 1} < Clogn#H)NE 1 H, (37)
E{kio;Hka[;bk 1} < Clog(n#H)NE tr H?, (38)
E{iﬂgw (X068} < ClogngH)NEtr Y, (39)
B3 J;wx»wx» L I ) (a0

< Clog(n#tH)E tr H.

Proof. We prove only the first inequality since the others can be checked in the
similar way. Once again use Lemma 3. Putting

N 2
ve=Hu, o= (3 Zewn(X)) =121
i=1
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we have by (20 - 21) that for any given v

D(v) = E (Z vknk>2 — 91 + o(1)] tr H?||Z, |4

k=1

Since tr H?* < n we choose S = n?. Thus to complete the proof of the lemma it remains
to check (30). Using the Cauchy-Schwarz inequality one obtains

E exp{ (41)

s

< BV exp{ Z Yl Z o (X)9r(X) |
x E!/? exp{ ﬁ: i_o: W}k i) — ]}

Notice that in view of (20-21) one obtains for A = y/log(n?#H)

N Zsi Zsj| [ | NI M S el
~Thra | v X5 = o), 2] ule () 1] = o)

Therefore we can use the Taylor formula to compute the right-hand side of (41). Hence
acting in this way we arrive at

A
< exp(22?).

E exp { VLM

™3
——

S

(v
Now (31) implies the inequality (34). O

Lemma 6 Let n,, = N~'/? Zﬁl[;bk(Xz)@bl(Xz) — dii|. For any M > 1 uniformly in
Ve Wo

o
Il

1

E ‘ Z (1 — Hik ) (1 — Hy)nes

k,[=0

< CMlog"*(M {EZ (1 — Hy)2? + LM~ (42)
k=1

and

E ) HyH,ni, < Clog(n)Etr*H. (43)

k,s=1

Let (s = Z” L UR(Xi)s (X NZE(ZNZE) 1 Zn]i;. Then uniformly in v € W,

E (Z |VS|Hkk§kS>2 < Clogn(i |VS|> 2E tr?H + O Ln~%+1, (44)
s=1

k,s=1
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Proof. Note that ¢,(X;)¢i(X;) — 0 are i.i.d. bounded random variables having zero
mean. Therefore

P{|nks| > x} < exp(—Cz?). (45)

On the other hand one obtains by the Cauchy-Schwarz inequality

E ‘ Z vpv(1 — Hyg)(1 — Hll)nkl‘

k=0

M 2
< <Z|I/k||1—Hkk> max |77k1|—|—L<Z k™ 251_25E771>

k=1 kJiI>M

1/2

< MQE Z’/k 1= Hu)* +CL Y P{|nkz| > Q}+0LM 2641

k<M

Putting @ = /C'log(M), where C’ is a sufficiently large constant, we arrive with (45)
at (42).

The second inequality (43) can be proved in the similar way. Using the Cauchy-
Schwarz inequality, (20) and (45) we have

E Z HkkHssnks <E maxnk Z H.H, ,+E Z HkkHssnks

k,s=1 k,s=1 k,s>N

< Q*Etr*H + n*P {max Inks| > @} +E (Z Hkkk2> ( Z k=2 _27714;)

k>n k,s>n
< Q°Etr*H +n'exp(—CQ% +C

We complete the proof of the lemma choosing @ = 24/logn/C. The proof of (44) is

similar and we omit it. B
Now we are ready to evaluate the performance of the estimator 6*.

Lemma 7 Let

. Nlogn
lim

n—oo n

— 0. (46)

Then uniformly in m € Wy as n — oo

E(0" — 0)(0" — 0)" = (227) 7" | + (1 + o(1)E(|[(E — H)w|* + trH*Z)] (47)
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Proof. In order to compute the right-hand side of (26) we represent W77 W¢, 7Z¢
in the following form

\I]ZT - Zwk Zsz—l' Z ?7/)]6 2 SZ:\IIZg—I_\IIZf)

1=N+1
Ve = Zwk D& + Z Yr(Xi)6 = Wéo + ey,
; i=N+1
z¢ = szs + Z Dyibs = Zbo + 261,

1=N+1

and note that H* does not depend on WZI W¢ and Z€. The dependence between
H* and U2, W¢y, Z&, can be evaluated by Lemmas 4 — 6. So we have for example by
Lemma 4 and (46), (21)

E[ZVT(E — H)W][Z9T(E — H* )"
= E[(29] + 29T\ (E — H)[(29] + 29T\ (E — H*)]"
= E[ZV}(E - H)|[ZV](E - H*) 1"+ E[ZVI(E - 0 W[ 29T (E — H)])"

0 d
< {Z ZyiZwi + O(E lognZZZ }EZ(l—H,jk)Qz/,er Olgg"ZHzSH?V
— s=1

1=N+1 s=1 =1

o) d
< [z o MBS S 2B S 0 - g+ TS g
k=1 s=1

s=1 =1

< 27"[E + o(B))[E iu CHL )R ﬂ} .

n
k=1

Similar arguments can be used in order to compute the remainder terms in the right-hand
side of (26). O
Proof of Theorem 3. Denote

= ||Y = QEan(H)|[} + 20t Un(H) — (1 — N/n) o*tr UR(H).
In view of Lemma 7 it suffices to show that uniformly in H € ‘H
ELy[H] = [l + o(1NE {H(E —Hy|* + JQtrHQ/n} + R, (48)

where R is a constant which does not depend on H. Let Sy = QnQL+ NHY(E—H) =
AN + BN, with

Ao (20 B _ 0 Znuk
N 0 NH ) N UnZT OOl - NE )
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Then by Lemma 1 (see also (29)) we have

_ InZT)1 0
SNl = ( ( NON) N—IH ) (49)
B . 0 (ZnZT) ' ZNn UL H
B o BN <HwNz£<zNz£>—1 HUAVE/N — E)H )
Therefore
_ E 0
svavab= (0 1) (50)
(22T 29 HONZT /N —(2ZT) 29 (E — H)
~ [E+o(B)] ( 0 HUNZT(227) 205N )

and

QnSN' QN =Un(H) = Z5(ZnZ5) 2 + NT'UNHUY, (51)

+ NUE 4+ o E)[ZE(ZnZ) T ZNU N HYT + O HY N 2 (Zn 25 2y
+ UNH(U UL /N — EYH U y].

First we estimate the traces of Uy(H) and U%(H). By a simple algebra we obtain

N o
N7'E tr UL HUy = E {trH + %Z N Hulwi(X0) — 1]}, (52)

i=1 k=1

N2Etr UNHUN UL HUy (53)
= N'EtrVNH* Uy + NT'E tr VL H(Un UL /N — EYHO

N o
2
= (L4 NYEwH + E 3 3 HL[UHX) — 1]
=1 k=1
00 1 2

b D0 H [ Y (XX

and

NT'Etr Z5(ZnZ5) Y INUNH Uy = N 23 (ZNZ30)  ZnEtr H - (54)
N

+% ST Hu Y [n(X)ek(X;) — 61125 (Zn Z25) 7 2.

7=l
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Since tr ZL(ZnZ15)~1Zn < C we obtain by (37), (40) , (43) and (51-54)
EtrUn(H) =[1 +o()]Etr H + tv Z%(ZnZ3) " Zn,
Etr U (H) =[1 +o(1)|Etr H* + tr ZL(ZNZ3) " Zy.
Next notice
IY = @niin(H)|[% = II(E — QuSF'@w)én + (F = Qn Sy Qn)Qnplly
= (B~ QNS Qn)EnIN + IQN(E — SF QvQNully
+ 260 (F — QS QN)QN(E — S5 QnQy )
The first term in the right-hand side of (56) is evaluated with (49) as
E[[(E - QSN On)Enlly — No? = — 2B L QL SY Qnén
+ B QNS QNQNSK' Qnén
= — 2B AN (InZ5) " Inén — 21 + o(1)INTTE U HU NN
+ EEVIZN(ZnZN) " Zn + (1 + o(1)]NT' UL HU ] *En.

Using (36) we get

o) N
NTELULHYNéy = E ; Hkk% > (X er(X)EE;

t,5=1

o0

17

(55)

(56)

(57)

(58)

— o’ g; Hy, + E g Hi [(ﬁ i ;z)k(xi)gi)z — 0| =1+ o(1)]0*E Y Hi

k=1

Next with (36), (43) we obtain

NTEL(WT HUy) %y = E tr H? + E i H2, {(LN i @/}k(Xi)&)Q—aQ}

k=1 =1

N \}—NE S i, (= 3 wu(X06) (= S va(X)6)

s,k=1 =1 i=1



Adaptive smoothing 18

Therefore noticing that tr ZL(ZnZ5)"1 Zn < C we arrive with (57)-(59) at

E|(E-QySy'Qn)énly = No®+(1+0(1)E (tr H? — 2trH) (60)
— v ZN(INZ5) N (61)

Our next step is to estimate E||QL(F — Sy'QnQ%) |3 in (56). Starting with the
first order term (see (50)) we have by (42) with M = N/ 10g1/2+5(n)

°© 2
E|[VT(E — H)v|% = EZ[Z (1 — Hir)vrpr(X )} (62)
=1 k=1
o0 N
= NE Z(l—Hkk)Ql/z—l- EZ(l_Hkk I/kl/l 1—H” Z _5kl]
k=1 k=53 =1

= [1+ 0(1)]NE§:(1 — Hy)?v} 4 log' % (n)/N.

k=1

The remainder terms in E ||Q% (£ — Sy'Qn Q% )i||3 associated with the second order

terms in (50) are evaluated by the similar arguments. We have by (34) (replacing there
Zgi by [Z5(ZnZ5) 7 ZN])si and by [Zn6)];)

N7’E HZT(ZNZT)‘IZN\IINH\IIT AL

_ 2EZ{ZHkk(Z¢k IMNZE(ZNZE) T ZN], )(
< 4N~ QEi{ZHkk<ZW X285 (ZnZE)~ 1ZN]5>2}

N o0

—|—4N‘2E;{;Hk (;m )[Zx 0] )2}2

=1

i)y

QMZ

(3]

N
< ONlog(ngt) {1 2n0)12 + D 125 (2 25) " 2N J Bt H = o(1)E e,

2,5=1
E||ZN(ZNZ%) T Zn R (E —~ H) Iy

_ Eﬁ:{ . (1 — Hyg V’“(Z Yr(X [ZT(ZNZT) IZN]ZJ)}Q

i=1 k=1
N 00 O
< log(n#H) N (25 (Zn 25) " Zn)? {EZl—Hkk v ﬂ
k=1

t,5=1
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- C
{E Z 1— Hkk Vk —
k=1 n
and by (44)

NZE | VL HUNZE(ZnZ3) T Zn |3
N

= NBY DS B (X 3 125 ZE) T (X0 (X, |

=1 k=1 s=1 [,m=1

< ONTB{Y Y Hull Y (2 Z8)™ 2l X0 X, )

k=1 s=1 {,m=1

B 2
< CN7'log n(Z |V5|> Etr’H +Cn7'N™' = o(1)Etr H.
s=1
Thus using the above inequalities and (62) we arrive at

E[|QN(E - SY'QnQNull% = L+ o(DINE Y (1 - Hu)’vi +o(E Y Hp.  (63)

The interference term in (56) is evaluated by the similar way. So one gets

o0

B|€h(E — QuSy' QRQN(E — 551 OnQ%)n| < o(VE [N 301 = Hu)vi + 3 HE).

The proof of (48) follows now from the above equation (56) and (55), (63). W

4 Concluding remarks

In practical applications of statistical methods one always compromises between theo-
retical efficiency and numerical complexity. Partial linear models provide us with a good
example of that. In the analysis of this model we have assumed that the smoothness 3
is known. This assumption is not crucial from the theoretical point of view since if 3
is unknown we can use the adaptation method based on unbiased risk estimation (see
Golubev and Nussbaum (1992) or Kneip (1994)) with respect to the family of bases pa-
rameterized by the parameter 3. We have intentionally considered the simplest case in
order to avoid even more complicated proofs. On the other hand the standard practical
recommendation 3 = 2 seems to be a very reasonable tradeoff between optimal rates of
convergence and complexity of computation.

Assuming that the smoothness is known we still encounter problems of computation
the second order minimax estimator since in order to do that we need to:
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e estimate the density ¢(z) of X; if it is unknown

e compute the eigen functions and eigen values of (2)
e compute the empirical Fourier coefficients

e solve the minimization problem.

The first three steps require so many numerical resources that the exact implementation
of the second order minimax estimator becomes almost impractical. We have already
mentioned that one can avoid all these problems organizing the computation in the
time domain. That means that we compute the spline estimator defined by (17). Its
computation can be reduced to manipulations with band matrices and therefore can be
done very fast (see Green and Silverman (1994)). This method of estimation is not
optimal but we shall see that it is nearly optimal. In order to clarify this point let us
look at the second order minimax efficiency FF(3) defined by

EF() = lim SPrev infren,.., IMSE[H,v]|

64
n—oo sup,cy infgen, , IMSE[H,v]’ (64)

where

V= {I/k : iz/i)\k < 1},
k=1
Hoin = {H D Hy = [1 — gy, p > 0},

The motivation of (64) comes from Theorem 3, which shows how the performance of the
estimator depends on the set H. In particular, if one uses splines then H = H,,;; for the
second order minimax estimator one has to take H = H,,i,. The value of EF(3) can be
computed analytically but it is more instructive to look at the plot presented on Figure
1. For comparison we placed here the plot of the minimax efficiency of the projection
method. We see that even for § = 2 minimax efficiency of the spline method is close
to 0.92. This fact together with fast algorithms make splines very a powerful numerical
tool for practical applications in partial linear models.
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1.0

-

0.8 -7

0.6 %

smoothness

Figure 1: Minimax efficiency as function of the smoothness 3 (solid line: minimax effi-
ciency of the spline method, dash line: minimax efficiency of the projection estimator).
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