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Abstract

We study the long run behaviour of interactive Markov chains on
infinite product spaces. In view of microstructure models of finan-
cial markets, the interaction has both a local and a global component.
The convergence of such Markov chains is analyzed on the microscopic
level and on the macroscopic level of empirical fields. We give sufficient
conditions for convergence on the macroscopic level. Using a perturba-
tion of the Dobrushin-Vasserstein contraction technique we show that
macroscopic convergence implies weak convergence of the underlying
Markov chain. This extends the basic convergence theorem of Vasser-
stein (1969) for locally interacting Markov chains to the case where an
additional global component appears in the interaction.
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1 Introduction

We consider interactive Markov chains on a product space S = C* where C
is some finite state space and A is an infinite set of sites or agents. Thus,
the state space of the Markov chain is the set of configurations z = (2%)gca
which specify an individual state for each agent a € A. Suppose that the
transition kernel is of the form

O(z;-) = [ =*(x5). (1)

a€A

In such a situation, the behaviour of the agents is interactive insofar as the
probability 7%(x;c) that agent a € A switches to the state ¢ € C does not
only depend on his own present state but may involve the states of other
agents.

The convergence behaviour of Markov chains of the form (1) has been
investigated in depth in the case where the interaction is purely local. This
means that 7%(z;-) only depends on the states in some neighborhood N (a).
In this case IT may be viewed as a Feller kernel on the compact state space S.
Using Dobrushin’s contraction technique and the Feller property, Vasserstein
(1969) has shown that the Markov chain converges weakly to some unique
equilibrium distribution g if the interaction is not too strong.

In recent years there is an increasing interest in dynamical microstructure



models of financial markets which involve interacting preferences and expec-
tations of a large number of agents; see, e.g., Brock and Hommes (1997). In
such a context, it becomes natural to introduce a global component into the
interaction, i.e., to introduce some dependence on the average behaviour of
the configuration z € S into the transition laws 7%. In Follmer (1994) and
Horst (2000) such Markov chains are used as a random environment for the
evolution of stock prices, viewed as a sequence of temporary price equilib-
ria. In order to analyze the asymptotic behaviour of such price processes,
we need convergence results for the underlying Markov chain. This is the
motivation for the present paper.

Our goal is to clarify some of the mathematical problems which arise in
the presence of both a local and a global component in the interaction. We
consider the case A = Z? where the average behaviour of a configuration
xz € S is described by the empirical distribution g(z) or, more completely
by the empirical field R(x). Due to the global dependence of the interaction
the Feller property of II will typically be lost. In order to prove convergence
of the Markov chain {X;}en governed by the kernel II, we proceed in two
steps. Due to a spatial law of large numbers for empirical fields, the macro-
scopic process {R(X¢)}ten can be analyzed separately. Using contraction

arguments with respect to a suitable metric, we obtain the convergence of



the macroscopic process to some random field; this part is based on Horst
(2000) and fills a gap in Follmer (1979a). Our main result in Theorem 3.20
is based on a perturbation of the Dobrushin-Vasserstein contraction tech-
nique. We show that macroscopic convergence implies weak convergence
of the underlying microscopic process {X;}ien to the same limiting ran-
dom field. This may be viewed as an extension of Vasserstein’s convergence
theorem to the case where the interaction has both a local and a global
component.

In the dynamical model (1) the individual transition laws 7% have an
interactive structure, but the transition to a new configuration is made inde-
pendently by the different agents. An interactive structure in the transition
itself is captured by a model where the measure II(z;-) is not a product
measure but a Gibbs measure with respect to a system of conditional prob-
abilities y* depending on the configuration z. Based on Horst (2000) and
Horst (2001) we show how our convergence results can be extended to this

general setting.

2 Locally and Globally Interacting Markov Chains

Let C be some finite state space. We denote by A the d-dimensional integer

lattice Z¢ and by S := C* the compact space of all configurations = =



(%) aen with 2% € C. A probability measure p on S will be called a random
field. The space M(S) of all such random fields is compact with respect to
the topology of weak convergence. Since the state space C is finite, the class
L(S) of all local functions which depend only on finitely many coordinates
is dense in C(S) with respect to the topology of uniform convergence. Thus,

a sequence {py e of random fields converges weakly to p € M(S) iff

w(f) == /S fau 23 u(f)  (f € L(9). 2)

Our aim is to analyze some aspects of the long run behaviour of interac-
tive Markov chains on S with transition kernel II(x; dy). Let us first assume
that the kernel II takes the product form

O(z;-) = [ =*(x5). (3)

a€A

In such a model, the state of a single agent ¢ € A changes in reaction to
the situation z € S according to the probability distribution 7%(z;-) on C.
The individual transition probabilities 7%(z;-) have an interactive structure
since they depend not only on the individual state z*. Note, however, that
the transition to a new configuration is made independently at different
sites. In (10) below, we will admit an interactive structure in the transition
itself. Such a situation is captured by a model where the measure II(z;-)

is not a product measure, but a Gibbs measure with respect to a system of



conditional probabilities depending on the configuration z.

The convergence of interactive Markov chains of the form (3) has been
investigated in depth in the case where the interaction is purely local, i.e.,
under the assumption that the individual transition law 7%(z;-) only de-
pends on the local situation (2°),¢ N(a) in some finite “neighborhood” N (a);
see, e.g., Follmer (1979b), Lebowitz, Maes, and Speer (1990) or Vasserstein
(1969). In such a situation, the stochastic kernel II has the Feller property,
ie.,

Iy () = /S F(@)TI(; dz) € C(S)

whenever f € C(S). This property is crucial for the basic convergence
theorem in Vasserstein (1969): Under suitable contraction bounds on the
interaction between different sites Vasserstein (1969) establishes weak con-
vergence of the Markov chain to some unique equilibrium distribution v in

the sense that
. t _
Jim pIF(f) = v(f)
for all f € C(S) and any initial distribution g € M(S). Due to (2), weak
convergence of the sequence {ull'}cy may be viewed as a notion of local
convergence.

The purpose of the present paper is to introduce a macroscopic com-

ponent both into the interaction and into the notion of convergence. This



means that for a given configuration x = (2%)4ea € S, the influence of z
at site a € A is not only felt through the local situation (2%),en(q) in some
neighborhood N(a) of a but also through some global aspects of z. In the
presence of a global component in the interaction, the Feller property of
the transition kernel II will typically be lost, and so we can not apply the
method of Vasserstein (1969) in order to study the asymptotic behaviour of
the Markov chain on S.

In the following simple example where the transition behaviour at site
a € A depends both on the individual state % and on an empirical average
m(z) associated with z, this problem is easily solved because we can study

separately the convergence on the macroscopic and on the microscopic level.

Example 2.1 Let C ={0,1} and denote by Sy the set of all configurations
such that the empirical average associated with the configuration x € S

erists along a suitable sequence of finite sets A, T A:

St = {xGS:Hm(m) = lim 1 m“}
| a€h,

For x € S we assume that

where T is a transition probability from C x [0,1] to C, and

M(z;-) = [[ «(=*,m(2);-) (5)

a€A



for any x € §1. It follows from the strong law of large numbers that

1
lim —— Y y?= II(z; )-a.5.
noy00 |An|azy 5, |An| 2 1) M{as-)-as

ach,

The product-measure I1(z;-) given by (5) is therefore concentrated on the set

S1, and the empirical average satisfies

m(y) = F(m(z)) := m(z)n(1,m(z); 1) + (1 — m(z))7 (0, m(z); 1)

for II(z;-)-a.e. y € S1. Thus, the Markov chain {X;}ien with transition
probability II on S1 induces almost surely a deterministic sequence of em-
pirical averages {m(X¢)hien. The dynamics of this “macroscopic process”
is specified by the iteration of the function F acting on the interval [0, 1].
For any starting point x € S1, the process { Xy }hen may therefore be viewed
as a Markov chain evolving in the time inhomogeneous but deterministic

environment {my}en defined recursively by
mo =m(z) and my:=F(mg1) (t>1).

Suppose now that the macroscopic process converges to some m* € [0,1]. In
this case, it is easily seen that we obtain weak convergence of the Markov

chain {Xi}en to the unique equilibrium p* of the Feller kernel

m* (T3 dy) - wa m*; dy®).
acA



This convergence result is a special case of Theorem 3.20 below. The preced-
ing argument illustrates the method of separating the analysis of macroscopic

and microscopic convergence.

Let us now consider the case where the individual behaviour is influenced
both by an empirical average and by the situation in some neighborhood.

We fix [ > 0 and define the neighborhood of an agent a € A as
N(a):={becA:|b—a|<I}.

If the transition probability 7(z;-) depends both on some average of z and
on the values z° (b € N(a)) then the analysis of the convergence behaviour
of the Markov chain becomes more involved. Only in very special cases
such as the following example, we can still obtain a simple macroscopic

equation for the deterministic evolution of the sequence of empirical averages

{m(Xy) hen-

Example 2.2 (Follmer (1994)) As an illustration of the interplay between
the long run behaviour on the level of configurations and the asymptotics of
the sequence of empirical averages {m(X;)}ien, we consider the following
simple voter model with C = {0,1}. For z € Si, the individual transition

law w%(x;-) is described as the convex combination

m(z;1) = ap(z®) + pm?(z) + ym(x). (6)



Here, m®(x) is the proportion of ‘1’ in the neighborhood N(a). It is easy
to see that the sequence of empirical averages satisfies almost surely the

deterministic dynamics
m(Xiy1) = a{m(X¢)p(1) + (1 —m(X3))p(0)} + (1 — a)m(Xy).

Thus, the macroscopic process {m(Xy) hen converges almost surely to

e p(0)
- 14p(0) —p(1)

It follows from Theorem 3.20 below that the microscopic process {Xi}ien

converges in law to the unique equilibrium of the Feller kernel

M= (z5°) := [ [ 7%z, m*5)

a€A

where the probability distribution 7®(x, m*;-) on C takes the form
7 (x,m*; 1) = ap(z?) + fm?(z) + ym”".

Thus, the long run behaviour of the microscopic process {Xi}hien is deter-

mined by the unique limit of the macroscopic process {m(X)}ten.

The next example shows that we will typically not obtain a simple equa-

tion which describes the dynamics of the sequence of empirical averages

{m(Xy) hen-



Example 2.3 Consider the following generalization of the voter model (6).
For ¢ € S1, the individual transition probabilities can be described by a

measurable mapping g : C1N@| x [0,1] = [0,1] in the sense that

m(@;1) = g ({2 }henwy m(@)) - (7)

Typically, we can not expect that there exist a function F : [0,1] — [0,1]
such that m(X;y1) = F(m(Xy)). Nevertheless, we will show that the macro-
scopic process {m(X;) }ien converges almost surely if the mapping g satisfies
a suitable contraction condition in its second argument; see Example 3.11
below. Due to Theorem 3.20 below, this will imply weak convergence of the

microscopic process {Xi}en-

We are now going to specify the mathematical framework which allows
us to analyze the long run behaviour of the Markov chain {X;}en both on
the macroscopic and on the microscopic level. To this end, we introduce the

family of shift-transformations 6, (a € A) on S defined by (0,z)(b) = 2.

Definition 2.4 (i) A probability measure p € M(S) is called homoge-

neous, if u is invariant under the shift maps 0,. By
Mp(S) :={p e M(S) : p=pob, for all a € A}

we denote the class of all homogeneous random fields p on S.

10



(ii) A homogeneous probability measure p € Mp(S) is called ergodic, if u
satisfies a 0-1-law on the o-field of all shift invariant events. The class

of all ergodic probability measures p on S is denoted by Me(S).

For a given n € N we put
Ay = [-n,n]TNA

and denote by S, the set of all configuration z € S such that the empirical
field R(x), defined as the weak limit

) 1
R(z) := nlgTolo M a&ﬂ 09,2 () (8)

exists and belongs to M.(S). The empirical field R(z) carries all macro-
scopic information about the configuration z = (%)4cp € Se. In particular,
the empirical distribution

ole) = Jlim 3 Gl

a€h,

is given as the one-dimensional marginal distribution of R(z).
Consider the product kernel IT defined by the transition laws 7 in (7).

Proposition 3.1 below shows that the measure II(z;:) (z € S.) is concen-

11



trated on the set S, and that the empirical average satisfies

my) = lim — > y°

n—00 |An‘ el

= lim — m(0az, m(x); 1)
n—00 |An‘a§n

= /w(z,m(x); 1)R(zx)(dz)

= G(R(z))

for II(z;-)-a.e. y € S.. Thus, we have to consider the full dynamics of the
sequence of empirical fields { R(X;) }ien even if, as in Example 2.3, the be-
haviour of agent a € A depends on R(z) only on the empirical average m(z).
Our aim is to formulate conditions on the individual transition laws which
guarantee convergence of the sequence of empirical fields { R(X¢) }+en and to
analyze the interplay between convergence of the Markov chain {X;}n on

the macroscopic level and on the microscopic level.

2.1 Macroscopic Interaction: Independent Transitions

Let us now be more specific about the structure of the individual transition
probabilities 7¢. We assume that the interaction is spatially homogeneous
and that the interactive influence of the present configuration x at site a
is felt both through the local situation in the neighborhood N(a) of a and

through the average situation throughout the whole system. This average

12



situation is described by the empirical distribution p(z) or, more completely,
by the empirical field R(z) associated with z € S.. Thus, we consider

individual transition laws which take the form

ﬂ-a(x; ) = TR(z) (QG.T; )
where 7, (z;-) is a stochastic kernel from S x M(S) to C.

Assumption 2.5 The probability laws {7,(x; ") }zcs satisfy a spatial Markov

property of order | in their dependence on the present configuration:
Tu(baz;+) = mu(0ay;+)  if Ouz = Oqy on N(a).

Let us now fix a homogeneous random field p € M(S) and a configu-

ration € S. It follows from our Assumption 2.5 that

My (z;-) == [ [ 7u(0az;-) 9)

acA

defines a Feller kernel on the configuration space S. In particular,

(z;-) == Mgy (2;-) = [ [ TR (Baz;-)
a€A

defines a stochastic kernel from S, to S. In fact, we will see in Proposition
3.1 below that II may be viewed as a stochastic kernel on the configuration
space S.. In contrast to the stochastic kernels II,, the kernel II typically
does not have the Feller property, due to the macroscopic dependence on

the present configuration z via the empirical field R(x).

13



2.2 Macroscopic Interaction: Interactive Transitions

Let us now extend the previous setting by introducing an interactive struc-
ture into the transition itself. This idea is captured by a model where II(z;-)
is not a product measure, but a Gibbs measure with respect to a system
of conditional probabilities v* depending on the configuration z; see, e.g.,
Georgii (1989).

In order to make this more precise, we fix for any configuration z € S
and for every homogeneous random field 4 on S, a local specification y*# =
(v2*)aeca; here v3* is a stochastic kernel from CcA—1{a} {0 C which specifies
the transition behaviour of agent a € A, given a boundary condition v on
A — {a}, i.e., the new states of the other agents.

We assume that v*# satisfies a Markov property of order [ both in its
dependence on the boundary condition and on the present configuration:

For any fixed z € S, we have
Yt (5v) =7 (5w)  if v =w on N(a) — {a},
and for each fixed boundary condition v on A — {a}, we have
V" (5v) =7a*(5v) ifz=yon N(a).

If the transition to a new configuration is made independently by different

agents, given the configuration z, the preceding conditions reduce to our

14



Assumption 2.5. We also assume that the interaction is spatially homoge-

neous:

AP 000) = 7 (30) 08 (a € A).

Due to Dobrushin’s fundamental uniqueness theorem, the specification
y*# determines a unique random field II,(z;-) if we impose a suitable con-
traction condition on the specification; see, e.g., Georgii (1989), Theorem
8.7. Thus, the family of conditional probabilities (y*%(*)),cs defines a

stochastic kernel
(z;-) := gy (z;-) (10)

from S, to S; the product structure (3) is included as a special case. In fact,
we will see that II may be viewed as a stochastic kernel on the configuration

space Se.

3 Convergence Theorems

We are now ready to study the dynamics of the interactive Markov chain

{X¢}ten on the state space Se defined by the general transition kernel

(z;-) = Mg (w3 )

introduced in (10). In a first step, we use the following spatial law of large

numbers for the random fields II,(z;-) in order to view II as a transition

15



kernel on the configuration space Se. For the proof we refer to Horst (2000)
or to Horst (2001); in the special product case (3) the argument is much

simpler and can be found in Follmer (1979a).

Proposition 3.1 For all z € S and p € My(S), the measure I1,(x;-) is
concentrated on the set Se. For I, (z;-)-a.e. y € S, the empirical field R(y)

takes the from

R(y)() = /S M, (25 ) R() (d).

Let z € S.. The preceding proposition shows that
R@)O) = [ Tz )RE) ) = [ Mo (5 )R@)E) (1)
for I1(z; -)-a.e.y € Se. In particular, we have
[I(z;Se) =1

for any = € S,, and so we will use S, as the state space of the Markov chain
{Xi}ten with transition kernel II. We denote by P, the distribution of the
chain {X;}en with initial state z € Se. Since a configuration z € S, induces
an ergodic empirical field R(z), the microscopic process {X;}1en induces Py-
a.s. the macroscopic process { R(X¢)}en with state space M.(S).

Let us now show that the spatial law of large numbers for ergodic empir-

ical fields allows us to analyze the microscopic and the macroscopic process

16



separately. In view of (11) the macroscopic process satisfies
R(XH—I) = R(Xt)HR(Xt)(Xt; ) ]P’w-a.s.

i.e., the random field R(Xy;1) is Pz-a.s. determined by the empirical field

R(X}). In other words, we have
R(X:) =R  Pgas.
where we define the sequence of ergodic random fields { RY }+cn by
Rj=R(z) and R{,,:= Rillge = R{llgs ---lpe (¢t €N). (12)

In this sense, for any initial state x € Se, the microscopic process may be
viewed as a Markov chain evolving in a time inhomogeneous but determin-
istic environment {RY }cn which is generated by the macroscopic process.

In particular, the law of the random variable X;,1 takes the form
I (@) = (gg - - ge ) (33 ).

Our aim is now to study the asymptotics of the Markov chain {X;}sen
both on the microscopic level and on the macroscopic level of empirical fields.
Suppose that the microscopic process converges in law to some equilibrium

v in the sense that

/ Fa(5,IT) 2% / fdve  (f €C(S)).
S S

17



In this case, the sequence of empirical fields {R¥ };en = {R(x)I*}4en con-

verges weakly to the measure

Do) 1= /S v, () R(z)(d2).

Thus, Proposition 3.1 implies that we have at the same time convergence of

macroscopic quantities of the form

[ @R = tm 30X (feCs)

along P,-almost all paths of the microscopic process to [ f(z)vz(dz). In this
sense, microscopic convergence implies macroscopic convergence. Sections
3.2, 3.3 and 3.4 may be viewed as a converse construction: Sections 3.2
and 3.3 provide a direct proof of macroscopic convergence. We will formu-
late conditions which guarantee that the macroscopic process {R(X¢)}ien

satisfies almost surely the contraction condition
d(R(X141), R(Xy)) < vd(R(Xy), R(X;-1)) (v <1)

with respect to a suitable metric d on M(S), and this yields weak con-
vergence of the sequence {R(X})}ten. The metric d will be introduced in
the Section 3.1. In Section 3.4, we will show that macroscopic convergence

implies microscopic convergence.

18



3.1 A Metric for Random Fields

Let us denote by A,(f) the oscillation of a function f on S at site a € A,
ie.,

Au(f) :=sup{|f(z) = f(y)| : ==y off a},
and by

A(f) :=sup{|f(z) - f(y)| : =,y €S}

the oscillation of f on S. For any f € C(S) we have

A(f) <Y Aulf)-

a€A

We introduce a metric d on the class M(S) of all random field on S by

) sup 1D =)

fec(s) Soa 219 AG(F) (u, v € M(S5)) (13)

where 7 denotes a positive constant which will be specified later.

Remark 3.2 We have

d(p,v) < sup MS sup le(f) = v(f)]

fec(s) Za Aa(f) fec(s) A(f) < H'u - V”

where || — v|| denotes the total variation of the signed measure y—v on S.

The proof of the following proposition shows that
d(”a V) < dV(/j'a V)'

19



Here, dy denotes the Vasserstein distance on M(S), i.e.,

dy (p,v) == sup{M 1 fe C(S)}

L(f)
and
(@~ fW)
L(f) o :v;éIz; { dg(.’L', y) }

is the Lipschitz coefficient of the function f with respect to the metric

ds(z,y) = Z 2_n|a|1{$a¢ya}
ach

on the configuration space S.

Proposition 3.3 The metric d defined by (13) induces the weak topology

on M(S). In particular, (M(S),d) is a compact metric space.

Proof: In a first step, we are going to show that the metric d is dominated

by the Vasserstein distance, i.e., we will verify that

d(p,v) <dy(p,v). (14)

To this end, let f: .S — R be a continuous function which satisfies
21004, (f) < co.
a€A
In order to verify (14), it is enough to show that
L(f) <> 2mM A (f).
a€A

20



To this end, we fix z,y € S and put
J:={a€A : z#y*}.

With no loss of generality, we may assume that J = (j,)nen- Let (Zn)nen
be a sequence of configurations such that o = z, such that lim, , z, =y

and such that the following holds true for all n,m € N:

j j b b : j j
"Egzn 7é 373&1, LTy = Tpt1 (b 7é ]n)’ xZﬁ}_m-H = y]n-

Thus, we have that

F@) — f@)] < A

a€J

Z (Z gﬂbAb(f)) 2*ﬂ\a|1{ma#ya}

a€A \beA

= ds(a,y) 3271 AL().

a€A

IN

Dividing both sides of this inequality by dg(z,y), we see that

L(f) <> oMl AL (f).

This yields (14), and so limy 00 d(pin, ) = 0 whenever the sequence of
random fields {u, }nen converges to p in the weak topology.

Suppose now that lim,, o d(pn, ) = 0. In this case, we have

lim i (f) = p(f)

n—oQ

for any f € C(S). This proves our assertion. O

21



3.2 Macroscopic Convergence: Independent Transitions

Throughout this subsection, we assume that the stochastic kernel II takes the
product form (3), i.e., we assume that the transition to a new configuration
is made independently at different sites, given the configuration = € S,.
Let us first formulate a uniform Dobrushin-Vasserstein condition on the
individual transition probabilities in order to control the local interaction in
Iz

the stochastic kernels II,. To this end, we introduce a vector ry = (’I‘g,i)ieA

with components

1 .
Tg,i = sup {§||7Tu($; ) —mu(y;)|| rx =y off a — ’L} (15)

for any random field y € M,(S) and for every a € A. Note that rg,z- =t

a—1,0

by translation invariance.

Assumption 3.4 The vectors rh introduced in (15) satisfy
Qg = suerg,O < 1. (16)
H a

Remark 3.5 Under our Assumption 3.4, we may as well assume that the
following “weighted” uniform Dobrushin- Vasserstein condition holds: For a

small enough n > 0 we have

o= supz 2"‘“'7“5,0 <1 (17)
K a

22



The equivalence of (16) and (17) follows from our Assumption 2.5 because

the measures I1,(x;-) have a product form.

Remark 3.6 A vector r = (74)qca S called an estimate for the random

fields p and v on S if

(f) = v(H < ralalf) (18)

a€cA
for any f € C(S). For two product measures 1 = [[,cp ta and v =[] cp Va

such an estimate is given by
1
Ta = §||Ha - VaH; (19)
cf., e.g., Simon (1993), Theorem V.2.2.

In view of (18) and (19) the product structure of the measures II,(z;-)
implies

AdLf) < S A(f) (20)

1€EA

for any f € C(S). Under Assumption 3.4 we obtain the estimate

A(IILf) < (Sgpzrff—i,o> Z Ai(f) <o Z Ai(f).

For any sequence {u¢}en it follows by induction that
ATy Ty, £) <Y ATy, T, f) < of™ Y A(f), (21)
a,i i

23



and so

Jim AT -0, f) = 0. (22)

Remark 3.7 In the case where the transition kernel does not depend on
W, the preceding argument summarizes the proof of Vasserstein (1969) that
the Markov chain 11 converges to a unique equilibrium distribution. In our
context, (22) shows that the microscopic process {Xi}ien has local asymp-
totic loss of memory as soon as (16) holds true. In order to ensure weak
convergence of the sequence {II*(x;-)}ien, however, we need an additional
contraction condition (see Assumption 25 below) which controls the depen-

dence of the individual transition laws on the empirical fields.

Our Dobrushin-condition (16) allows us to establish the following con-

traction property of the transition kernels II,.

Proposition 3.8 Letv,v € M(S) and p € My(S). Under Assumption 3.4
we have that

d(vIL,,vil,) < ad(v,v). (23)

Proof: For any u € My(S), let the vector 75 = (r};)ica be defined as in
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(15). Using (20) and (17), we obtain

IN

Zgn\alAa(Huf) Z Z2"'“""‘”rg_i,02"|i|Ai(f)

< sup {Z Znairg—i,o} Z 21A(f)
= Yol N olil ()
< a Y 2ha(f).

In particular, we have for any f € C(S) that

2 2" A f) _
Yo 2MA(f) T

Since the transition probability II,, has the Feller property, we get

B P f) = 711 f)| £ 27 Aa(T1, )

d(vIl,, vIl,) = lecl(%) Za;nla\Aa(HZf) ZGT"“‘Aa(}L)
(I, f) — D(I,f)|

O‘lecl(%) >, 21a Ay (TT, f)

ag:g(%) Ea 2"‘“|Aa(g)

= ad(,D),

IN

A

due to (24). This proves our assertion. O

Our goal is now to show that Assumption 3.4 combined with the following
contraction condition implies weak convergence of the sequence of empirical

fields {R7 }1en (z € Se) to a unique probability measure p* on S.
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Assumption 3.9 There exists a constant f < 1 — « such that
sup d(IT, (z; ), I, (z; ) < Bd(p,v) (25)
x
for all u,v € My(9).

Remark 3.10 Let us verify that our Assumption 3.9 holds true as soon as

the individual transition laws satisfy

sub 37y (:°) — ma3-) | < Bl )

1214

Since the vector " = (rg" )aca with components

y 1
Tt = sgp §||7ru(:v; -) — (s )| (26)

is an estimate for the measures product I1,,(z;-) and II,(z;-), we have

. L)) = [ f () (W (w; dy) — T, (; dy))|
sup d([T,(z: ), Ty (a;)) = sup. sup S~ oA (f) :

This yields (25) because

sgpd(ﬂu(xa')’n”(x’ ) < lecl(%) >0 2M9AL(f)

< Bd(u,v) sup 2eateld)

_ZuBalf) g,
fec(s) Soa 2790 (f) Bd(p,v)

Example 3.11 Let us return to the individual transition laws introduced in

(7). For any fized p € My(S) we can write

7 Oa, {+11) = g (" Denay, mis) )
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where m(p) == [¢a%dp for p € My(S).
We assume that the mapping g satisfies a uniform Lipschitz condition in

its second argument, i.e.,

~

lg(-;m) — g(-,m)| < Blm — 1.

For f(z) := 1° we obtain

ﬂ?mm@ﬂ—m@ﬂﬂﬁ Blm(u) — m(v)|

5 lu(f) — v(f)]
>4 21 A (f)
< Bd(p,v)

for all p,v € Mp(S). In view of the previous remark, our Assumption 3.9

1s satisfied whenever f <1 — a.
We are now going to prove the main theorem of this subsection.

Theorem 3.12 If our Assumptions 2.5, 8.4 and 3.9 are satisfied, then there

ezists a unique homogeneous random field v on S such that

pRi) = [ FEOuldn) ) (- ) (27)

for any initial distribution p on S.. Here — denotes weak convergence of

probability measures.
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Proof: Let us fix z € S.. We are going to show that the sequence of
empirical fields {Rf }4en defined recursively by (12) satisfies a contraction

condition with respect to the metric d introduced in (13).
1. Due to Proposition 3.8, we know already that Assumption 3.4 implies
d(vll,,vIl,) < ad(v,v) (28)
for any v, v, u € Mp(S).
2. For pu,v € My(S), we can combine our Assumption 3.9 with (28) in
order to obtain
AT, 0L < (a+ B)d(n, ). (29)
Indeed, it follows from the definition of the metric d that
d(vIL,, vIL,) < supd(Il,(z;-), 1, (z;-))
x
and, due to (28), this implies
d(pll,, vIl,) < d(pl,,vI,)+ d(vIl,, vII,)
< ad(p,v) +supd(Ilu(z; ), Ty (25 )
< (a+P)dp,v)  (a+B<1).
3. Let us now concentrate on the process {uR;}ien. First, we fix z € S,
and analyze the case y = ;. Since R(z) = R} and because
Rf\, = RfII' = R{Tlps -+ - Tge = RfTlge  (t=0,1,2,...)
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our estimate (29) yields the following contraction property for the

sequence of ergodic random fields { R¥ }ien:

d( t$—|—T7Rt$) = d(Rf+T_1HR Rtw—lﬂRf_l)

< (a+pB)d(Rf 7 1, RY)
< (a+ B)'d(RF, Rf)

< 2(a+pB)h

Here, the last inequality follows from d(u,v) < ||p — v| < 2; see

Remark 3.2. In particular, we obtain that
sup d(Ry,r, B}) < 2(a + )’

which shows that {Rf }1en is a Cauchy sequence in the compact space
M(S). Thus, the sequence {R} }1en converges weakly to some prob-
ability measure v, € M(S). Since Rf € My(S) and because Mpy(S)
is a closed subset of M(S), the limit v, is a homogeneous random
field. As the set M,(S) is dense in Mp(S) but not closed, there is
no reason to expect v, € M(S). It is now easily seen that, for any
initial distribution y on S, there exists a shift-invariant random field

v, on S, such that pR; — v, (t — 00).
4. Tt remains to verify that v5, = v5, for all z,y € S.. This, however,
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follows from

d(Ri1,RYy1) = d(R{Ilgy, Rillpy)
< (a+ B)d(RY, RY)

< 2a+pB)H =X,

This proves our assertion. O

Let us now consider the case where the asymptotic behaviour of the
macroscopic process depends on the initial configuration. To this end, we

replace our Assumption 3.9 by the following weaker condition:

Assumption 3.13 For any p € M(S), there ezists constants t(u) € N

and B <1 — « such that

sup d(Ty, (z5-), Ty m,,, (757)) < Bd(ps, psIly,) (30)

for all s > t(p). Here po = p and prg1 = psIl,, . That is, we require (25) to

hold true for all random fields v which take the form v = p I, , s > t(u).

As an example where Assumption 3.13 holds true whereas our Assump-
tion 3.9 is violated, we consider the following variant of the voter model

analyzed in Example 2.2.
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Example 3.14 We put C = {0,1}, and assume that the individual transi-

tion probability takes the form
m(z; +1) = ap(z®) + Bm*(z) + vf(m(z))

where a, B, are positive constants, where m®(x) denotes the proportion of
“17 in the neighborhood of site a and where f : [0,1] — R is a non-linear
function. The special case f(m) = ym was analyzed in Ezample 2.2. In
our present situation, the evolution of the sequence of empirical averages
is almost surely described by the non-linear relation m(Xep1) = F(m(Xy))

(t=0,1,...) where

A~

F(m) := o{mp(1) + (1 = m)p(0)} + Sm + vf(m).

It is easily seen that our Assumption 3.9 is violated whenever the mapping
F has more than one fized point.
. . . . . _ _ 1 _ 1 _
Consider now the following situation: p(1) = 0,p(0) = 3,a = §,8 =
1.7 = 3 and f(m) := m*(1 —m?). In this case, our uniform Dobrushin-

Vasserstein condition is satisfied with oy < % and

The mapping F has three fized points: mqg = 0.07025, my ~ 0.62885, mo ~

0.75935. Thus, our Assumption 3.9 does not hold. However, Assumption

31



3.13 is still satisfied. Indeed, an easy calculation shows that there exists a
critical value

me := F~Y(mq) Me # My

such that the asymptotic behaviour of the sequence {m(X;)}ien depends in

the following manner on the initial configuration:

;

mo  if m(z) € [0,m1) U (m,, 1]

tl_i)rgom(Xt) =94 my  if m(z) € {my,m.} Pz-a.s.

me  otherwise

\

Since f'(mg) < % and | f'(m2)| < %, we see that
[f(m(Xi1)) = F(m(Xy)| < Bim(Xip1) —m(X)| Pr-as.

where B < % for all t sufficiently large. We can now proceed as in Example

in order to obtain
Sl;P d(Ige (y; ) Wrgrigy (y;-)) < BA(RY, BiTlgs),
where ag + B < 1 for all t € N large enough.
Let us now establish a generalization of Theorem 3.12.

Theorem 3.15 Suppose that Assumptions 2.5, 3.4 and 3.13 are satisfied.

In this case, the following holds true:
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(i) For any x € S., there exists a random field vy such that RF — v, as

t — oc.

(i) For any initial configuration p concentrated on S, we have
[ BrCuta) = 0,0) = [vaOutds) (¢ o)

Proof: Let us fix x € S.. Without loss of generality we may assume that
t(R(z)) = 1. Using the same arguments as in the proof of Theorem 3.12 we
get

d(Rf, 1, RY) < 2(a + B)".

In particular, for any € > 0, there exists typ € N such that

supd(Rf,, Rf) <2 Z(a +p0)° <e
r s>to

for all ¢ > tp. Thus, {R}}en is again a Cauchy sequence with respect to
the metric d, and so there exists a homogeneous probability measure v, on

S such that Rf - v, as t — co. This yields our assertion. a

3.3 Macroscopic Convergence: Interactive Transitions

Let us now return to the general setting of Section 2.2 and assume that the
stochastic kernels II,, are determined by suitable families of local specifica-
tions (Y*#)zes-
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Suppose that we have translation invariant estimates r4 for the random

fields II,,(x; ) and II,(y; ) on S where z =y off a.

Remark 3.16 Under suitable conditions on the specifications v** there ex-

ists a constant X\ > 1 such the vector vt with components

A
Tai = 5 SW{IG " (50) =" (50 = 2=y offa, vES, beA}

defines a translation invariant estimate for the random fields I1,(z;-) and
II,(y;-) on S where x = y off a; see Theorem V.2.2 in Simon (1993) or

Theorem 8.20 in Georgii (1989) for details.

We assume that the estimates r4 satisfy (17). Note, however, that in our
present situation (16) and (17) are no longer equivalent: Due to the inter-
active structure in the transition kernel II, the function IIf does not belong
to the class of local functions, even if f € L(S5).

We also assume that one of our Assumptions 3.9 or 3.13 is satisfied.

Remark 3.17 Under suitable conditions on the specifications y** there ex-

ists a constant X > 1 such the vector r*" with components

A
ra” = 5 sup 75" (5v) =107 (5 0)ll (31)

V,x

defines a translation invariant estimates for the random fields I1,(x;-) and
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I, (z;-) on S. Suppose now that

1 y B
Ssup [[vg ™ (50) = (o)l < Xd(uﬂ/)-

V,T

In this case, we obtain

sup d(Il,(x;-), I (23 ) < Bd(p,v),
x
and so our Assumption 3.9 holds; cf. Remaerk 3.10.

An inspection of the proofs of Proposition 3.8 and Theorems 3.12 and
3.15 shows that all our arguments remain valid if the estimates r} satisfy
(17) and if the dependence of the transition kernel II, on the parameter p
satisfies the contraction condition specified in our Assumptions 3.9 and 3.13,

respectively.

3.4 Microscopic Convergence

In this subsection, we are going to prove that convergence on the macroscopic
level of empirical fields implies local convergence on the microscopic level.
Under suitable contraction and continuity assumptions we show that the
microscopic and macroscopic limit coincide. Thus, we have at the same

time macroscopic and microscopic convergence to the same random field y

on S.
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Throughout this section, we assume that the sequence { R} }ten (z € Se)
converges in the weak topology to some random field v, on S. Recall that
this convergence holds under Assumption 3.13 and under our Dobrushin
condition (17). Moreover we assume that the behaviour of an individual

agent depends continuously on the p.

Assumption 3.18 Suppose that the measure II,(z;-) is a Gibbs measure
with respect to a local specification yv**. There exists a constant B* such

that

]‘ T v *
5;15)_”70’“(';“) — %" (50)| < B d(p,v). (32)

Remark 3.19 In the case where the measures I1,(x; -) take the product form

(3), the above assumption reduces to
1 *
sup || mu(2; ) — m(23-)|] < Bd(p, v). (33)
T

Using a perturbation of the Dobrushin-Vasserstein contraction technique,
we are now going to show that macroscopic convergence implies microscopic

convergence.

Theorem 3.20 Suppose that we have translation invariant estimates rh for
the random fields 11,(z;-) and II,(y;-) where x = y off a and that our

Assumptions 3.4 and 3.18 are satisfied. Let u be an initial distribution which
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is concentrated on the set Se and assume that the sequence of random fields
{R?}ten converges for p-a.e. x € S in the weak topology to some random

field v,. Then the following holds true:

(i) The microscopic process {X;}en converges in law to a probability mea-
sure U,. The random field U, is the unique equilibrium of the Feller

kernel 11, , where vy, := [vgyu(dz). That is

vy =vull,,. (34)

(ii) The macroscopic and the microscopic limit coincide, i.e., U, = v,.
Thus, any limiting distribution is characterized by the fized point prop-
erty

VM = VNHVM' (35)

Proof: Our proof extends an argument given in Follmer (1979a) for the
case of product kernels. For any initial distribution p, we denote by E,
the expectation with respect to the law IP,. We shall first consider the case
1 = d; and prove that our microscopic process converges in distribution to

the unique equilibrium of the Feller kernel II,; .
1. Let us fix z € S, a finite set A C A and some B C C4. We are going
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to show that
lim B, [T'15 — 1T}, 15] = 0. (36)
t—o0 ®

Here, vy = v;,. In Step 3 below, we use (36) and Vasserstein’s con-

vergence theorem in order to establish our assertion.

For t,T € N we can write
Es, T (B) = B, [T}, 15(X7)] + Ry,
where we put

Rt,T = E‘Sm [(HR% ... HRm

T+t—1

— 10}, )15(X7)].

In step 2 we show that limy_,o |Ry7| = 0 uniformly in ¢ € N.

. Note that

|Rer| =

t
> Bs, iy iy, (g, TE7% — I, T ) 15(X0) |
k=1

t
<> K, [sup |(Mgg,,, , — IL,) (I} *15) (y)|]-
k=1 Yy

Since the stochastic kernel I, has the Feller property we can introduce

continuous mappings g : S — R (k € N) by
gk(2) := TI,_*1p(2),

and so

t
Rl <3 sup | [ 90(6) (Mg, (052) L, (32} .
k=1 Y
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For any k € N, let us define a vector %"= by analogy with (31). In

view of Remark 3.17 our continuity assumption (32) yields

sup
Yy

< A\g* Z d(R%q_k—la Vi) Ai(gk)-

[ e, ) = T 50|

This implies

|Re.7|

IN

AB*Y [Z Ai(gr)d(RF -1, Vz)]
P

AB* (sup d(RY, m) > Ailgr)-
ks

IA

t>T
Since the uniform Dobrushin-Vasserstein condition (16) is satisfied it
follows from (21) that

1
1—ap

t
D Ailgr) <JAID Sap* <A
ki k=1

Thus, uniformly in ¢t € N, we have

) |AIANB* [ .. "
< i
Th—rgo | Roir| < 1—ay Th—I>Iéo f;IT) d(Rvz) 0 (37)

as the sequence of empirical fields { Rf }1en converges to v, in the weak

topology. This shows (36).

3. We shall now apply Vasserstein’s convergence theorem in order to es-
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tablish (i). Due to (37), we have that

lim [Es, [M"715 — L 1)

t,T'—o00

= lim |1E(5m H,tjmlB(XT) + Rt,T — Edm H,tjmlB(XT)‘ =0.

t,T'—o00

Due to (17), Vasserstein’s theorem yields the existence of a unique
random field 7, on S such that II!,_(y;-) 5 7y(-) as t = o0 (y € 9).

This shows (i) for p = 0, since

lim I (z; B) = lim T7(z; B) = lim 57 (25 B) = 0,(B).

t—o0 t,T—00 t,T'—00

. Let pu be an initial distribution which is concentrated on the set S..

From our preceding arguments it is easily seen that

where 7, is the unique invariant measure of the kernel 11, .

. Let us now verify the fixed-point property (35) and show that the
limiting distribution both on the macroscopic and on the microscopic
level coincide. Due to (17), the Feller kernel IT,, admits a unique

equilibrium, and so it is enough to show that v, = v,II, .

To this end, it suffices to fix £ € S, and to consider the case y = §,.
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In view of Remark 3.17 our Assumption 3.18 yields
sup d(I1, (z; ), 1L, (z;-)) < AB*d(p,v)
x

for some constant A > 1. Thus, it follows from Proposition 3.8 and

from the recursive definition of the sequence { Rf }+cn in (12) that

d(v I, , vy)

IN

d(l/mﬂyw, VzHRt””) + d(VzHRf,RgHRf) + d(thﬂRf , Vm)

< supd(Ily, (y;-), Mge (5 +)) + d(ve, BY) + d(REy 1, vz)
Yy

IN

AB*d(vz, RY) + d(vz, RY) + d(R{y 1, va).
Since we assume that lim; o d(RY,v;) = 0, this yields
Vg = g1l .

Hence, it follows from (i) that v, = 7, i.e., the limiting distribution

on the microscopic and on the macroscopic level coincide.

This proves our assertion. O

Note that we have the following variant of Theorem 3.20.

Corollary 3.21 Let (M,dy;) be a metric space and ® : Mp(S) = X be a

measurable mapping. Suppose we have a system of conditional probabilities

which determines a unique random field I, (z;-) on S for any m €

41



z,®(R(z))

M. In this case, each y determines a unique measure Il(z;-) =

Ho(r(z)) (75-). We assume that the local specifications v*™

are spatially
homogeneous and that the dependence of the individual behaviour of agent
a € A on the macroscopic signal ®(R(x)) is continuous. It follows from
the proof of Theorem 3.20 that convergence of the sequence {®(R(X¢)} en
to some ®* implies weak convergence of the Markov chain {X;}ien with

transition kernel 11 to the unique stationary measure u* of the Feller kernel

g«

Example 3.22 Let us return to the dynamical model (6). Since the macro-
scopic process {m(Xy)}ien converges almost surely to m* = %, the

microscopic process {X;}en converges in law to the unique equilibrium p*

of the Feller kernel

M (25) = [ mm ({2 }oev(ayi )

a€A

where

T ({2 ben(a); 1) = ap(z?) + Bma(z) +ym”.
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