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Abstract

Classical parametric estimation methods applied to nonlinear regression
and limited-dependent-variable models are very sensitive to misspecification
and data errors. On the other hand, semiparametric and nonparametric
methods, which are not restricted by parametric assumptions, require more
data and are less efficient. A third possible estimation approach is based on
the theory of robust statistics, which builds upon parametric specification,
but provides a methodology for designing misspecification-proof estimators.
However, this concept, developed in statistics, has so far been applied al-
most exclusively to linear regression models. Therefore, I adapt some robust
methods, such as least trimmed squares, to nonlinear and limited-dependent-
variable models. This paper presents the adapted robust estimators, proofs
of their consistency, suitable computational methods, as well as examples of

regression models which the proposed estimators can be applied to.
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1 Introduction

Various nonlinear and limited-dependent-variable models are quite natural in economet-
rics, both because a modeled relationship is of nonlinear nature or the dependent variable
is truncated, censored, or discrete.! These models are typically estimated parametrically
either by (nonlinear) least squares or by maximum likelihood and are, therefore, quite
sensitive to misspecification. This sensitivity naturally depends on the type and extent
of deviations from the parametric model used and on the model itself. Whereas the ro-
bustness of classical parametric estimators in nonlinear regression models is basically the
same as in the case of linear regression (see Chatterjee and Hadi (1988) for an introduc-
tion to this topic), the robustness of parametric techniques is much lower in the case of
limited-dependent-variable models because even non-normality of errors (see Hurd (1979)
for truncated regression or Arabmazar and Schmidt (1982) for Tobit) or heteroscedasticity
(see Arabmazar and Schmidt (1981) for Tobit) can lead to inconsistency. Similar results
were demonstrated also in case of binary-choice models (Manski and Thompson (1986),
Klein and Spady (1993) for probit). Consequently, most recently-developed estimation
techniques for these models primarily address misspecification-sensitivity problems so that
they lead to meaningful results even under relatively weak conditions.

The strategy that is used most often for dealing with misspecification sensitivity relies
on weakening the necessary regularity and identification conditions so that the probabil-
ity of their violation is significantly decreased. This is the case of semiparametric and
nonparametric methods. First, semiparametric procedures are typically built around a
single-index model, the concept first proposed by Brillinger (1983), which encompasses, for
example, binary-response models, censored Tobit regressions, and some duration models.
Examples of existing estimators include the density-weighted average derivative estimator
(Powell, Stock, and Stoker (1989)), a quasi-likelihood estimator for binary-choice models
developed by Klein and Spady (1993), or the semiparametric least square method (SLS)
and its weighted version (WSLS) designed by Ichimura (1993). Second, nonparametric
methods do not assume any specific kind of a functional relationship and estimate directly

the regression function using kernel estimation, see Hérdle and Linton (1994) for more

! First, nonlinear regression models are represented, for example, by models with an exponential regres-
sion function and an additive error term. Next, a model is truncated if we cannot see observations with
negative values of dependent variable, for instance. On the other hand, a regression model can be also
censored, that is, all observations are visible, but we do not have the actual values of the dependent variable
if it is negative, for example. Finally, it is possible that we are only able to recognize that a dependent
variable is, let us say, negative or positive—then the true value is replaced by a discrete variable indicating
what we observe.



information, including econometric applications.

Unfortunately, there are several problems related to the use of most semiparametric
estimation methods. The first difficulty is the need for data: semiparametric and nonpara-
metric methods generally require large samples compared to parametric methods in order
to achieve an equally good approximation of the true parameter values, especially if some
kind of nonparametric smoothing is used. Another problem lies in the fact that semipara-
metric estimators are still sensitive to misspecification of the regression function or other
parametric components. On the other hand, if the regression function is not specified,
it is almost impossible to obtain its derivatives with respect to the unknown parameters.
Moreover, the limiting distribution is either non-normal or unknown in some cases. Fi-
nally, the sensitivity of the existing semiparametric methods to outliers and very influential
observations, as well as the detection of outliers within the semiparametric framework, has
not been explored yet.

On the other hand, there is another strategy, which retains standard parametric as-
sumptions but takes into account possible misspecification and its impact on estimation
procedures. This approach falls under the heading of so-called “robust statistics” (see Ham-
pel et al. (1986)), which provides a methodology for developing estimators that behave well
not only under correct parametric specification, but also in the presence of “small” devia-
tions from the parametric assumptions. These deviations can be of almost any kind, but
the use of a parametric model requires that at least part of data follows the model. Now,
this strategy has not been used to design robust estimators for limited-dependent-variable
models yet and my aim is to follow it and to design robust estimators that will provide
reliable results without a high efficiency loss? in these models.

As a starting point, I use highly robust least trimmed squares (LTS), a statistical tech-
nique for the estimation of unknown parameters of the linear regression model. It was
proposed by Rousseeuw (1985) as a robust alternative to the classical regression method
based on minimizing the sum of squared residuals. Despite its advantages over classical
parametric estimators (see Orhan, Rousseeuw, and Zaman (2001) for some econometric
evidence), it is not applied in econometrics at all since it has several shortcomings concern-
ing its applicability. First, LTS as well as many other highly robust estimators cannot be
applied in regression models containing discrete explanatory variables, and only recently,
their modifications appeared that allow such an application (see Hubert and Rousseeuw

(1997) and Cizek (2001b)). Second, there are many classes of regression models in which

2The efficiency loss is meant in comparison with the efficiency of standard parametric methods providing
that the assumptions of the appropriate parametric models are valid.



such a robust estimator cannot be used right now, and partly because its properties are
not known in such models, partly because it is not adapted to suit such models.?> This con-
cerns the estimation of nonlinear models, limited-dependent-variable, and discrete-choice
models.

This paper addresses the lack of robust techniques such as LTS in nonlinear and limited-
dependent-variable regression and extends them so that they can be applied there as a
robust alternative to classical parametric methods. Additionally, since some parametric
estimators used in these models are based on principles different from the simple least
squares minimization, I aim to generalize the idea of the LTS estimator first and create
a concept of a general trimmed estimator. It should cover not only LTS and its eventual
variants suitable for nonlinear regression models, but allow us to define trimmed versions of
other estimators, such as a trimmed version of the maximum likelihood estimator (MLE)
proposed and discussed here as well. The proposed trimmed estimators should be robust
in the same sense as LTS and many other robust estimators: they can cope with any type
of deviation from a parametric model provided that there is a core subset of data which
follows the parametric model. Next, I make the first step concerning the use of trimmed
estimators in nonlinear regression and limited-dependent-variable models. Namely, I prove
the consistency of the proposed estimators and show that its order is equal to /n (this
extends the existing results regarding LTS even within the framework of standard nonlinear
regression models). Last, but not least, I discuss specific examples of trimmed estimators
encompassed by the framework of a general trimmed estimator and their applications.

Finally, let me give examples of several typical models which the proposed methods are
intended for. First, intrinsically nonlinear regression models arise when we have to use, for
instance, the Box-Cox transformation (see Box and Cox (1964)) or when a regression func-
tion is of exponential nature but an error term enters the regression equation additively;
see Griffiths, Hill, and Judge (1993, Chapter 22) for more examples. Further, it is not un-
common in econometrics that a dependent variable cannot be fully observed (for example,
above or below a threshold)—some of its values are either censored or truncated. Then we
talk about limited-dependent-variable models. Finally, a nonlinear relationship can arise
if we observe only a finite number of states instead of a continuous dependent variable—
discrete-choice models are used then. Both limited-dependent-variable and discrete-choice

models possess very specific error structures.

3The existing literature concentrates on behavior in standard regression models, assuming the inde-
pendence of explanatory variables and error terms, and on computational issues; see for example, Chen,
Stromberg, and Zhou (1997) and Cizek (2001a).



Let me now make the main aims of the paper more precise. Because the regression
models mentioned above are estimated not only by least-squares estimators, but by maxi-
mum likelihood estimators as well, I propose first a general concept of trimmed estimators
that unites the trimmed versions of commonly used estimation methods and allows me to
deal with both kinds of estimators at the same time. Further in the paper, I study the

behavior of trimmed estimators applied to the nonlinear regression model

yi = h(z;, B) + &, (1)

where y; represents the dependent variable and h(z, () is a regression function (i =
1,...,n). The vector of explanatory variables x; and the error term ¢; are assumed to
form sequences of independent and identically distributed random variables that possess
an absolutely continuous distribution function.

For the next step, I continue with analysis of trimmed estimators in the limited-

dependent-variable framework: here I assume that there is a structural model of the form

i = h(z, B) + &4, (2)

where ]~'L($Z, B) is a known function of data z; and a vector 3. Moreover, §; is unobservable—
we can observe only y; = 7(%;), where 7 : R — R is a known transformation. This leads to
the definition of the corresponding reduced model, that is a model based on y; = 7(%;) as
a dependent variable. It can be described by

where the dependent variable y; equals 7(7;), the regression function is defined by h(z;, §) =
E (yi|z;) = E(7(%:)|z;), and the error term is given by v; = y; — E(y;|x;) = vi — h(zy, ).
Notice that models (1) and (3) have the same form (although the relationships between
the variables are different).

Finally, I consider several typical nonlinear models and examples of trimmed estimators
that can be applied in these models. Additionally, I discuss possible computational methods

for trimmed estimators.

In the rest of the paper, I first review important facts about LTS that are also re-
lated to other trimmed estimators, such as the maximum trimmed likelihood (Section 2).

Later, I consider the nonlinear regression model (1) and discuss necessary assumptions for



the consistency of the proposed trimmed estimators (Section 3). Next, I deal with the
limited-dependent-variable model (3) and again derive the consistency of trimmed estima-
tors (Section 4). Finally, I choose several typical models from both classes and provide
examples of trimmed estimators suitable for these models (Section 5) together with several

computational procedures for trimmed estimators (Section 6).

2 Definition of nonlinear trimmed estimators

In this section, I describe first the least trimmed squares estimator (LTS), introduced for
the linear regression model by Rousseeuw (1985), and its properties (Section 2.1). Next, I
define a trimmed version of MLE (Section 2.2). Finally, I unite both trimmed estimators

in the concept of a general trimmed estimator (Section 2.3).

2.1 Least trimmed squares

Consider a nonlinear regression model for a sample (y;, ;) with a dependent variable y; € R

and a vector of explanatory variables z; € R¥
yZ:h($ZaB)+6u 2:1,,n, (4)

where h(z;, 3) is a known regression function of data z; and a vector § of p unknown
parameters! (3 € B C RP, where B is the corresponding parameter space). Such a
regression model represents both (1) and (3).

The least trimmed squares estimator Br(lLTS) is then defined as

h
BT = argmin » _r5(B), (5)

BERP i

where r#(5) represents the ith order statistics of squared residuals r1(8), . .., 75 (8): 7} (8) =

1 Tn i
(yi — h(zi, B))?. The trimming constant h has to satisfy 2 < h < n. This constant deter-
mines the robustness of the LTS estimator, since definition (5) implies that n — h observa-
tions with the largest residuals do not have a direct influence on the estimator. The highest
level of robustness is achieved for h = [n/2] 4+ [(p + 1)/2] (Rousseeuw and Leroy (1987,

Theorem 6), in the case of linear regression; see Stromberg (1993) for an analogous result in

“In general, the dimensions of z; and 8 do not have to be the same, i.e., k # p.



nonlinear regression models). On the other hand, the robustness of LTS is lowest for h = n,
which corresponds to the least squares estimator. There is, of course, a trade-off: lower
values of h lead to a higher degree of robustness, while higher values of A improve efficiency
(if the data are not too contaminated) since more (presumably correct) information in the
data is utilized. The most robust choice of h is often employed when the LTS is used for
diagnostic purposes. It may also be favored when LTS is used for comparison with some
less robust estimator, e.g., the least squares, because a comparison of these two estimators
can serve as a simple check of data and the model—if the estimates are not similar to each
other, special care should be taken throughout the analysis. On the other hand, it may be
sensible to evaluate LTS for a wide range of trimming-constant values and to observe how
the estimate behaves with increasing h, because this dependence can provide hints about
the amount of contamination and possibly about specific structures in the studied data.
Before proceeding further, it is useful to discuss several issues, most importantly the
existence of this estimator. The existence of the optimum in (5) under some reasonable
assumptions can be justified in the following way: the minimization of the objective func-
tion in (5) can be viewed as a process in which we choose every time a subsample of h
observations and find some 8 minimizing the sum of squared residuals for the selected sub-
sample. Doing this for every subsample, we get (ﬁ) candidates for the LTS estimate and
the one that commands the smallest value of the objective function is the final estimate.
Therefore, the existence of the LTS estimator is basically equivalent to the existence of
the least squares estimator for subsamples of size h. This is, of course, far from a usable

computational procedure, see Section 6 for more information.

2.2 Definition of maximum trimmed likelihood

Although the least-squares-based approach is traditionally used in most (non)linear re-
gression models, the maximum likelihood estimation is equally or even more important,
especially if we want to estimate various limited-dependent-variable models. In the same
way the least trimmed squares estimator is derived from the least squares, I propose anal-

ogously the maximum trimmed likelihood estimator for the model

provided that the distribution of (z;,¢;), or equivalently (y;, x;), is known. The advantage

of such an estimator against MLE is an increase in the robustness of the estimator because



only a part of the data has to follow a specified parametric model and only the data
that follows closely the specified model are taken into account. So, let us assume that
(xi,€),1 =1,...,n, or equivalently (z;,;),i = 1,...,n, form sequences of independent and
identically distributed random vectors and that the corresponding distribution functions
are known. Moreover, let [;(5) = I(x;, y;; §) be the likelihood function of 5 € B associated
with the observation (y;,z;). Then the mazimum trimmed likelihood estimator (MTLE)

3{MTLER) ig defined for regression model (6) by

n

ﬁgMTLE:h) = arg max H Uy (i, yi3 B), (7)
peB i=n—h+1

where

e 3 € B C R is a p-dimensional vector of unknown parameters and B C RP is the

corresponding parameter space,

o lj(xs,yi; B) represents the (ascendingly) ordered sample of likelihood functions
lz(xlayla/B) = l(xz’ylaﬁ)a 1= 1; SRR (2 for any /B € Ba

o he{[™],...,n} is the trimming constant (see Section 2.1).

This definition can also be rewritten as

AnMTLE,h):argmaX Z lnl[i](xi,yz';ﬁ). (8)
BEB i=n—h+1

Apparently, the maximum trimmed likelihood estimator makes MLE robust in the
same way as the trimming of least squares in case of LTS: the objective function of MTLE
contains now only likelihoods for n — h most probable observations at a given 5. This
means that all other observations, that is, the h least probable observations for a given
parametric model, do not directly influence the objective function of the MTLE estimator.
Thus, if a number of observations in a sample that do not follow the specified parametric
model is smaller than h, the MTLE estimator is not influenced by these observations and

estimates the model using only the (model-following) rest of the data.



2.3 Common framework for LTS and MTLE: general trimmed es-

timator

In Section 3, I am going to derive important asymptotic properties for both the LTS
and MTLE estimators. Therefore, it is advantageous to create a general framework that
encompasses both estimators and allows us to derive their properties at the same time.

Using regression models (1) or (3), we can define the general trimmed estimator (GTE) as

h
BUTER) = argmin Y ~ sy (i, yi; B), 9)

peB
where spj(s, yi; 6),5 = 1,...,n, represent the (ascendingly) ordered sample of some gen-

eral loss functions s(z;,v;;8) = s(zs,6:58), @ = 1,...,n, for any § € B.> The choice
s(zs,yi; 8) = r2(8) = (y; — h(xi, B))° corresponds to the LTS estimator, s(z;,y;;3) =
—Inl;(x;, y;; B) represents the MTLE estimator. Naturally, it is necessary to restrict the
possible choices of s(z,y; §) in order to be able to derive reasonable results: thus, s(z,y; f)
should be, among others, a continuously differentiable function of 8 on B; see Section
3.2 for more details. In the following sections, I refer to this general trimmed estimator
as GTE, and specifically, I understand under this name the previously defined LTS and

MTLE. Moreover, I will refer to s(z;,y;; 3) as residuals or losses for the sake of simplicity.

Note 1 For the loss function evaluated at an observation (z;,y;), we use notation s(z;, y;; B)
or si(zi,yi; ). For the jth order statistics of s(xi,yi;;5),i = 1,...,n, we use symbol
s)(xi, vis B).  In this case, index i inside the order statistics is just a formal notation
and does not have any relationship to summation or other indices. It is to be understood
so that z;,y; inside spj)(z;, yi; B) indicate just the sample on which this order statistics is

based (so correctly, one would have to write sy((s, yi)i=1; B))-

3 Consistency of GTE in nonlinear regression models

In this section, I present the main asymptotic result concerning GTE, namely, its asymp-
totic consistency in the nonlinear regression model (1). Before proving it, an alternative
definition of GTE and some notational conventions used in the rest of the paper are in-

troduced (Section 3.1) as well as the assumptions necessary for the asymptotic results

5The expressions s(x;,y;; 3) and s(z;,&;; 3) represent the same loss function and are equivalent since
yi = hzi, B) + €.

10



(Section 3.2).

3.1 Alternative definition of GTE, notation

Given a sample (1;, x;), the GTE estimator of an unknown parameter vector 3 is defined for
models (1) and (3) by equation (9). The dependent variable is denoted y; € R, the vector
of explanatory variables is z; € R*| and ¢; represents the error term. In addition, Q,,Q,,
and (), refer to probability spaces on which y;, z;, and ¢; are defined, so 2 = Q, x Q is
the probability space of the random vector (y;, ;). The true underlying value of the vector
B in regression models (1) and (3) will be referred to by 8°. The non-trimmed estimator
corresponding to GTE, which naturally coincides with the nonlinear least squares or the

maximum likelihood, is further denoted by

n n
B = argminy sy (wi, yi; B) = argmin Y si(zs, i3 5)-

Here and in definition (9), sj;(%s, yi; 8) stands for the jth order statistics of s;(xs,¥i; 5).
In other words, it holds that sp(z;(w), yi(w); B) < - -+ < sp(@i(w), yi(w); B) for any € B
and w € Q2.

Next, an alternative definition of GTE employed in the theoretical part of this paper
instead of (9) is given by®

n

BT(LGTEJL) — argerginzsi(ﬂfi,yi; B) 'I(Si(ﬂfz’,yz'; B) < S[h](l"i, Yis /3)) (10)

i=1

To obtain this formula, one has to realize that for a given value of § € B, the minimization
of the h smallest elements s(z;, y;; #) means that we include in the objective function only
those elements that satisfy s(z;,y:; 8) < spuy(@s,y5; 8).” One additional note concerns the
trimming constant: whenever asymptotic properties of GTE are studied, that is n — +o0,
we have to work with a sequence of trimming constants h,, (for every sample size n, there has
to be a corresponding choice of h). As this constant determines the robustness properties

of GTE, we want to asymptotically prescribe a fixed fraction A of observations that are

6By I(property describing a set A) I denote the indicator of the set A.

"In general, this definition is not equivalent to the original one. They are exactly equivalent if and
only if all the residuals are different from each other. Under the assumptions given in Section 3.2, this
happens with zero probability and definitions (9) and (10) are equivalent almost surely as the cumulative
distribution function of s;(x;,y;; ) is assumed to be absolutely continuous. Therefore, we further use
definition (10) for convenience.

11



considered to be correct, % < A <1, or alternatively, a fraction 1 — A\ of observations that
are excluded from the objective function of GTE (0 < 1 — A < ). The trimming constant
can then be defined for a given n € N by h, = [An], where [z] represents the integer part
of z; hence, h,/n — X. From now on, we assume that there is such a number X € (3, 1)
for a sequence h,, of trimming constants defining the general trimmed estimator.

To close this section, we introduce the remaining mathematical notation. As obser-
vations and parameters considered here always belong to a Euclidean space R!, we shall
need to define a neighborhood of a point z € R': an open neighborhood (open ball)

U(z,0) = {z € R : ||z—z| < §} and a closed neighborhood (closed ball) U(z,d) =

{z € R : ||z—x| < §}. Moreover, let us denote a convex span of z1,..., T, € R
by [z1,...,Zm], . Finally, several symbols from linear algebra are introduced: 1, repre-
sents an n-dimensional vector of ones, bq,...,b, are standard basis vectors in R", i.e.,

br = (0,...,0,1,0,...,0), and Z, is the identity matrix of dimension n.

3.2 Assumptions

The assumptions necessary to prove the asymptotic consistency of GTE form three groups:
distributional Assumption D for random variables in (1), Assumption H concerning prop-
erties of the loss function s(z,y; 3), and Assumptions NC and NN needed for the uniform
law of large numbers. The latter set of assumptions is presented separately in Section 3.4.

First of all, let me discuss the distributional assumptions dealing with the random
variables used in model (1). Most of these conditions are either equivalent to standard
assumptions used in (nonlinear) regression models or additional assumptions needed to
derive any reasonable results for order statistics. Moreover, we argue in a number of

remarks that the following assumptions do not restrict us in any way in real applications.

Assumption D.
D1 Let (y;,7;) € RxRF i=1,...,n, be a sequence of independent identically distributed
random vectors with finite fourth moments. Moreover,

!0 max {|yil, 3], lesl} = Op(1). (11)

Remark 1 The necessity to include restriction (11) is caused by the discontinuity of the
objective function of GTE (the discontinuity has to be understood from the inclusion-of-

observations point of view: every observation either fully enters the objective function or

12



does not enter it at all). A similar assumption was used for the first time by Jureckovd
(1984). Using Proposition 1 (see below this remark), we can say that equation (11) holds
even for some distribution functions with polynomial tails, namely for those that have
finite fourth moments. This becomes apparent once we realize that a distribution with tails
behaving like one over a polynomial of the fifth (or lower) order does not have finite fourth
moments. As the existence of finite fourth moments is one of the necessary conditions here,
assumption (11) should not pose a considerable restriction on the explanatory variables.
One can also notice that a random variable with a finite support is not restrained by this

assumption in any way.

Proposition 1 Let x1,xo,... be a sequence of independent identically distributed random
variables with a distribution function F(x). Let b(z) be a lower bound for F(x) in a
neighborhood Uy of +oo. If b(x) can be chosen as 1 — #(w), where Pg(x) is a polynomial of
the fourth order, then it holds that n=e max;—1,.., T; = Op(1) as n — +oo. Analogously, let
c(x) be an upper bound for F(z) in a neighborhood Uy of —oo. If ¢(x) can be chosen as #(w),
where Ps(z) is a polynomial of the fourth order, then it holds that ns min;_y,_, z; = Op(1)

as n — +o0.

Remark 2 Assumption D1 can be weakened to (x;,y;) having finite second moments and
i max { |y, [z, leil} = Op(1),

if we assume more about the functional form of the loss function s(x,y; B)—for instance,

if we assume least-squares based function, s(x,y; 3) = (y — h(z, B))?, see Cizek (2001a,).
D2 We assume Ex;z7 = Q, where @ is a nonsingular matrix.

D3 Let G(z) represent the distribution function of s(z;,y;; 3°), G(z) be absolutely con-
tinuous, and g(x) be the corresponding probability density function. Moreover, g(z)
is assumed to be positive and bounded by constant A/, > 0 on the whole support of

the distribution function G.

Remark 3 Note that Assumption D3 implies the following property of the distribution
function G(z) and its density g(x): for any 0 < a < 1 we can find ¢ > 0 such that

inwa(G—l(a)fs,G—l(a)—FE) min {G(ZL‘), g($)} > 0.
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Moreover, we have to add a piece of notation. Sometimes it is necessary to refer to the
distribution function of s(z;,y;; ) for any g € B. In such a case, G is used for the
cumulative distribution functions and gg for the corresponding probability density function.

It follows that G = Ggo, and similarly, g = ggo.

D4 Assume that

. . 1
Mgy = /;Iellfs 261(1_126) 95 (G3'(\) +2) >0

and

M,, = supsup gs(z) < +00,
BEB zeR

where G5 and g are the cumulative distribution function and the probability density

function of s;(z;, yi; B).

Remark 4 Although Assumption DJj maight look unfamiliar at first sight, it just guaran-
tees that the distribution functions of random variables s;(x;, y;; B) do not converge to some
extreme cases for some 3 € B. Namely, these conditions exclude cases when the expec-
tation or variance of s;(x;,y;; ) converge to infinite values for some § € B or when the
distribution function Gz converges to a discrete distribution function for some € B. This
does not restrict us in commonly used regression models, because the parametric space B

is compact. See also remark 3 to Assumption D3.

As I aim to apply GTE to nonlinear models, several conditions on the loss function
s(z, e; B) have to be specified (it is in many cases closely related to the regression function
h(z,B)). Most of them are just regularity conditions that are employed in almost any work
concerning nonlinear regression models. Because the assumptions stated below rely on the
value of 5 and because I do not have to require their validity over the whole parametric
space, I restrict 8 to a neighborhood U(3°,d) in these cases and suppose that there exists

a positive constant § such that all the assumptions are valid.

Assumption H.

H1 Let s(z,y;3) be a continuous (uniformly over any compact subset of the support of

(z,y)) in B € B and twice differentiable function in 3 on U(3°, §) almost surely:

ds(x,y; 8) 9°s(x,y; B)

J J

The first derivative is continuous in 8 € U(3°, §) almost surely.

14
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H2 Furthermore, let us assume that the second derivatives sgj B (z,y; B) satisfy locally the
Lipschitz property in a neighborhood of 3, i.e., for any compact subset of supp z x
suppy there exists a constant L, > 0 such that for all 8,8" € U(8°4), and j,k =

1,...,p

55,6, (@ U3 B) — 85,5, (2,55 8)| < Lp - 18— B

H3 Let

n’l/?’ max max

1<i<n 1<j<p

s,z B)|| = 0,(1) (12)

as n — 400 uniformly over 5 € B.

Remark 5 This assumption depicts another regularity condition that is going to be fulfilled
in most cases. It is a nonlinear equivalent of Assumption D1, equation (11). For example,
for a function of the form s(z,y;8) = (y — h(z"B))?, where h is a twice differentiable

function, we can immediately observe that

s5,(,y38) = 2(y — h(z"B))N (a7 B)z; = 2(e + h(aT5°) — h(aT B))TH (27 B)a;
= 2(e+H (@ O (" B)z; = M (z" B)ex; + W (z" )W (" B)a;

= 3, (2,50,

where £ € [, B],,. Hence, assumption (12) is a direct consequence of (11) as long as the

first derivative of h(-) is bounded on any compact subset of its domain.

H4 To proceed further, I have to postulate some assumptions about the following expec-

tations:

e Let E[s(z;,e4; 8)]™ exist and be finite for m = 1,2 and any 8 € B.

o Let E slﬂj (5, yi; ﬁo)]m and E [S:éjﬂk (ms,y:; 8%)| exist and be finite for m = 1,2,
and for all 5,k =1,...,p.

e Moreover, I assume that E [sgﬂ(xi, yi; B°) - I(si(ws, 955 8°) < G7H(N))] = Qn, where

(1, is a nonsingular positive definite matrix.

Remark 6 It is important to remember that these assumptions correspond in our nonlinear
model to the ezistence of finite fourth moments (see Assumption D1). Moreover, the second
part of Assumption HJ is a natural analogy to Assumption D2 in the linear regression

model.
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The presented Assumptions D and H can be divided into several groups. First, some
of them are standard in nonlinear regression, for example, D1, D2, H1, H2, and HA4.
Second, there are several assumptions that are needed to prove almost any result for order
statistics (D3) and to analyze a trimmed objective function (D1, D4, H3). Finally, note
that some assumptions can be weakened if one wants to derive only consistency instead of
v/n-consistency (for example, one would not then require the existence of the derivatives

of the objective function).

3.3 Normal equations

In order to analyze the behavior of the GTE estimator (especially to prove \/n-consistency),
we use normal equations as the starting point, i.e., instead of minimizing the objective

function
n

p(B) = Zsi($i,yi; B) - 1(si(xi, yi; B) < sy, vi; B))
=1
over all 8 € B, we consider a solution of 6%—(? = 0. The normal equations (for 8 € U(3°,6))
can be written as

0= op(8) = Z[s;j(fvi,yi;ﬁ) ~I(si(i, yi3 B) < spy(@i, yis B))

=1

0
+si(xi, yi; B) - %I(si(xi,yi;ﬁ) < spy(wi, yis B)) |-

Now, let us show that the continuity of s;(z;,y;;8) and order statistics sy (i, y:; 8) in
B (Assumption H) guarantees that the second term is almost everywhere zero. Consider

j=1,...,p and an arbitrary, but fixed event w € Q":

aiﬁjf(si(ﬂﬁi(wi), Yi(wi); B) < spy(i(w), yi(w); B))

= ilinm% [T (si(zi(wi), yi(wi); BA) < spy(@(w), i(w); BD))
- I(Si(xi(wi)ayi(wi); B) < S[h](iﬁi(wi),yi(wi);ﬁ))] )
where 3(%) = (B4,...,Bj-1, Bi+A, Bjt+1,-- -, Bp). As the ordering of terms s; (z;(w;), yi(wi); B)

is constant in a neighborhood of § for all w € ; C Q", where P(£2;) = 1 (see Lemma 1

below), the limit is equal to zero jointly for alli = 1,...,n and j = 1,..., n with probability

16



1. Consequently, it is enough to study the behavior of
p(B) _
% = sp(wi v B) - I(sili, yis B) < spy(@i, yis B))  as., (13)
i=1

as the GTE estimator is a solution of ag_(;@ = 0.

Lemma 1 Let n € N and ky(8) : RP — {1,...,n} be a function that represents an index
of an observation such that sy, g)(zi,vi; 8) = sp)(@i, ys36), b € {1,...,n}. Under As-
sumptions D and H, there erists a set 0y, P(Q1) = 1, such that for every w € Q; C Q"
there is some neighborhood U(8°,e(w)) of B° such that the function ky(8) is constant on
U(B° e(w)) for all h € {1,...,n}.

Proof: See Appendix A. [

3.4 Consistency of general trimmed estimator

In Sections 2.1, I provided an intuitive argument why the consistency and asymptotic
normality of (nonlinear) LTS and (nonlinear) least squares are equivalent. In this section,
I will properly prove the consistency of GTE, and hence of nonlinear LTS as well.

To provide as complete a picture as possible about the consistency of GTE, I specify
two sets of assumptions. The first group, Assumption NC, is as general as possible and
is sufficient just for proving the consistency of GTE; the second group, Assumption NN,
allows us to derive the y/n-consistency of the estimator. In the presented form, Assumption
NC corresponds mostly to the assumptions required for the uniform law of large numbers

in nonlinear models, which is presented in a very general form in Andrews (1987).

Assumption NC. Let the following assumptions be satisfied for the function q(z;, y;; 5) =
si(i, yi; B) - T (si(wi, 33 B) < G5'(N)).B

NC1 Let the parameter space B be a compact metric space (or a compact subset of RP).

NC2 Let q(xs,yi; 8), ¢ (i, yi; B, p) = sup{q(zi, yi; 8) : B/ € U(B, p)}, and qu(zi,yi; B, p) =
inf{q(x;,y;; B) : B/ € U(B,p)} be measurable random variables for all 5 € B,i € N,
and for all p > 0 sufficiently small.

8For the case of non-trimmed estimators, e.g., the nonlinear least squares or maximum likelihood, A = 1
and GEI()\) = 00. Therefore, this case corresponds to q(z;,e:;3) = si(2s,vs; B)-

17



NC3 Let E {supﬂeB lq(z4,y4; B |} < oo for some 6 > 0.

Remark 7 Assumptions NC1-NC3 are necessary (together with the assumption concern-
ing the differentiability of the function s(x,y;B) with respect to B) for the uniform law
of large numbers. Assumption NC3 is actually a standard condition used in this context
to ensure that functions ¢*(x;, ys; B, p) and q.(z;,yi; B, p) satisfy pointwise the strong law
of large numbers for any B € B and all p sufficiently small; see Andrews (1987), for in-
stance. Moreover, note that the existence of an upper bound for s;(z;, yi; B) over B usually
follows from the boundedness of the parametric space B and Assumption NC3 just requires

additionally the existence of a certain expectation of this upper bound.

NC4 For any € > 0 and U(8%, ¢) such that B — U(°,¢) is compact, there exists a(e) > 0
such that it holds that
in  Eq(zi,9;8) —Eq(zi,95;6°) =
sepin,  Ealeivi B) — Ba(zivi )

min  E [s;(i, 43 8) - I (ss(wi, 433 8) < G5' (V)] —

BEB-U(B%)

-E [Sz’(ﬂﬁi,yi;ﬁo) : I(Si(xi;yi;ﬁo) < Ggol(/\))} > afe).

Remark 8 This is nothing but an analogy of the identification condition for the nonlinear
least squares, see for example White (1980). However, it is one of the most important
assumptions here and it is going to be even more important once we start to discuss GTE

for limited-dependent-variable models.

Now, the following theorem confirms that Assumption NC is sufficient for proving the

consistency of GTE.

Theorem 1 Let Assumptions D, H, and NC hold. Then, the general trimmed estimator
defined for model (1) by

BETER) - = arﬂgrgansz i, Yis B) - 1 (si(xi, vi; B) < spua (i, vi5 B)) (14)
€ i=1
1
= argrgmﬁ zé’i(ﬂﬂi;yi;ﬁ) 'I(Si(ﬂfi;yi;ﬁ) < S[hn](xiayi;ﬁ)) (15)
€ i=1

18 consistent, i.e. B in probability as n — +oo.
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To prove this theorem, we need one additional lemma showing that we can use the uniform

law of large numbers for sum (15) and that weak dependence among indicators

I(si(zi, yi3 B) < sy, vi3 B))
for i =1,...,n, does not spoil the result.

Lemma 6 Let Assumptions D and H hold and assume that t(z,y;5) is a real-valued
function continuous in B uniformly in x and y over any compact subset of the support
of (z,y). Moreover, assume that Assumptions NC1-NC3 hold for t(x,y;B). Further-
more, let Gg denote the distribution function of s;(z;,yi; 8) (for any f € B). Finally, let
ho/n— A€ (3,1). Then

n

Sup : > (@, yis B) - I(si(mi, vis B) < Spuay (i, 33 8))]

n
peB |

—E [t(zi, yi; B) - I (si(wi, 95 8) < G5'(N)]| — 0
as n — 400 in probability.

Proof: See Appendix A. [J

Let us continue with the proof of Theorem 1 now.

Proof: 'The principle of the proof is actually very similar to the proof of the SLS
consistency done by Ichimura (1993), and employs the theorem about uniform consistency
in nonlinear models that is due to Andrews (1987) by means of Lemma 6. Let us denote

(si(s,y:; B) are independent identically distributed random variables)

J(B) = E{s1(zi,; B) - I(s1(i, 435 8) < G5'(N)}, and
Jn(B) = %Zsi(xi,yi;ﬁ) I (si(2i, y5; 8) < spaa) (i, 433 B))-

=1
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By the definition of GTE, P(J (,B(GTE ohn) ) < Jp (,30)> = 1. For any § > 0 and an open
neighborhood U(3°,4) of 3%, this probability can be decomposed as

= 170) <)

= P (BT < g () and FETEM € U(B,6))

+ P (BOTEM) < 1, (8) and BETEM € B - U(B,5))
P(AHGTEhn U(p, )) ( inf  J,(8) < J, (,30)).

,BEB—U(ﬂO,(s)

IN

Therefore, P (infge p_y(p0,6) Jn (8) < Ju (8°)) — 0 implies P( (GTHhn) & U(ﬁo,(s)) — 1 as

n — +oo, that is, the consistency of BLGTE hn) (6 was an arbitrary positive number). To

verify P (infgep_y(go.4) Jn (8) < Ji (8°)) — 0 note that

P(ﬁEBIIIl]fﬂO(s (B) < J, (50))
= p(, Va9 - T6) + )] < 5 ()
= p(, e, DO -IE] <) - nt I6)
< P(EEE n(B) = I(B) > inf | J(B) - Jn(ﬁ‘)))- (16)

Since J,,(8°) — J(B°) almost surely for n — oo (see Assumption NC4 and remark 7) and
the identification condition NC4 implies

(V6 > 0) (3 > 0) ( inf  J(B)—=J(B% > a> :

ﬂEB—U(ﬂO,(s)

it immediately follows that

n—s00 | BeB-U(80,0)

(V6 > 0) (3a > 0) (lim [ inf  J(B) — Jn(ﬁo)} > a)

almost surely for n — oco. Thus, to prove that (16) converges to zero as n — +oo it is

enough to show that for any a > 0,

P(sup|Jn (B) = J(B)| > a) — 0 as n — +o0.
BeEB
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This is indeed the result stated in Lemma 6 for the function ¢(x;,y:;; 8) = si(xi, ys; 5)
(si(z4,y:; B) is uniformly continuous in S on any compact subset of supp(z,e) because of
Assumption H1, and moreover, it satisfies Assumptions NC1-NC3). O

Next, let us recall that Assumption NC is sufficient for the consistency of GTE. How-
ever, if we enrich Assumption NC to obtain the below-stated Assumption NN, we are able
to prove even the /n-consistence of a general trimmed estimator. Also, Assumption NN
corresponds mostly to the assumptions required for the uniform law of large numbers in
nonlinear models due to Andrews (1987), but they are applied additionally to the deriva-

tives of the objective function.

Assumption NN.

NN1 Let Assumption NC hold, and additionally, Assumptions NC2-NC3 are satisfied
for the function q(z:, &5 8) = 5§ 5, (21,353 B) - L (s(zs, ys; B) < G51(N)), where j,k =
1,...,p.

NN2 Let E [S:B(xi,yi;ﬁo) I(sii, yi; B°) < G_l()\))] =0.

Remark 9 This is actually a moment condition similar to those used in the (non)linear

regression model. For example, for the nonlinear LTS estimator, s(z;,y:;3°) = (y; —
h’(mi,ﬁo))z and S:B(xi: Yis ﬁO) = (yZ - h(ﬂ?z, BO)) : h’ﬂ(m’ta BO) =& h:3($z, BO) Therefore,

E |:8:B (@i, yi; B°) - I (si(ws, yis B°) < Gfl()\))] = E [ei ~hy(xi, B°) - I(e2 < G*l(/\))}

= B, [My(@i 8) - E (- 1(2 < G ') )
where E, denotes the expectation taken over random variable x;. Indeed,
E(ei-I(c7 <G'(N)|zi) =0 (17)

is nothing but a typical moment condition used for the trimmed estimators (see, for ex-
ample, Visek (1996b) and Cizek (2001a)) and it is analogous to the usual orthogonality
condition E(g;|z;) = 0. All these conditions are clearly satisfied, for instance, if €; and
x; are independent random variables and €; has a symmetrical distribution. On the other
hand, independence and symmetricity are not necessary conditions (X is a fized number).

In the case of the MTLE estimator, the reasoning can be very similar (at least under the

symmetry of e;’s distribution) once we realize that 8:5 (m5, 95 8°) = lrg (w5, 8°) /(4,65 BY),
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where l(x;,€;; B) is a likelihood function, and that the symmetricity of a likelihood function

implies that the derivative of the likelihood function is symmetric with respect to the origin.

NN3 Assume that E (8:3 (i, yi; ﬂo)‘ s(zi, e 0% € C) is uniformly bounded for all intervals
C such that G }(\) € C.

Remark 10 This assumption about conditional expectation does not limit us at all and
represents just another reqularity condition that cannot be expressed in another way in such
a general setting. For example, in the case of LTS in classical nonlinear regression models,
s(2,589) = (y — h(z, %) and s(z,y:8°) = (y — hz, B°)) - hy(w, B°) = e - hy(w, B°);
therefore

E (s’ﬂ (:v,-,yz-;ﬁo) ‘ s(xi,ei;ﬁo) € C) = E (ez- . h:B(:c,ﬁo) e2 ¢ C’)

< E(ele; €0)-E (h’g(%ﬁo)) )

where E (h'ﬁ(x,ﬂo)) = const (provided that &; and xz; are independent). Therefore, we
require E (g;| €2 € C) to be uniformly bounded over all intervals C containing a fized point

G~ (), which is guaranteed by Assumption D1 (g; has finite second moments).

Finally, combining all the conditions stated so far, namely, D, H, and NN, we can prove
the y/n-consistence of GTE.

Theorem 2 Let Assumptions D, H, and NN hold. Then B,(lGTE’h") 18 v/n-consistent, i.e.,
Vi (BETER — g0) = 0,(1)

as n — +00.

To prove this theorem, we need another assertion.

Lemma 4 Under Assumptions D and H, for any fizred i € N and n > 1,

o=
N———

P(ﬂﬁ e U(B°n~2 M) : I(si(zi, yi; B) < Sy (i i3 B)) # 1 (si(xi, i3 B) < GEI(/\))> = 0(”_
as n — +0o0.

Proof: See Appendix A. [J
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Let us prove Theorem 2 now.
Proof: We already know that

NC is a part of Assumption NN. Now, we shall use the normal equations presented in

5(GTE hn) is consistent (Theorem 1) because Assumption

Section 3.3 to derive y/n-consistency.

First, take a look at the derivatives of the objective function that form the normal equa-
tions. Let us denote the objective function of GTE by S, (i, yi; 8) = = >, si(2i, yi; ) -
I(s,-(xi, yis B) < sy (@i, yis 6)) We have shown in Section 3.3 (see equation (13)) that

0Sn (i, ys;
(:v—y Zsﬂ i, Yis B) - L (si(wi, ys; B) < spuy(wi, vi; B))

almost surely, and by the same argument (Lemma 1), it follows that

625n L, Yis
# Zsﬂﬁ wi, yis B) - L (si(wi, i B) < spa(i, 33 B)

almost surely. Using Assumption NN and Lemma 6, we obtain for S,(x;,y;; 8) and its

second derivative that

2161133\5 (@i, yi; B) — E [si(@i, 133 B) - I (salwi, va: 8) < G5*(N)]| — 0, (18)

628 (.7/' yﬁ) "
su M—E[s zi, Yis B) - I(8i(i, yi <G_1)\] — 0 19
in probability for n — oo (the assumptions of Lemma 6 are satisfied for the loss function
because of Assumptions H1 and NC and for its second derivative because of Assumptions
H2 and NN1).
Next, ﬁ(GTE ohn)

Taylor’s expansion theorem it holds

S (3,y:;8)

is a solution of the normal equations a5

= (0. Thus, using

8 (xla ZMB (GTE, hn)) _ 8Sn(xiayi;/80) GQSn(xiayi;gn) 0
0= - = TR L SR (B, (@)

where &, € [50, ZSGTE”‘")} . Since BTN 5 80 the same holds for the sequence &,:

&, — % in probability. Moreover, % converges uniformly to a nonstochastic
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function in 8 (see (19))
E |sp5(2i, v B) - 1 (s6(i, 435 B) < GEI(A))] :

which is continuous in 3 (see the verification of Assumption A3 in Lemma 5, Appendix
A). Therefore,

82Sn(33z'> Yi; fn)
0poBT

—E [sgﬁ (i, yi5 B°) - I (si(ws, y3; B°) < G_l()‘))] = Qh

in probability as n — oo, where @}, is a non-singular positive definite matrix (Assumption
H4). Now, after rewriting (20) as

. 025, (i, yis €n) - 0Sn (i, yi; B°)
(GTE,hn) _ 0\ _ _—
\/T_l(ﬁn B ) = [ 03057 ] [\/ﬁ 0B :| ?

it is clearly sufficient to verify only that v/n M’y“ﬂ) = O,(1) in order to prove /n(f (
B%) = 0,(1) as n — oo.

5(GTE,hy)

So, let us analyze
aS xla (2]
\/ﬁ' (—y ZS,B mzayza I(Sl(xl,yzaﬁo) < S[h}(‘rzayuﬁo))

and show that it behaves as O,(1) for n — +oo. Apparently,

e B0 n
Vi %ﬁuﬁ) = %Zsﬂ(%%ﬁo) I (si(wi, yis B°) < s (i, i3 B°))
1
= \}ﬁ Zs'ﬂ (xi,yi;ﬁo) - [I(si(aci,yi;ﬁo) < s[hn](:ﬂi,yi;ﬁo)) (21)
1
—I(Si(xi, yi; 8°) < G (V)]

Z (i, yi3 B°) - I (si(@i yi; B%) < GH(N)). (22)

1

S

i

_|_
\

\/_
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First, we can employ once again the Chebyshev inequality for nonnegative random variables
and write for the first term (21) and j =1,...,p

1 |
P (% Z;sgj (i v 8
[I(Si(ﬂfi,yz'; B%) < spuay (@i, 433 8°)) — 1 (si(wi, 95 6°) < G7H(N)]| > K)

Zs'gj (2, 955 B°) - [1(5i(i, 933 8°) < )@ y53 B°)) — I (si(wi, 933 8%) < G_I(A))]‘
=1

X

IN

sp, (@i, yis B°) - (1 (si(wi, i3 B°) < sy (@i, i B°)) — 1 (silwa, i B°) < G’l()\))]‘

( (i, 958 H I(si(wi, yi5 B°) < Sppoy (@i, yi; B8°)) # 1 (si(wi, yi; B°) < G_l()\))>
( ( Zi, yla < S[hn}(xu Yi; ﬁo)) 75 I(Si(xia Yis ﬁo) S G_l()\)))

Using Lemma 4 and Assumption NN3, we can rewrite this expectation as

% . ( Slﬂi (xi’yi;ﬂo)H I(si(i, yi3 8%) < spua) (@i, 935 8°)) 7 1 (si(i, 913 8°) < G_l(/\))>
- %E( Slﬂj (mi’yﬁﬂo)‘ si(zi, i 8°) € [S[hn](xz’,yi;50),G_1()\)}M)
- o)

as n — oo. Hence, we can conclude that (21) behaves as O,(1) as n — +o0.
Second, term (22) is bounded in probability as well: Assumption NN2 and H4 allows

us to use the Feller-Lindenberg central limit theorem for (22) since
E [s'g(xi,yi;ﬁo) (si(wi s 8) <GTIN) | =0

and

var [S'g(xi,yi;ﬁo) 1 (si(mi, yi3 B°) < G_l(/\))] < var |sg (:r:i,yi;ﬁo)]
is finite (see Assumption H4). This in turn implies that (22) converges in distribution to
a normally distributed random variable, and is, therefore, bounded in probability.
Thus, we Ahave proved that \/_M = 0,(1), % — AQp, and conse-
quently, \/n(BTFM) — 8% = ©,(1) as n — +oo. O
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3.5 Identification condition

Altogether, we derived the consistency under Assumption NC and y/n-consistency under
Assumption NN. However, we did not discuss how restrictive all these assumptions are. We
argued that most of them are just regularity conditions that are satisfied in practice, but
there is one very important exception we did not discuss yet: the identification condition
NC4. Therefore, we shall discuss its validity in a typical nonlinear regression model, both
theoretically as well as specifically for nonlinear LTS and MTLE.

First, the identification condition NC4 can also be formulated so that
IC(B) = E [si(xi, yi; B) - I (silzi, yi; B) < G5' (V)] (23)

as a function of 3 has a unique minimum at 8°. A real-valued twice differentiable function,
such as the objective function of GTE, has a unique minimum at a € R if its first derivative
equals zero at a and its second derivative is positive definite at a and positive semidefinite
on the whole domain of the function. Thus, in order to verify the identification condition,
it is sufficient to show that for all 5 € B

PO _y PO g, s P10 24
2I1C(B°)

The first condition = 0 actually says that 3° is asymptotically a solution of normal

PICE) - () indicates that the objective function has

B2
a local minimum at 3°. The third condition 32522(/3 ) > 0 guarantees the uniqueness of this

op
equations, while the second condition

solution.
Second, assuming the existence of derivatives of the objective function almost every-

where and their expectations (this is a part of Assumption H), it is possible to interchange

OEs(ziwish) _ E 9s(@iish)

5 55 Moreover, we have shown in

the expectation and derivative:
Section 3.3 that

0
%I(si(%,yz‘;ﬁ,w) < s[h](:r,-,yi;ﬁ,w)) =0

almost surely. Therefore, we can write

oIC ,

ag(ﬁ) = E [Sﬂ(xi,yi;ﬁ) A (si(zi, y3; B) < Ggl(/\))] ., and
o’IC "

aﬂgﬁ) = E [Sﬁﬂ(xi,yi;ﬁ) -I(si(xi,yi;ﬁ) < Ggl(/\))} )
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Finally, I summarize these results in the following Proposition 2.

Proposition 2 Let Assumption H hold. Then, the sufficient conditions for Assumption
NCY are

0 -
(‘31((;7;5) =E [3,3 (i 9 8°) - L (si(wi 0 87) < GT' (V)| = 0, (25)

2 0 ]
% =E [Sgﬁ(wi,yi;ﬁo) I (si(ri,yi 89 < GHN)| > 0, and (26)

2 -
8137(5]2(5) =E [Sgﬂ(xi:yi;ﬁ) I (si(zs, 533 8) < G/gl()\))_ > 0. (27)

Alternatively, it is possible to say that a real-valued twice-differentiable function has a
unique minimum at a € R if its first derivative equals zero only at a and its second
derivative is positive definite at a. Thus, in order to verify the identification condition, it
is sufficient to show that for all 8 # 3°

oIC(8Y) _0 oIC(p) 40 0?1C(8°) (28)

ap ’ ap ’ 0%
Similar to the previous case, the first condition alg(ﬂﬂ O says that % is a solution of
the normal equations, the second condition 61(%’3 ) # 0 guarantees the uniqueness of this

solution, and the third condition % > 0 shows that there is a local minimum at 5°.

Consequently, this results in the following Proposition 3.

Proposition 3 Let Assumption H hold. Then, the sufficient conditions for Assumption
NCJ are

81(;7230) —E [s'ﬂ(:rz-,yi;ﬁo) I (82,95 8°) < G_I(A)): = 0, (29)
8I§ﬁ(ﬁ) =E [s'ﬂ(fvi,yi;ﬁ) ) I(Si(xi,yi;ﬁ) < Gél(/\)): # 0, and (30)

o2 0 " i
% =k [Sﬂﬁ(%yi;ﬁo) A (si(wi 9 87) <GTI (V)| > 0. (31)

Propositions 2 and 3 formulate sufficient conditions for the identification condition NC4
using the first and second derivatives of the objective function. The use of derivatives does
not restrict us very much because of two reasons: first, the derivatives have to exist almost

everywhere, but not at every point; second, although the assumption about the existence
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of the second derivative is not needed for consistency, it is one of necessary assumptions

for y/n-consistency here, and as such, it is going to be required almost always.

Remark 11 In the rest of the paper, I mostly verify only conditions (25) and (26), or
alternatively (29) and (31). Thus, I only “prove” that there is a solution of the normal
equations converging to the true value B°, but not the uniqueness of this solution. This
1s a standard approach in such a general setting because there are no restrictions on the
functional form, and hence, the uniqueness of the solution has to be assumed; see, for

example, Amemiya (1983).

3.5.1 Nonlinear least trimmed squares

In this section, I verify the identification condition for nonlinear LTS in the nonlinear re-
gression model (1) under the standard assumptions used for the nonlinear least squares
estimator. Until now we did not require the independence of error term ¢; and explana-
tory variables z;, although it is one of most important conditions in regression analysis—
together with E¢; = 0, it usually guarantees that the least-squares estimator is unbiased.
Alternatively, moment conditions can be used, such as E(g;|z;) = 0. We show now that
these assumptions directly imply that the identification condition for nonlinear LTS is

satisfied; notice that (23) can be written as

IC(B) = E [(yi — h(zs, 8))* - I ((ys — hlzs, B))* < G451 (V)]
First, let us verify condition (25). The first derivative

D € [shrmus ) EosCos ) < G (0)]
= E[_z (yi — (i, B°)) his(xs, 5°) - (y, h(zi, 8°))° < (A))]
(V)

= E, {—Qh'ﬁ(xi,ﬁo) Elei-1(e] <G '(N)| ) }

(E; denotes the expectation taken over explanatory variables z;) equals zero at (° if
Ele; - I(e2 < G7'(\))|z;] = 0 for any z;, for instance. This is an analogy to the stan-
dard orthogonality condition E(e;|z;) = 0 as discussed in remark 9 to Assumption NN2,
equation (21). This “trimmed” orthogonality condition, E[e; - I(¢? < G '(\))|z;] = 0, is
satisfied, for example, when ¢; and z; are independent random variables and ¢; is symmet-

rically distributed around zero.
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Second, let us verify the second condition (26). It is apparently equivalent to Assump-
tion H4:

0”1C(5°)

55 —F [s};ﬂ(a:i,yi;ﬁo) I (si(wi, yi; 8°) < G_l()\))} =@n>0.

However, stronger, but more usual assumptions leading to this result are the moment

condition
Elei-I(e] <G '(N)|zi] =0

together with the spheriality condition

E [ (@i, 8°) b, 877 1(3 < G (V)] = Qua > 0

a%1c(8°)

g~ 1O verify it:

is a positive definite matrix. Let us rewrite

62%;250) E :Sgﬁ (zi, yi5 8°) - I (si(zi, yi; 8°) < G_l()\))}
(2bs s, BV e BT ) - (91— i 8)° < G V)|
—E[(2 (s = hai, 8) B2, 89) - 1( (11 = hai, 89)° < GV
- E :(Qh’ﬂ(xi, B0V (s, ,BO)T) (2 < G—l(A))]

— B {—2h (@i, B E [51- 1(e2 < G (W) | =] |
= Q> 0.

Additionally, both the moment and spheriality conditions are trivially satisfied when ¢;
and x; are independent random variables, ¢; is symmetrically distributed around zero, and
E (h'ﬂ (5, ﬁo)hjg(xi, B°)T) is a positive definite matrix:
E (Ao, B)g(wi, B - (2 < GT(N)) = E Ayl B)My(s, 8°)7) - EX(e2 < G ()
= E (B, BByl 8)) - > 0.
Finally, let me show that the identification assumption NC4 (locally in the sense of

remark 11) can be obtained even without derivatives under the same conditions. Let us

assume that ¢; and x; are independent random variables, whereby ¢; is symmetrically
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distributed around zero. Then

]
= E[(ei+ hlos, 8) = hlos, 8) - 1(r3(8) < G5* ()] — E [e2 - 1(e2 < G0 (V)
= E[e2-1(r2() < G;'(N)] —E [53 : 1(53 < G—Ol(A))]

2
+E [(hlw, 8°) — hlz, 8)° - I(r2(8) < G5 (A

Next, E[e;(h(x;, 8°) — h(zi, B)) - I(r2(8°) =&? < G'()\))] = 0 because of the indepen-
dence of ¢; and z; and the symmetry of ¢;’s distribution. Using Lemma 4 and the fact that
random variables 2, &; and h(x;, 8°) — h(x;, 8) have finite first moments, we can rewrite

this expression as

E [si(zs, y55 8) - I (si(mi,y55 8) < G5 (V)] — [Sz xz,yz,ﬁ)-f(s'(xi,yi;ﬁo)SGgol(A))]
= E[(h(zs, 8°) = (=i, B))* - 1(r(B) Ggl )] +0,(]|8 - 5°)) (32)

as n — 4o00. Unless h(x;, 3) is a constant function on the domain defined by

the expression E [(h(z, 8°) — h(zs, 8))% - I(r}(8) < G4'(N))] is positive, and hence, the
identification condition is (locally) satisfied.

Notice that the orthogonality condition
Elei-I(e] <G '(N)|zi] =0 (33)

has to be satisfied in any case. Therefore, the distribution of ¢; conditional on z; has to
be symmetric around zero, even if we do not require the independence of ¢; and z;.
3.5.2 Maximum trimmed likelihood

Now, I show that the assumption used in subsection 3.5.1, most importantly the inde-
pendence of the error term ¢; and explanatory variables x; together with the assumption

about the symmetricity of a distribution function, are sufficient also for the identification

30



of MTLE. Provided that f is the probability density function of ¢;, where f is symmet-
ric around zero, the probability density function of y; — h(x;, ) conditional on z; (in
model (1)) can be written as f(y; — h(z;, 5)). Therefore, the conditional likelihood func-
tion I; = l(x;,y;; 8) for an observation (z;,y;) can be written as l; = f(y; — h(z;, 8)) and
equation (23) as

10(8) = E,E[~In f (4 — h(:, §) - 1(~In f(ys — h(z:, 5)) < G5' () | ]

We verify first both conditions (25) and (26) conditionally on x;, which then implies that
they are also valid unconditionally (we check the equality to zero and the positiveness of
conditional expectations).

First, let us verify condition (25). The first derivative equals

Mgiéﬁo) = E, E[sﬁ(mz,yz, ) I(sZ zi,yi; B°) < G (/\)) :L'Z]
_ f’(y (1131, O)) 0 —In (s 0 -1 T
—Eﬁ[ﬂ e %»hhﬁ) I(~n f(y uwﬁnsc(»)J
_ Ew{hﬂmuﬁb-E[fég-Ic%nf@ofzc%A» m}}.

. . . . . . !l . . o .
Since f is symmetric around zero, its first derivative f is symmetric around the origin.

The trimming I(—In f(g;) < G !()\)) is then symmetric as well, and hence,

Second, condition (26) can be checked using the same kind of argument. It holds that

.
7%)

() ? x@
L EE (f )@y%mﬂww%w) I(~1n f(e) < G (W)
= E{n m,)%@mﬂ E ([ f(e)]  I(=Inf(e) <G W) | =] -

.’L‘Z:| < 0,

I(=Inf(e:) <G7'(N)

0*IC(B%)

35 E, E :825 (i, 433 8°) - I (si(xi, yi5 B°) < G7H(N))

= E,E

hy(x ,,60) I(=Inf(e:) <G7'(N)

Therefore, 22 is positive definite if E [(m Fe)) - I(=nf(e) < GLN)
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that is, if In f(g;) is “on average” concave on the domain defined by —In f(g;) < G71()).
This assumption is equivalent to E [(]n f(ei))”‘ a:z] < 0 in the case of MLE and guarantees
that the solution of the MTLE normal equations corresponds to a maximum of the trimmed
likelihood function.

Thus, we have shown that the identification condition is satisfied under the standard
assumptions used for non-trimmed estimators (NLS, MLE) in the nonlinear regression
model (1). Notice that the symmetry of the distribution of ¢; (conditional on z;) is crucial

for the consistency of GTE in both cases.

4 Consistency of GTE in limited-dependent-variable mod-

els

Let us now turn our attention to the properties of the general trimmed estimator (GTE)
in limited-dependent-variable models. In Section 1, we showed that structural model (2)

can be transformed to reduced model (3)

Yi = h(zi, B) + v, (34)

where y; = 7(;) (¥; is the original unobservable dependent variable), h(x;, 8) = E (y;|z;) =
E(7(9:)|x:), and v; = y; — E(yilzs) = vi — h(x;, 8). The only important difference in
comparison with the classical nonlinear regression model (1) is the error structure: v; and
x; are not independent random variables here. Nevertheless, Assumptions D, H, and NC
used to prove consistency of GTE do not require v; and z; to be independent—the only
requirement regarding the variables entering the regression model is that random vectors
(ys, z;) form a sequence of independent and identically distributed random variables. Hence,
the theorems presented in Section 3.4 can be applied in the limited-dependent-variable
framework as well. We just have to use the same set of assumptions as in Section 3.4,

where the error term ¢; is replaced by v;.

Theorem 3 Let Assumptions D, H, and NC hold for reduced model (3). Then the general
trimmed estimator defined for model (3) by

BﬁGTE’h”) = arg Iginz si(zi, vis B) - I(Si(xia yi; B) < S[ha) (3, i3 5))
€ i=1
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~(GTE,h
, BICTE M)

is consistent, i.e. — 8% in probability as n — +o0.

The same argument applies also to y/n-consistency.

Theorem 4 Let Assumptions D, H, and NN hold for reduced model (3). Then B
18 y/N-consistent, i.e.,

Vi (BLTER - 87) = 0,(1)

as n — +o0.

Although we can use the same theoretical results in the limited-dependent-variable frame-
work, the most important question is whether Assumptions D, H, and NC (or NN) can be
satisfied. For example, Assumption D requires v; to be an absolutely continuous random
variable. Thus, either dependent variable y; or at least one of the explanatory variables
x; has to be continuously distributed.?® Nevertheless, most of the conditions are just usual
regularity assumptions, which do not restrict us, and the only important assumption that
has to be verified is the identification condition NC4. It requires that for any £ > 0 and
U(B° ¢) such that B — U(8°¢) is compact, there exists a(g) > 0 such that it holds that

i E [si(wi,yi; B) - I(si(zi, 935 8) < G5 (V)] —
septin, Elsi(ai i 6) I (siwi v 6) < G5' (V)]

—-E [Si(xi,yi;ﬂo) : I(Si(xi,yi;ﬁo) < GEOI(/\))] > afe).

Similarly to nonlinear regression, we can use here Propositions 2 and 3 to verify the
identification condition. However, in contrast to the case of the nonlinear regression model
(1) discussed in Section 3, we cannot assume that the explanatory variables z; and the error
term v; are independent. On the other hand, we have shown in Section 3.5 that a sufficient
assumption for the identification of GTE can be the symmetry of the distribution of v;
conditional on z;; for example, it is sufficient to require in the case of the LTS estimator
that

Elvi-I1(v} <G '(N)|z] =0 (35)

(see equation (33)). Therefore, the identification condition NC4 can be treated in the same
way as in Section 3.5, but contrary to the nonlinear regression model, it cannot be verified
under some general conditions—we have to check it for every class of limited-dependent-

variable models separately. Examples are provided in Section 5.

9This is a typical assumption used for the semiparametric estimation of limited-dependent-variable
models, see Ichimura (1993), for instance.
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5 Examples of trimmed estimators

In this section, I provide several typical examples of nonlinear regression, limited-dependent-
variable, and binary-choice models. Additionally, if it is not possible to directly use nonlin-
ear LTS or MTLE for some models, a general-trimmed-estimator concept is used to design
a robust estimator for such models. In such cases, the identification assumption NC4 is

verified.

5.1 Nonlinear regression models

I proved the consistency of nonlinear LTS and MTLE for a general nonlinear model y; =
h(z;, B)+e€; including the verification of the identification condition in Section 3. Therefore,
I mention here directly several examples of econometric applications, where an application
of LTS or MTLE is meaningful.

First, it is sometimes not clear, for instance, which functional form best describes the
dependence on an explanatory variable. To resolve this point, the Box-Cox transformation
can be used (see Box and Cox (1964)), which is a transformation of a random variable Z

parameterized by A € R having the following form:

7 —1
AL A
InZ for A=0.

Its advantage is that ZV) represents various functions of Z for different values of A: linear
(A = 1), square root (A = 1/2), logarithmic (A = 0), inversely proportional (A = —1), and
so on. Applying the transformation either to the dependent or to independent variables
provides then a parameterized choice between different regression models (linear, log-linear,
semi-logarithmic, reciprocal, etc.) by means of a nonlinear regression model such as y; =
Bo + $§A)51 + &;.

Next, another example of an intrinsically nonlinear model can be a model with an
exponential regression function but an additive error term. For example, the estimation
of a CES production function leads to the regression function y; = « - (Zle 0ix; 7) M ,

which is usually rewritten and estimated as

k
A
Iny, =lna— = 1n E iy
fy !

=1

+ &i,
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where v > —1,0 < § < 1, and a > 0. This model is intrinsically nonlinear because we
cannot rewrite the regression function as a linear function of the parameters a7, 9, \.

Further, in the analysis of economic time series, models allowing for a state-dependent
regression are very popular. An example of such models is the self-exciting threshold
autoregressive specification (SETAR):

P
Qp + Z Yi—iQly + € if Yi—q € (—00,¢),
i=1

Bo+ >0 y—ifi + € if Yi—q € (¢, 00)

Yt

(see Tong (1990)), where c is the threshold and d € {1,...,p} is the delay parameter. Its
main feature is that switching depends on a past realization y;, 4. This specification can
be generalized to the smooth threshold autoregressive model (STAR), which allows for a

smooth transition between states by means of a general function A(y;_g;¢,d) : R — (0, 1):

P P
Yy = Qg + Z Yi—i0Q + (50 + Zyti5i) “h(Yi_g; ¢, 6) + €.
i=1

=1

An extensive review of existing variants of STAR models is given by Dijk, Terasvirta,
and Franses (2000). Because of the nonlinear nature of these models, nonlinear least
squares is typically used for their estimation, and thus, nonlinear L'T'S can be a more robust
candidate for the estimation of STAR. STAR was used, for example, by Proietti (1998) to
model business-cycle asymmetries or by Terasvirta and Anderson (1992) to characterize
differences in the dynamics of industrial production indices during expansion and recession

periods.

5.2 Limited-dependent-variable models
5.2.1 Truncated regression

Suppose there are a dependent variable ¢; and explanatory variables x;, but we cannot see
observations with values of ¢; below some ¢ € R. Thus, the regression model is truncated
and we observe only (y; = 9, x;) such that g; > ¢. This can happen, for example, if we study
an individual’s utility (in monetary terms) from an object—we can observe the individual’s
utility and other characteristics only if it exceeds the price of the item and he buys the

object. The described situation corresponds to a truncation from below. Although there are
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other possibilities (truncation from above, double truncation), I only deal with truncation
from below in this example. Truncated regression models are typically estimated by MLE
(see Maddala (1983)) or by symmetrically trimmed least squares (STLS), see Powell (1986).
Moreover, there are many semiparametric methods available. Hausman and Wise (1976)
used a truncated regression to estimate earnings functions.

It is possible to modify both parametric approaches to create corresponding trimmed
estimators. The most important part of this adaptation is to verify the identification
condition. Because we cannot assume that the error term and explanatory variables are
independent, we have to make sure that the error term conditional on the explanatory
variables has a symmetric distribution around zero (see Section 4). I demonstrate this in

the rest of this section.

First, consider the STLS estimator. Its main idea is to trim the dependent variable
(truncated from below) additionally from above to make it symmetrically distributed.
Consider a linear regression model, §; = x] 8 + &;, where the dependent variable §; is
truncated at ¢, and let y; be the observed response. Then the error term ¢; conditional on
z; is truncated at ¢ — 27 3. Now, the principle of STLS is to truncate ¢;|z; symmetrically
at 27’3 — c. This corresponds to the truncating of §; at ¢ and 227 3 — ¢, or equivalently,
to the truncating of y; at 2z 8 — c. Powell (1986) showed that this can be achieved by
minimizing .

Z (yi — max {0.5y,~ + 0.5c¢, x?ﬁ}y

i=1
with respect to 5. Since the objective function is continuous and differentiable in 3 al-
most everywhere, it is possible to propose the corresponding trimmed STLS estimator

minimizing
h n

> (8 = Do r8) - 1(r2(8) < ()

=1

with respect to 3, where r2(8) = (y; — max {0.5y; + 0.5c, xz-T,B})Z.
The next step is to verify the identification condition, that is, to check conditions (25)
and (26) for IC(B8) = r2(8) - I(r}(B) < GEl()\)). To do so, I use the same assumptions

about the distribution function f of €; as Powell (1986), namely, that f is symmetric and
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unimodal'® around zero. The first derivative
I 0
PO~ B[ T (5 < 25 - ) - TOHE) < G )|

B {mE [ (5 — aT) (s < 24T — ) - I(2(6Y) < G (V) ]}
= E, {x, [—25i . I(si <zlp’ - c) -I(e? < G_l()\))|aci]} =0,

because ¢; conditionally on z; is truncated from below at ¢ — 7' 3% the truncation from
above is done by I(g; < 27 8° — ¢), and the trimming I(e? < G7*())) is symmetric. Simi-

larly, the second derivative

82%5(?0) = E,E[2wa] - I(yi <2z 8" —c¢) - I(r}(8°) < G_l()‘))|xi]

= E, {szsz E [I(a‘i <azlp’— c) -I(ef < Gil(/\)) ‘ xz]} >0

as long as E (:EZ:UZTP (ei <zIp®— c‘ xz)) is a positive definite matrix. This is an analogy

to the typically used spheriality condition E z;z7 > 0 (see Assumption D2).

Second, MLE can also be generalized to MTLE in truncated regression models, but the
generalization is not so straightforward as in the case of STLS. The identification condition
NC4 requires

E (eid (s(zi, 453 8) < G5 (V)| 2:) =0,

so the distribution function F of &; and the trimming I (s(z;, y;; 8) < GEI()\)) conditional
on z; have to be symmetric around zero. Therefore, the likelihood has to be truncated

in the same way as the error term in STLS—instead of the usual I(z;,v;;8) = f(yi —
x1'B)/(1 — F(c—x¥B)) - I(y; > ¢), the following truncated likelihood has to be used

flyi — a7 B)

Ui, ys; B) = (F(zI'8—c)— F(c— 2T p))

I(c<y; <2z B—c) (36)

(i.e., the trimming at y; = 2z] 8 — ¢ is added). Then the corresponding MTLE estimator

for a regression model with truncation from below at c is defined by

ﬁ(MTLE h) argmanS xz;?/z;ﬁ)?
peB =1

WOFunction f with mode at xo is unimodal if for any two values 1 < x5 and f(z;) < f(z2) it follows
that 21 < zg. Similarly, if 21 < 22 and f(z1) > f(22), then zq < 5.
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where s;(z;,yi; 8) = —Inl;(x;, y:; B), as defined in (36). The identification condition can

be verified in the same way as for the trimmed variant of STLS.

5.2.2 Censored regression

Similarly to truncated regression, consider a dependent variable 7; and explanatory vari-
ables x; such that we observe c instead of values g; smaller than c; let y; denote the observed
value of g;. This is a special case of censored (Tobit) regression with censoring from below,
which I discuss here. Other types of censoring, such as censoring from above, exist and
can typically arise when we observe, for example, the duration of an event: if it lasts too
long, we do not see the end of the event and its duration is censored (i.e., replaced by the
time corresponding to the maximum duration we observed).

There is an extensive literature concerning the Tobit model. A summary of classical
methods is given by Maddala (1983), for instance. On the other hand, it is beneficial in
this context to use as a starting point an estimator motivated by STLS—symmetrically
censored least squares (SCLS), see Powell (1986). It is widely used for censored regression,
for example, by Lee (1995) to study female labor supply data. SCLS is a suitable candidate
for generalizing to a trimmed estimator because it is also based on the symmetrization of

a censored error-term distribution.

Similarly to STLS, the SCLS estimator is based on additional censoring of the dependent
variable (censored from below) from above. Assuming a linear regression model §; =
x! B + &;, and censoring y; of the dependent variable §; at c, the error term &; conditional
on z; is censored at ¢ — 2! 3. Thus, SCLS censors &;|z; also at 2] 3 — ¢. This corresponds
to the censoring of y; at 2278 — c¢. Powell (1986a) showed that this can be achieved by
minimizing

n

Z { (y; — max{0.5y; + 0.5c, xiT,B})Q +I(y; > 2z] B —c¢) - [(0.5y;)> — max{c, z] B}°] }
i=1
with respect to 8. Since this objective function is continuous and differentiable almost
everywhere with respect to 3, it is possible to propose the corresponding trimmed SCLS

estimator minimizing
n

S8 = Dor ) - 102 (8) < riy(8),

=1 =1
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where
rZ(B) = (vi — max{0.5y; + 0.5c, xiTﬁ})Q—i—I(yi > 227 B — ¢)-[(0.5y; + 0.5¢)> — max{0.5¢, z{ B}°] .

The identification condition for this trimmed SCLS estimator can be verified in the same

way as for the trimmed STLS.

5.3 Binary-choice models

Binary-choice models usually arise when we model a decision or a response of an individual;
for example, Horowitz (1993) studies a binary trip-mode choice problem. In these models,
the dependent variable 7; has just two possible values—zero and one—and its expectation
is described by a function of an index z] 3. Moreover, we assume that there is a structural
model (2) describing the decision, for example, a linear regression model characterizing the
(unobservable) utility from decision ;. If the error term in the corresponding structural
model follows a symmetric distribution function F, then P(y; = 1|z;) = F (27 3) and the
model (e.g., probit if F' is the standard normal distribution) is estimated by MLE with a
likelihood equal to

L(B) =Y li(zi,yi;8), where li(z;,y;;8) = y;InF(z] B) + (1 — y;) In(1 — F(z] B)).
i=1

In this section, I design a trimmed MLE estimator for binary-choice models.

Now, consider a MTLE estimator based on the likelihood function L(f), that is, the

estimator minimizing 2?21 —lij (4, yi; B). We can try to verify condition (25) first, where

IC(B) = —li(wi, yi; B) - I (—li(zi, yi; B) < G5 ().
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Then
GOE) g g[(M), UG 1) < )

5 FT5) " 1= Pl p)
= & (Pl = U fy e 1o 1% < 6 ) ) (39
LE, (P(yi _ O\xi)lf(—(ﬂT)ﬁo) (=l 05 %) < G—l(A))) (39)
= E{f(zT8%z; x (40)

(
x [I(~In(1 - FaF8%) < G ') — I(-m FET8%) < G (V)]}. (41)
Apparently, this expectation equals zero if for all possible values of random variable x
I(lnF(z"B% <G *(\) =I(In(1 — F(z" %) < G'(N)),

or equivalently, {z|z78° < C} = {z|-2"8°<C} for C = F~! <eG_1(’\)>, where F~!
represents the inverse of the distribution function F'. Such a condition cannot be satisfied
unless I (—In F(z78%) < G7'(X)) =1l or I(—InF(z" 3% < G7'(X)) = 0 for all possible z.
In other words, condition (25) is satisfied only if there is no trimming (this corresponds
to MLE) or complete trimming (the objective function equals zero everywhere). Hence, a
trimmed estimator cannot be designed this way.

On the other hand, equations (37)-(40) indicate that condition (25) would be satisfied
if the trimming is independent of y;. It is possible to achieve this by the symmetrization
of the trimming part I(l;(x;, vi; 8°) < G~*())), for example, by replacing it with

I( li(z,0; 8°) < G~ ()) ( (2, 1,89 <G ()):I(— max l;(z;,y;8°) < G ())

y€{0,1}

(the distribution function G should now describe random variable maxy, e 0,13 li (2, 5 8°))-
This way, I trim the observations for which y; equals 0 or 1 with a probability very close
to 1. Therefore, I propose the following MTLE estimator for binary-choice models:

5(MTLE h) _ argmlnz (@i, yi3 B) - I<8i($z‘;5) = max} —li(zs,y;8) < s ](xi;ﬁ)),

BeB ye{0,1

where s;(z;; 8) = maxyeqo1y —li(2i, y; 8) and li(zi, v 8) = yiln F(2I8) + (1 — ;) In(1 —
F(zTB)). The corresponding function for the verification of the identification conditions
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(25) and (26) is

IC(B) = —li(zs, yi; B) - I(— max l;(v;,y; 8) < Gy ()\))

y€{0,1}

So, let me verify conditions (25) and (26) for the proposed MTLE estimator. First,

(25) can be expressed as

dIC(B°) E.E [_( vif (2 8°) (1—yz)f( ) ) ,I<

- g i) < 6700

B F(a7B0) " F(z! 8%
= & (Plu= 1w L5 ig)) 1( s L) <67 ) )
+E,; <P(Z/i = 0\%)%% : I(- max, li(zs,y; B°) < Gl()\))>

= 0.

Similarly, the second derivative in (26) can be written as

az%ﬂ(!m) I {E ( (f F - f2) (7 Ba; — (1 — ;) (fl(l(l__F;; fz) (x7 O)xi) x
><I< max Li(wi,y; 8%) < G~ ()‘)>
_ Ew{((f’F f2> (2T )07 — (fl(l(;—FE f2) (xz?"ﬁo)xixzr) X

<—yr€1}{%’>1<} li(wi, y; 6°) < G_l()\)>}
- e{((£) @l + (15
<

><I<— H}{%’}f}li(xiay;ﬂo) GHO\))}-

Y€

Thus, the only difference between the standard maximum likelihood condition and condi-
921C(8°)
92

tion (26) is the indicator I (— maxyeqo1} li(zs, y; 8°) < G7*())), and in most cases,
will be a positive definite matrix as long as MLE is identified.
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6 Computation of trimmed estimators

In the main part of this paper, I presented the concept of the general trimmed estimator
and its asymptotical properties. Such a nontrivial estimator can be of any use in real
applications only if it can be computed or approximated easily. Therefore, I describe in
this section computational procedures that can be used for GTE and their advantages as
well as potential weaknesses. There are two main estimation strategies: one follows the
procedures used to estimate LTS and the other is based on the global optimization method

called differential evolution.

6.1 Subsample selection and estimation

The traditional strategy how the least trimmed squares estimate can be determined relies
on the search through subsamples of size h and the consecutive (nonlinear) LS estimation
as described in Section 2. If we are able to examine the total of (Z) subsamples, we
can obtain the precise solution in this way (neglecting ubiquitarian numerical errors).
Unfortunately, this is hardly possible unless a very small sample is analyzed. Therefore,
only an approximation can be computed in most cases. One kind of approximation can
be obtained in the following way (see Cizek and Vigek (2000) for the case of LTS): let
us choose randomly an h-tuple of observations, apply the nonlinear LS method on it,
and evaluate residuals for all » observations given the estimated regression coefficients.
Then select an h-tuple of data points with the smallest squared residuals and repeat the
nonlinear LS estimation for the selected h-tuple. If the sum of the h smallest squared
residuals decreases, this step is repeated. When no further improvement can be found this
way, a new subsample of h observations is randomly generated and the whole process is
repeated. The search is stopped as soon as we get s times the same estimate or when we
reach a given number of iterations. A more refined version of this algorithm suitable also
for large data sets was proposed and described by Rousseeuw and Van Driessen (1999) in
the case of linear regression and a more efficient search method was described by Chen,
Stromberg, and Zhou (1997) for the nonlinear regression. This approach can be naturally
used also for other kinds of trimmed estimators.

The described estimation procedure has proven its qualities in the case of the linear
regression model and it can certainly be applied in the case of the nonlinear regression as
well. The main problem lies in the fact that the algorithm requires consecutive solving a

large number of optimization problems (for many selected subsets of data). Although this
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does not matter too much in the case of linear regression (the minimum of the objective
function is unique in most cases and can be found easily, e.g., via least squares minimiza-
tion), the situation in the case of nonlinear regression functions is just the opposite. For
example, the minimization of the sum of squared residuals is time consuming and the speed
of convergence of different estimation methods might differ significantly with respect to the
structure of data. Therefore, the described approximation algorithm, which is based on
the same idea as the mentioned algorithm for the LTS computation, can be used in the
case of GTE, but it is going to be relatively slow and has most probably a lower accuracy

compared to LTS in linear regression models.

6.2 Differential evolution

Facing the mentioned problems with the estimation of GTE, I think that it is beneficial to
employ one of the global optimization methods—differential evolution—developed by Storn
and Price (1995). The differential evolution is a direct search method that was recently
found to be an efficient method for optimizing general real-valued functions (see Storn and
Price (1996)). It uses a population of p-dimensional parameter vectors, which is initially
randomly generated, and, in the simplest version, “generates new parameter vectors by
adding the weighted difference between two population vectors to a third vector. If the
resulting vector yields a lower objective function value than a predetermined population
member, the newly generated vector replaces the vector, with which it was compared, in
the next generation” (Storn (1996), page 1). There are many variants and refinements of
this basic principle, but their discussion is outside of the scope of the present paper. The
main advantage of differential evolution is, besides its simplicity and generality (it does not
require any special properties of the objective function), the parallel nature of the search
(the algorithm works with a population of parameter vectors), because it suits well the
“combinatorial” nature of the GTE objective function.

The most important benefit of the differential-evolution algorithm over the algorithm
described in subsection 6.1 is that it requires evaluating only the objective function instead
of a complicated optimization problem. Therefore, it can be faster, especially as the size of
data grows, because the complexity of the evaluation of the objective function is the same
for both linear and nonlinear regression. To check whether this method is really suitable
for the computation of GTE, I compared its performance in the case of the linear regression

model with the existing algorithms for LTS.!! For this purpose, I used simulated data as well

1 The implementation of the variants of the differential-evolution algorithm is based on the source code
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as the real data sets discussed in Vigek (1996b): in all cases, the estimates obtained by the
differential-evolution algorithm (schemes DE /rand/1 and DE /best/1, see Storn (1996)) are
identical to those obtained by the subsample-selection method described in subsection 6.1.
Moreover, the speed of convergence seems to be quite high. Additionally, the comparison of
the classical MLE algorithm and the differential evolution for the maximizing of a likelihood
function leads to the same result. Hence, I conclude that this global optimization strategy
suits well the type of minimization problems I deal with, namely, the minimization of the

GTE objective function (h smallest residuals).

7 Conclusion

In this paper, I have introduced the nonlinear least trimmed squares estimator (LTS), the
maximum trimmed likelihood estimator (MTLE), and the concept of general trimmed esti-
mators incorporating both nonlinear LTS and MTLE. T also derived the /n-consistency of
these estimators in nonlinear regression models and in limited-dependent-variable models.

Clearly, the formulation of the theorems is very general and encompasses many different
models. On the one hand, I verified all the assumptions in the case of nonlinear regression.
On the other hand, the assumptions needed for the main asymptotic results in the case of
limited-dependent-variable models have to be checked on a case-by-case basis. Therefore, I
demonstrated in Section 5 how the general concept of trimmed estimators (GTE) allows us
to define and derive robust estimators analogous to LTS in various nonlinear and limited-
dependent-variable models, and at the same time, I verified the identification condition for
the proposed estimators in these models.

Finally, these robust procedures promise to provide more robust estimates in nonlinear
models without the necessity to throw away classical parametric specification. Neverthe-
less, the presented research also poses many additional questions for further development.
First, before a practical application, it is wise to study the behavior of the proposed esti-
mators on both simulated data and real data that were already examined in the literature
in order to find out more about the small-sample behavior of GTE. Second, there is cer-
tainly a possibility to extend the presented asymptotical results, for example, to study
asymptotic distribution of estimators in a similar way as in Cizek (2001a) for nonlinear
LTS. Third, although I demonstrated the concept of GTE and its use on several examples,

it is probably necessary to derive specific trimmed estimators for most limited-dependent-

written by the authors of the method—Storn and Price (1995).
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variable models and to verify their consistency using theorems presented in this paper.
Moreover, for real econometric applications it is necessary to smooth GTE as proposed
in Cizek (2001b) so that it can be applied to models with discrete explanatory variables.
Finally, the implementation of computational procedures for GTE has to be created so
that the method becomes widely available and applicable.
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A Proofs of lemmas and other auxiliary propositions

In this appendix, I present the proofs of all lemmas used in this paper including all auxiliary

propositions needed for the proofs.

Proposition 1 Let x1,x5,... be a sequence of independent identically distributed random
variables with a distribution function F(x). Let b(z) be a lower bound for F(x) in a
neighborhood Uy of +o00. If b(x) can be chosen as 1 —

the fourth order, then it holds that n-e max;—1 ., %; = O,(1) as n — +oo. Analogously, let
c(x) be an upper bound for F(x) in a neighborhood Uy of —oo. If ¢(x) can be chosen as %(w),
where Ps(z) is a polynomial of the fourth order, then it holds that n=s min;—y__, z; = O,p(1)

#(x), where Py(x) is a polynomial of

.....

as n — +o0.

Proof: 1 prove the lemma just for the case of the lower bound, b(z), the other case can
be derived similarly. The cumulative distribution function of z,,, = max;—i__ ,z; is
F,(z) = F™(x). I want to show that for any € > 0 there is K > 0 such that P(%a, >
K¥n) =1— F,(K¥n) < e. This is equivalent to the assertion that F,(K+/n) — 1 as
K — +oco uniformly for n > ng and some ng. Because b(x) < F(x), it also holds that
b"(z) < F™(xz) = F,(z) and thus it is enough to verify that b"(K¢/n) — 1 as K — +0o0
uniformly for n > ng. In general, Ps(x) = a12% + ao2® + azz* + a42® + asz? + agx + a7 and
its leading coefficient a; has to be positive—otherwise, b(x) > 1 for large enough x and it
could not be a lower bound to a distribution function, which is at most equal to one. So,

let us assume without loss of generality that Pg(z) = 2% and b(z) =1 — J5. Hence,

b (K/m) = (1—}%”)n= !(1Kln>mr — (%)K =1 é

b™ (K /n) converges monotonically to a positive number smaller than one for a fixed K > 0;

moreover, this number KL\/E as well as b™ (K /n) increase with K. Therefore, we can find

ne > 0 such that b* (K ¢/n) > fyg for all n > ng and K > 1. Since f{/% 51 for K — o0,
also b"(K¢/n) — 1 as K — +oc uniformly for n > ng. This closes the proof. O

Lemma 1 Let n € N and ky(8) : RP — {1,...,n} be a function that represents an index
of an observation such that sy,g)(zi,vi; B) = sm(@i, yi;6), b € {1,...,n}. Under As-
sumptions D and H, there erists a set 1, P(Q1) = 1, such that for every w € Q; C Q"
there is some neighborhood U (3%, &(w)) of B° such that the function ky(B) is constant on
U(B°% e(w)) for all h € {1,...,n}.
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Proof: Given our distributional assumptions about s;(x;, y;; 8°) (Assumptions D1 and D3)
and an arbitrary fixed n, the probability that any two of the residuals s;(xz;,y;; 8°),1 =
1,...,n, have the same value is equal to zero (s(z1,y1;3°),...,s(z,, yn; B°) are indepen-
dent identically distributed random variables that are continuously distributed). In other
words, the set of events w € Q" for which some residuals are equal at 4% has probability
zero—P(Qo = {w € Q" : Ji,j € {1,...,n},i # J,s(zi,yi; 8% w) = s(xj,y;;8%w)}) =0
(the event w in s(z;,y;; % w) determines the realization of sample (z;,y;) used). More-
over, there is a &' > 0 such that s(z;,y; ) is continuous on U(S° '), and therefore
also uniformly continuous on U(3° 6"). Therefore, for any given w ¢ Qy and k(w) =
smin; j=1,.n [s(z;, y5; % w) — s(zs, y;; 8% w)| > 0 we can find an e(w) > 0 such that, for
any 3 € U(8°,¢(w)), it holds that |s(z;, ys; 8, w) — s(zs, ys; 8% w)| < k(w) foralls = 1,...,n.
Consequently, mapping k() is constant on U(8°%, e(w)) for any w ¢ €y because the or-
dering of s;(z;, y;; 5) is independent of 5 on this set. Thus, the set Q; = Q — Qq. O

Lemma 2 P({w = (W1, wn) € Q" si(4s, ¥ By ws) = s[h](xi,yi;ﬂ,w)}) = %for anymn €
N, i,h € {1,...,n}, and g € B.

Proof: Again, we use the extended notation s;(z;,y;; 8,w), where the event w indicates
which realization of an obsevation (z;,y;) or the whole sample (z;,y;)" ; is meant. As
si(xs, yi; Byw;),i = 1,...,n, form a vector of independent identically distributed random

variables for given n and S,

P({UJ = (wla .. -;wn) € Qe Sl(xzaylaﬂawz) = S[h](xiayi;ﬁa UJ)}) =
= P({w = (w1, wa) € Q" 2 55(xi, 435 B,w5) = S[h}(xiayi;ﬁaw)})

for any i,j € {1,...,n} and a fixed h € {1,...,n}. Moreover,
ZP({W = (wla .- -awn) € 0" Si(xiayi;ﬁawi) = S[h](xlayzwg,w)}) =1
i=1

since P({w € Q" : i # j € {1,...,n}, si(@i, yi; B, wi) = sj(xj,y;; B,w;)}) = 0. Putting the
last two equations together, we immediately get for any 1 =1,...,n

" 1

P({w = (w1, .- -:wn) € 0" Si(iﬂi,yi;ﬁawi) = S[h](xi,yi;ﬁaw)}) = ﬁ,

which closes the proof. [J
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Lemma 3 Let 1/2 < A < 1 and 0 < ¢ < GEl()\) be a real constant, where Gg rep-
resents the distribution function of s;(x;,y;;8), B € B. Then, under Assumption D,
P(s[hn](:ri,yi;ﬁ) < c) = (’)(n_k) for any k € N as n — +oc.

Proof: The distribution function of s,,;(s, ¥s; B) is given by (8 € B is a fixed parameter
vector)

Gonl@) = S P@. P = (") Gola) (1 - Gofa)" (42)

i=hn,
Let X' = Gs(c) < A <1 and let M), be an upper bound for G, (x) on the interval (0, c).
We show that lim,,_,o n¥ M}, = 0 for any k € N.
First, I will draw attention to one fundamental property of the nth root of Gg(z)"(1 —
Gg(x))™™", the main element of P;(z) in (42). For any a € (A, 1) (a represents here * for
any i € {hy,...,n}, in fact)

aGy(2)* " gs()(1 — Gp(2))'~

~(1 - a)Gp(2)*(1 — Gp(z)) gs(x)

= Gp(2)" ' gs(2)(1 = Gp(2)) ™ (a(l — Gj()) — (1 — a)Gy(2))
> 0, VO<1’§C<GE( ) < Gy 1( )

(Gs(z)* (1 — Ga(2)™)

(Gp(x) is monotonic). Therefore, (Gﬁa(“))a (1Gﬂ(’”)>1_a < (A_’)“ (1—_/\’)17“ =C(a) <1 as

1—a a l1—a

z € {0, c). Since X < a, the derivative of (’\Zl)a (11:2')1% with respect to a is negative:

!

a _ l-a , T
() (=) = femseems

[ea In X —alna+(1—a) In(1-A")—(1—a) ln(lfa):|

= (InN —Ilna—1-1In(1=X)+1In(l —a)+1) - eeme-(1-a)ln(l=a)
N 1-a M\ 1=\
- ] N
() (G) () <o
because a € (A, 1) C (3,1),0 <2 <1, and 0 < :=% < 1. Hence, C(a) < C(3(A+ X)) =
C < 1. We show the usefulness of this result in a moment.

Now, we analyze the function Gy, () itself. Taking into account h,/n — A (h, is
defined as [An]), it follows that we can write h,/n = X + a,, where |a,| < . Moreover,
notice that £ > " = Z(A + X) for any n sufficiently high and 7 > h,. Let us take some
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0 < z < ¢ (therefore, Gz(z) # 1). Using the Stirling formula

m:%(%)"-(uo(ﬁ)),

we get for nf+tY/2. Gy, (z)

. - . . n i n—i
nll)rglonkﬂ/? Z Pi(z) = nll)n;onkﬂ/? Z (z - 1) Gs(z)'(1 — Gg(z))

i=hn i=hn
= fg et ; z‘!(nni z')!G/’(f”)i[1 — Gp(x)"™
= Ry vam (2)" - (1+0(gg)) x Gae)'[1 — Ga()]"*
GV () (14 0() x Va1 (52 (140 ()
— lim n* Xn: V2r - (14 0(5;)) x Gp()'[1 - Gp(a)]™

i=hn 4/ 277% ( )Z ) (1 + O(ﬁ

)
> Gﬁ<m>>i<1—ag<x>)“_ | VT (1+0(c))

Zh \ m " 2m - (14 0(5)) x y/2m 25 - (1+(9(12(; B)
" (Gsx)\ [1-Gsx)\
— 1 k B B
= Jimnt > |73 = om
i=hn n
r 4 n—iqn
- Ga(x)\" (1-Gp(z)\ "
_ 1 k B B
= Jmnt ) ( : i om
i=hn | n n
n
: k n
< nll)nolon zh: c"-0(1)
1=Nn
= lim n**lC™-0O(1)
n—00
= 0.

Therefore, we have proved that lim,, ., n* - SUPze0,¢) G8,hn (z) = 0, which closes the proof
as P (s, (@i, yi; 8) < ¢) = Gpp,(c). O

Corollary 1 Analogously, it is possible under Assumption D to show that for real constants
1/2< A< 1 and GEl()\) < ¢ < 00 it holds under that P (s, (i, yi; 8) > ¢) = O(n™*) for
any k € N as n — +o00.

Corollary 2 Let 1/2 < A <1 and 0 < ¢ < G71()\) < ¢ < oo be real constants. Under
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Assumptions D and H, it holds that
P(3 € U(B,n M) : s, (@19 B) # (e,¢)) = O(n ¥) (43)
forany k € N as n — +o0.

Proof: First, note that s;(z;,vi; 8,w) — s;i(zs, v 8% w)!? for B — B° and any w €
(convergence almost surely). So, for 3 — 8° and Gg(z), being the cumulative distribution
function of s;(x;,y;; B), it holds that Gg(z) — Gpo(x) = G(x) for all z € R (convergence
in distribution) because G(z) is an absolutely continuous distribution function. Now, we
show that this convergence of distribution functions Gg(z) — Ggo(z) = G(z) is uniform
over all sequences 3, — ° such that 3, € U(8°, n~2M). The reason is that s;(z;, yi; 8) =
si(zs, yi; B°) — sg(xi,yi;é) - (B8 — B9, where the second term sg(xi,yi;é) (8= 8% can be
bounded by a random variable of order O, (né) . (’)(n’%) =0, (n’%> independently of
B (see Assumption H3). Thus, the convergence of s;(x;, ys; 3) to s;(z;, ys; 8°) is uniform in
probability.

Now, let € > 0 be chosen so that (A — 2, A + 2¢) C (G(c),G(c)) and (G7'(N) —
2e,G71(A\) + 2¢) C (¢, ) (remember, G(c) < A < G(c') ). Moreover, because of the
described uniform convergence of s;(z;, yi; 3) to si(xi, yi; 8°) and Gg(z) to Gpo(z), there
exists no € N such that G3'()) € (G~'(\) —&,G~Y(\) +e) for any B, € U(8°,n" 3 M) and
n > ng. Hence, (G5 (A) —¢,G5 () +e) C (¢,¢), and |G, (c) — A| > € and |G, (¢') — A| >
e for all 3, € U(,Bo,n’%M) and n > ng. Hence, the constant A’ in the proof of Lemma
3 can be chosen equal to A — & independently of 8 € U(j°, n_%M) and we can follow the

same steps as in the proof of Lemma 3 to derive (43). O

Corollary 3 Let 1/2 < A < 1 and € > 0 be sufficiently small real constants. Under
Assumptions D and H, it holds that

P38 € B: sy, (z,y58) € (G51(A) —€,G5'(N) +¢)) = O(n*) (44)

forany k € N as n — +o0.

l1—a

Proof: Let /\'ﬂ =Gy (GEI(/\) —¢) < Xanda € (), 1). Weknow that (Gﬂa(w))a (lGa(w))l_a <

a a

’ a ’ l—a
("_ﬁ) <11__’\5> =C(a,f) <laszx € <0, GEl(A) —€> (see Lemma 3). Furthermore,

12The event w in s(z;,y;; 8%,w) determines the realization of sample (z;,;) used.
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Cla,B) < C(3(A + XB)) = C < 1. Therefore, to prove the result of this corollary, we can
follow the same steps as in Lemma 3 as long as we show that supg.p C(a, 8) < 1, which is

equivalent to

A =supy =supGs (G (\) —¢) < A\
,BEII;ﬂ ,Beg B(ﬂ() )

Then we can choose C(a, 3) < C(5(A+A)) = C < 1 and complete the proof in the same

way as the proof of Lemma 3. Because
Gp (G5'(\) —¢) = X — gg(&)s,
it is sufficient to know that there is some § > 0 such that

inf inf ) .
BeB e(m65) (Gs' (V) +2) >0

However, this is in Assumption NC, which closes the proof of the corollary. [

Lemma 4 Under Assumptions D and H, for any fizred i € N and n > 1

D=

P(ﬂﬁ e U(B%n M) I(si(zi, yi5 B) < gy (@i, 133 B)) # I(si(i, yi; B) < G,El()\))> = 0(”_

)

as n — 400, or analogously
P sup ‘I(Si(mi,yi;ﬂ) < Sth) (23, Y35 B)) — I (si(2s, 933 8) < GEI(/\)H #0| = O(Tf%)
BEU(BO,n~ % M)

as n — +o0.

Proof: Let us introduce a bit of notation first: v;n(8) = I(si(xs,yi5 8) < Spuy (@i, vi; B)) —
I(si(ws, yi; B) < GEI(/\)). We have to derive, in fact, an upper bound for

E  sup [Vin(B)| = P sup lvin(B)] =1
BEU(BO,n=% M) BEU(BO,n"% M)

For the sake of simplicity, we will omit in what follows the specification of the set across

which the supremum is considered and write simply P (38 : |vin (8)| = 1) = P(supg [vin(8)| = 1)
. . . ) . o -1

keeping in mind that we mean P(supﬁeU(/Bo’n,%M) lvin(B)| = 1) and 8 € U(B°, n"2M).
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Without loss of generality, we derive only P(30 : vy, (8) = —1), i.e.,
P(ﬂﬁ e U(B%n 2 M) : I(si(i, yi; B) < Sta (@i, yi5 8)) = O AT (silws, yi; ) < G5 (N)) = 1);

the other case can be analyzed analogously.

Before we start with the derivation, notice that the distribution function of an order
statistics sy (2, yi; 8) for a given h,1 < h < n, is given by (presuming that Gg and gg are
the c.d.f. and p.d.f. of s;(x;, ys; 5))

Gaale) =3 B f), Pia,8) = (1) Galo) (1 = Gila))™

and the corresponding probability density function is given by (for n > 2)

n—1

gst@)=n (1 1) 9sGaa 1 — Golaly

Throughout this proof, I use notation Ggo and Gpgoj, instead of G and Gj to make it
consistent with frequent use of Gg and G . The same applies for ggo. Moreover, I also
use the extended notation s;(x;, y;; 5,w), where the event w indicates which realization of
an obsevation (z;,y;) or the whole sample (z;,v;)" , is meant.

Now, let us consider w = (wy, ..., w,) € Q™ and assume without loss of generality that

i=1. Given w' = (wa,...,wp) € Q" ! and (so(xi, yi; 8, wa), - - -, Sul(Ts, ¥i; B, wn))

Sth—11 (i, vis B, ') if s1(@1, Y13 B, wi) < Sjp—1y(@i, i3 B, W)
S[h](xi:yi;ﬂaw) = s1(21,y1; B, w1) if 8[11—1](53@,%;5,00') < s1(w1, 915 B8,w1) < S[h](xi,yi;ﬁaw')

sy (@i, Yis By w') i sy (@i, vis B w') < s1(@, ya; B wr).
(45)

Denoting €, 5, and 23 subsets of Q" corresponding to the three (disjoint) cases in (45),

we can write

P({w € Q"38 : vin(B) = —1})

P({w € |38 : vin(B) = —1})
P({w € Q]38 : v1n(B) = —1})
P({w € Q3|E|,8 : Uln(ﬂ) = _1})a

and analyze this sum one by one.
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1. P{w € Q|36 :v1n(B) = —1}) <
S P(Eﬁ : S[hn](xi:yi;ﬁaw) < Sl(xlayl;ﬁawl) < S[hn](xiayi;ﬁaw)) = 0.

2. P({w € Q)38 1 vin(B) = -1}) =
= P(aﬁ : S[hn—l](‘riayi;ﬁaw,) S Sl(xlayl; Bawl) = S[hn](xhymﬂaw) S GEI()\)) and can
be analyzed in exactly the same way as P({w € Q3|38 : v1, = —1}), see point 3.

3. Pw € Q3|30 : v1,(B) = —1}) =
= P30 : spha (@i, vi3 B, w") = spu) (@, 133 B, w) < s1(2i, 93 B,w1) < G5'(N)). We can
structure this last term in the following way (1 > ¢ > 0 is an arbitrary, but fixed

real number; the choice of ¢ will be discussed later):

P(S[hn](xia Yi; B: wl) <85 (wla Y15 61 CU1) < Ggl()\)) (46)
< P(sp(wsus 8,6) < GV = ¢/2) (47)

+P(Gad () = £/2 < s (@, B,6) < s1(w1, 315 B,01) < G52 ().

Please note that GEI()\) € (G;OI(A) —e/4, Gg&(k) + ¢/4) for n larger than a certain
no because Gg(z) — Ggo(x) for all z € R (remember, G = Ggo). Since Corollary 2
implies P(s[hn] (@i, ¥ Byw) < Ggol(/\) — 5/2) = o(%) as n — +o0, we have to analyze
just the second term on the right hand side of the equality:

P(G[;ol(/\) —€/2 < 8p, (%5, yi; B, w) < s1(x1, 915 B, w1) < Gil()\)) = (48)

— / / I(Ggol(/\) — /2 < Sjp,) (@, yi; B, ") < s1(x1, 915 B, w1) < GEI(/\))
w'eQr—1 Juw e

dP(w;)dP(w"). (49)

Let 1 > ¢ > 0 be a small enough fixed real number and n > ny large enough so that
(see Assumption D3 and related notation in Section 3.2 for the definition of functions

G and gp)

(a) Assumption D4 implies that there is M, > 0 such that gg(z) < M, for all
(b) Ggo(Ggol(/\) —¢g)=7>0and GB(G/EOI(/\) —g)>7/2>0,

(c) gs(z) > my > 0 almost surely for all Ggol()\) —2e<z< G/;()l()\) + 2¢, where

myg > 0 is a real constant (this again follows from Assumption D4),
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(d) Mge/A < 1land Me/(1-X) <1,

(e) m2/2 > |22 (1—Mue/ N 2M3e+| 25| Mie+| 25| |25 (1— Mye /A2 M2e?,
and

() Gs(z) = Gp(G5'(N) + g5(O) (= — G5' (V) = A+ g5(§)(x — G5*(N)) for all
x € (G/B0 (N — 2, GEOI()\) + 2¢), where £ € (x,GEl()\)).

Suppose further that n > ng, where ng is defined above. Then we can write (see equation

(48))
P(Hﬂ : G_l()\) - 5/2 < i) (T3, Y3 By w) < s1(@1, 915 8, w1) < G ) <
<

= /Enn 1/ . 50( )_5/2 < S[hy) (Izayzn@; )< 81(1‘1,3/1,5,&)1) E ()\))
AP(1)dP(W) 0

< / Mg )
weQn-1

sup {|G51 ) = s (56)] J(G;(A) —&/2 < s (@i, yis B, ') < G5 (V) } AP (W)

Gzt
= M,- / sup {|G — x| - ggp, ()} dz (51)

GoN-e/2 B
1()\ BO( )+e/2 .
= Mg'/ S%P{|y|'gﬁ,hn(G,3 (A) —y)}dy
0

< Mg-/o - sup {981, (G5*(N) —y) } dy.

To see how this integral behaves, it is necessary to analyze the function ggp,(-) in a
neighborhood of G3'()) given by 2¢ for n — +00. Since z € (G 1(A) —¢g,G1(N)),

Gnd) _ o (me
B = V() w0 o)

< i (7)) Gatay 0= Gatar

Thus, it suffices to analyze the latter term. Using the Stirling formula

nt=v2mn ()" (HO(l;n))
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and h,/n = X+ a,, where |a,| < %, we can arrange the expression in question in the
following way (notice that Gs(z) # 0 and Gg(z) # 1 for z € (G5 (N) — &, G5 (N))):

n—1

v (hn — 1) Gg(z)" (1 — Gp(z))" ™" =

— n1/2 (h _(7;) (;) - ) Gﬂ( )hn—l[l G ( )]n—hn

L, V1) L (14 0(i))
o (b — 1) (Rat) 1(1+o< )

()hlﬂ G(H

V2 (n = hy) 14—0(mn,1))

Vﬁ% Gﬂ()h lﬂ Gﬂ@ﬂ] (1+%K1D

V = ()™ for Z

m T)

= n

)

X

) 1
B (Gg T )h - Gg(x ) ~hn AN =\
- M%Al A A — A bl I
_ @@) @@)h
\/27r)\ 1 A A
+

-(1+iiﬁhii)h IS

(
(o
(

. _(+o(1) _(Gﬁ(m)’”‘l 1 - Ga(z)\"
: ALY —/\(/7\1—1) e —(1=-2)(n-1)

(o) (o)
_ (1+0(1)) _<GM@>M*<1—Gﬁ@>“h

SV -\ =/ *
- w57 (557) | -lew) (557
_ (1+o(1) ,'(Gﬂm : 1—%(@)1‘*"

Ny A =)




o 98,1y (%)
Similarly, an upper bound for #2-=

can be derived:

9p.ha () _ My(1+0(1)) (Gﬂ(fv)>A (1 - Gﬂ(fv))l_A
VAOERVEZON (DY) A 1-A
In the next step, we employ Taylor’s expansion of functions Gg(z) and (1 + z)* to analyze
the behavior of gs 4, («) in a neighborhood of GEI(A). The Taylor expansions Gg(Ggl()\) -
z) = A —gg(€)z and (1 4+ 2)* = 1+ Xz + AN — 1) (€ € (G4'(N) — z,G57(N) and
¢ € (0,x)) allow us to modify the bounds for “’””L\/%(w) as follows (z € (Ggl()\) —€, Ggl()\)),
S <A<I):

(Gﬁ@;lm = x>)" (1 — G(G5' (M) - x>>

A 1-—A
956 (1. 96 '
= (1— ﬂ)\ :L") (1+1ﬁ_—)\x>
= (1= 000+ 370 - 02RO (14 (O + 31211+ O e
= 1-— gg(f)aﬁ2 + %gé(f)xg [%(1 — Q)’\*Q + %(1 + C'))‘l] + O(x?’)
3, 1

> 1-g5(©)® + 0(a%) > 1= Sg5(€)2” > 1 — S Mga®

because of assumptions on ¢, and similarly

(Gﬁ(aﬁ%x)—x))* (1—Gﬂ(Gﬁ1(A>—x>>l‘A<1_192(@ ooy Loy
< 595 T —§mgx,

A 1-2A

where £ € (G5'(A) — 2,G5'(N)) and AC, (1 — A)¢' € (0,g5(€)z). Having these results in

hand, we can estimate the last integral in (51) from above:

(1+0(1))

M [y s Gg'(N) = y)dy < VM ——emiie
p /Oy ﬁpg,a,hn( s (V) —y)dy < vnM, 271 — A)

€
1
/ y - (1= 5mgy*)"dy
0
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and similarly from below. As

© 1 2,.2\n 1 ' n
y-(l—imgy)dy = — u"du
0 my 1—$m2e?

1 un—H 1
- [@n-ﬁ—l}

_ 122
1 3Mge

1 n+1
1— (1 — §m§€2> ,

1
m2(n+1)

it follows that

P({w € Q3]38 : vin(B) = —1})
= P(3B: spn(@i, i3 B,w") = spua (i, ys; B w) < s1(x1, 13 B,w1) < G5H(A))

= o(n?).

Thus, we finally get the result
P({w e Q38 : vn(B) = =1}) = P({w € %38 : vin(B) = —1})

+P({w € )38 : vin(8) = —1})
+P({w € 93‘3,3 : Uzn(ﬁ) = _1})

as n — +oo.

Corollary 4 Under Assumptions D and H for any firtedi € N and n > i

D=

P38 € B: I(si(zi,yi; 8) < Sia)(i,y5 8)) # 1 (si(mi, 955 8) < G5 (V) = 0(”7

)

as n — 400, or analogously

P<Sup 1 (si(zi, yis B) < spn (@i, 933 8)) — 1 (sil@i, vis B) < G5' (V)| # 0) = O(”_%)

peB

as n — +o0.

Proof: To prove this result, we can follow the proof of Lemma 4, but we have to make sure

that all steps are uniformly valid for all § € B.
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First, equation (46) can be written as

P(S[hn](m’t,yza B:wl) < Sl(xlayl;ﬁ:wl) < GEI(A))
< P(sphy (@i, ys; B, w') < GEI(A) —£/2) (52)
+ P(GEI(A) - 6/2 < S[hn](‘r’tayu Bawl) < Sl(‘rlayl;ﬁawl) S GEI()‘))

Then we have to find out more about the two probabilities on the right side of the inequality.
Due to Corollary 3, the first probability

P (s 5 8.69) < G5 () —€/2) = O(n™)

uniformly over 5 € B for n — oco. Next, the second probability can be expressed as

3/6 G ( )_6/2<Shn](xmylaﬁ7 )<81(xlayl;ﬁ7w1) SG_I(/\)) S
= / / _5/2<Shn (xuyza/Ba )<51(x17y1a167w1)§0/g (/\))
w'eQn-1 w1€Q

(wl)dP( )
I
w’eQn—l
.s%p {|G/§1()\) — S[ha(@is i3 B, w')| . I(GEI()\) —&/2 < [ (@i, yis B w') < GEI()\)) }dP(w'

VAN

Gyt
= Mg-/ sup{|Gﬂ —x|-g3’hn(x)}dx
Gﬂ (AN)—e/2 B

= Mg-/o Sl;p{‘y"gﬂ,hn(GEI()‘)_y)}dy

< Mg'/o - sup {981, (G5*(N) —v) } dy.

This second term can be treated in the same way as in the proof of Lemma 4 as long as we
are able to find £ > 0 and ny € N such that the requirements (a)—(f) on page 54 in Lemma
4 are satisfied uniformly for all § € B.

1. Requirement (a) follows from Assumption D4—gg(z) is bounded on R by M, uni-
formly in 3 over B.
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2. Requirement (b) follows again from Assumption D4:

Mgy = ﬁiggzei(r_lg,(s) 98 (G5 (A) +2) >0

because G5 (G5'(A) —¢€) = A — gg(£)e.

3. Requirement (c) is equivalent to Assumption D4:

. . -1
Mgy = ,élelzfa zel(lzg,a) g (Gﬂ (A\) +2) > 0.

4. Requirement (d) and (e) are independent of 3, only M, and m, are replaced by M,

and my,.

5. Requirement (f) just requires the existence of the probability density function for

any f3, so it is satisfied as well.

Hence, the proof can follow along the same lines for all 5 € B and because the bounds are

chosen independently of 3, the result holds uniformly in g € B. [J

Lemma 5 Let Assumptions D and H hold and assume that t(x,y; 8) is a real-valued func-
tion continuous in B uniformly in x and y over any compact subset of the support of (z,vy).
Moreover, assume that Assumptions NC1-NC3 hold for t(z,y; 3). Finally, let Gz denote
the distribution function of s(xz,y;8) (for any B € B). Then
1 -
;ug n Z [t(zi, yi; B) - I (silzi, yis B) < Ggl()\))]
€ i=1

—E [t(zs,y3; B) - I (si(zi, 55 8) < GEI()‘))” — 0
as n — +00 almost surely.

Proof: This result is nothing but an application of the uniform law of large numbers for
nonlinear models and I here use its variant due to Andrews (1987). Therefore, we just have
to verify that the assumptions of the uniform law of large numbers are satisfied. We verify
here assumptions Al, B1, B2, and A3, and employ them together with Andrews (1987,
Corollary 1). To do so, let us follow the notation used in Andrews (1987) and denote

q(z,y; B) = t(x,y; B) - 1 (si(xi,y5; 8) < G5' (X))
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and

S(z,y;8,p) = inf gz, y; 6,

a.(2, Y5 B, p) ﬁ,EU(ﬂ,p)Q( y; B')

¢ (z,y;8,p) = sup qlz,y; 8,
BeU(B,p)

q(z,y) = suplq(z,y; B)|-
BEB

Assumption A1 B is compact metric space: this is satisfied because of Assumption NCI1.

Assumption B1 (z;,y;) should be a sequence of strongly mixing random variables with
mixing numbers «(s),s = 1,2,..., that satisfy a(s) = o(s~*/(®V) as s — oo for
some « > 1: this condition of asymptotic weak dependence is satisfied for o = 1,

because (z;,y;) are independent random vectors in our case (Assumption D1).

Assumption B2, part a ¢*(z;,ys; 5, p), (s, yi; B, p), and g(z;, y;) are random variables
and ¢*(-,; 3, p), ¢«(+, -; B, p) are measurable functions for all 7 € N, all 8 € B, and all
p sufficiently small: this follows from Assumption NC2 and the fact that (z;, y;),i =

1,...,n, is a sequence of identically distributed random variables.

Assumption B2, part b Eq(z;,9;)! " < oo for some § > 0: this follows from Assump-
tion NC3 and the fact that (x;,y;) is a sequence of identically distributed random

variables.

Assumption A3 For all 5 € B,

lim |E ¢"(zi, 55 8, p) — Eq(zs,5:; 8)| =0 and  lim [Eq.(zi, y;5 8, p) — Eq(zs, y3; B)| = 0.
p—0 p—0

(53)
Without loss of generality, we will prove this result for + = 1 and only for supremum
g*(the other part can be proved analogously). By the definition of ¢*(z1,y1; 5, p),

¢ (z1,41;8,p) = S )t(xh yi;8) - 1 (s1(z1, 913 8') < G5H(N) (54)
€ 0
= (1,515 8) - I (s1(z1, 415 B) < G5H(N)) (55)
+ ;s 511]1(1[)3 )t(ﬂf'l,yl;ﬁ) I (s1(z1, 915 8") < Gﬁfl()\)) — I(s1(z1,91; 8) < G5 (AXpb)
e P
+ sup  [t(x1,y1; 6') — t(x1, 915 8)] '1(81(371, y1; 8) < G/Efl()\))- (57)
B1€U(8.0)

Hence, to verify (53) we just need to show that the expectations of (56) and (57)
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converge to zero for p — 0.
1. Let us start with (56). First, observe that

sup {t(z1,y1;8) - [L(s1(z1,91;8) < G5 (V) — I(s1(z1,11;8) < G5' (V)] } <

B'€U(B.p)
< suplt(zy,y;8)[ - sup  |I(si(z1,9158") < G5H(N) — I(s1(z1,5158) < G5 (V)]
fen B'€U(Byp)

where supge [t(21, y1; 8)| is a function independent of 8 and with a finite expectation

(Assumption NC3). Because the difference
[ (s1(zs, 953 ') < Gg' (V) = (s (i, 955 8) < G5 (V)]

is always lower than or equal to one, (56) has an integrable majorant independent of
B. Therefore, if we show that the probability

limP< sup |1 (s1(i,y5; 8') < G5 (N) — I(s1(wi,958) < G5*(N)| = 1) =0,
P20 \preu(Bp)

it implies, that the expectation of (56) converges to zero for p — 0 as well.

Second, let us derive an intermediate result regarding the convergence of distribution
function G to Gg. Note that si(z1,y1; 5, w) — s1(x1,y1; 6, w) for f' —  and any
w € €2 (convergence almost surely). So, for ' — § and Gg(z) being the cumulative
distribution function of si(z1,y1;f), it holds that Gg(x) — Gg(z) for all x € R
(convergence in distribution) because G(x) is an absolutely continuous distribution
function. Now, we show that this convergence of distribution function Gg(z) —
Gg(z) is uniform over all sequences (3, — f such that 8, € U(B, p,), where p, is a

sequence of positive numbers such that p, — 0. The reason is that s;(z1,y1;5) =
si(w1, 415 8) — sg(@1,y1;€) - (8" — B), where the second term sg(z1,y1;€) - (8’ — B)

1

can be bounded by a random variable of order O, (n%> - (’)(n_i) =0, (n_%) (see
Assumption H3). Thus, the second term converges to zero in probability uniformly
in § € B. The same is true about the convergence of Gg,l()\) to GEI()\) because G
is absolutely continuous; the convergence is uniform over all sequences ﬁ; — [3 such
that 8, € U(B, pn)-

Third, let us choose now an arbitrary, but fixed € > 0. Then we can find n; € N
such that |G5'(A) — G5' (V)] < sar,, for any 5’ € U(B, p'), where p* = p,, and M,
is the uniform upper bound for the probability density functions of 72(3) over all
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B € B (see Assumption D4). Further, si(z1,y1;8") = s1(z1,y1;8) + s'ﬂ(xl,yl;f) .
(8" — B), where & € [B,/],. So, we can find n, € N and p* = p,, such that
‘slﬂ(xl,yl;f) (B — ﬁ)‘ < 8]\/5[99 with probability greater than 1 — £ (B € U(B,p?)).
Hence, setting p° = min {p*, p?},

P( sup |1 (s1(z1,91;8) < G5l (V) — I(s1(z1,91;8) < G5 (V)| = 1)
B'eU(B,p°)

< Pt ) =~ siConmi) > )

P ; Gyl N) — ——, G (N) + —
+P(slonmif) € (65100 = G+ g
€ 2e
4= M. =

= 32T, Ve T

because Mg, is the uniform upper bound for the probability density functions of

s1(xs,y;; B) over all 8 € B. Thus, we have shown that for any ¢ > 0 we can find
p° > 0 such that

P( sup ‘I(Sl(xlayl;ﬂl) < GEII(/\)) —I(s1(z1,y158) < GEI(/\))‘ = 1) <e
B'eU(B:p%)

and thus
p=0 -\ preu(B,p)

]imP( sup | (s1(21, 415 ) < GEII()\)) —I(s1(z1,91;8) < G,El(/\))‘ = 1) = 0.

We have verified that the expectation of (56) converges to zero for p — 0.
2. We should deal now with (57) and prove that

IN

HmES sup [t(z1,y1;8) — t(z1,y138)] - I (s1(z1, y1; 8) < GE,I()\))
P=0 | Breu(Bup)

mES sup [t(x1,y1;8) — t(z1,y1;08)p = O.
P20 | preu(B.p)

First, note that the difference

t(x1, 413 8') — t(@e, v B)| < [t(21, y0; B)] + [t(@1, y1; 8)] < 22111; t(z1, 915 B)]
c
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can be bounded from above by a function independent of 8 and having a finite
expectation (Assumption NC3). Let 2Esupgcp [t(71,y1; 8)| = Ug.

Second, for an arbitrary fixed ¢ > 0, we can find a compact subset A, of the support of
(z1,y1) (and its complement A,) such that P((z1,y1) € A.) > 1—5£ (both z; and y
are random variables with finite second moments) and 2 [i—supscp [t(z1,91; 8)| < §-
Given this set A, and 8 € B, we can employ the continuity of t(zq,y;;5) in B
(uniform over (z1,y1) € Ac) and find an p* > 0 such that

9
sup  sup [t(z1,y1;8) — t(zn, y15 B)] < 5
(-’El,yl)eAa ﬂ’EU(ﬂaps) 2

Hence,

B'eU(B,p°) BEB

/ (21)dF.(1)
N

E{ sup It(:ﬁ,yl;ﬁ')—t(x1,y1;ﬁ)l} < /A2supIt(xl,yl;b’ﬂsz(ﬂEl)dFs(sl)

IA
DN ™
t\9|mm

and consequently,

limE{ sup \t(x1,y1;ﬂ')—t(x1,y1;ﬁ)|}=0-

p=0 | greU(B,p)

We have verified that the expectation of (57) converges to zero for p — 0. Thus,
assumption A3 of Andrews (1987) is satisfied as well.

Since we have verified all assumptions needed for the uniform law of large numbers, we can

use it for 1 =y [ (zi, yi; B) -I(s,-(aci, yi; B) < GEI(A))} to get the result of the lemma. (]

Lemma 6 Let Assumptions D and H hold and assume that t(z,y; ) is a real-valued
function continuous in B uniformly in x and y over any compact subset of the support
of (z,y). Moreover, assume that Assumptions NC1-NC3 hold for t(x,y;B). Further-
more, let Gg denote the distribution function of s;(z;,yi; 8) (for any f € B). Finally, let
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ho/n— A€ (3,1). Then

n

Sup . Z [t(2s, y5; B) - I (s6(26, 955 8) < 8pan) (w3, 433 B)) ]

n
peB | Tz

—-E [t(fvz’,yi;ﬂ) 'I(Si(fvz’,yz';ﬁ) < GEI()\))” —0
as n — 400 in probability.

Proof: Using the result of Lemma 5 (the assumptions of this lemma and Lemma 5 are
identical) and
1 n
— Ui, vis B) - L(si(2i, yi; B) < i Yis
sup 3 a4 ) (o s ) < i s )]
—-E [t(ﬂﬁi,yi;ﬁ) 'I(Si(ﬂﬁi,yi;ﬁ) < GEI()\))”
1 n
— t(zi, yi; B) - I (sizi, yi; B) < G5 (A
sup 53 s )1 sl ) < G5 ()]
—E [t(zs, yi; B) - 1 (si(wi, ys; B) < G,El()\))”
1 n
+ sup - Zt(ﬂfi,yi;ﬁ) NI (si(xi, yi3 B) < Sphay (@i, i3 B)) — I (8i(ws, y3; B) < GEI(A))]
i=1

BEB

IN

Y

we just have to prove that

n

sup 1 Zt(ﬂﬂi,yi;ﬁ) T (si(2i, y33 B) < Sphay (@i, 35 8)) — 1 (s5(s, 933 B) < Ggl()\))]‘ —0

peB | 5o

in probability for n — oco. The Chebyshev inequality for non-negative random variables—
P(X > K) < E X/K—implies for a sequence of non-negative random variables X,, that if

expectations E X, converges to zero for n — oo, then the sequence X, converges to 0 in
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probability. So, we will derive now that
1 n

. {;ug n Zt(ﬂﬁi,yi; B) - [ (si(@i, yi; B) < Spna) (@i, ys5 B)) — I (si(wi, yi; B) < G451 (V)] ‘}
€ i=1

1 n
- E {;Zsup t(z4, yi; B)| %

i—1 PEB

X sup ‘I(Sz‘(l“i, Yis B) < Sy (@i, Yss 5)) - I(Sz’(l“i, Yi; B) < G,El()\)) |}

BeEB

= E {sup t(z1, y15 B)| - sup |1 (s1(z1, Y15 B) < Spha) (@i, yi5 B)) — I (51(w1, 915 8) < GEI()\))\}
geB BEB

converges to zero for n — oo. Since we assume that supgcp [t(71, %15 8)| has a finite first

moment, all we have to actually prove is

E {2161113 ‘1(81(331,2/1;@ < i (i, Y5 B)) — I (s1(21, 913 8) < Gﬁl()\))|} =

P(‘SUP |I(S1($1,yl;5) < Siha1 (@i, y55 8)) — I (s1(x1, 915 8) < GEI()‘))‘ =1

BEB

for n — oco. But this is the claim of Corollary 4:

P(sup ‘1(81(331,%;@ < St (i, 5 B)) — I (s1(21,915 8) < G,El(/\))| = 1) = (’)(n_%)

BEB

asn — oo. [
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