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Berlin, Germany, stefan@jaschke-net.de
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Abstract. Qualitative and quantitative properties of the Cornish-Fisher-Expansion
in the context of Delta-Gamma-Normal approaches to the computation of Value at
Risk are presented. Some qualitative deficiencies of the Cornish-Fisher-Expansion —
the monotonicity of the distribution function as well as convergence are not guaranteed
—make it seem unattractive. In many practical situations, however, its actual accuracy
is more than sufficient and the Cornish-Fisher-approximation can be computed faster
(and simpler) than other methods like numerical Fourier inversion. This paper tries to
provide a balanced view on when and when not to use Cornish-Fisher in this context.

Keywords: Value at Risk, Delta-Gamma-Normal, Cornish-Fisher expansion, Edge-
worth series, Gram-Charlier series
JEL Classification: C10

1 Introduction

Financial institutions are facing the important task of estimating and con-
trolling their exposure to market risk, which is caused by changes in prices
of equities, commodities, exchange rates and interest rates. A new chapter
of risk management was opened when the Basel Committee on Banking Su-
pervision proposed that banks may use internal models for estimating their
market risk Basel Committee on Banking Supervision (1995). Its implementa-
tion into national laws around 1998 allowed banks to not only compete in the
innovation of financial products but also in the innovation of risk management
methodology.

Many alternatives exist for the statistical and computational decisions to
be made for the computation of Value at Risk (VaR), which is the quantile
of a portfolio’s loss distribution over a given horizon. One of the more basic

*Many thanks to Michael Dziedzina and Peter Nettesheim of Bankgesellschaft Berlin for
the real-world sample portfolios. I also benefitted greatly from discussions with Stefan
Daske, Matthias Fengler, Yuze Jiang, Peter Mathé, Jorg Polzehl, and Thorsten Sauder.



model assumptions is that the change in a firm’s portfolio value over a specified
horizon can be modeled as

1
V=0+ATX+ 5XTFX, (1)

where X is a multivariate conditionally Gaussian vector and 6, A, and I" are
a scalar, a vector, and a matrix of parameters, respectively, derived from the
current portfolio positions. This model has been the work-horse for quick,
online computations of VaR since its use by RiskMetrics (Longerstaey; 1996),
despite doubts about the suitability of the two model assumptions — Gaussian
innovations and nearly quadratic price functions — in specific situations.

Several methods have been proposed to compute a quantile of the distribu-
tion defined by the model (1), among them Monte-Carlo simulation (Pritsker;
1996), Johnson transformations (Zangari; 1996a; Longerstaey; 1996), Cornish-
Fisher expansions (Zangari; 1996b; Fallon; 1996), the Solomon-Stephens ap-
proximation (Britton-Jones and Schaefer; 1999), moment-based approxima-
tions motivated by the theory of estimating functions (Li; 1999), saddle-point
approximations (Rogers and Zane; 1999), and Fourier-inversion (Rouvinez;
1997; Albanese et al.; 2000). What makes the Normal-Delta-Gamma model
especially tractable is that the characteristic function of the probability distri-
bution, i.e., the Fourier transform of the probability density, of the quadratic
form (1) is known analytically.

Pichler and Selitsch (1999) compare five different VaR-methods: John-
son transformations, Delta-Normal, and Cornish-Fisher-approximations up
to the second, fourth and sixth moment. The sixth-order Cornish-Fisher-
approximation compares well against the other techniques and is the final
recommendation. Mina and Ulmer (1999) also compare Johnson transfor-
mations, Fourier inversion, Cornish-Fisher approximations, and Monte Carlo
simulation (“Partial Monte Carlo”). Johnson transformations are concluded
to be “not a robust choice”. Cornish-Fisher is “extremely fast” compared
to Partial Monte Carlo and Fourier inversion, but not as robust, as it gives
“unacceptable results” in one of the four sample portfolios.

The contribution of this paper is to collect more than anecdotal evidence
on the theoretical and empirical properties of the Cornish-Fisher expansion to
allow a better decision on when and when not to use Cornish-Fisher in favour
of Fourier inversion or Partial Monte Carlo in this context.

Section 2 recalls results on the family of distributions defined by (1). Sec-
tion 3 recollects the main ideas of the derivation of the Cornish-Fisher expan-
sion. The qualitative properties discussed in section 4 include monotonicity,
tail behavior, and convergence. The quantitative results of section 5 include
worst-case errors of Cornish-Fisher approximations on a certain subset of the
family defined by (1) as well as approximation errors on real-world sample
portfolios.



2 Delta-Gamma-Normal Models

Equation (1), V =0+ ATX + %XTI‘X, defines the class of Delta-Gamma-
Normal models. X is assumed to be (conditionally) Gaussian with mean 0 and
covariance matrix 3. The change in the portfolio value, V', can be expressed as
a sum of independent random variables that are quadratic functions of stan-
dard normal random variables Y; by means of the solution of the generalized
eigenvalue problem

cc' =3,
C'TC = A.
This implies
= 1
= Y + oY 2
14 9+§(5 + A7) 2)

1. (4 S -
=0+Z 5)\1‘ )\_i+Yi _2)\i (3)
i=1

with X = CY, § = CTA and A = diag()\1,...,An)- Packages like LAPACK
(Anderson et al.; 1999) contain routines directly for the generalized eigenvalue
problem. Otherwise C' and A can be computed in two steps:

1. Compute some matrix B with BB' = X. If ¥ is positive definite,
the fastest method is Cholesky decomposition. Otherwise an eigenvalue
decomposition can be used.

2. Solve the (standard) symmetric eigenvalue problem for the matrix B'I'B:
Q'B'TBQ =A
with Q1 = Q" and set C := BQ.

The characteristic function of a non-central x? variate ((Z + a)?, with
standard normal Z) is known analytically:

2 .
| t
Eeit(Z+a)® _ (1- 2it)*1/2 exp (1(1_712115) '

This implies the characteristic function for V'
) . 1 1
Ee'V = e [ [ ——— exp{—=62t2/(1 — iA;t)}, 4
which can be re-expressed in terms of I' and B
Ee'V = ¢ det(I — itB T'B)~1/2

1
x exp{—zt’ATB(I ~itB'TB)"'B'A}, (5)



or in terms of I' and ¥
Ee®V = ¢ det(I — #tI'n)~1/2
1
X exp{—itQATE(I—itI‘E)’lA}. (6)

Numerical Fourier-inversion of (4) can be used to compute an approxima-
tion to the cumulative distribution function (cdf) F' of V. (The a-quantile is
computed by root-finding in F(z) = a.) The cost of the Fourier-inversion is
O(N log N), the cost of the function evaluations is O(mN), and the cost of the
eigenvalue decomposition is O(m?). The cost of the eigenvalue decomposition
dominates the other two terms for accuracies of one or two decimal digits and
the usual number of risk factors of more than a hundred. Instead of a full
spectral decomposition, one can also just reduce B'T'B to tridiagonal form
B'TB =QTQ'. (T is tridiagonal and Q is orthogonal.) Then the evaluation
of the characteristic function in (5) involves the solution of a linear system
with the matrix I — 4¢tT', which costs only O(m) operations. An alternative
route is to reduce I'S to Hessenberg form I'S = QHQ' or to do a Schur
decomposition TY = QRQ'. (H is Hessenberg and @ is orthogonal. Since
'Y has the same eigenvalues as B I'B and they are all real, R is actually tri-
angular instead of quasi-triangular in the general case. See (Anderson et al.;
1999).) The evaluation of (6) becomes O(m?), since it involves the solution of
a linear system with the matrix I — ¢tH or I — itR, respectively. Reduction
to tridiagonal, Hessenberg, or Schur form is also O(m?), so the asymptotics
in the number of risk factors m remain the same in all cases. The critical
N, above which the complete spectral decomposition + fast evaluation via
(4) is faster than the reduction to tridiagonal or Hessenberg form + slower
evaluation via (5) or (6) remains to be determined empirically for given m on
a specific machine.

The advantage of the Cornish-Fisher approximation is that it is based on
the cumulants, which can be computed without any matrix decomposition:

1
kK1 =0+ 5 Z)\i
1
and for r > 2
1 r 2y yr—2
) (A

= %(r — Dtx((TE)) + %T‘!ATZ(FE)T_QA.

Although the cost of computing the cumulants needed for the Cornish-Fisher
approximation is also O(m3), this method can be faster then the eigenvalue



decomposition for small orders of approximation and relatively small numbers
of risk factors?.

Partial Monte-Carlo (or partial Quasi-Monte-Carlo) costs O(m?) opera-
tions per sample. If " is sparse, it may cost even less. The number of samples
needed is a function of the desired accuracy. It is clear from the asymptotic
costs of the three methods that partial Monte Carlo will be preferable for
sufficiently large m.

While Fourier-inversion and partial Monte-Carlo can in principal achieve
any desired accuracy, the Cornish-Fisher approximations provide only a lim-
ited accuracy as shown in the next sections.

3 Cornish-Fisher-, Gram-Charlier-, and
Edgeworth-Expansions

The Cornish-Fisher expansion can be derived in two steps. Let & denote some
base distribution and ¢ its density function. The generalized Cornish-Fisher
expansion (Hill and Davis; 1968) aims to approximate an a-quantile of F' in
terms of the a-quantile of ®, i.e., the concatenated function F~! o &. The
key to a series expansion of F~1 o & in terms of derivatives of F and ® is
Lagrange’s inversion theorem. It states that if a function s +— ¢ is implicitly
defined by

t=c+s-h(t) (7)

and h is analytic in ¢, then an analytic function f(¢) can be developed into a
power series in a neighborhood of s =0 (¢t = ¢):

7
S _
&)= fle)+), D R (e), (8)
r=1
where D denotes the differentation operator. For a given probability ¢ := «,

f:=® ! and h:= (® — F) o ! this yields

+ 3  SD(F - #)/8) 0 27 (). (9)

r=1

2If a large number r of cumulants is needed, it is better to do a spectral decomposition
(of BTT'B to diagonal) or a Schur decomposition (of I'S to triangular) once and then
compute the higher cumulants with O(m) operations each. If r is small but m is large,
it is better to do a reduction of BTI'B to tridiagonal or a reduction of I'S to Hessenberg
form and again compute the higher cumulants with O(m) operations each.



Setting s = 1 in (7) implies ®~!(¢) = F~!(a) and with the notations z :=
F~Ya), z := ®71(a) (9) becomes the formal expansion®

v =2t Y () D (F - 2)/6) 0 37(3(2)).

With a := (F — ®)/¢ this can be written as
- T 1 T
T=z+ Z(—l) HD(T—I)[CL 1(2) (10)
r=1

with D,y = (D—i—%) (D+2%) e (D+r%) and D g) being the identity operator.

(10) is the generalized Cornish-Fisher expansion. The second step is to
choose a specific base distribution ® and a series expansion for a. The classical
Cornish-Fisher expansion is recovered if ® is the standard normal distribution,
a is (formally) expanded into the Gram-Charlier series, and the terms are re-
ordered as described below.

The idea of the Gram-Charlier series is to develop the ratio of the moment
generating function of V (M (t) = Ee'V') and the moment generating function

of the standard normal distribution (e*’/2) into a power series at 0:
_t2/2 Z C}gtk (11)

(ck are the Gram-Charlier coefficients. They can be derived from the moments
by multiplying the power series for the two terms on the left hand side.) Com-
ponentwise Fourier inversion yields the corresponding series for the probability
density

f(@) = en(-1)*¢W (z) (12)
and for the cumulative distribution function (cdf)
F(z ch F 1D (). (13)

(¢ und ® are now the standard normal density and cdf.4) Plugging (13)
into (10) gives the formal Cornish-Fisher expansion, which is re-grouped as
motivated by the central limit theorem.

3Conditions under which s = 1 is in the convergence radius of the series (9) will be looked
at in section 4.

“The derivatives of the standard normal density are (—1)¥¢®)(z) = ¢(z)Hy(z), where
the Hermite polynomials Hj form an orthogonal basis in the Hilbert space L*(R, ¢) of
the square integrable functions on R w.r.t. the weight function ¢. The Gram-Charlier
coefficients can thus be interpreted as the Fourier coefficients of the function f(z)/¢(x)
in the Hilbert space L?(R, ¢) with the basis {Hx}: f(z)/d(z) = Y oo, ckHr(z).



Assume that V is already normalized (k1 = 0, k2 = 1) and consider the
normalized sum of independent random variables V; with the distribution F,
Sn = ﬁ > iz1 Vi. The moment generating function of the random variable
Sy, is

M, (t) = M(t/v/n)" = et2/2(§:cktkn_k/2)".
k=0

Multiplying out the last term shows that the k-th Gram-Charlier coefficient
cx(n) of Sy, is a polynomial expression in n~1/2, involving the coefficients c;
up to ¢ = k. If the terms in the formal Cornish-Fisher expansion

e o]

r=z+ Z(—l)T%D(Pl) [(— Z ck(n)Hkl) ] (2) (14)
k=1

r=1

are sorted and grouped with respect to powers of n~1/2 the classical Cornish-
Fisher series

z=z+ in_kﬂﬁk(z) (15)

k=1

results. The similarly re-sorted Gram-Charlier series is called Edgeworth se-
ries:

Ma(t) = €'/2 3 72 (t), (16)
k=0

where hy(t) are the Cramér-Edgeworth polynomials in ¢ (of degree 3k) (com-
pare (Skovgaard; 1999)). Componentwise Fourier inversion yields again the
analogous Edgeworth series for the density f,, and the cdf F;, of the sum S,,:

Fla) = 3 m e~ )o(a).
k=0

It is a relatively tedious process to express the adjustment terms & cor-
reponding to a certain power n~%/2 in the Cornish-Fisher expansion (15) di-
rectly in terms of the cumulants x,, see (Hill and Davis; 1968). Lee developed
a recurrence formula for the k-th adjustment term & in the Cornish-Fisher
expansion, which is implemented in the algorithm AS269 (Lee and Lin; 1992,
1993):°

& (H) = ap H**+)
k—1

-y i(fk—j(H) — &j) * (& — o; H'UD)x H, (17)

i=1

El

SWe write the recurrence formula here, because it is incorrect in (Lee and Lin; 1992).



with ap, = (Z’f&z’),

algebraic relations between the summation “+” and the “multiplication
Once &, (H) is multiplied out in *-powers of H, each H** is to be interpreted
as the Hermite polynomial Hj, and then the whole term becomes a polynomial
in z with the “normal” multiplication “”. &, denotes the scalar that results
when the “normal” polynomial & (H) is evaluated at the fixed quantile z,
while & (H) denotes the expression in the (+, *)-algebra.

&k (H) is a formal polynomial expression in H with the usual
7 “*”.

4 Qualitative Properties of the Cornish-Fisher
Expansion

The qualitative properties of the Cornish-Fisher expansion are:

+ If F,, is a sequence of distributions converging to the standard nor-
mal distribution ®, the Edgeworth- and Cornish-Fisher approximations
present better approximations (asymptotically for m — oo) than the
normal approximation itself.

— The approximated functions F and F~'o® are not necessarily monotone.

— F has the “wrong tail behavior”, i.e., the Cornish-Fisher approximation
for a-quantiles becomes less and less reliable for & — 0 (or o — 1).

— The Edgeworth- and Cornish-Fisher approximations do not necessarily
improve (converge) for a fixed F' and increasing order of approximation,
k.

Figure 1 shows the true and the approximated quantile functions F~! for
the distribution of —Y 2, where Y is standard normal. It illustrates the three
qualitative deficiencies of the Cornish-Fisher approximation.

Convergence for F,, — &

The most prominent use and motivation of the Edgeworth- and Cornish-Fisher
expansions is in the context of the central limit theorem, when F), is the
distribution of the normalized sum of independent random variables. It is clear
from (15) and (16) that the Edgeworth and Cornish-Fisher approximations
present higher order approximations to F,, than the normal approximation
itself. Necessary and sufficient for convergence in the central limit theorem is
Lindeberg’s condition. I.e., the distribution of V' need not converge to normal
for increasing number of risk factors if the contribution to the variance of V'
by a few components 6;Y; + %"inf is dominant.
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Figure 1: Cornish-Fisher approximations of the quantile function of the nega-

tive of a x? variate (one risk factor, v = —1, § = 0). The number in
the legend is the highest cumulant used.

Monotonicity

The Cornish-Fisher expansion approximates the monotone function F~1 o &
by polynomials. It is clear that a necessary condition for monotonicity of F' is

that the degree of the polynomial is odd, which is the case when the highest
order of the Cornish-Fisher expansion, k, is even.

Tail Behavior

Let p denote the polynomial that approximates F~! o ®, i.e., the random

variable at hand is approximated by the random variable p(Z) for a standard

normal Z. Assume that p is monotone, so that p~! is well defined. For z — oo

p(z) behaves like cz? and p!(z) like (z/c)'/%. Then the probability density
of p(Z) is

f(z) = o7 (@) p ' (@)
~ e‘%(w/c)(z/d)i(x/c)l/d—l (18)

cd
for £ — oo. For one-dimensional problems with y; > 0 the density of V'

has (up to a constant factor) the tail given by (18) with d = 2. Clearly, the

tail behavior of the approximation deviates more and more from the true tail
behavior for d — oc.



Convergence in the Approximation Order &

The key theorem for the convergence of power series is Cauchy-Hadamard’s
theorem, which states that a power series Y r°ax(z — 20)¥ converges in the
circle around zg with the radius

r

1
 limsup ¥/]ag|

and diverges outside of that circle. The convergence in the interior of the circle
is absolute, that is, it also holds for re-sorted series. If f has a singularity at
z1 and the Taylor series is developed at the point zg (i.e., ax = %% f(z0)),
then the theorem implies r < |z1 — 2g|, -

Since the moment generating function M (¢) of V has poles at ¢ = 1/);,
the convergence radius of the series (11) is at most 1/|A|max- Application of
the convergence theorem for characteristic functions implies that the Gram-
Charlier-series for the cdf (13) cannot converge weakly. (Otherwise (11) should
converge uniformly on closed intervals of the imaginary axis.)

The Edgeworth expansion (16) can be interpreted as Tayler series expan-
sion of the function

filr) = e CPRM @)Y

in 7 (with 7 = 1/4/n). Since the moment generating function M has poles at
1/, the function 7 — fi(7) has poles at 1/(t);). The Edgeworth series for
n =1 (7 = 1) does not converge if the convergence radius of the Taylor series
expansion of 7 +— f;(7) is less than 1, which is the case for ¢t > 1/|\|max- This
leads to the following result.

Proposition 1 The Edgeworth series for the moment generating function
(16) (with n = 1) converges pointwise on the imaginary axis and the cor-
responding Edgeworth series for the distribution function converges weakly for
a distribution F from the family defined by (1) if and only if F is a normal
distribution (I' = 0). The same holds for the Gram-Charlier series (11) and

(13).

The Cornish-Fisher expansion for a given normal quantile z and for a dis-
tribution F' depends on the value and all derivatives of the Edgeworth approxi-
mation for F' at the point z. Since the Edgeworth expansion does not converge
for all non-normal F' from the delta-gamma-normal family, it is plausible that
the Cornish-Fisher expansion also fails to converge for a large subclass of the
family. (A precise characterization of the set of convergence seems difficult
because of the two-step derivation of the Cornish-Fisher expansion.)

Even a converging series ay — a = (F — ®)/¢ instead of the Edgeworth
expansion may not lead to a converging generalized Cornish-Fisher expansion
(10), however. (10) does not converge if the convergence radius of the power

10



series (9) is less than one. For a fixed probability level «, (9) is a Taylor
®(z)—a t -0
3@ F@) 2% T
(r = ®71(a)). Since ®(z) — F(z) usually changes sign one or more times, s is
not globally invertable. Let s~! denote the inverse of s in that neighborhood
of z = ®~1(a) where s is monotone. Among the reasons, why the generalized

Cornish-Fisher expansion may not converge, are:

series expansion of the inverse of the function s(z) =

1. The neighborhood where s~! is defined may not contain the interval
(—1,1]. This is the case for @ = 0.25 and the normalized x? distribution
(1 =1,62 = %,01 = —%), for example.

2. If all eigenvalues A; are non-zero, the cdf F' of V has a singularity at

m

To ‘= 2(9, - %512/)\1)

=1

(F is C* except in zg, where the highest continuous derivative has order
[(m — 1)/2]. Consequently, the generalized Cornish-Fisher expansion
cannot converge if s 1(—1,1) > zg. This is the case for @ < ®(—0.75)
and the normalized x3 distribution, for example.

5 Quantitative Properties of the Cornish-Fisher
Expansion

5.1 Worst-Case Errors

Consider an approximation method (a,80,A,T) — Q(«,0,A,T), where a is
the probability level and Q(«,...) the corresponding approximated quantile.
The criterion considered here is the “worst-case error relative to the standard
deviation of the portfolio”:

e(a) = Sup{lQ(a797A7F) - qcz(07A7F) (19)

s.t. w(@,AT)=0,0(0,A,T)=1},
where g4 (. . .) is the true quantile, u(...) the expectation, and o(...) the stan-
dard deviation of the distribution of V' with parameters (6, A,T"). The alter-
native criterion “relative error” has the problem that the true quantile may
be close to zero (due to a well-hedged portfolio, for instance).

The worst-case view may seem exaggerated and far from practice, as (1)
the Cornish-Fisher approximations in fact achieve much higher accuracy near
the normal distribution than at the worst case and (2) well-diversified firm-
wide portfolios typically are relatively close to the normal distribution. Risk-
management systems, however, are usually applied at all levels of aggregation,
i.e., also at the trading desk level. At these levels, a few risk factors may

11



dominate the picture. We argue, moreover, that the essence of risk measure-
ment is to provide estimates of bounds on what can go wrong. In this sense,
approximation methods for risk measurement should be judged based on what
accuracy they can very likely guarantee.

The distribution of V' is close to normal if in the decomposition (2)

1. §; is large compared to );, for all 4, since then each individual of the
independent random variables is close to normal, or

2. there is a large number of 7 where A; is large compared to §;, but all
those \; are approximately of the same size, because then the central
limit theorem applies.

Since the Cornish-Fisher approximations are especially good near the normal
distribution, the worst-case will likely occur when the exposure to one or two
risk factors dominates all others. Thus the worst-case errors on the classes of
one- and two-dimensional problems provide interesting lower bounds on the
worst-case error on the whole family of distributions.%

The analysis of the one-dimensional sub-family is simplified by the fact
that the density and cdf of a non-central x? are known analytically:

P{(Z +a)’ <z} = ®(vz —a) - ®(—Vz — a) (20)

for x > 0, and 0 otherwise. (Z is standard-normal.) The density of the
non-central x? with non-centrality parameter a is consequently

1

Fe30) = 5= (OWWE ~a) + (V- )
(21)
= 21 e~ @+9*)/2 cosh(ay/z)

for x > 0 and 0 otherwise.
This implies the cdf for a one-dimensional delta-gamma-normal-variate
(excluding the trivial case where both ¢ and A are zero):

1
P{0+6Z + §>\Z2 <z}=

52
®(y—a)— P(-y—a) )\>07$20_<25_2>“
1-®(y—a)+®(-y—a) A<0,z>60-5 (22)
B(252) A=0
0 otherwise

5The numerical computation of the worst case error e(a) for higher numbers of risk factors
m >> 1, a given probability level o, and Cornish-Fisher approximation @ appears to be
intrinsically difficult, as the function Q(«, 8,4, A) — ga (6,4, A) has many local optima.

12



le+01
I

le-01

| error |
1le-03

1le-05

—— CF 2 (normal)
————— CF4

CF8

CF 16

1le-07

T T T I\ T T T
-15 -1.0 -05 00 05 10 15

gamma

Figure 2: The approximation error for the 1%-quantile on the one-dimensional
sub-family of distributions. The number in the legend is the highest
cumulant used. 7 = 0 is the normal distribution. “CF 2” is the
normal approximation.

with y := %(m -0+ %) and a := §/A. The density for the one-dimensional
delta-gamma-normal-variate is

Bf%a) A#£0,z26—§
f(20,8,2) =S $(552)/6 A=0 (23)

0 otherwise.

We parameterize the family of probability distributions by A € [—v/2,/2].
6 := —\/2 and 6 := /1 — A2 /2 ensure mean 0 and standard deviation 1. The
true 0.01-quantile increases monotonically from about —3.984¢ to —0.7070.
This means that the worst-case error (on the one-dimensional sub-family) of
the normal-quantile approximation — taking the normal-quantile but comput-
ing the variance from § and A - is about 1.658¢, realized for a short-gamma
position.

Figure 2 shows the approximation error of the Cornish-Fisher approxima-
tions using up to the second, fourth, eighth, and sixteenth cumulant, respec-
tively. It shows that the higher order approximations have increasing accuracy
near the normal distribution, but become less reliable far from the normal dis-
tribution.

Figure 3 shows the worst-case error on the one- and two-dimensional sub-
families for increasing order of approximation. The one-dimensional sub-
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Figure 3: The worst-case error for the 1%-quantile on the one- (dotted) and
two-dimensional (solid) sub-families of distributions for increasing
order of approximation.

family obviously is not rich enough to expose the weaknesses of the Cornish-
Fisher approximation.

5.2 A Real-World Example
The data provided by the Bankgesellschaft Berlin contain

e volatilities (standard deviations) and correlations of daily risk factor
changes and

e aggregated sensitivities (first and second derivatives of the portfolio value
function w.r.t. the risk factors) for two portfolios

on two dates. 928 risk factors are in use. Before doing the eigenvalue decom-
position, empty (zero) rows and columns in I" are eliminated in order to reduce
the dimension. The last two columns of table 1 contain the setup costs for
the Fourier inversion and Cornish-Fisher approximation, respectively, using
standard methods of the statistical software package R (Thaka and Gentle-
man; 1996, development version May 2001) on an Athlon with 750MHz. Both
computations are suboptimal, so the times are to be taken as an upper bound
on what can be achieved.

The O(m3)-contributions to the cost of the Fourier inversion are two matrix
multiplications (B'T'B, BLAS routine DGEMM?) and a reduction to a tridi-

"DSYMM is not significantly faster than DGEMM.

14



case relevant nonzero computing time in seconds
risk factors gammas spectral decomp. 4 cumulants

1 113 731 0.05 0.03
2 111 697 0.05 0.03
3 218 650 0.30 0.14
4 209 607 0.25 0.13

Table 1: Dimensions and actual computing times of the four real-world sample port-
folios. The third column contains computing times for the matrix mul-
tiplication B'T'B and the eigenvalue decomposition of the matrix B'I'B.
Since the estimate of ¥ usually only changes once per day, the decomposition
BBT =¥ can be done offline and is not counted towards the initial costs of
the Fourier inversion. The computation of the four cumulants (fourth col-
umn) uses four matrix multiplications (instead of a reduction to Hessenberg
form).

agonal matrix (B'TB = QTQ", LAPACK routine DSYTRD). The O(m3)-
operations needed for the Cornish-Fisher approximation up to the k—th cumu-
lant are either k matrix multiplications or one matrix multiplication and one
reduction to Hessenberg form (LAPACK routine DGEHRD). Table 2 shows
that the computation of the first four cumulants is not significantly faster than

the initial decomposition needed for the Fourier inversion.®
problem floating point MFLOPS time in
operations nanoseconds
DGEMM 2m3 800 2.5m>
DSYTRD 4/3m3 200 6.7m>
DGEHRD 10/3m3 250 13.3m?
FI (2 DGEMM + 1 DSYTRD) 5.3m3 457 11.7m3
CF4 (1 DGEMM + 1 DGEHRD) 5.3m3 336 15.8m3
CF4 (4 DGEMM) 8m3 800 10.0m?
CF4 (4 SGEMM), 3DNow! 8m?3 1850 4.3m3

Table 2: Estimated computing times using ATLAS (Whaley et al.; 2000) version
3.2.1 and LAPACK (Anderson et al.; 1999) version 3.0 on an Athlon with
750MHz. The first three lines contain the operation counts and timing for
the building block routines. “FI” denotes the initial cost for the Fourier
inversion and “CF4” the initial cost for computing the first four cumulants.
The last line is not really comparable, as “3DNow!” yields only single
precision and does not fully support IEEE arithmetic.

8Most vector-vector (BLAS1) and matrix-vector (BLAS2) routines are memory-bound in-
stead of CPU-bound on current machines. Some (blocked versions of) algorithms can
benefit better from cache hierarchies than others, which explains why the algorithm with
the highest operations count actually is the fastest on this machine.
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case skewness curtosis VaRp; VaRegps— VaRpr VaRgpsa — VaRgorpa

1 0.093 0.012  2.238191 1.663802e-06 4.174439%¢-14
2 0.092 0.012  2.238394 1.841259e-06 4.396483e-14
3 0.017 0.001  2.309548 -1.618836e-06 -3.552714e-15
4 0.019 0.001  2.306958 -2.322726e-06 -4.440892¢-16

Table 3: Skewness, Curtosis, 99%-VaR, and Differences. Column 3 contains the 99%-
VaR, normalized to o = 1. The difference between the Fourier inversion
and the Cornish-Fisher approximation is in column 5. The last column
contains the difference between the Cornish-Fisher approximations when the
cumulants are computed from (A, T, X) and (8, A), respectively. It indicates
the size of the error introduced by the eigenvalue decomposition.

The final table 3 shows the 99%-VaR (after normalization to o = 1) for
the four cases, computed with the Cornish-Fisher approximation using up to
the fourth cumulant as well as a Fourier inversion. The numbers for skewness
and curtosis suggest that the distributions are very close to normal. A QQ-
Plot against normal confirms this. The actual accuracy of about 2 - 1076 is
obviously more than sufficient.

6 Conclusion and Open Questions

In order to put the errors of the Cornish-Fisher approximations into perspec-
tive, look at the different error sources in the context of Delta-Gamma-Normal
approaches to the computation of VaR:

1. random fluctuations that influence the estimate of the covariance matrix
Y,

2. deviations from model assumptions of (conditional) Gaussian risk factor
changes,

3. differences between the real price function and its quadratic approxima-
tion, and

4. approximation errors of the Delta-Gamma-Normal method (Cornish-
Fisher, Fourier inversion, partial Monte Carlo, ... ).

Simple Monte-Carlo simulation shows that the error in the 99%-VaR to
expect from fluctuations in the estimate of ¥ is about 0.1c for the “perfect
case”: V = 0+ ATX and X is normally distributed. It is about 0.30 for
the specific ” Delta-Gamma-Normal case” V = 0.5 + %\/iX — %X 2 where X
is normal. (This is for the equally weighted covariance estimator with 250
trading days horizon and the square root of the expected squared error.) It
makes no sense to strive for an accuracy in the fourth step that is much higher
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than 2 decimal digits, if the expected error in the first step is already 0.1c,
even in the best case. According to figure 2, the Cornish-Fisher approximation
(up to the fourth cumulant) achieves an accuracy of 0.10 on a relatively large
neighborhood of the normal distribution.

Deviations from normality can in principal lead to large errors in the sec-
ond step, but do not in practice, since risk factors are chosen by the modeler
(risk manager). If a certain derivative security is by market convention ex-
pressed as a function of some underlying with very non-normal increments,
some other, “more normal” risk factor is usually chosen by the risk manager
and the nonlinearity is put into the price function (the “mapping”). In the
case that risk factor innovations are in fact t-distributed with three degrees of
freedom, but assumed normal, the error in the 99%-VaR is about 0.30 (for a
linear price function).

Using the Markov inequality, it can be shown that the ratio between the
1%-quantile and the standard deviation of a distribution with mean 0 can
maximally be 10. A 99%-VaR of about 9.95¢ actually appears in the following
sample portfolio. A portfolio with normally distributed fluctuations is held.
Additionally, digital put options with expiry date at the VaR horizon on an
independent, normally distributed risk factor are sold:

V= wl(p — l{Xng}) + w9 Xo.

p is the premium for the digital put option. K is the strike of the digital put
and assumed to be the standard normal p-quantile. X; and X5 are independent
standard normal. w?p(1 — p) + w2 = 1 ensures that the standard deviation
of V is 1. Letting tend p to 0.01 from above and wy — 0, the 99% — VaR
approaches v/99¢. This shows that — in the worst-case view — this error source
is the most critical and is about one magnitude higher than the worst-case
error of the Cornish-Fisher approximation.

The conclusion is that despite its qualitative shortcomings the Cornish-
Fisher approximation is a competitive, and probably underrated, technique,
which achieves a sufficient accuracy potentially faster than the other numerical
techniques (mainly Fourier inversion and Partial Monte-Carlo) over a certain
range of practical cases.

If one takes the worst-case view and cares about the corner cases — as
we believe one should in the field of risk management — the potential er-
rors from the quadratic approximation are much larger than the errors from
the Cornish-Fisher expansion. Hence a full-valuation Monte-Carlo technique
should be used anyway to frequently check the suitability of the quadratic ap-
proximation. This will also take care of the “bad” cases for the Cornish-Fisher
approximation.

From a more theoretical point of view, there are several open questions.
(1) Although we collected evidence that the two steps leading to the Cornish-
Fisher expansion do not converge in many cases, the exact characterization
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of the set of parameters (6, A,T") for which the Cornish-Fisher approximation
converges, is open. (2) The worst-case errors on the one- and two-dimensional
sub-families provide only lower bounds for the worst-case error on the whole
family. It would be nice to have an upper bound. (3) The reason for the non-
convergence of the Edgeworth expansion is that the tails of the considered
probability densities are much “fatter” than the tail of the normal distribu-
tion. A generalized Cornish-Fisher expansion with a base distribution that
has comparable tail behavior (“semi-heavy tails”) could potentially lead to a
converging expansion. (4) There are many alternative techniques described in
the probability and statistics literature, like Ruben’s series expansion in terms
of Gamma distributions (Mathai and Provost; 1992), alternative series rep-
resentations (Abate and Whitt; 1999b), saddlepoint approximations (Rogers
and Zane; 1999; Daniels; 1987), and continued fractions (Abate and Whitt;
1999a).
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