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Abstract. The paper considers the derivation of weak discrete
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1 Introduction

In many applications one has to take into consideration that often time will elapse
between the cause of a certain phenomenon and its subsequent effect. Examples of
this are seen in economics, finance, biology or medicine. Deterministic differential
equations with time delay, also called differential delay equations (DDEs), are
often used to model such phenomena. The theory and also some applications
of DDEs are presented, for instance, in Kolmanovskii & Myshkis (1992) or Hale
& Lunel (1993). Stochastic differential delay equations (SDDEs), are stochastic
generalizations of DDEs. The basics of the theory for SDDEs can be found in
Mohammed (1984, 1990), Mao (1994, 1997) and Mohammed & Scheutzow (1990).

DDEs and therefore SDDEs have no simple explicit solutions or known distribu-
tions. In practice often functionals, that is expectations of functions of solutions
of SDDESs, have to be computed. For ordinary stochastic differential equations
(SDEs), Monte Carlo simulation methods have been developed as a powerful
methodology to overcome the evaluation problem. Similarly, numerical proce-
dures are also needed for the Monte Carlo simulation for SDDEs. First attempts
in developing numerical methods for SDDEs have been made, for example, by
Tudor & Tudor (1987), Tudor (1989), Mao (1994), Baker & Buckwar (1999) and
Gilsing (2001). In Kiichler & Platen (2000), some explicit and implicit discrete
time approximation methods for strong approximations of SDDEs were derived.

In this paper, we derive discrete time numerical methods for the weak approxima-
tion of SDDEs. This allows us to approximate moments, functionals and thus the
distribution for the underlying process. A precise definition of weak convergence,
including its order, will be given in Section 3. The resulting discrete time weak
approximations permit the approximation of the expected value of a function of
the solution of an SDDE by sampling from repeated simulations. Thus, weak
schemes are tailored for Monte Carlo simulation. The efficiency of Monte Carlo
methods strongly depends on the use of appropriate weak discrete time approxi-
mations. For a comparable order of convergence, weak schemes can be designed
that are much simpler than their strong counterparts.

We consider a d-dimensional SDDE of the type
dX(t) =a(X(t), X(t—r))dt+ ij(X(t), X(t—7))dWi(t) (1.1)
j=1

for t € [0,T], T < oo, which involves a fixed time delay r. The above SDDE
has a structure that allows us to keep the resulting numerical methods relatively
transparent. Equation (1.1) covers nonlinear, single delay, autonomous SDDEs
with m driving independent standard Wiener processes W1, ..., WW™. Extensions
of our results to nonautonomous coefficients and a finite number of different time
delays are straightforward and therefore omitted.

Weak numerical methods for ordinary SDEs are well studied, see, for example,
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Kloeden & Platen (1999) and Platen (1999) for a recent survey. In the present
paper we will demonstrate that well-known weak approximation methods for
SDEs can be extended to cover SDDE of the type described by (1.1).

The paper is organized as follows. In Section 2 we establish the existence and
uniqueness of a solution of the SDDE (1.1). Section 3 introduces a weak con-
vergence criterion. Sections 4 and 5 concentrate on weak discrete time approx-
imations of solutions of SDDEs. These approximations include Euler schemes
and weak second order schemes. Finally, in Section 6 we give a derivation of the
presented schemes together with convergence theorems.

2 Existence and Uniqueness of SDDEs

At first let us establish the existence and uniqueness of the solution of the d-
dimensional SDDE (1.1). Here we have a constant finite time delay r > 0. The
given d-dimensional initial segment

§={(s), s € [-r, 0]} (2.1)

is assumed to be right continuous having left hand limits. Let a filtered probability
space (0, F,F = (Fi)wcp), P) be given that fulfills the usual conditions, see
Protter (1990). The process W = {W(t), t € [0,T]} is supposed to be an m-
dimensional, F-adapted standard Wiener process independent of F,. For s €
[—7, 0] all values &(s) of the initial segment are assumed to be Fy-measurable.

The drift coefficient a : R¢ x R — N and the diffusion coefficient b/ : R x
R — R4, j € {1,2,...,m}, are given d-dimensional sufficiently regular vector
functions, as specified later on in the text.

The SDDE (1.1) can then be written in integrated form as

X(t):X(O)—l—/O a(X(s),X(s—r))ds—l—Z/O V(X (s), X (s — ) dWi(s)
" (2.2)

for t € [0,T]. Here the initial segment £, see (2.1), enters the equation through
the initial condition

X(u) = &(u) (2.3)

for u € [—r,0].

A d-dimensional process X = {X(t),t € [-r,T]} is called a solution of the
SDDE (1.1) with initial segment £ if X (¢) is F;-measurable for all ¢ € [0,7], X
is continuous on [0, 7] and the equations (2.2) and (2.3) are satisfied.



We denote by | - | the Euclidean norm. If any two solution processes X =
{XO(),t € [-r,T]}, i € {1,2} with the same initial segment ¢ have, P-almost
surely, the same path on [0, T, that is

P(ym\xmuy—xwuﬂ>o>zu (2.4)
0<t<T

then we say that the solution (1.1) is unique for this initial segment &.

By €@ = @([-r,0], R?) we denote the Banach space of all d-dimensional continu-
ous functions 1 on [, 0] equipped with the supremums norm [|n||¢ = sup,¢[_,q
In(s)|. For every function f |[—r,T] — R? and every ¢ € [0,T] we define

fe=Afi(s) := f(t+5), s € [-r, 0]}
as new function on [—r, 0], the segment of f at t. In this way, we obtain a segment
valued function t — f; for ¢t € [0,7]. Furthermore, we denote by Ly(Q2, @, Fp)
the set of R4-valued continuous processes n = {n(s), s € [-r,0]} with n(s) being
Fo-measurable for all s € [—r, 0] and

EWW®=E(SmMmW)<w- (2:5)

se[-r,0]
To ensure the existence of a unique solution of (1.1) it is appropriate to formulate
the following conditions.
(L1) (Lipschitz Condition): There exists a constant K € (0, 00), such that
la(z1,y1) — a(xe, y2)| + |b1(x1,y1) - bl(l'g,yg)‘ + ...+
+ (6™ (z1,y1) — 0" (22, 32)| < K (|22 — 21| + |2 — 11])
(2.6)

for t € [0,T] and 1, Zo, Y1, y2 € RY.
(L) (Growth Condition): There exists a constant K € (0,00), such that

la(@,y)* + 0" (2, ) + .+ P (@ )P < K (L+ [+ yff)  (27)
for z,y € R%.
Proposition 2.1  Assume that the Lipschitz condition (Li) and the growth

condition (Ly) are satisfied and let & be in Lo(2, @', Fy). Then the equation (1.1)
with the initial segment & has a unique solution X = {X(t), t € [-r,T]}.

To ensure that all moments of X (¢) exist for all ¢t € [0, T it is sufficient to assume
that

E (|Inllg) < oo (2:8)

for all £ € {2,3,...}, which we suppose throughout the remainder of this paper.
A proof of this result and the above proposition can be found in Mohammed
(1984) and Mao (1997).



3 Order of Weak Convergence

Let the end of our time horizon 7" be greater than the delay time r» > 0. Suppose
that T'= Ny r for some given integer Ny. The time step size A, is given as
r
AZ - f’
where ¢ € {2,3,...}. Throughout the paper, an equidistant time discretisation
(Ma, ={m:ne{-¢,—+1,...,0,1,...,N}} of the time interval [—r,T] is
used with

(3.1)

Tn =N Ay, (3.2)
and N := Ny/.

For each given time t € [—r,T], let n; be the largest integer n for which 7,
does not exceed t, that is n, = max{n > —¢ : 7, < t}. In particular, we have
n,=—L4 np=N=Nyland 7, =T.

Consider a process Y2¢ = {Y2¢(t), t € [—r, T]}, which is right continuous with
left hand limits. We call Y2¢ a discrete time approzimation with step size Ay,
provided it is based on a time discretization (7)a,, and also the random variable
Y2¢(1,) is F,,-measurable for each n € {1,... , N}. Additionally, Y2¢(7,;,) must
be expressed as a function of Y2¢(1 ), Y2¢(1_4y1),...,Y2¢(7,), the discretiza-
tion time 7, and F,, , -measurable random variables Uy, 11, j € {1,... 4}, where
1 is finite. The discrete time approximations are not necessarily related to the
Wiener processes W. However, defining X and the discrete time approximations

on the same filtered probability space does not restrict generality.

At given discretization times, we can calculate the values of the discrete time
approximations recursively by using their approximate values obtained at earlier
discretization times in conjunction with a finite number of independent random
variables. In a Monte Carlo simulation for functionals of SDDEs, we use discrete
time approximations evaluated only at discretization times. We are now inter-
ested in basic properties of such approximations. Since we only deal with the
approximation of expectations of functions of solutions of SDDEs it is appropri-
ate to introduce some kind of weak convergence. In this paper we shall use the
concept of weak order convergence as defined in Section 9.7 in Kloeden & Platen
(1999). This allows us to classify given discrete time approximations.

We denote by C, the set of all polynomials g : ®¢ — R. A discrete time ap-
proximation Y2¢ converges weakly with order 3 > 0 towards X at time T if for

each g € C, there exists a constant C, which does not depend on A, and some
L €{2,3,...} such that

|E(g(X (1)) = E (9 (Y2(D)))| < C (A0 (3:3)

for each ¢ > L. This criterion of weak order convergence relies on the polynomials
as a set of test functions. Note that if a discrete time approximation converges
weakly with some order (3, then its moments also converge with this order.



4 Euler Schemes

In this section we introduce some of the simplest discrete time weak approxima-
tions appropriate for the Monte Carlo simulation of functionals of solutions of
SDDEs. We will also indicate the order of weak convergence of these schemes.
The proof for these orders of convergence will be given in Section 6. These
schemes are generalizations of Euler schemes that are typically used for SDEs as
treated in Section 14.1 in Kloeden & Platen (1999). Besides the first method,
outlined below, all other schemes are different from the strong schemes for SDDEs
described in Kiichler & Platen (2000).

For the weak approximation of SDDEs, the Euler scheme is probably the most
well-known method that one would consider. In the general multi-dimensional
case d,m € {1,2,...} the Euler scheme has the form

Yo=Y, + a'(Yn; Ynfi) A+ Z bj(Ym Ynff) AW# (41)

Jj=1

with Wiener process increment

AW = Wi (1,41) — W (T,) (4.2)
forne {0,1,... ,N —1} and j € {1,... ,m}. Here we use the initial values
Yi=X(ri) =¢&(n) (4.3)

for i € {—¢,—¢+1,...,0}. For simplicity, here Y,, = Y2¢(r,), which is used
throughout the following.

The one step increment of the Euler scheme (4.1), when specified for an SDE,
corresponds to the truncated stochastic Taylor expansion, also called Wagner-
Platen expansion, see Chapter 5 in Kloeden & Platen (1999). It contains only the
weighted time increment and weighted increments of the driving Wiener process
components. From the convergence results in Section 6, the Euler scheme has
order of weak convergence § = 1.0 for sufficiently regular drift and diffusion
coefficients. This means that the Euler scheme (4.1) is an order 1.0 weak scheme.

For weak convergence we need only to approximate the measure that is induced
by the solution X of the SDDE (2.2). As we will prove in Section 6, this allows
us to replace the Gaussian increments AW/ in (4.1) by some simpler random
variables AWTZ with appropriate moment properties to obtain the corresponding
order of weak convergence. This leads us to the simplified Euler scheme for the
kth component of Y in the form

Vi =Y+ ab (Y, Yo A+ 6 (Y,, Y, g) AW (4.4)

=1



with initial values as described in (4.3). To ensure order = 1.0 weak con-
vergence the random variables AVWL for j € {1,2,...,m} are here assumed to
be independent F;, . -measurable random variables with moments satisfying the
condition

‘E (AWg)‘Jr ‘E ((ng)‘ + ‘E ((Wg)Q) - A‘ < K A?

for some constant K. The simplest example of such a random variable AVWL to
be used in (4.4) is a two-point distributed random variable with

P (AW,{ - i\/Z) - % (4.5)

Obviously, the above two-point distributed random variables satisfy the moment
conditions required by the simplified Euler scheme (4.4). With the choice (4.5),
the simplified Euler scheme resembles a random walk.

5 Second Order Explicit Weak Schemes

In the case of SDEs, one obtains higher order weak schemes by including further
multiple stochastic integrals from the Wagner-Platen expansion into the one step
approximation, see Section 5.5 in Kloeden & Platen (1999). Similarly, higher
order weak schemes can be constructed for SDDEs. The objective is to include
more information about the probability measure of the underlying delay process
into the weak scheme to achieve a higher order of weak convergence. In this paper
we consider approximations of order 3 no greater than 2.0 to keep the schemes
reasonably simple. It will become clear in what follows that higher order weak
discrete time approximations can be similarly obtained. We assume that the drift
and diffusion coefficients in (1.1) are sufficiently smooth such that the following
schemes are well defined.

As a first one-dimensional example for a second order scheme we introduce the



order 2.0 weak scheme in the case, d = m = 1, which is defined by the relation

Yoir = Ya+a(Ye, Yy o) A+b(Y,, Y, ) AW}

n

(AW,)? - A)

T

+ b(Yna Y",g) 9

(Yna Ynfé)

Y,

aa(Yn, Yn_g)

1 2
8Yn + 5 (b(Ym Yn—f))

 faari

(Y, Yoy 1 L, 0?0, Y1 A o,
T + 5 (b(Yna Yn—ﬁ)) W 9 AI/Vn
0 (AWLAW! , — A)
Y Y _ n n
3Yn_e b( nyin E) 9

+ 1{n>e) (b(Yne, Y, 20)

aa(Yna Ynfi) + l
0Yn_s 2

8G(Yn, Yn_g)
8Ynfﬁ

(b(Yn—éa Yn—2ﬁ))2

0%a(Y,,Y,_4)] A2
+ [G(Yn—ZaYn—ﬂ) M}

(8Yn—€ 2 2

2
(Yna Yn l

+ a(Yn—iv Yn—%) Y.

+ [b(Yn—Za Yn—2€)

N | —

+ (b(Yn—Za Yn—%))2 w} % AW&—Z) (51)

(0Yp—¢)?

Here 1y, is the indicator function and we use the random variables AW as
defined in (4.2) for k£ € {0,1,...,N — 1}. The important feature of the above
second order weak scheme is that it involves increments of the Wiener process at
the actual time ¢t as well as those from the delayed time ¢ — r. Thus one has to
store the previously generated random variables from the actual time until the
delayed time.

To present a more general second order weak scheme we formally introduce the
operators

d
)
L = > 0" (Ve Yo (en)e) 53—
port n—z~{
62
t3 ZZW sty Yoetey) 87 (Vnst Yo e00) gm0

'y)\ljl

(5.2)



and

0

d
L= 0" (Vs Yam(zant) 3o—
n—z~¢

y=1
for z € {0,1} and j € {1,...,m}.

For the general multi-dimensional case with d,m € {1,2,...}, the ith component
of the order 2.0 weak scheme has the form

Yr;i—t—l = Ynz + ai (Yn: Yn—é) A+ Z bi’j (Yn; Yn_g) AWg
j=1
. A2
+ [LY + LY] a'(Yn, Yn—e) >

m o - A ,
+) (L' (Yo, Yace) + (L8 + L) 07 (Y, Yay)| 5 AW
j=1

m . A .
+ Y Lai (Yo, Vi) 5 AW,
j=1
Ang AW# + V’r{laj2)
2

+ i IVLg)l bi’j2 (Ym Yn—@) (
J1,J2=1 [
<AWZ£Z AW — A)

+ LI 6572 (Y,,, Y _y) 5

(5.4)

for n € {0,1,...,N —1}, i € {1,2,...,d}. Here AW/ for k € {0,... ,N — 1}
and j € {1,...,m} are independent random variables with

+ ‘E ((AW,g')3> + ‘E ((AW,{)E’)‘
+ ‘E ((AVV;’)2> = A‘ + ‘E ((AVT/,j)4) 372

for some constant K < oco. Obviously, a Gaussian random variable with mean

zero and variance A satisfies condition (5.5). Other simple random variables that
satisfy condition (5.5) are three point distributed random variables AW with

P (AW} = +V34) =

o (sm)

< KA (5.5)

Wi O -

P (AW,g' - 0) - (5.6)



In (5.4), the quantities V"% for 51,5, € {1,... ,m} and k € {0,... , N — 1}, are
assumed to be independent two-point distributed random variables with

P (Vi = £A) = (5.7)
for jo € {1,...,j1 — 1},
Vvt = _A (5.8)
and
Vi =y (5.9)

for j, € {j1 +1,...,m},j1€{l,... ,m}and k€ {0,... ,N —1}.

The scheme (5.4) covers also the one-dimensional scheme (5.1) and in the following
section it will be shown to converge weakly with order 4 = 2.0.

6 Derivation of the Schemes

For the schemes described above, the proof of the order of weak convergence
is feasible since the solution of SDDE (1.1) can be expressed as a sequence of
solutions of systems of SDEs without time delay. For this purpose we introduce
the notation

ZWH(t) = X(t—ir) (6.1)

forallt € [(k—1)r,kr], i € {0,1,... ,k} and k € {0,1,...,No} with No = L,
where X is the solution of (1.1). Then we have

Z%*(kr) = 2% (kr) (6.2)
for k € {0,1,... ,Ng— 1} and i € {0,1,... ,k}.
To simplify our notation in the following, we set
bz, y) = a(,y) (6.3)
for all z,y € R¢. Furthermore, we write
Wo(t) =t (6.4)

for all ¢t € [0, 7], where W9 = {W?0(¢), t € [0,T]} can be interpreted as the time
process.
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From (1.1) we can recursively derive the following system of SDEs, with the
notation of (6.1) and (6.2), where for £ € {0,1,... ,No} and ¢t € [(k — 1) r, k7],
we obtain

dZ%(t) = ib’ Z%k (), ZVF () dW (t)

dZE-Lk(1) = fjbf ZR=Lk (), 2K ()Y AW (¢ — (k — 1) ) (6.5)

with
280 = £t~ k),

ZF=LE1(k = 1) r) = ZFY (k= D) r), ..., Z9%=Y((k = 1)r) = Z%((k — 1) 7).
By construction we have now the representation

X(t) = 2% (1) (6.6)

forte[(k—1)r k7]

Thus we succeeded in (6.6) to express, for specified subintervals, the solution of
the SDDE (1.1) as a solution of a multi-dimensional stochastic differential equa-
tion without time delay. This allows us to study the problem of the construction
of weak discrete time approximations for the SDDE (1.1) as a problem for the
corresponding system of SDEs (6.5), which must be considered on a finite number
of time intervals. However, these time intervals are not changed by a refinement
of our time discretization.

Let us now take an increment of the solution of the system of SDEs (6.5) for some
discretization times 7,, 7,41 € [(k — 1), k7], k€ {0,1,..., Ny}, that is

P(ru) = 2%4(m) = Y / "W 20k (1), 214 (1)) AW (1)

Zk_l’k(Tm_l) . Zk—l,k(Tn) _ Z /'Tn+1 bj(Zk_l’k(t),Zk’k(t))

where Z8F(t) = € (t — k).

The It6 formula can be applied to the integrands of the components on the right
hand side of the above equation. To do that efficiently we apply the operators
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L? introduced in (5.2) in the form

Zy z a
Za7 Z k Z +1k( )) azz’kﬂ

+ Z Z b’yj sz Zz+1k( ))

%/\ 15=1

A ( 72,k 1,k 0

M (Z55 (), ZF 5 () B7e e 97 (6.8)
and
0
5 zk z+1,k -z

Zb” (275 (u), 257 (w)) o (6.9)
for j € {1,...,m} and z € {0,1,...}. Taking into account that increments

of Wiener processes on disjoint intervals are independent, we obtain for j €
{0,...,m}, t € [(k—=1)r,kr] and z € {0,1,... ,k — 1} for the jth coefficients
the representation

Vit — 21, 2% (t), 27714 (1))

= V(2 (), 2 (1)

+ f: (/ 1P ¥ (27 (u), 2714 (w)) dWP(u — 27)

p=0

t
+ / LY W (Z2F, Z2T0R) dWP (u — (2 + 1) r)) . (6.10)

Let us now introduce the following notation for a double It0 integral of the form

0 S .
Tyyras = / / AW (1 — 2) dWP(s) (6.11)

for0<7<o<T, 2z€{0,r} and j,p € {0,... ,m}. Here we interpret again the
process W0 as time and consequently cover in (6.11), all mixtures of time and
Ito-Wiener integrals.

In (6.10), we apply the It6 formula again to L2 and Lf, , b. With (6.10), we
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then obtain from (6.7), the representation

m

2 (Tni1) = Z%K(1a) = ) 0(Z2% (1), Z(7)) (W (Ti1) = W (1))

=0

+ Z {Lg b](ZO’k (Tn)’ Zl’k (Tn)) I(p7j)77n’7-n+170
J»p=0

+ L]1) bj(ZO’k (Tn)a ZV* (Tn)) I(p,j),Tn,Tn+1,T}
+ ROk (Tn)

(W (71 = (k= 1) 1) = Wi, = (k= 1))
£ 3P (2 (), 25()

) ](pvj)an_(k:_l)Tan-i-l_(k_l)Tvo

+ L? bj(Zk_l’k(Tn), Zk’k(Tn))

) I(P;j);Tn—kT,Tn+1—(k—l)r,r }

+ RFUE (7). (6.12)

Here the terms R*(7,), i € {0,1,... ,k — 1}, represent the remaining higher
order terms that are not needed for a weak order § = 2.0 discrete time approx-
imation. In the above expansion (6.12), we now neglect these remaining higher
order terms and obtain the increments of the order 2.0 weak Taylor approxima-
tion, see Section 14.2 in Kloeden & Platen (1999), for the increments (6.7) of the
SDE (6.5). For these order 2.0 weak Taylor approximations for SDEs there exist
convergence theorems that we can apply, see Section 14.5 in Kloeden & Platen
(1999). Theorem 6.1 below will specify the conditions under which the weak order
(8 = 2.0 convergence is obtained.

It seems cumbersome to deal in a scheme with the full system of SDEs (6.5) and
the resulting system of weak approximations. Fortunately, this is not necessary.
Due to the structure of the expansion (6.12), one notes by the relations (6.1),
(6.8) and (6.9), that the first component of the resulting scheme for the system of
SDEs corresponds to the weak order 2.0 scheme (5.4) of SDDE (1.1). However,
by construction, the other components in (6.12) repeat only the computation of
approximate solutions for the delay equation (1.1) that were obtained in earlier
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subintervals. This means that these components are redundant and need not be
recalculated. Therefore, the schemes (5.1) and (5.4) are derived.

Using the above derivation of the schemes (5.1) and (5.4) the following theorem
follows from Theorem 14.5.1 and Theorem 14.5.2 in Kloeden & Platen (1999).

For ¢ € {2,3,...}, let us denote by C’I‘f the set of £ times continuously differentiable
functions g : R4 — R, where ¢ and all of its partial derivatives of orders up to
and including ¢ have polynomial growth.

Theorem 6.1  Suppose that the drift and diffusion coefficient functions satisfy
the Lipschitz condition Ly and the growth condition L. Furthermore, assume
that o' and b*I are from C} for alli € {1,...,d} and j € {0,... ,m} and that

| L3 672 (2, y)| + | L7 6072 (z,y)| < K (1 + |2] + |y)) (6.13)

for x,y E_?Rd and i € {1,....,d}, ji,j2 € {0,...,m}, here K < oo. Then for
each g € C} there exists for the schemes (5.1) and (5.4) a constant K,, which
does not depend on A, such that

|E(9(X(T))) — E(g(Y2(T)))| < Ky A% (6.14)

This means that these schemes converge weakly with order 3 = 2.0.

If we neglect in (6.12), not only the remaining higher order terms as well as all the
terms that refer to double integrals, then we obtain in the same manner as above
a derivation of the Euler approximation (4.1) and the simplified Euler scheme
(4.4). Again Theorem 14.5.1 and Theorem 14.5.2 in Kloeden & Platen (1999)
can be applied to prove the following result.

Theorem 6.2  Assume that the drift and diffusion coefficient functions satisfy
the Lipschitz condition Ly and the growth condition Ly and are from C';}. Then
there exists for the Euler scheme (4.1) and the simplified Euler scheme (4.4) for
each g € C_’;} a constant K, not depending on A, such that

|E(9(X(T)) — E(g(Y*(T)))| < K, A (6.15)

The implementation of the weak methods outlined above is standard. In the case
of second weak order schemes, one has to be able to recall the random numbers
backwards for one delay period. Otherwise, the Monte Carlo simulation is very
common and can be performed as described in Chapter 16 in Kloeden & Platen
(1999).

Using the methodology described, similar results can be obtained for other higher
order weak schemes for SDDEs based on results for discrete time weak approxi-
mations for SDEs. In principle, this also applies to implicit schemes, which will
be treated separately.
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