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Abstract

A model of herding behavior on the labor market is discussed where employers
only receive signals with limited precision about the workers’ types, but can
observe previous employers’ decisions. In particular, we study a situation where
the employer and the worker can influence the signal probabilities, in the sense
that the employer tries to increase the precision of the signal about the worker’s
type whereas the worker tries to get a good signal, independent of her type.
In a two-period model, we derive conditions for an equilibrium in which only
down-cascades occur, i.e., the second employer does not hire a worker with a bad
history even if he receives a favorable private signal about the worker’s type, but
he does follow his own signal if the worker’s history is good.
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1 Introduction

One of the leading economic examples for rational herd behavior is the labor market.!
When a worker is applying for jobs at different employers sequentially, current employ-
ers can infer something about the worker’s abilities or "type” by observing previous
employers’ decisions. These decisions are summarized in the CV as spells of employ-
ment with particular employers or spells of unemployment. While good jobs in the
past imply that previous employers received favorable signals about the abilities of the
worker, unemployment spells are attributed to the fact that applications failed, i.e.,
potential employers chose not to hire the worker. Thus, an applicant who receives good
offers in the beginning of her career can become a ”star” whereas a bad start without
good job offers can make subsequent employers unwilling to hire a worker. In this
sense, information cascades may dominate a worker’s career.

When comparing the labor market interpretation of herding theories with most
other applications of information cascade games, such as investment and lending deci-
sions, one difference seems particularly striking. In contrast to investment projects or
loans, workers who can become the object of cascades are able to react and adjust to
this phenomenon. For example, a worker who knows that the beginning of her career is
decisive for her future success will send out many applications early in her life, and put
in a lot of effort to prepare for interviews, assessment centers etc., or to obtain helpful
letters of recommendation. In this paper, we incorporate such efforts by allowing the
worker to increase the probability that the employer gets a favorable impression of her.
Also, we endogenize the employer’s choice of the precision of the test for a new appli-
cant. Both of these possible manipulations of the signal probabilities, by the worker

and by the employer, are assumed to create some cost to the agents, so they will only

!See, e.g., Bikhchandani, Hirshleifer, and Welch (1992) and the experimental study by Anderson
and Holt (1997). For a survey see Bikhchandani, Hirshleifer, and Welch (1998).



be used to a limited degree (which will depend on the employment history, and on the
expectations about others’ behavior). We investigate the effect of these choices on the
occurence of information cascades in the equilibrium of the game.

Moreover, we introduce the possibility that the required abilities of a worker differ
between jobs. If the employer knows, for example, that the worker’s previous job
required completely different skills than the job he wants to fill, he cannot learn much
from the previous employer’s decision to hire the worker. On the other hand, the more
similar the jobs are, the more employers can learn from the CV of an applicant.

In the two-period model specification that is studied below, the introduction of the
signal manipulations by the worker and the employer causes a strict asymmetry between
good and bad employment histories. While up-cascades (where the second employer
follows the first employer after the worker has been employed) and down-cascades
(reversely, with two periods of unemployment) are both possible in equilibrium, it is
shown that only down-cascades can occur alone. l.e., for certain parameter ranges,
early spells of unemployment are decisive for the worker’s subsequent job search, but
spells of employment are not. In this sense, having the possibility to improve one’s
chances of employment make unemployment a strong negative stigma in equilibrium.

In Section 2, the model and the main result are presented. The section also contains
a numeric example which illustrates the size and ordering of the parameter ranges for
which the different possible equilibria exist. Section 3 discusses the result in the context

of related literature.

2 The model
2.1 Assumptions

Suppose there is one worker who can apply for a job in every period, and in every period

there is one employer with an open post. The game has two periods, t = 1,2, but jobs



last only one period and the worker cannot be reemployed by the same employer. When
the firm hires a worker, it receives a return V' = 1 if the worker is a good type (type
G) and a return V' = 0 if the worker is a bad type (type B). The wage payment to a
worker, irrespective of her type, is 0.5. The prior probability of a good or a bad worker
type is 3, = 0.5.

The employer does not know the worker’s type, but receives a signal about her
abilities, which can be either high (S; = H) or low (S; = L).? In each period ¢, signal
S; = H and signal S; = L occur with the following probabilities, given the worker is a

good (V =1) or a bad (V = 0) type:

V=1 V=0
S;=H|05+p:+q" |05—p;+¢°
Si=L[05—p—q [054+p —qf

Table 1: Signal probabilities of the two types.

The employer can influence the probability of receiving a good signal from a good

type and a bad signal from a bad type (i.e., the precision of the signal) by choosing
pt € [0,7], with some upper limit p < 0.5. This costs him K (p;) with K’ > 0, K" > 0,
K(0) = 0, limy,, 3K (p;) = oo, and K'(0) = 0. Without loss of generality we write
K(p:) = k- &(pt), in order to use k as a scaling parameter. The worker can influence
the signal probabilities as well. She can choose ¢, ¢ € [0,7], to increase the probability
of a good signal, independently of her true type. However, different types may choose
different effort levels when applying for a job, denoted by ¢ and ¢Z. The cost function
C(gq:) is identical for both types, monotonically increasing and strictly convex, C’ > 0,
C" > 0,C" >0, C(0) =0, limg,_3C(q) = oo, and C’'(0) = 0.> Furthermore, assume

that p+ ¢ < 0.5, to guarantee interior solutions.

2The assumption of a binary signal is not without consequences. If the signal were continuous,
i.e., more precise, the employer could set different cutoff values, depending on the employment history
of the worker. However, herding could still occur in this case, as long as the employment decision is
discrete.

3The assumption that C"”” > 0, which may be seen as rather restrictive, is only needed for one part
of the main result, as will be specified below.



To allow for imperfectly correlated job profiles (e.g., workers switching to completely
different jobs), we assume that a worker who was a good type in the first period may
become a bad type in the second period, and vice versa. The probability of a good
[bad] worker in period 1 of remaining a good [bad] worker in period 2 has a value of
a € [0.5, 1], which is common knowledge. E.g., if there is no correlation between the
abilities required in period 1 and period 2, a good worker in period 1 is a good worker
in period 2 with probability one half, i.e., @ = 0.5. Suppose further that before the
second period starts neither the worker nor the employer know whether the worker’s
type changes, but in ¢ = 2 the worker finds out whether she is a good or a bad type

for the new job. The timing of the two-period game is as follows:
Periodt =1:

e The employer chooses p;. Simultaneously, the worker learns her type, G or B,

and chooses ¢;.

e Firm 1 receives a signal S; and either employs the worker or does not employ her.
If employed, the worker receives the wage of 0.5 from the firm, and the firm gets

the return V.
Period t =2

e The same as in t = 1, except that firm 2 learns the employment history of the

worker, hi, as well as p;, before the period starts.

If the worker was employed in the first period, the history is denoted as h; = 1,

and if she was not employed as h; = 0.

2.2 Optimal choices of the worker and the employer

To solve this game, we use the concept of Perfect Bayesian equilibrium. The worker

determines her first-period effort by considering not only firm 1’s behavior, but also
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what will happen in the second period after being employed or unemployed in the
first period. In equilibrium, the worker knows whether the second employer will hire
her after a good or a bad signal S5, given her history. We say that a worker is in
a cascade if in ¢ = 2 she will be employed (in an up-cascade) or not employed (in
a down-cascade) independent of the signal that the new employer receives about her
type. The following lemma characterizes the worker’s effort choice.! (All proofs are

relegated to the appendix.)

Lemma 1 If the worker is in a cascade, she will always choose ¢ = 0. Otherwise, the

optimal ¢*, A = G, B, is given by
C/(QtA) =05+ Uii1(H) - UtA+1(L) (1)

with U, (Sy) denoting the equilibrium continuation payoff of type A after signal S; in

period t.°

From Lemma 1 it follows directly that when there is no cascade in period 2, the
optimal effort in this period satisfies C’(g3') = 0.5. This effort level will be denoted
by ¢*. In period 1, it holds that the higher the continuation payoff after a good signal
and the lower the continuation payoff after a bad signal are, the more effort the worker

exerts in the current period.’

“Both Lemma 1 and Lemma 2 hold for any finite number of periods ¢, although we will only
consider two periods in the analysis.

SFor this notation to apply to period ¢ = 2, define Us*(H) = Us}(L) = 0.

6For example, suppose the employer receives a good signal about the worker’s type in period 1, he
employs the worker, and no up-cascade starts. Then the continuation payoff for type G is given by

Us'(H) = a[(0.5 + pa,1y + ¢7)0.5 — C(q%)] + (1 — )[(0.5 — pa 1) + ¢7)0.5 — C(g™)]

where py (1ystands for the employer’s choice in the second period after the worker was employed in the
first period. The continuation payoff U§'(L) is equal to US'(H) if there is no cascade after signal L
(because without cascades the employer’s choice of signal precision in the second period is independent
of the worker’s employment history, i.e., ps (1) = p2,(0y, which will be shown below). Analogously, for
type B, if no cascade starts after signal H,

Us' (H) = of(0.5 — pa,1) + ¢7)0.5 — C(¢")] + (1 — a)[(0.5 + pa 1) + ¢7)0.5 — C(q")]



Now consider the optimal choices of the firms. In the second period, the employer
updates his beliefs about the worker’s type based on whether she was employed in the
first period or not. He chooses the precision of the signal, p,, given his beliefs about
the worker’s type and his beliefs about the effort g chosen by the worker.

Define (3, as the employer’s prior probability of a good worker type in period ¢. For
example, before period 1 we have 3; = 0.5, which is then updated by the first employer

after he receives the signal.

Lemma 2 Firm t sets p, = p* such that K'(p*) = 0.5 and employs the worker after
observing S; = H (and does not employ her after observing Sy = L) iff the following

three conditions are satisfied:’

B,(0.5 —p* —qf) < (1= B)(05+p" —q) (non U)
8,054+ p* +¢f) > (1—3,)(0.5 —p* +qF) (non D)
P+ ﬁtQtG - (1 - ﬁt)qgg - 2K(p*) > 0.5 Wt - (1 - ﬂt)| (C)

Otherwise, the firm chooses p; = 0, employs the worker if 3, > 0.5, and does not employ
the worker if 3, < 0.5.

Conditions (non U) and (non D) are no-cascade conditions, ensuring that the
employer prefers to follow his own signal, given p*. The third condition, (C), requires
the cost K(p*) to be sufficiently small to make investing into the signal precision

worthwhile. Notice that the optimal p* does not depend on 3,,¢%,q¢f, nor on a.

which, again, is equal to U# (L) when there is no cascade after signal L.

"The worker types’ respective choices used in the three conditions, ¢ and ¢, are the workers’
equilibrium choices, given the history in period ¢. It follows from Lemma 1 (and from the convexity of
C(+)) that each worker type’s optimal choice is unique in a given equilibrium, so the employer knows
q¢ and ¢P with certainty.



This simplifies the analysis considerably. Regarding the employer’s choice in the first
period, it holds that 3, = 0.5, and hence the employer always chooses p = p* as all
three conditions of Lemma 2 are satisfied. In particular, condition (C') reduces to
p* — 2K (p*) > 0.5(qP — ¢), which is always satisfied as K (p) is convex and the right-
hand side is smaller or equal to zero for all equilibrium values of ¢/*.% For the same
reason, conditions (non U) and (non D) are also satisfied as they are both equivalent

to 2p* > ¢f — ¢“.
2.3 Equilibria of the game

An equilibrium of this game specifies the agents’ behavior after any employment history.
In particular, it is possible that the second employer is prescribed to herd behind the
first employer’s decision only after one employment history, but not after the other.
E.g., we use the term ”equilibrium with up-cascades only” if firm 2 hires the worker after
a history h; = 1, regardless of his own signal, but follows his own signal signal if A; = 0.
By analogy, there are three more possible pure-strategy equilibria, characterized by
firm 2’s behavior: equilibria with down-cascades only, equilibria with up-cascades and
down-cascades, and equilibria with no cascades. Of course, there is also the possibility
of mixed-strategy equilibria, where firm 2 follows firm 1 only with some probability.
Also, a multiplicity of equilibria can arise.

The following proposition shows that there is a general asymmetry between up-
cascades and down-cascades in the set of equilibria of the game. (The proposition
takes as given the cost functions C(¢;) and £(p;), as well as g and P, and views « and

k as parameters.)

Proposition 1 (a) There does not exist an equilibrium with up-cascades only, for any

parameter constellation.

8In all possible equilibria, ¢ > ¢Z, which will be shown below.



(b) For k sufficiently small and a sufficiently close to 1, there is a unique equilibrium

with down-cascades only.”

The workers’ ability to influence the signal probabilities causes this asymmetry
between up-cascades and down-cascades, as good signals become less informative than
bad signals. In other words, if both workers strive to leave a good impression, the
employer’s likelihood of facing a good worker after receiving a good signal is lower
than the likelihood of facing a bad worker after receiving a bad signal. This effect is
reinforced when cascades are possible in equilibrium, because then the signal in the
first period becomes more important and the workers increase their efforts further.

A second driving force for the result is the fact that good and bad worker types
choose different effort levels when they expect cascades to occur (see Lemma 1). In
particular, a good worker loses more from being in a down-cascade than a bad worker
does, because without a cascade, the good worker would be more likely to get a good
signal in the second period and to be employed. Therefore, a good type chooses a
higher effort than a bad type in the first period, ¢ > ¢, in the equilibrium with
down-cascades only. This implies that a bad signal must come from a bad type with
an even higher probability. Conversely, equilibria with up-cascades only are destabilized
by the analogous logic. In any such proposed equilibrium with up-cascades only, the
bad worker would have more to gain from a good signal in ¢ = 1 than the good worker
would. Hence, ¢ > ¢ would hold, making a good signal even less informative, and
the equilibrium breaks down.

If the correlation between jobs is weak, i.e., « is close to 0.5, information cascades
can disappear completely. And if the employer’s cost of increasing the signal precision

is high (large k), equilibria with up-cascades and down-cascades are likely to exist.

9For part (b) of the proposition, the assumption C"” > 0 is used.
1% prop , %
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Figure 1: Parameter ranges of equilibria. Region I: Unique equilibrium with no cas-
cades. II: Three equilibria exist; one with no cascades, one with down-cascades only,
one mixed equilibrium. III: Unique equilibrium with down-cascades only. IV: Unique
mixed equilibrium with a down-cascade after h; = 0, and a possible up-cascade after
hy = 1. V: Unique equilibrium with up-and-down-cascades.

This is demonstrated in the example below.

2.4 An example

In this subsection, an example is presented for which the equilibria over the whole
parameter range are characterized.!’ For this example we suppose C(q;) = c[a%qt —
(3)°q:—2] and similarly K (p;) = k;[l_j%pt —(2)*ps— 2], which are cost functions satisfying
the above assumptions. Also, we set ¢ = p = 0.25 and ¢ = 0.01. Then, the equilibrium
ranges depending on « and k are as illustrated in Figure 1.

Consider Figure 1 and first focus on the case where a = 1, i.e., the same abilities
are required in the first and in the second period. In this case, there are only two
possible equilibria in pure strategies. If the employer’s cost parameter k is below
a critical level, the equilibrium is characterized by down-cascades only (region III),

whereas if the employer’s costs are high, both up-cascades and down-cascades occur

(region V). Between these two areas, there is a unique mixed equilibrium in which the

10 All calculations are in the appendix.
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second period employer randomizes between p, = p* and p; = 0 with probability s and
(1 — s), respectively, if the worker was employed in the first period.!!

Moving from « = 1 to the left first makes the equilibrium with up-cascades and
down-cascades disappear: If the job requirements are less strongly correlated, the sec-
ond employer does not want to follow all of his predecessor’s decisions even if the
interview costs are high. The same argument also eliminates the equilibrium with
down-cascades for low «, such that only an equilibrium with no cascades exists when
job requirements are barely correlated over time. Between the two ranges of unique
equilibria, there are parameter values (region II) for which both an equilibrium with
down-cascades only and an equilibrium with no cascades exists, as well as a mixed
equilibrium in which a bad history induces a down-cascade with some positive proba-

bility.

3 Discussion

The paper analyzes the effect of endogenous signal probabilities on information cascades
in a labor market setting. In contrast to the benchmark model developed by Bikhchan-
dani, Hirshleifer, and Welch (1992), which corresponds to the limit case {« =1, =0,
and k = 0}, cascades can start already in the second period, and down-cascades (i.e.,
cascades in which a worker is not employed) are more important than up-cascades (i.e.,
cascades in which a worker is employed).

There is a small literature on social learning, wages, and hiring decisions. Within
the framework of matching models, Stern (1990) and Lockwood (1991) analyze how

firms use the information conveyed by other firms’ hiring decisions and condition their

'The worker types choose effort levels contingent on s in this equilibrium. For the sake of a
clearer exposition, the formulations of Lemmas 1 and 2 in Subsection 2.2 only apply to pure-strategy
equilibria. Optimal behavior in the existing mixed-strategy equilibria, which is analogous, is addressed
in the appendix.

11



decision on the applicant’s employment history. Stern shows that wage offers fall with
the length of an applicant’s unemployment spell. Lockwood derives acceptable periods
of unemployment, as the firms in his model choose a cutoff time after which they
ignore their private information and never hire a worker. Also, Gibbons and Murphy
(1992) and Farber and Gibbons (1996) model how Bayesian learning influences wages
as unobservable abilities of workers are revealed over time. Our model differs from all
of these models in that we restrict wages to be fixed, but allow workers to optimize,
not only firms.

Oberholzer-Gee (2000) focuses on the effect of unemployment spells on the re-
employment probability before an information cascade begins. His results from a field
experiment indicate that in Switzerland, a person who was unemployed for two and a
half years is 47 % less likely to be hired than an employed person, while in the U.S. no
unemployment stigma can be observed. Within our model, this can be explained with
differences concerning the similarity of the jobs that a person holds during her lifetime
in Switzerland, as compared to the United States. In Switzerland (just as in other
Western European countries) employees rarely switch to jobs requiring a completely
different set of abilities, which is not true for the U.S. Therefore, social learning may be
much more important in the Swiss case than in the U.S., and spells of unemployment
are more informative in Switzerland than in the U.S.!2

All of the models mentioned above offer an information-based rationale for the
finding that the re-employment probability depends negatively on the duration of un-
employment.'® The main new feature of this paper is the introduction of endogenous
signal qualities, leading to an asymmetry in the occurrence of successful and unsuc-

cessful employment histories. In equilibrium it may well hold that employers do not

12Oberholzer-Gee explains his finding by wage subsidies and other measures for the unemployed in
Switzerland which create an even stronger stigma for those who still cannot find a job.

13QOther explanations are that the search intensity of unemployed persons declines over time or that
human capital becomes obsolete.
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hire a worker who was unemployed regardless of their own signal, but follow their own
signal if the worker was employed previously. In this case, previous employment is be

less of a bonus than previous unemployment is a stigma.

Appendix

Proof of Lemma 1: First, when the worker is in a cascade, she will not exert any
effort as the employer will not follow his own signal. Second, the expected utility of a

good worker type is
Uf = (0.5+p + ¢ )(0.5+ Uy (H)) + (0.5 — p — ¢, ) UG, (L) — Clgr)

(and similarly of a bad type after switching the sign in front of p;). Taking the first

derivative with respect to ¢; yields equation (1). H

Proof of Lemma 2: The optimal p; is found by maximizing the employer’s ex-

pected profit,

(p) = B,(0.54 pe + ¢ )0.5 + (1 — 8,)(0.5 — py + ¢ ) (—0.5) — K(py),

with respect to py, yielding p*. The first two conditions, (non U) and (non D), ensure
that the employer neither follows his prior belief if the worker was employed, nor if
the worker was unemployed, but follows his own signal, given that p* was chosen. The
third condition, (C), is derived by comparing the employer’s profit from setting p; = 0
or p; = p*, respectively. If 5, > 0.5, II(p*) > I1(0) iff

0-5(29* + ﬁtQtG - (1 - ﬁt)QtB) - K(p*) > 0-25(@ - (1 - ﬁt))
It 8, < 0.5, T(p*) > TI(0) iff
0.5(8, — (1= B)) +p* + Biaf — (1 = B)al —2K(p*) > 0.

13



Combining these two inequalities yields condition (C).

Proof of the Proposition: (a) In the equilibrium with up-cascades only, the
worker chooses ¢f* such that C'(¢') = 1 — Us}(L). As a good worker’s continuation
payoff after a bad signal in period 1 is higher than that of a bad worker, US(L) >
UB(L), it follows that ¢¥ > ¢ (and both exceed ¢*). In the second period, the
worker exerts no effort after being employed in the first period, qch(m = qf(l) = 0, but

chooses some effort after not being employed, qQG(O) = qQB(O) = ¢*. The employer sets

p1 = P2,0) = P and py 1) = 0.

First consider a worker with a good history, h; = 1. The employer’s updated prior

is B, = 20 ral)+1-0)(05-p 7))

T TP . For a proof by contradiction suppose that firm 2

deviates, i.e., sets p, (1) = p* and follows its own signal (as the best possible deviation).
For the equilibrium to exist, this deviation must not be profitable, which implies that
either (C) or (non U) or (non D) must be violated. Condition (non U) requires that
B5(0.5 — p* — ¢*) < (1 — 5,)(0.5 + p* — g*). Note that (3, is increasing in «. (This
follows from 0.5 + p* + ¢ > 0.5 — p* + ¢, which must hold in equilibrium, because
otherwise a good signal would indicate a bad worker, implying ¢ = ¢ = 0 as a best
response.) Thus, if (non U) holds for a = 1, it must always hold. Some manipulations
together with a = 1 yield —¢*(2p* + ¢ + ¢f’) < (0.5 + p*)gf — (0.5 — p*)qf’, which is
always true (because ¢¢ > ¢P). As (non D) holds also after h; = 1, it follows that the
deviation is profitable iff (C) is true."* Condition (C) demands that

20(2p" + ¢ — ¢) — 2p" — qf + qf

p = 2K (p) > (05— ') T
1 1

(2)

Suppose that this inequality is violated, which means that an up-cascade exists. But

now consider whether this is consistent with no down-cascades after h; = 0. In partic-

41n all equilibria, condition (non D) [(non U)] is trivially satisfied after history hy =1 [hy = 0.

14



ular, after hy = 0, condition (C') must be satisfied for down-cascades not to exist:

2002p" + ¢f — q7’) — 2p* —qf +qf

p"—2K(p*) =2 (0.5+¢) 1—C— 4P
1~ ¢

(3)

If (2) is violated, then (3) must be violated, too. This implies that an equilibrium with

up-cascades only does not exist.

(b) First, show that an equilibrium with no cascades does not exist for large o
and small k. In such an equilibrium, there is no learning. Thus, the worker and the
employers choose the same optimal effort level in each period, ¢; = ¢*,p; = p*,t =1, 2.

Suppose the worker was not employed in the first period, h; = 0. Then, the second

Ty , after some

employer’s updated probability for a good type is (8, =
reformulations. Condition (C') of Lemma 2 then requires p* — 2K (p*) > (2 —1)(0.5+
) (2p*)(1—2¢*). For a — 1 and k — 0 (the latter implying that p* — p), this condition
can hold only if p(1 — 2¢*) > p(1 + 2¢*),which is never satisfied. Thus, an equilibrium

with no cascades does not exist.

Now consider whether there is an equilibrium with up-cascades and down-cascades.
Both worker types set ¢i' such that C’(¢{) = 1, denoted by ¢**, and ¢5' = 0. The
employer chooses p; = p* and py, = 0. This equilibrium does not exist if the employer
sets po = p* after some history hq, i.e., if all three conditions of Lemma 2 are satisfied
for either hy = 1 or hy = 0. For hy = 1, (non U) must hold, ie., (0.5 + ¢ +
(2a — 1)p*)(0.5 — p*) < (0.5 + ¢** — (2a — 1)p*)(0.5 + p*), which is satisfied for all a.
Also, (non D) holds, such that (C) is the only condition remaining to be checked. With
By = (0.5+¢" +p*(2a—1))/(14+2¢*), it is given by p*—2K (p*) > (2a—1)p*/(142¢™),
which for @« — 1 and k — 0 becomes p > 5/(1+2¢**). This is always satisfied implying

that the equilibrium with up-cascades and down-cascades does not exist.

Finally, the equilibrium with down-cascades only requires that all three conditions

of Lemma 2 are satisfied for h; = 1 and that at least one of them is violated for ~A; = 0.
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The worker chooses ¢ > ¢P (> ¢*) in the first period. In the second period she sets
920,(1) = qf(l) = ¢* after being employed in the firstperiod and qch(o) = qf(o) = 0 when
she was not employed. The employer tests the worker in the first period and in the
second period after a good history, but not after she was unemployed: p; = ps 1) = p*
and py o) = 0. After a good history h; = 1, the second employer’s updated prior for
a good type is 3, = ((2a — 1)p* + 0.5 + aqt + (1 — a)¢f) /(1 + ¢F + ¢f). Condition
(non U) then requires 3,(0.5 — p* — ¢*) < (1 — (35)(0.5 + p* — ¢*). Using the fact that
By > 0.5, it is sufficient for this condition to hold that 3, < p* 4 0.5, which can be
reformulated, setting o = 1 and p* =P, to

q¢
qf +qf

<P+ 0.5. (4)

Using Lemma 1, we have C'(¢?) > 0.5. Together with the fact that C’(¢F')—C"(¢P) = p*
holds in this equilibrium (again from Lemma 1), this can be rewritten as C’(¢P) >
%(C’(qf) — C'(¢P)). Since C' is an increasing and convex function (C” > 0 and
C" > 0), this implies

%wf sy (5)

@ >
Reformulating this to ¢” > ¢¥/(2p + 1) and replacing ¢” in (4) yields as a sufficient
condition for (non U) that 2p + 2 > 2, which is always satisfied. Next, examine
condition (C') after h; = 1, which must also hold in an equilibrium with down-cascades
only,
2p* +at —af
p"—2K(p*) > (2o — 1)(0.5 — ¢* ) ————F—.
L+q7 +qf

For a — 1 and k — 0 this will hold if p > 0.5(2p + ¢ — ¢P)/(1 + ¢F + ¢P), which is
equivalent to ¢¥ + ¢® > (¢f — ¢?)/(2p). The latter is always satisfied, as it is implied

by inequality (5).
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After a bad history, hy = 0, either (non D) or (C') must be violated. Consider (C):

2n* G _ B
p*—2K(p*) > (2a — 1)(0.5 + q*)f—i_q—l;1
- q
For o — 1 and k — 0, this becomes p > (0.5 + ¢*)(2p + ¢ — ¢P)/(1 — ¢F — ¢P). A
simple rearrangement leads to 2p(0.5—0.5¢5 —0.5¢%) > (2p+ ¢ —¢P)(0.5+ ¢*), which

can never be satisfied. Thus, the equilibrium with down-cascades only exists. H

Calculation of the example: In order to generate Figure 1, Lemmas 1 and 2 are
used, in a way similar to the proof of the proposition. In particular, the four lines in
the figure are given by, from left to right, condition (C) after h; = 0 for the equilibrium
with down-cascades, condition (C') after Ay = 0 for the equilibrium without cascades,
condition (C) after hy = 1 for the equilibrium with down-cascades, and condition (C)
after h; = 1 for the equilibrium with up- and down cascades. It can be shown that
these are the binding conditions for the pure-strategy equilibria to exist, dividing the
parameter space into different equilibrium ranges.

No equilibrium in pure strategies exists when

2p* p* — 2K(p*) 2p" +qf — ¢f
< G B
1+ 2¢* (0.5 —¢*)(2a—1) 14+q7 + 1

(6)

(where ¢* and ¢** satisfy, as above, C'(¢*) = 0.5 and C'(¢**) = 1, respectively, and
¢ and ¢P are the worker types’ effort levels in the equilibrium with down-cascades
only, in ¢ = 1). In an according equilibrium with mixed strategies (region IV), the firm
has to be indifferent between setting p = 0 and p = p* if h; = 1. This is the case if
condition (C') holds with equality,

P —2K(p) 2+ () @ (s)
(05— @) (s)(2a—1)  L+Gf(s) +{'(s)

(7)

where s is the probability of the employer choosing p = p*, ¢¥'(s) and ¢ (s) are the the

worker types’ optimal effort levels, given s, in ¢t = 1, and g2(1)(s) is the effort of both

17



worker types in t = 2, after hy = 1. Is there always a unique probability s such that
the optimal ga (1)(s), ¢¥(s), and ¢f (s) fulfill this equality? To answer this, first define
the LHS of (7) as L(q) := #ﬁg}l), and the RHS of (7) as R(¢¢, ¢P) := %.
Also, notice that ga,1)(0) = 0, @2,1y(1) = ¢*, ¢7(0) = ¢ (0) = ¢**,¢7(1) = ¢f, and
qP(1) = ¢7 (all from Lemma 1), and that g2 1)(s), ¢¥(s),and ¢P(s) are continuous in
s € [0,1], L(q2) is continuous in ¢, and R(¢¢,¢P) is continuous in ¢¥ and ¢¥. Then,
the wanted probability always exists, as the expression R(¢¥,¢”) — the arguments of
which move from (¢**,¢**) to (¢¥,¢”) as s moves from 0 to 1 — intersects the point
(p* —2K(p*))/[(0.5 — ¢*)(2cc — 1)], according to (6). Hence, L and R need to be equal

for some s. To show that s is unique, first note that — analogous to Lemma 1 — the

optimal effort levels of the worker types are determined by

C'(GF(s)) = 0.5+ 5(0.5+p" +q(s))0.5+ (1 — 5)0.5 — C(ga(s)),
C’(quB(s)) = 0.5+ (0.5 —p* + ¢2(5))0.5 4+ (1 — 5)0.5 — C(qga(s)),

and C'(q,1)) = s-0.5.

Thus, d(¢f(s) — ¢7(s))/ds > 0, as C" > 0 and dgP/ds < 0. In addition, it holds

with R(¢¥,q%) = iﬁ;@% that OR/9(q7 — q®) > 0, and therefore & > 0.
1
Similarly, one can check that % < 0, % > 0, and % > 0 hold, which completes

the proof of uniqueness as R and L can therefore be equal for at most one s. Given
7% (s),q2(s),p = p*, do conditions (non U) and (non D) hold? This is equivalent
to checking these conditions in the equilibrium with down-cascades after replacing
(0%, qB,q*) by (¢¥(s),d7(s),q(s)). Thus, the mixed equilibrium exists and is unique

for C" > 0. The mixed equilibrium in region II is derived analogously.
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