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Abstract

Results are presented on the stability of solutions of stochastic delay dif-
ferential equations with multiplicative noise, and of convergent numerical solu-
tions obtained by a a method of Fuler-Maruyama type. An attempt is made
to provide a fairly self-contained presentation.

A basic concept of the stability of a solution of an evolutionary stochastic
delay differential equation is concerned with the sensitivity of the solution
to perturbations in the initial function. We recall the stability definitions
considered herein and show that an inequality of Halanay type (derivable
via comparison theory), and deterministic results, can be employed to derive
stability conditions for solutions of suitable equations.

In practice, closed form solutions of stochastic delay differential equations
are unlikely to be available. In the second part of the paper a stability theory
for numerical solutions (solutions of Fuler type) is considered. A convergence
result is recalled, for completeness, and new stability results are obtained using
a discrete analogue of the continuous Halanay-type inequality and results for
a deterministic recurrence relation.

Various results for stochastic (ordinary) differential equations, with no time
lag, or for deterministic delay differential equations, can be deduced from the
results given here.
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2 Exponential Stability in p-th mean for DDEs

1 Introduction

This paper divides naturally into two halves, the first concerning stochastic delay
differential equations (SDDEs) with an initial condition and the second concerning
the numerical solution of such a problem. In the first part we present the class of
problems addressed, define our stability concepts, and obtain a stability criterion.
In the second part we recall a numerical method defined by reference to a uniform
mesh and a convergence result for the approximate solution as the mesh-width
tends to zero; we present the stability concepts for the discretized case, and obtain
a stability criterion for the numerical solution. Extensions and open problems are
indicated.

The development of numerical methods for SDDEs is relatively new, compared
with that for deterministic delay differential equations (DDEs) or for stochastic
ordinary differential equations (SODEs) — see, e.g., [1] and [15] respectively. The
main practical conclusions to be drawn from this paper are that, when using the
Euler-Maruyama formula for an SDDE with a fixed stepsize, the choice of stepsize
is limited both by accuracy and by stability — but that under precisely stated con-
ditions the numerical solution simulates that of the analytic problem. The main
theoretical conclusion is that continuous and discrete inequalities of Halanay type
can be given a role, as an alternative to other approaches, in the stability analysis.
The authors attempt to provide a fairly self-contained presentation (with references
for further reading) on the grounds that the subtleties arising in stochastic analysis
or numerical analysis or problems with time lag are often peculiar to the respective
specialties. This approach results, of course, in a longer paper than would other-
wise be the case; the cognoscenti may wish to concentrate upon the Lemmas and
Theorems.

2 Stochastic Delay Differential Equations

Mao [23] and Mohammed [26] examine in some detail SDDEs of the type ana-
lyzed here; Kolmanovskii and Myshkis [18, Chapter 5] set out the formulation of
the problem and some key results in a succinct fashion (see also [19, Chapter 10]
and Kolmanovskii and Nosov [17]). Mohammed’s article [25] gives a very good
introduction to several aspects of stochastic functional differential equations.

We consider for ¢t > ¢y the It6 equation

X (%) :X(t0)+/t F(s,X(s),X(s—1)) ds—|—/t G(s, X(s), X(s—1))dW(s) (2.1a)

(where, see [18, Chapter 8], W (t) is a standard Wiener process, or Brownian motion
process) with the stochastic integral defined in the Tt6 sense, and where

X(t) =®(t) forteJ:=[to— 1 t0] (2.1b)

A reference to (2.1) should be interpreted as a reference to (2.1a)—(2.1b). To indicate
the dependence upon the initial function one may write

X(t) = X(t; to, ). (2.2)

Eqn. (2.1a) is a stochastic delay differential equation (SDDE) of Tt6 type, with “fixed
lag” 7 > 0, and is often written in the compact form

dX(t) = F(t, X(1), X(t — 7)) dt+ G(t, X(t), X(t— 7)) dW(t) (t > o), (2.3)

subject to the “initial condition” X (¢) = ®(t) for ¢ € J in (2.1b).
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As regards ®(-), we request (see, e.g., [18, Chapter 8], [26, Chapter 2]) the fol-
lowing condition.
Condition CO ®(t) satisfies &(sup,c; |®(¢)|*) < oo where the notation & denotes
the expectation; almost all sample paths are continuous and ®(¢) is independent of
the o-algebra generated by W (¢).

Remarks:

e For a useful summary of the properties of expectation and conditional expec-
tation, refer to Mao [23, pp. 8-9]. Williams [34] is a good source for background
stochastic analysis. It seems to be increasingly apparent that the Malliavin
stochastic analysis (¢f. [12]) will be used for future advances in the numerics
of SDDEs.

e Additional conditions on ®(-) are imposed below, for the analysis of the order
of convergence recalled here from [2].

e To be precise in the formulation of the problem, let (Q, A, P) be a complete
probability space with a filtration (A;) satisfying the usual conditions, i.e., the
filtration (A¢)e>1, is right-continuous, and each A;, t > tg, contains all P-null sets
in A. With £(X) = Jo X dP, we say, if £ (| X|P) < oo, that

X el =LP(QAP) for ]l <p<oo (2.4)

and we then define || X, = (& (|X[P))7.

e In the problem without time lag, which may be written

dX (1) = F(t, X (1)) dt+ G(t, X)) dW(t), (t >1o), (2.5a)
X (to) = Xo, (2.5b)

eqn. (2.5a) is termed an Ité stochastic (ordinary) differential equation (SODE).
The two equations (2.5a)—(2.5b) are to be interpreted as

X(t):X(t0)+/t F(s, X (s)) ds+ /t G(s, X(s)) dW(s) (t > to), (2.5¢)

where the second integral is an Ito integral.

The solution of (2.1) is often considered for ¢ € [tg, 7] with some finite T, but
stability in the sense that it is discussed here (see [17, 23], etc.) concerns the effect
on a solution for ¢t € [tg,00) (in particular, as t — oo), of “admissible” changes
in the initial function ®(-). Other definitions of stability may involve the effect of
persistent or “steady-acting” perturbations in (2.1) for ¢ € [tg — 7, 00).

Remark:
e When tg < t' < t" we have, by virtue of (2.1a),

X" = X(t') +/t F(s,X(s),X(s—1)) ds+

tll
+/ G(s, X(s), X(s — 7))dW (s). (2.6)
tl

On the interval [to+n7,to+(n+1)7], where n € N, we therefore have X (t) = X, (t)
where

t

Xa(t) = Xn(t0+nT)+/t+ F(s,Xn(s),Xn-1(s—7)) ds+

G(s, Xn(s), Xn-1(s = 7))dW(s) (t>to+nT), (2.7a)

totnT
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with an initial condition
Xn(t) = ®p(t) := Xn_1(¢) fort € [to+ (n— 1)7,tg + n7], (2.7b)

for n > 0, and with X_;(t) := ®(t). For deterministic problems, such a relation is
the basis of Bellman’s method of steps; for stochastic problems, a similar approach
was commented upon in [2] and exploited earlier by (for example) Mao [23, p. 155];
cf. [16]. In the case of a “fixed lag”, ®,(-) satisfies the appropriate “shifted”
version of Condition CO0.

e The numerical solution of SDDEs has received rather little attention. For the
details of a convergence result for the numerical scheme to be discussed in Section
3.1 we refer to [2]. The reader may compare the results obtained in [2] with
results in [16, 30, 31, 32]. See also Mao [23] for a discussion of “Caratheodory”
and “Cauchy-Maruyama” approximations. We have recently had our attention
drawn to [12]; that substantial work contains important developments and further
relevant citations.

2.1 Conditions on the functions F,G, and 9.

We have F,G : [tg, T] x RxR >R, G : [tg,T]xRxR—>Rand ®:[-7,0] - R.
We will suppose that T' may be taken arbitrarily large. Baker and Buckwar [2], who
gave the details of their mathematics in the case of an autonomous equation

t ¢
X(0) = X(ta) + [ SOXG6),X(s = 7)) ds+ [ g(X(s). X(s = 1)dW (), (25)
to to
imposed assumptions related to Conditions C1-C5 here following.

Condition C1: The functions F and G are continuous on their domains of defini-
tion.

Condition C2: The functions F' and G satisfy, on their domains of definition, a
uniform Lipschitz condition, i.e., there exist positive constants L1, Lo, L3 and L4
such that for all ¢1, ¢a, 91,92 € R and ¢ € [to, T

|F'(t, ¢1,%1) — F(t, ¢2,¢2)| < Li|p1 — 2| + Lalthr — tal, (2.9)

and

|G(t, ¢1,¢1) — G(t, 62, ¢2)| < La|g1 — 2| + Lalthr — sl (2.10)

Condition C3: The functions F' and G satisfy a linear growth condition, i.e.,
there exist positive constants K7 and K2 (that may depend on T') such that for all
¢, ¢1,%,¢%1 €Rand t € [0,7]

IF(t, 6, 61)[2 < Ku(1+ 612 + |61, (2.11)
and
|G(t, 1, v1) > < Ko(1+ [9]* + [11]?). (2.12)

Condition C4: The function ®(-) is Holder-continuous with exponent v, i.e., there
exists a positive constant Ly such that for ¢, s € [tg — 7, 0]

E(|®(t) —(s)|?) < Ls |[t—s|?7, foro=1,2. (2.13)



C. T. H. Baker & E. Buckwar 5

Condition C5: The partial derivatives

OF OF OF 0°F  O9%F J 9?F
-z = = - Z° and —
ot 9’ o’ 9e?’ Iy?’ ¢ Oy’

of F(t,¢,1) exist and are uniformly bounded on the domain of definition of F.

Remarks:
e Some writers appear to be less formal in their statement of assumptions.

e Conditions C1 — C5 are employed for the convergence theory recalled in Section
3.1. Condition C5) is the natural extension of an assumption made by Milstein
[28, p. 20] in his discussion of the Euler-Maruyama method for SODEs.

Definition 2.1 An R-valued stochastic process X (t) : [to — 7,T] x Q@ = R is called
a strong solution of (2.1a), if it is a measurable, sample-continuous process such

that X‘[to,T] is (A¢)to<t<r-adapted, F and G are continuous functions and X
satisfies, almost surely, (2.1a) and the initial condition X(t) = ®(t) (t € [to —

T,10]). A solution X (t) is said to be path-wise unique if any other solution X (t) is
indistinguishable from it, i.e.,

P(X(t) = X(1) forallto—rgth) = 1.

We need to know that there exists a path-wise unique solution X (¢; ¢, ®) of (2.1),
and we have the following result.

Theorem 2.1 Assume that the functions F and G satisfy the assumptions C1 to
C3 above. Then there erxists a unique strong solution to equations (2.1).

Proof: A proof of Theorem 2.1 can be found in [23]. O

We suppose that the equation admits the null solution (or trivial solution) X (¢) =0
(for t > tg — 7), and to this end we request that the following condition holds.
Condition C6: The functions F' and G satisfy

F(t,0,0) =0 and G(¢,0,0) = 0, for ¢ > t.

2.2 Stability in p-th mean

There are at least three different types of stability in a stochastic sense; cf. [23,
p. 109]. We will be concerned, for 1 < p < co, with basic ideas of pth-mean stability
(in particular with mean-square stability obtained on setting p = 2) of the null
solution of eqn. (2.1), with respect to perturbations in ®(-). We here recall various
definitions and obtain a condition for a certain type of stability of a solution of a
stochastic delay differential equation. Recall that J = [tg — 7, t0].

Definition 2.1 For some p > 0, the null solution of the SDDE (2.1) is termed
(1) locally stable in the p-th mean, if for each ¢ > 0, there exists a 6 > 0 such that

E(|X(E;t0,®)F) < ¢ (2.14a)

whenever t > to and £(sup,¢ ;7 |®(1)|P) < d;
(2) locally asymptotically stable in the p-th mean, if it is stable in the p-th mean
and if there exists a § > 0 such that whenever £(sup,¢ ; |®(t)[P) < &

E(|X (t;t0,®)P) = 0 fort — oo (2.14b)
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(3) locally exponentially stable in the p-th mean if it is stable in the p-th mean and
if there exists a 6 > 0 such that whenever E(sup,c |®(t)|P) < d there exists some
finite constant C' and a v* > 0 such that

E(|X(t;t0,®@)P) < C 5(81611; |®(5)|P) exp(—v*(t —t0)) (to <t < 00). (2.14c)

If, in the above, § may be taken arbitrarily large then the stability is in each case
global rather than local.

Remarks:

o If & is the largest of the (positive) values v* for which (2.14c) holds, it may be
termed the rate constant of exponential stability in the p-th mean.

e Mao’s terminology p-th moment exponential stability (see [23, p. 126]) is syn-
onymous with our terminology global exponential stability in the p-th mean.

e For other concepts of stability see, for example, [17, 23] and compare the defi-
nitions given in [11] and in [23] in the case of SODEs.

2.3 Stability of a non-null solution

Observe that the condition G(¢,0,0) = 0 in Condition C6 excludes from consider-
ation equations that have purely additive noise. The following comment indicates
that our stability definitions, applying as they do to the null solution, are less re-
stricted than appears at first sight. Suppose that X(¢) is a given non-null solution
of (2.1). Then the associated equation (to be solved for U(?)),

dU(t) = F.(t,U(t),U(t — 7)) dt
F G UW®), Ut —1)) dW(t) (> to), (2.15a)
Ut)=0 (t€J:=[to— 7 t)), (2.15b)

where

Fut,U@), Ut —7)) = F(t, X(t) + U(t), X(t —7) + U(t — 7)),  (2.16a)
G (t,UW),U(t—7)) = Gt X(t)+U@t),X(t—7)+U{t—7),  (2.16b)

has the null solution U (¢) = 0 for ¢t > t;—7. The sensitivity of X (¢) to perturbations
is now reflected in the sensitivity of the null solution U (#) to perturbations. Our local
stability definitions for the null solution were formulated in terms of the boundedness
or decay of £(|X(t;to, ®)|P) for suitably small £(sup,; |®(t)[?). This should not
be allowed to obscure the fact that stability of a general solution X (¢) relates to
the effect §X(¢) of making a change from ®(t) to ®(¢) + d®(¢) (the effect being
measured by £(|6X(¢)|F)). For a nonlinear SDDE, it is possible for a non-null
solution X (t), having the property that £(X (¢;t0, ®)) — 0, to be unstable. Again
for a nonlinear SDDE, when ®;(t) and ®5(¢) are distinguishable, X (¢;¢0, ®1) and
X (t;t0, ®2) may have different stability properties; however, for a linear SODE all
solutions simultaneously have the same stability properties.

2.4 Insight from deterministic equations

It is useful to compare the definitions given above with the corresponding stability
definitions (see, for example, [1, 17]) for a deterministic problem

8
~
—_
o~
—

Il

ftz@),z(t—7)) (t>to), (2.17a)
z(t) = ¢(t) (t €[to— 7 t0]), (2.17b)



C. T. H. Baker & E. Buckwar 7

where ¢(-) € Cltg — 7,10] or, alternatively, where ¢(-) may be supposed to be
bounded and piecewise continuous. We recall that the usual right-hand and two-
sided derivatives are,

iy — e Y(E ) —y(t)
N0 ) and x(t)_;l—% §

)

and when the two-sided derivative z’(¢) does not exist in (2.17a) it is to be in-
terpreted as the right-hand derivativel. We may more properly re-write (2.17a)
as

al (1) = ft,z(t),z(t —71)) (t>to). (2.17¢)

When f(¢,0,0) = 0, (2.17) possesses a null solution z(¢) = 0. The “deterministic”
stability definitions for the null solution can be deduced from those given for the
stochastic problem.

The equation

z' (t) = —ax(t)+ pz(t — 1) fort >t (2.18)

(where 7 > 0) is often taken as a test equation to develop insight. One can show
that the null solution of (2.18) is globally stable when, in particular,

0< 18l <a. (2.19)

This is a sufficient but not necessary condition. For arbitrary o, € R and 7 > 0,
a necessary and sufficient condition for global stability of the null solution of (2.18)
under continuous bounded perturbations of the initial function on [t — 7, ], is that
all of the (at most countable) zeros {v,} of the stability function

Q) =9(v; o, 8,7) i =v+a— Pexp{—vr} (2.20)

have non-positive real part (any with vanishing real part being simple zeros). Q is
an example of a quasi-polynomial in v.

The zeros of Q have a role later; we shall give a simple analytical result. For
=0, Q(v) = v— (e — ) and everything is obvious. Suppose, therefore, that 7 > 0
and we convey the spirit if we first scale the independent variable and set v, = 7v
in order to consider, with a; = a7 and 3; = g, the function Q. (-) where

QT(VT) =V +a; — 0 eXP(—VT) (0 < fBr < a7)~

This function has a single real zero, which we denote —v*, lying in (—a;,0).
The existence of such a zero follows because Q;(—a;) = —f;exp(a,;) < 0 and
Q:(0) = a; — By > 0. Tts uniqueness follows because the derivative Q(v;)
is 1 4+ frexp(—v,) > 1. We can now refine the result v, € (—a;,0). Since
Q:(Br —ar) = B:(1 —expla; — B;)) < 0 we have v; € (8; — a;,0). If we in-
troduce I/,ET] in order to write —v} = I/LT] — a, then I/,ET] exp(V,ET]) = Br exp(a;). If
we retain ezplicit dependence upon 7 we reach the following conclusion.

Lemma 2.1 Suppose that 7 > 0 and 0 < § < a. The function Q(v; a,B3,7) =
v+ a—PBexp{—vt} in (2.20) has a single real zero —v* which is negative. If T =0
then v* = a — B; if 7> 0 then § — a < —v* < 0, and we can write

Vv =y, —a (2.21a)

where
veexp{yer}t = Bexp{ar} (so that 0 < vy € (B, @)). (2.21b)

! This interpretation is a standard convention at a left end point such as tg. If ©(+) is plecewise
continuous with a finite jump at t* € (tg — 7,%g), the right-hand derivative is invoked at t* + 7.
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Numerical approximations to v* for various parameter values provide additional
insight. (They may be obtained by Newton’s iteration.)

Remark:
e There is a variety of different approaches to the study of stability. Since the
equation (2.18) is both linear and has constant coefficients it is appropriate to
indicate very briefly some of the many alternative approaches which can sometimes
be applied not only to (2.18) (which we use to illustrate technique) but also to
linear equations with variable coefficients or non-linear equations. For alternatives
to those followed here we refer to the relevant literature cited (where the following
observations may also be discovered).
e First consider the map

X = |X] (2.22a)

for X € R, which, given the function z : [to — 7,00) = R gives rise to

u(t) = |z(t)| = sign{z(t)}z(t). (2.22b)

Now u(t) > 0 with equality only if z(t) = 0 and «/,(t) = sign{z(t)}z/ (t). If
z! (t) = —ax(t)+PBx(t—7), then o/, (1) = —asign{z(t)}x(t)+Fsign {z(t) }x(t—7)
and hence v/, (t) < —alz(t)| + |B||z(t — 7)| from which we deduce for the non-
negative function u(t) that

uly (1) < —au(t) + |B] sup u(t —s7). (2.23)
s€[0,1]

If we show that (when SUP,¢[0,1] u(tg — s7) is small) that u(t) is (¢) bounded, (77)
tends to zero, or (7ii) decays exponentially, we can deduce the stability, asymptotic
stability, or exponential stability of the null solution of (2.18).

e Alternatively, consider the function w(t) = $|z(t)|? derived from the map

1
X §|X|2. (2.24)

We have w/, (t) = z(t)a, (t). If 2(t) is a solution of (2.18) then w/, (t) = —a|z(t)|*+
Bx(t)z(t — 7). Tt follows immediately that

Wy (1) < —ala(®F + 8 sup la(t— s,
s€f0,1]

so wy (t) = |z(t)|? satisfies

w!, (t) < —aw(t) + |08 sup w(t — s7). (2.25)
s€f0,1]

If we establish (when sup,cp jw(to — s7) is small) that w(?) is (i) bounded,
(1) tends to zero, or (ii7) decays exponentially, we can deduce, respectively, the
stability, asymptotic stability, or exponential stability of the null solution.

¢ Consider now the equation z’, (t) = —ax(t) + f.(t)z(t — 7) in which g,(t) is
right-continuous for ¢ € [tg, 00) and is bounded with sup,s, |6(t)] = f < oo.
Then the preceding inequalities (2.23) and (2.25) are still valid and can be used
to establish stability of the null solution.

e A different tactic to that employed above is indicated in Section 4.7.

2.5 An inequality.

Motivated by the need, in our study of stability in a stochastic sense, to examine
inequalities of the type (2.23), (2.25), we shall employ the following results.
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Lemma 2.2 Suppose that T > 0, that 0 < § < «, and that the function Q 1s
defined by (2.20) and suppose v* € (0, — B] satisfies Q(—v*; «, 3,7) = 0. Then,

for arbitrary K > 0, the positive monotonic-decreasing function

Wi (1) = Kexp{—v*(t —t0)}, (2.26)
satisfies
Wi(t) = —awk (t) + B sup wg(t—st) for t>tg. (2.27)
s€f0,1]

Proof: By the preceding lemma, Lemma 2.1, for 0 < @ < a the unique real zero
of Q(v) is a value —v* € [f — a,0). We verify by substitution, employing the
property Q(—v*; a, 3,7) =0, that for any K > 0

Wi (t) = —alk () + Bk (t — 7) (2.28)
for t > tg. The result follows since Wi () is monotonic decreasing. |

Recall that, for a continuous real-valued function y(-) of a real variable, the Dini-
derivative D¥y(t) is defined as

t+4) —yt
D+y(t) = lim sup y(—}-—)y()
5\0 d

We shall not here require the other Dini-derivatives D™ y(t), Dyy(t), D_y(t). From
the respective definitions of the differing types of derivatives, we have the following
result.

Lemma 2.3 (a) Suppose that u(-) is real-valued and continuous on [tog,T) and
Dtu(t) <0 fort € [to,T) (with the possible exception of a countable set of points
in [to,T)). Then u(t) is a non-increasing function of t for t € [to,T). (b) If y(-)
has a right-hand derivative y, (t) at t, then DV y(t) = y/, () and if Y () exists then
Dty(t) = y'(t). (c) Assume u(-) and w(-) are continuous on an interval (to,T) and
in addition the derivative w'(-) exists on (to,T). Then if y(t) = u(t) + w(t) we have
Dty(t) = DY u(t) +w'(t) on (to,T),

Part (a) of the above result is attributed to Zygmund by Lakshmikantham and Leela
[21, Volume 1, p. 9] and part (c) is noted by Walter [33] (observe that D* is not
a linear operator on the space of continuous functions). The following theorem is
related to a result due to Halanay; it employs the Dini derivative Dt. For Halanay’s
theorem and some related results see, e.g., [4, 6, 7, 22].

Theorem 2.1 Suppose that the positive-valued function v : [to — 7,00) — R™T, is
continuous (on [tg — T,00) ), for given 7> 0. Suppose, further, that

0<B<a, (2.29a)
Dtu(t) < —a w(t) + B sup v(t —s7), t € [to, c0). (2.29b)
s€f0,1]
Then
v(t) <{ sup wv(s)} exp{—v*(t —tg)} forto<t< oo, (2.30)
to—7<s<to

where v* € (0,a — B] is the value in Lemmas 2.1 and 2.2.
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Proof: The case where 7 = 0 is immediate, so let 7 > 0. Set K = supu(s),

seJ
where J = [tg — 7,t0] (by assumption, K > 0) in the definition of Wk (t) above.
Choose any T >ty and let £ > 1 be arbitrary. The monotonic decreasing function
Wi (-) is differentiable on [tg — 7, T]. We now establish that

v(t) < bk (t) for tg — <t < T. (2.31)
We give a proof by contradiction. Obviously
v(t) = Wk (t) < Lwg (t) when to — 7 < ¢ < tq. (2.32a)

In contradiction of (2.31), suppose that v(t1) = fiwk(t1), for some argument
t1 € (to,T). Since v(-) and Wk (+) are continuous functions, there must exist some
least value t1 € (tg,T) such that

[v(t) —Lwg(t)] < O0fortg—7<t<t; and [v(t1) — LWk (t1)]=0. (2.32b)
It follows, firstly, that

sup v(t — s7) < £ sup Wk (t — s7) for ¢ € [to,t1], (2.32¢)
s€[0,1] s€[0,1]

and, secondly, that [v(t) — £k (t)] must be increasing on some subinterval of
[to,t1]. But (appealing to Lemma 2.3) no such subinterval exists, since, on [tg, #1],
D*[u(t) — ik ()] = D*o(t) — £ () < —a [o(t) — £ ()1 + & [supsego g olt -
ST) — SUP,¢po,1] Wk (t — s7)], and hence

D [w(t) — Lok (t)] < (B — @)[ sup v(t — s7) — sup Lk (t — s7)]
s€[0,1] s€[0,1]

0, on [to,tl]. (232d)

A

Hence, appealing again to Lemma 2.3, we know that [v(t) — fwg (¢)] is non-
increasing on [tg,%1]. Thus, the premise that v(¢t) = fwk (¢) for some t = t; €
(to,T) is false. Eqn. (2.31) now follows. Now letting £ — 1 we conclude that
v(t) < Wi (t); finally, since T' is arbitrary, (2.30) follows. O

2.6 Some stochastic analysis

For completeness, we recall the following definition.

Definition 2.2 (a) We denote by L2[to, T| the family of A;-adapted processes {Y (t) :
t > to} such that ftf [V (¢)|2dt < oo and by L [to,00) the family of processes

{Y(t) : t > to} such that, for every T > to, {Y(t) : t > to} € Le[to,T]. (b} We
say that a stochastic process X (t) on [to, T], given, with f € L'[to,T], g € L*[to, TY,
t

t
by X(t) = X(to) +/ f(s)ds +/ g(s)dW (s) (where the second integral above
t t

s to be interpreted in l;fhe Ito sensej, has a stochastic differential dX(t) given by
dX(t) = f(t)dt + g(t)dW(1).

We denote by Ui, Uy and Uy, respectively, the partial derivatives a—g, %—g and
2
%xg of a function U = U (¢, z). We recall the following result (see Mao [23]).

Theorem 2.2 (The 1t6 Formula) Let U : [tg, 00) x R = R have continuous partial
derivatives Uy, U, and Uy, and let X (t) be a stochastic process with stochastic dif-
ferential dX (t) = f(t)dt + g(t)dW (t) where f € L _[to,o0), g € L [to,00). Then

the process U(t, X (t)), defined on 0 <t < oo, with initial value U(tg, X (o)), also
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has a stochastic differential with respect to the same Wiener process W (t), and we
have for any 0 <t < oo
1
dU(t, X (1)) = {Ut(t,X(t)) + U (t, X (1)) f(t) + §Um(t,X(t)) g2(t)} dt
UL X(0) g(t) dW (D) (2.33)

almost surely. In this formula, f and g can be state-dependent (e.g., f(t) =
F(t:X(t)JX(t - T))7 g(t) = G(t,X(t),X(t - T)))

The Ito formula can be considered to be a “stochastic chain rule”. One can restrict
the above theorem to the interval [tg, T] in an obvious manner. In the special case
that X (¢) is a solution of (2.1), the stochastic differential (2.33) dU (¢, X (¢)) takes,
when U, Uy, Uzz are continuous, the form

dU (¢, X (8)) = {U(t, X (8)) + Un (¢, X (2)) F(t, X (), X(t — 7))
+ %Um(t,X(t)) G*(t, X(t), X(t—7))} dt
+ Ua(t, X(1)) G(t, X (1), X (t — 7)) dW (2). (2.34)

We shall use the equivalent integral form of (2.34), below.

2.7 A Lyapunov-type theory
We shall prove the following result.

Theorem 2.3 Assume (a) conditions C'1-C6 hold and that X (t) = X (t;t0, ®) is
a solution of (2.1). Assume, further, (b) that there exists a positive, continuous
function V(t,2) (fort > to — 7 and z € R); (¢} that there exist positive constants
c1, ¢z, and p > 1, such that

e 2P <V (tz) < eqlzl?, (2.35a)
when t >ty — 7 and z € R. Finally, suppose (d) that, when t > tq,
DYE(V(t, X(t)) < —al(V(t, X)) +BE(V(E— 7, X(t—7))), (2.35b)
for some values 0 < 8 < a. Then

E(X (110, 9)") < ZE(_sup |B(s)P) exp(—v*(t o). (2.36)

s€[to—T,t0]

with v* given in terms of a, § by (2.21), and the null solution of eqn. (2.1) is
therefore globally exponentially stable in the p-th mean.

Proof: The Dini derivative D+E(V(t, X(t))) in (2.35b) is D*u(t) where
v(t) = EV ([, X@1) = EV(E, Xt t0,D))).

Tt can be shown (see, e.g., [24]) that v(t) exists for ¢+ > tq — 7 and is continuous
(and non-negative); it is therefore Dini-differentiable for ¢ € [to — 7,00). Eqn.
(2.35b) yields, expressed in terms of v(t),

Dtu(t) < —av(t)+ 3 sup v(t—s7), t>to,
s€[0,1]

and we obtain from Theorem 2.1 the exponentially decreasing bound on v(t):

v(t) < {51611; v(s)} exp{—v*(t —to)} forty <t < co. (2.37)
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However, by (2.35a),

sup v(s) =sup E(V (s, ®(s))) < casupE(|P(s)|7) < c2€(sup |®(s)|’)  (2.38a)

seJ sedJ seJ seJ
and )
XM < ~ui), (2.38b)
€1
for ¢; # 0 so that from (2.37) and (2.38) we obtain the desired result, which by
Definition 2.1 implies the exponential stability of the null solution. a

Lemma 2.4 Suppose that V(t,z) satisfies condition (2.35a), in the statement of
Theorem 2.3, and it has continuous derivatives Vi(t,z), Vy(t,z), and Vyy(t, z) for
t >ty — 71 and x,y € R. Suppose further that

Vilt,z) + Vo (t,z) F(t,z,y) + %Vm(t, (L‘)G2(t,l‘, ) (2.39)
< —aV(t,z)+ BVt —r1y), for0< < a,

whent > tg and x,y € R. Then the inequality (2.35b) holds, and the conclusions of
Theorem 2.3 apply.

Proof: By the integral form of the Tto formula (2.34) we obtain for ¢ > g,
VE+6,X(t+6))—V(t X))
t46
= Ve(s, X(s)) + Va(s, X(s)) F(s, X(s), X(s = 7))

t

t4d
+ %/t Vew (s, X (8)) G2(5,X(s),X(s — 7)) ds

t4d
—|—/t Ve(s, X(s)) G(s,X(s), X (s —7)) dW(s).

Since S(I:H Ve(s, X(s)) G(s, X (s), X(s—1)) dW(s)) = 0, taking expectations to
obtain E(V(t + 6, X (t +9)) — V (¢, X(2))) yields, for ¢ > g,

EV(t+3,X(t+8))—EV(, X(1))
t46
:5(/t Ve(s, X(s)) + Va(s, X(s)) F(s, X(s), X (5 — 7))
+ %VM(S,X(S)) Gz(s,X(s),X(s — 1)) ds)
and thus
EVEH+6X(t+0)—EWV(t,X(2)))
t4d
<([ e X)) + 5 EW - X (s 7)) ds}).

Since the Dini derivative D v(t) is

L EV{E+6,X(t+0)—EV(t,X()))
DYE(V(t,X(t))) := 111;1\?(1)1}) 5

the preceding result leads directly to
DYEWV({t, X)) < —a VX)) +BEV(E—T,X(t—1))),

for t > ty. Clearly, Theorem 2.3 now applies. a
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An examination of the proof of Theorem 2.3 will reveal that (2.39) is stronger than
required, since we only employ the bound

EWVilt, X))+ Valt, X)) F(t, X (), X (t — 7)) +%Vm(t,X(t))G2(t,X(t),X(t - 7))
<E(—aV(t, X(H)+pV(E—1,X(t—1))), (2.40)

for 0 < 8 < a, in the particular case that X (t) satisfies the given SDDE for some

D(-).

Remarks:

e Mao [23, pp. 178 et seq.] considered multiple lags (see eqn. (4.20a) below) and
established exponential stability in the p-th mean by a different proof, based on
a Razumikhin-type analysis.

e Conditions (2.35) are required only for all sufficiently small z, y, uniformly for
all sufficiently large ¢, to obtain local exponential stability in the p-th mean.

e In deterministic stability analysis for solutions of delay differential equations,
one often utilizes a condition on the total derivative (suitably interpreted) of
some Lyapunov function or Lyapunov functional along the solution trajectory.
The approach followed here is an adaptation of the deterministic approach; one
takes the Dini derivative of the expectation of V (¢, X (¢)) “along” X (¢).

The following result now follows as a corollary of Theorem 2.3.
Theorem 2.4 (A criterion for stability.) Assume that there exists k > 0 such that
eF(t,z,0) < —xl|z|? for all (x,t) ER x [0,00). (2.41)
Assume also that there are nonnegative numbers aqg, oy, Bq, 1, such that
|F(t,21,0) = F(t,22,y)| < agler — z2|+ a1yl (2.42)
and

|Gt z1,9)* < Bolz|* + Bulyl? (2.43)
forallt >0 and 1,22,y € R. If

-1
p>2and k > al—}—pT([)’o + 1) (2.44)

then the null solution of eqn. (2.1) is globally exponentially stable in the p-th mean.

Proof: Our proof follows that in [23, p. 178-179] in most respects, but for an
appeal (via Lemma 2.4) to Theorem 2.3 rather than an appeal to [23, Theorem
6.4, p. 177]. For completeness, we provide a detailed proof, borrowing from [23,
p. 178-179].

We need to establish an inequality of the form (2.39). We shall require recourse

to the inequalities

—1 1
P a4+ —|yP (2.45a)
p p

A

2P~y

_ p—2 2 .
lz|P 2y < TI?BI”Jr];IyIp (2.45Db)

which follow from the elementary inequality (see [10, p.37])

w'v' ™ < su4 (1 —s)v, when s€ (0,1)and u,v >0, (2.45¢)
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on writing, respectively, either u = |z|P, s = p%l and v = |y|P (and observing that
p=1 1 -
2Pyl = (l2P) % (lyl7)?), or u= e[, s = 2% and v = |yl. Let
V(t,z) = |z|F. (2.46)

We have (noting that V'(¢,z) in (2.46) has been chosen to be independent of #)

1
Vilt,z) + Vi (t,z) F(t,z,y) + §Vm(t,m)G2(t, z,y)
=0 —|—p|m|p_2:EF(t, z,0) —|—p|m|p_2:c{F(t, z,y)— F(t,z,0)} + g|m|p_2|G(t, x, y)|2

-2
+%|x|p_4|m(;(t, z, y)|2

p(p—1)8 - plp—1 _
<- <Pﬁ - %) 2P + pay|e[P~ y| + %ﬂﬂﬂp *ly|?

(for all z,y € R). We now appeal to (2.45a—b) and the conditions of our Theorem,
and we obtain

1
Vilt, ) + Velt, o) Flt2,9) + 5Veult, 2)G (2, 2,9)

<= (= 22— =y - EEDE= g )
+(ar 4 (p—1)B1) |yl (2.47)
< —aV(t,z)+ BVt —T1y) (2.48)

(V(t,z)is |e|P, V(t — 7, y) is |y|P) with
GZPK—I#%— (p— a1 — W[ﬁ and f=a1 + (p—1)p1.

By virtue of (2.44), 0 < 8 < «a. The result (2.47) is obtained by Mao, who then
appeals to [23, Theorem 6.4, p. 177] to establish Theorem 2.4; in our alternative
proof of Theorem 2.4, the proof is immediately completed by an application of
Lemma 2.4, using (2.48). O

2.8 A test equation

Here, we consider a linear stochastic delay differential equation on ¢y <¢ < o0 as a
test equation for the discussion of stability, namely

dX(t) = {—a X(t) + f X(t—7)} dt (2.49a)
F XM + pX(t—1)} dW(t) (t> o),
X(t) = ®(t), € [to— T t0] (2.49b)

with a > 0, £(sup,c; |®(¢)|*) < oo, where W (t) is a standard Wiener process, and
a,3,n and g € R. All the required conditions for us to apply Theorem 2.4 to
the problem (2.49) are satisfied and we obtain the following result for mean-square
stability (p = 2):

Corollary 2.1 If
o > ||+ [nf” + [l (2.50)

then the null solution of (2.49) is (globally) exponentially mean-square stable.
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Proof: Set F(t,z,y) := {—az + By} and G(t,z,y) = {nz + py}. By virtue of
the fact that 2|puzy| < n?z? 4+ p?y?, the conditions of Theorem 2.4 hold for the
case p = 2 with 8y = n, /1 = p and with & = @, ag = @, a3 = 8. (Indeed, with
the renaming of variables, for p = 2 conditions (2.50) and (2.44) are equivalent.)

Remarks:

e In the case that n = g = 0 the result in the Corollary reduces to a classical
result corresponding to (2.18); see (2.19). For § = p = 0 we obtain an SODE for
which the classical result for mean-square stability is a > %|77|2.

e Under condition (2.50) the null solution is also “exponentially almost surely

stable” [23].

3 A Numerical Method

In this section we attempt to parallel, for the numerical solution, many of the
features of our earlier discussion for the exact solution. Numerical methods were
discussed (in particular, in terms of convergence) by Baker & Buckwar [2] and we
recall the essential features of an Euler-type method?. Earlier results on numerical
schemes were published by U. Kiichler and E. Platen [16] and (in the late 1980’s,
in Romanian) by C. Tudor and M. Tudor [30, 31, 32]. See also Hu, Mohammed,
and Fan [12, submitted for publication] for a rigorous and extensive discussion of
schemes of Euler-Maruyama and Milstein-type for stochastic functional differential
equations.

3.1 An Euler-type method

In order to define a numerical method for eqn. (2.49), for 7 > 0 we choose a step-size
h > 0 of the form h = %forsomeN:NTyh €EN. (If 7 =0 we set N =0 and take

arbitrary h > 0. We leave the reader to make the necessary adjustments for this
case.) Writing t,, = tg + nh for n € Z, we define a mesh

Too := {to, t1,ta,...}. (3.1a)
The initial interval [to — 7,0] is partitioned
to—T=t_Ny <tont1 <...<t_1 =tg—h <t (3.1b)
and it 1s convenient to introduce the notation
J=TJrn ={-N,1-N,... —1,0} (3.1¢c)
for the indices used in (3.1b). Tt is also convenient to write
T = {t_ N tion, ... t_1,t0 b, e, .. ) (3.1d)
The Euler-Maruyama formulae for the problem

dX(#)=F@, X@t),X{t—1))dt+ G, X(@), Xt —7))dW(t) (t > 1), (3.2a)
subject to X (¢) = ®(¢), (t € [to — 7,%0]), (3.2b)

read

Xpg1 = Xn4+h Fltn, X, Xpon) + Gltn, Xn, Xp_n)VhE, (n € N), (3.3a)
subject to X, = X(t,) = ®(tn) (n€ Trn ), (3.3b)

2The Euler-Maruyama formulae were initially introduced for stochastic differential equations
with no time-lag but the extension to SDDEs is a natural one.
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where &, is a A'(0, 1) random variable, and AW, ;1 has been replaced by Vhé,. One
may indicate the dependence on the initial function by writing {X,} = {X,(®)}
for the solution of (3.3).

Definition 3.1 The error of the approximation {)?n}nZO on the mesh-points Too N

[to,T] is the sequence of A;, -measurable random variables e, := X (t,) — )?n for
n=201,..., witht, <T. If

H%aXT] (5|En|2)% =0(h*) (as h 0 witht/h € N)
trn€lto,

then the approrimation {)?n} 1s convergent in the mean-square sense, with order p
to the solution X (t), on the mesh-points in [to,T].

The following convergence result was established in [2], and is restated here for
completeness and ease of reference.

Theorem 3.1 Under conditions C1 — C§ of Section 2.1, the Euler-Maruyama so-
lution converges to the true solution with order of convergence p = min(y,1/2) in
the mean-square sense, on the mesh-points.

Remark: For the equations under consideration, with multiplicative noise, the
above result suffices. However, we observe that Baker and Buckwar [2] also con-
sidered the consequences of the condition:

Condition C7: (a) The function G does not depend on X (the SDDE has only
additive noise) and (b) the function F (¢, ¢, ) is decomposable as f1(¢) + f2(v),

in their discussion of (2.8). This Condition identified a subclass of problems (2.8),
of the type

X(t) = X(to) + / (/1 (X(5) + Fo(X(5— 7))} ds + g0 / AW (s),

for which the convergence result in [2] assumed a strengthened form. With the
additional condition, the argument of [2, p. 328] could be refined and the order of
convergence in the mean-square sense shown to be p = min(vy, 1). Whereas such
special circumstances may result in improved rates of convergence, the general
result p = min(y, %) of Theorem 3.1 cannot be bettered without making additional
assumptions.

Example 3.1 For eqn. (2.49) the Euler-Maruyama recurrence reduces to

Xpp1 = (1—ah) X, + BhXe n+(Vh Xy + uVh X, n) én  (3.4a)

Xn=X(ty) =®(t,) (n€{-N,1-N,... 0}), (3.4b)

where t,, = tg + nh.

3.2 Numerical stability

We consider the stochastic difference equation with finite time-lag, of the form

Xps1— Xp = hF(tn, Xn, Xn_n) + VAG(tn, Xn, Xn_n) &n, n €N,  (3.5a)

Xn=9®(ty), ned, (3.5b)

where t, = tg + nh. Since we assume (¢f. Condition C6) that F(¢,,0,0) =
G(tn,0,0) =0 for all n € N, (3.5) admits the null (zero) solution.
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Definition 3.1 For p > 0, the null solution of (3.5) is said to be
(1) locally stable in the p-th mean if, for each € > 0, there exists a value § > 0 such
that, whenever € (sup, ¢ 7 |®(tn)]7) <,

E(lznlP) <e neN; (3.6a)

(2) locally asymptotically stable in the p-th mean if it is stable in the p-th mean
and if there exists a value 6 > 0 such that, whenever £(sup, ¢ ;7 [®(t,)|F) <4,

E(|znl’) = 0 as n — oo; (3.6b)

(3) locally exponentially p-stable (with exponent v*) if it is stable in the p-th mean
and if there exist a finite C > 0, a value v* > 0, and a value § > 0 such that,
whenever &(sup, ¢ 7 |®(t,)[F) < 4,

E(|znl?) < Cexp{—v*(tn —t0)} as n — oco. (3.6¢)
If there is no restriction on the choice of §, the stability is in each case global.

Remark:
e The above definition readily extends to a class of more general recurrence rela-
tions than that provided by the Euler-Maruyama scheme.

3.3 Insight from deterministic equations

As in the case of the SDDE, it is instructive to consider the deterministic case (2.17)
for which we obtain the recurrence

Tny1— Tn = hf(tn, 2n,2n_n) (n>0), (3.7a)
zp = @(to—nh) (ne{-=N,1—-N,...,0}). (3.7b)

Applied to the deterministic test equation (2.18), namely 2'(¢) = —az(t)+pz(t—71),
we obtain

Tp41 = Tp — ahz, + Bhe,_N (3.8)

for n =0,1,2,.... The stability polynomial for the recurrence (3.8) is
Ry (( e, B) =" — (1—ah)(N —ph (Nh=r1). (3.9)

Remark: R
e Denote by {Cg}éVH the zeros of Ry -(¢; «, ) and by {(,} the zeros of largest
modulus. Tt is well-known that the null solution of the recurrence (3.8) is

(a) globally stable if Rn -(¢; «, 3) is simple von Neumann: that is, |(| < 1 for
all £€ {0,1,..., N + 1}, and any ¢; of modulus unity is simple;

(b) globally asymptotically stable if Ry - ({; «, ) is a Schur polynomial: that
is, [¢¢] < 1forall £ €{0,1,..., N + 1};

(¢) globally exponentially stable if, for some v, > 0, the corresponding polyno-

mial Ry - (7; a, ﬂ) in the variable ( is szmple von Neumann: that is,
exp(—4) R

|€e| < |exp(—vy)| when R - ({e; @, 8) = 0, and any {; of modulus | exp(—v4)|

is simple.
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Lemma 3.1 If 0 < # < a and ah < 1, then (a)} the polynomial Ry ,((; «,f3)
has a single positive zero (§ € (1 — ah,l) of the form (§ = exp(—vyh) where
0 < V¥ < a; furthermore, (b) for arbitrary C > 0 the sequence of positive and
monotonic decreasing values {U,}*°y with

v = C(&)" (3.10)
is a solution of the recurrence (3.8), that is Vpy1 — Vp = —ah, + BhUp_n (n > 0)
and, in consequence,
Unt1 — Unp = —ah®, + Ph sup Up_s (n>0). (3.11)
Le{0,1,-+,N}

Proof: Note that 8 > 0 and (1 — ah) > 0. Since Ry, (¢; o, 8) = ¢V —
(1 — ah)CY —ph, we bave Rl (¢; @ 8) = (V-1 {(N + 1)¢— N(1 - ah)}. We
find Ry, (0; a,8) = —Bh < 0, Rn,(¢; ,8) < —Bh for ¢ € (0,1 — ah), and
Ryn-((1 = ah); a,8) = —ph < 0. Now Rny,(1; o,8) = (o — B)h > 0 and

N (G a,B) > 0 for ¢ > H_LN(I — ah) (hence for { > (1 — ah)). Part (a)
follows. Part (b) is established by substitution employing Ry - ((}; a,3) = 0 and
observing the monotonicity of the sequence {v,}. O

The estimate (¥ € (1—ah, 1) can be improved. We have Ry, (1—(a—p)h; «,8) =
{(1 = (a — B)h)N —1}Bh < 0 and hence

Gy € (1= (a—=p)h,1) (3.12a)

and the lower bound on (f is exp{—(a — B)h} + O(h?) as h Ny 0 and N — oo
(that is, as h N\, 0, a, 8, 7 being fixed with Nh = 7), ¢f Lemma 2.1. Indeed, (f

approximates exp(—v*h) in the sense that
1
¥ = exp(—vih) with vf € (0,a— 3], when h e (0,—), (3.12b)
a

where vi — v* > 0 and (f = exp(—v*h) + O(h?), as h \, 0 and N — cc.

Remarks:

e The value (F can be termed the principal root of the equation Ry - ((; o, 3) = 0.
e The following theorem provides an example of a discrete inequality of Halanay
type, an analogue of Theorem 2.1. Other such results have been derived by Baker
and Tang (see, for example, [4]).

3.4 A discrete inequality

Theorem 3.1 Suppose, for some fized N > 0, that {v, }*°y is a sequence of positive
numbers that satisfies, where

0<fB<aand0<h<i (3.13a)
the relation

Upnt1 — Un < —ahv, + Bh Un—¢ forn € N. (3.13b)

max
£e{0,1,...,N}

Then v, < {maxee{—N,l—N,...,o} vz} exp{—vy(t, — to)} where (¥, and v} > 0 are
the values occurring in Lemma 3.1(a) and in (3.12).
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Proof: With 7 :={-N,1—N,... 0}, take C = maxyc s v¢, and define v, as in
Lemma 3.1(b). Then v, < v, for £ € J. Our theorem is established if we show
that v, < ¥y for all £ € N. Suppose, in contradiction, that there exists a least

integer m > 0 such that v;,41 — Umy1 > 0. Then maxse 7 Vmys < MaxXee 7 Umpe
and (3.11) and (3.13b) yield

ma1 < (1 —ah)v, h m
U1 < ( ah)vy, + 3 1;}162?7)(1) .

IN

(1 — ah)vy, + Bh Epez?;(ﬁm_w = Um+1 (3.14)

so that vy,y1 < Upyr, which contradicts our assumption. The result v, <
{maxZE{_N’l_N’MO} vg}(C;)” (and hence the theorem) thus follows since we al-
ready have an explicit expression for v,. a

3.5 A Lyapunov-type theorem

Theorem 3.2 With 7 > 0, and h = /N > 0 where N € N, suppose {)?n} =
{)?n(<1>)} is a solution of (3.3). Assume that there erists a positive-valued function
V(t,z) (fort € T and x € R) such that (a) there exist positive constants c¢1, ca,
and p > 1, for which

er 2P <V(tg,2) < calz|f (€T, z€R) (3.15a)

and (b) such that, for
0 < B < a, where ah < 1, (3.15b)
E(V(tng1, Xng1)) — E(V(tn, Xn)) (3.15¢)

< —ah&(V(tn, X»)) + BhEV (tn_n, Xn_n)),
for alln € N. Then
E(Xal) < 2 {E(max|@(t))} exp{ = (tn — o)), (3.16)

for all n € N, where vf is given by (3.12b) in terms of a and 3. Hence, the null
solution of (3.3) is exponentially stable.

Proof: If we define v, = £(V (¢,, )?n) then condition (3.15c¢) yields

n —v, < —av, n 1
Untl — Un < —a +ﬂ%c}}“ +e (3.17)
(recall that J := {—=N,1—N,...,—1,0}), and we can use Theorem 3.1 to obtain

the exponentially decreasing bound on v,:

vp < {1%12?7)(1)4)} exp{—v*(t, — o)} forty <t < oo. (3.18)
€

However, by (3.15a),
maxv(te) = %%;(ggl(lol?l]g(v(tuo ©(te))) < c2max&(|®(te)[") < c2€ (max|@(te)[).
(3.19a)
Again by (3.15a),
=~ 1
SRR < L, (3.19b)
1

for ¢; # 0, since v, = E(V(tn,;((tn)). Thus, from (3.18) and (3.19), we obtain
the desired result (3.16). By Definition 3.1, this implies the exponential stability
of the null solution. a
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3.6 A worked example

Consider the example, appearing in (3.4),

Xpp1 = (1—ah) Xy 4 BhXn_n + (pVh X + pVh X_n) &n. (3.20)
The deterministic recurrence of which this is a generalization reads
Znt1 = (1 —ah) Zp + BhZ,_N. (3.21)

In the stochastic case, the analysis depends upon our choice of p and we will here
take p = 2 (the mean-square case). We can write the recurrence (3.20) in the form

Xnp1—Xn=An; Api=(d 4+ d"6:) X0 + (V' +6"6,) Xn_n, (3.22a)
where for ease of notation we set
a =—ah, a" =gVhb = Bh, ¥’ = ph. (3.22b)

Now 5(2+1 — X2 = Ap(Xny1 + )?n) = An(2X, + A,) whence )?ZH —N)A(:g =

{(al + allgn))}:n + (bl + b”En)in—N} X {(2 + a' + allgn))?n + (b/ + bHEn)Xn—N}~
Introducing appropriate real numbers A; = A;(«, 8,0, u, h), B; = Bi(a, 3,1, p, h),
C; = Ci(a, 8,1, pt, h), this is of the form

)?ZH - )?Z = {Ao+ A& + A252}§Z + {Bo + Bién + Bzfi})?n)?n—N
+ {Co 4 Cr&n + C2621 X2y

Hence, taking account of the fact that £, is a standard normal random variable?
and &, and X, are independent for r < n, we have, if =N < 7r s (r,s € N), and if

r,s <mn,

E(€n X X,) = E(6)E(X, X,) = 0, and E(E2X, X,) = E(EDE(X, X,) = £(X, X,).
We therefore obtain
E(Xi4) —E(XD) = {40+ A2} E(XD) + {Bo+ B2}E(XaXoon)  (3.23)
+ {Co+ C2}E(X]_y).
To this point, the analysis is exact; but we now introduce bounds (and therefore

have some choice). For example, we have E(J?HJ?H_N) < %{5(5(,21) +5()~(T2L_N)} and
hence

E(X74) —E(X7) < (3.24)

1 - 1 N
{Ao+ As + §{Bo + Bo}} E(X2)+ {Co+Ca+ §{Bo + B} }E(X2_N)-

Evaluating AZ = Ai(aaﬂanuuah)a BZ = Bi(aaﬂﬂna/jﬂh)a and CZ = Ci(aaﬂvna,uvh)a
for i = 0 and i = 2 we obtain (on setting v, = £(X?2), and bounding v,_n by
maxX,e{o,1,.....N} Un—r) a result

v — vy < —apv max  Un_g, 3.25
n+1 n > htn +ﬂh Ce{0,1 N n—4 ( )

with

3That is, an N(0,1) random variable, with zero mean and unit variance.
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1
ap = {Ag+ As + i{BO + By} = ah + (ah — Bh)(1 — ah) — (7}2 +nu)h (3.26a)
1
B = {Co+ Co+ 5{Bo+ Ba}} = fh{l — (a — B)h} + (1* + nu)h, (3.26b)
to which Theorem 3.1 may be applied if we have

0< fh <ap<l. (3.26¢)

Now if 0 < f < aand 0 < ah < 1 we have 0 < ap < 1 and 0 < G < ap
provided, respectively 0 < ah + (ah — Bh)(1 — ah) — (> + nu)h < 1 and 0 <
Bh{l—(a—B)h}+ (p? +nu)h < ah+ (ah— Bh)(1 —ah)—(n* + nu)h. Rearranging,

we require

(n* + nu)h
1—ah

h< (a—B)h <1+(“2+TW)

Our conditions already assume that 0 < fh < ah < 1 and (3.27) provide additional
bounds (#) on h in terms of the noise (which are stricter for smaller & — 8) and
(#4) on the noise (which are stricter for smaller a — g and for gh closer to 1). If
we introduce a scaling factor and write n = eng, ¢ = o, in order to regard e
as a measure of the size of the noise, we see that the above inequalities indicate a
dependency on &2.

(772+W)—ah
1 —ah
(1* + np)
1—3h

<(a—P)h <1+ (3.27a)

(3.27h)

4 Some extensions

Much remains to be explored and we give here some indication of possible extensions
that have attracted our attention for future study. We note again that results for
SODEs can be obtained as a special case of the results for SDDEs.

4.1 Use of the continuous Halanay-type inequality

The preceding stability results for the discretized scheme (in section 3.2 et seq.)
relied upon a discrete Halanay-type inequality. Our objective in this subsection is
to indicate that if we define a process X (¢) for all t > ¢y (not merely for ¢ € T7°) in
terms of the sequence {)A(:g}, there may be an opportunity to employ this to derive
a relation for £(V (¢, )?(t))) to which the continuous Halanay-type inequality can be
applied. We have

)A(:n+1 = )A(:n + h F(tna)?na)?n—]\’) + G(tna)?na)?n—N)\/ﬁgna (TL € N)a (41&)

Xn=X(tn) =®(ty), (n€ Tr.h ), (4.1b)

and a necessary step is to introduce a continuous extension )?(t) of the sequence

{X,}, here achieved by defining

X(tnye) = Xn +ch Fltn, Xn, Xn_n) + VShG(tn, Xn, Xn_n)n (4.2a)
(for n € N, < € [0,1]),
X(t)=X@t)=d(t) (teJ]). (4.2b)

Given a solution {X,,} of the discrete recurrence (4.1a), define (recalling that 7 =

Nh)

F, = F(thn,Xn—N)v G = G(than—N)' (43)



22 Exponential Stability in p-th mean for DDEs

(The shorthand notation (4.3) is used in the following.) Now (4.2a) implies that

dX (tn + sh) = F,, dt+ G, dW(t) (for n € N and < € [0, 1)). (4.4)
Theorem 4.1 Assume that there exists a positive, continuous function V(i)
(with continuous derivatives Vi(t,z), Vi (t,z), and Vyz(t,2)), for t > to — 7 and
xr € R, and that there exist positive constants ¢y, co, and p > 1, such that

e ol < Vi) < e Jal?, (4.5)

when t >ty — 7 and x € R. Suppose further that, for 0 < E(h) < a(h),
~ ~ ~ 1 ~ ~
5( Vi(s, X(5)) + Vi(s, X (5)) Fa + 5Vaa(s, X(5)) G2 )

< —a(h) EV(t, X))+ B(h) EV(t -7, X(t—7))  (4.6)
(for n > 0) whenever t € [ty,t,41). Then

E(IX (t:to, ®)7) < Z—fg( sup  |®(s)[7) exp(=v*(h)(t —to)),  (4.7)

s€[to—7,t0]
with U*(h) given in terms of a(h), E(h) by (2.21)
—U*(h) = Uy (h) — @ where Uy (h) exp{ls(h)T} = E(h) exp{a(h)r} (4.8)

(so that 0 < Ux(h) € (ﬁ(h),a(h))), and the null solution of eqn. (4.2) is therefore
globally exponentially stable in the p-th mean.

The close affinity between the condition (4.6) and (2.40) will be apparent.

Proof: By the integral form of the Tt6 formula (2.34) we obtain for ¢ > ¢, and
when

d>0and ¢,t+6 € [tn, tnyil, (4.9a)

V(t+6, X (t+0)) -Vt X(t))

t46 B B B 1 [t B B
:/g Vi(s, X(s)) + Vi(s, X (s)) Fn + 5‘[ Vo (s, X (5)) Gi ds
t46 _ ~
+/ Ve (s, X(s)) Gn dW(s). (4.9b)

Since S(fttH Vx(s,)?(s)) G dW (s)) = 0, taking expectations yields, for ¢ > tg,
with (for some n € N) ¢,¢ + 6 € [tn,tn41] and § > 0,

EV(t+38,X(t+8) —EV(L, X (1))
- g(/tw Vs, K (5)) 4 Vals, K (5)) Fo+ g Vaals, K(5)) G2 ds)
for the given n, and thus (by our assumption (4.6))
E(V(t 46, %(t+)) — £V (1, K1)

t+4 - - .
< ([ =W e s, X)) + 5 £V (s = 7. K5 = 7)) ds}).
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Since the Dini derivative D v(t) is

Dre(V(t, X(1))) = lirén\?upg(v(t +96, X (t+ f?) - E(V(t, X(1))

the preceding result leads directly to
DFE(V (L, X (1)) < —a(h) E(V (L, X (1)) + H(h) E(V(t—7.X(t = 7)),

for t > tg. Clearly, Theorem 2.3 now applies and if we invoke (4.5) we obtain (4.7)
following arguments similar to those yielding (2.36). O

The verification of (4.6) is in any application a technical exercise but it will be

transparent that since )?(t) depends upon h so does verification of (4.6). Indeed,
the condition (2.39) (which was employed in Lemma 2.4) reads

1
Vilt, o) + Vo (t,2) F(t,z,y) + ivm(t,m)Gz(t, z,y) (4.10)
< —aV(t,z)+ BVt —1,y), for 0 < B < a,

when t > tg and z,y € R, and we can readily deduce from (2.39) the result

EVi(t, X (1)) + Vi lt, X (1)) F(t, X (t), X (t — 7)) + %Vm(t, X(#)G2(t, X (1), X(t — 7))

< —afV(t, X (1) 4+ BEV(t — 7, X (t = 7). (4.11)

In comparison, to apply the Theorem 4.1 we need to verify condition (4.6), namely
that for ¢ € [tn, tnt1)

EWVi(t, X (1)) + Vi lt, X (1) Fltn, X(tn), X (t, — 7)) + %vm(t,)?(t))cﬂ(tn,)?(tn),)?(tn - 7))
< —a(h) EV(t, X(1)) + B(h) EV(t —, X (t — 7)) (4.12)

4.2 Lag-dependent results
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Figure 4.1: Stability region for the true solutions of z'(t) = —ax(t) + Bx(t — 1)
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For the deterministic equation z'(t) = —az(t) + Bz(t — 7) (with, as usual, 7 >
0) we know that the null solution is stable whenever |3| < a. The solution is
asymptotically stable (and indeed* exponentially stable) when |3| < a, irrespective
of 7 > 0. However, the stated conditions are sufficient but not necessary for stability
(cf. [1, 8] and their references). For the parameters (a., 8;) = (ar, A7), the region
of parameter space which exactly corresponds to stability is that containing the
region |3;| < a, which is bounded by the line a; = —3; and the curve

ar = —s cot(s), fBr = —s/sin(s), s€(0,7), (4.13)

and the region of stability therefore includes (see Figure 4.2) the line segment o, =
0, 37 < B, <0, se..

™
a =0, ﬂE(—E,O).

Thus, even for a simple linear equation, the complete stability analysis requires
that we take account of the lag 7 as well as the coefficients «, 8. This is illustrative
of results that are said to be lag-dependent (in contrast to the lag-independent
result that |3] < « ensures asymptotic stability); we expect to be able to find lag-
dependent results for SDDEs as much as for their deterministic counterparts. We
draw attention to the lag-dependent result of Mao [23, p.180], as a complementary
result to that provided in Theorem 2.4.

4.3 The restriction ah < 1
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Figure 4.2: Stability region for the numerical solutions of #'(t) = —az(t) + Bz (t — 7)

In our discussion of the Euler-Maruyama method with condition 0 < f < a we
asked that ah < 1. The reason for this restriction can be seen if one examines the
stability region for Euler’s method applied to the deterministic equation z'(t) =
—ax(t) 4+ fz(t —7) (with 0 < 7 = Nh and N € N). The stability polynomial for
the recurrence z,41 = (1 — ah)z, + phz,_n has the form ¢V {¢ — (1 — - *C;\,—T
The boundary locus technique for obtaining, given N, the parameters ar and gr
that correspond to stability involves plotting the loci corresponding to |(| = 1;

equivalently, finding a7 and 87 such that (setting ¢ = exp(i 6))

{exp(i6) — (1 — %)} = %exp(_iw) (4.14a)

4The rate constant of the exponential stability then depends upon «, 8 and .



C. T. H. Baker & E. Buckwar 25

or, (setting ( = —exp(i ), where ¥ =  + ),

{exp(i9) + (1 — %)} = (_1)1\'%7 exp(—iN9). (4.14b)

We have given the two equivalent formulations because they make it transparent®
that, by symmetry, every section of the boundary in the half plane with a7/N < 1
has a corresponding section in the half plane with ar/N > 1 (its location g7 > 0
or A1 < 0 depending on the parity of N). The loci are obtained by equating real
and imaginary parts; for example, with A = £

N
| — ah = cos(8) + cot(NO) sin(8), ph = — ) 415
— ah = cos(f) + co )sin(6), p = Sn(NO) (4.15a)
from (4.14a), when sin(N ) # 0, and equally (from (4.14b)),
ah — 1 = cos(d) + cot(N9)sin(9), Fh = (—1)N+1 =m0 (4.15b)
’ sin(N49) ’

when sin(N9) # 0. The region 37 < at is restricted (i) for (—1)3 < 0 by the
straight line a7 = @7 + 2N that passes through the point (2%,0) and which is
spurious® in the sense that it is due to the discretization (it is the symmetrical
counterpart corresponding to ( = —1 of the locus ar = pr that corresponds to
¢ = 1) (i) for (=1)VB > 0, by another spurious boundary” (see Figure 4.3) that
also restricts the region. What limits the results available for Euler’s method is
that the region |3| < «, which is a subset of the true stability region, is curtailed
by the spurious boundaries; with Euler’s method, stability occurs for a = 3 only if
at < N, that is, ah < 1. Of course, the restriction on h in the Euler method is less
important for large N (for small h). The results carry over as a stability limitation®
for the Euler-Maruyama technique but, of course, the low rate of convergence in the
stochastic case requires the stepsize to be taken small in order to obtain accurate
results.

4.4 Stepsizes incommensurable with the lag 7

The analysis of the Euler-Maruyama method was based upon the assumption that
the stepsize was selected so that 7 = Nh for some N € N. If this restriction
is dropped, the numerical method must be re-defined, and it is then natural to
introduce for the problem

dX(#)=F(@, X@), Xt —1)dt+G(t, X (@), Xt — 7))dW(t), (t > to),
subject to X (t) = ®(¢), (t € [to — 7,%0]),

the densely-defined approximation )?(t) satisfying

X(t) = X(tn) + (t —tn) Fltn, X(tn), X(tn — 7))

+G (b, X (), X (tn — T){W (t) — W (ta)}, (4.17)

for t, <t <tpy1 (n>0) with ¢, = tg + nh, subject to )~((t) =®(t), fort € J. We
now write &,+/t — ¢, in place of {W(t) — W(t,n)}.

5The situation is illustrated for N = 10 by our Figure 4.3.

6 This ‘spurious’ line might be thought of as approximating a line at infinity as A \ 0.

"This is the symmetrical counterpart of the approximation to the true ‘lower’ boundary having,
see Figure 4.2, the line ot = — 37 as asymptote.

81t should be possible to obtain stability results for ah < 2, rather than ah < 1, if one amends
the discussion and places additional restrictions on 3.
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4.5 Generalizations of the basic equation

The extension of the Euler method indicated above also allows the definition of an
Euler method for equations with variable lag:

dX(t) = F@, X(@), Xt —7@)))dt+G(t, X (), X (t — 7(t)))dW(t) (t > to),
subject to X(t) = ®(t), (¢ € [to — sups»¢, 7(t), t0]),

where 7(¢) > 0. Then )?(t) satisfies
X(t) = X(tn) + (t = tn) F(tn, X(tn), X (tn — 7(tn)))
+G(tn, X (tn), X (tn — 7(t)){W (1) — W(tn)},  (4.19)

for t, <t < tnpy1 (n > 0). The generalized (stochastic) pantograph equation [3]
provides an example of variable lag.

Other variations on the equation with one fixed lag present themselves, as suit-
able for further study, and Baker, Buckwar & Ford are currently examining such
problems. Examples are:

e Multiple lag equations
dX(t)=F(t, X(t), Xt —m1),..., X[ —1a)) dt
+G X)), Xt —1),..., X({t—7am))dW(t) (¢t >10), (4.20a)
subject to the initial condition (2.1b) and with 7 := max, 7¢;
e Multiple dW,
dX(#)=F(@, X(@),X({t—r1))dt
+ Y Gt X(1), X(t — 7)) dWi(t) (t >t0),  (4.20Db)
‘

subject to the initial condition (2.1b) — see [16];
e Variable lag equations with more than one lag
dX(t)=F(t, X(1),X)(t —m(t))dt
+ G, X)), X({t—7(1)dW(t) (m2(t) >0). (4.20c)

Generalizing the previous two examples we have

ZFHX X(t — 7(t))) dt

+ 37 Gult, X (1), X(t — 7a(t))) dWelt) (¢ > o), (4.20d)

where X (t) = ®(t) for t € J := [tg — 7, o], 72(t) > 0 for £ € {0,1,..., M}

and where 7, = max sup 7¢(t) (where 7y is assumed to be finite);
t>tq

e Pure delay equations
dX(t)=F@t, Xt —7))dt+ S, X(t—7))dW(t) (t>to), (4.21)

subject to the initial condition (2.1b). We observe (assuming the existence of
the derivative §, and invoking continuity of X (-)) that

- {g(t,X(t)) FX( =) = XOYEa (b, X(t — 7 (t, X(t }dt
B X(t— 1) dW (1),
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with 7. (¢, X(¢)) € [0,7], (for t > tg). The latter equation has an unknown
state-dependent lag but since 7 (¢, X (¢)) € [0, 7], some progress may be made
with the theory.

4.6 Approximating equations

The theorems presented here relate to the effect of perturbations in the initial data.
The effect of perturbations in the equation itself (persistent perturbations) remains
to be explored.

In deterministic problems, it is commonplace to employ linear test equations

z'(t) = —az(t) + Bz(t — 7) (4.22)
as a focus in the discussion of the stability of the null solution of a nonlinear equation
2'(t) = f(t,z(t),z(t — 7)) (t>to), (4.23)
z(t) =) (t € [to— T t0]). (4.24)
A justification for this can be found when (for example)

||f(t, u(t),u(t — 7)) + au(t) — fu(t — 7')” (4.25)

is, in an appropriate sense, uniformly small for all sup ¢ 17 |u(t — s7)| that are
sufficiently small and all sufficiently large ¢ (a, 3 not simultaneously vanishing).
The linear theory has to be extended if

flt,u(®),u(t = 7)) ~ —afu(®)} + f{ult = 1)}, pg>1,

for small sup,¢pg 1) |u(t — s7)|. Similar results for SDDEs are currently under in-
vestigation by the authors, and it is hoped will be published elsewhere by Baker
& Buckwar, in due course. Note that Kolmanovskii and Nosov [17] comment on a
type of “first approximation” for SDDEs in which the noise is neglected to yield a
deterministic equation as the approximating equation. There is more to study here.

4.7 Lyapunov functionals versus Lyapunov functions

The use of Lyapunov functionals in the stability analysis of DDEs gave rise to
a major theoretical advance. Returning to deterministic problems to gain ready
insight, we set, for ¢ > #q,

2(t) = |z (t)|* + a/t_ |z(s)|*ds

for @ > 0 when 2z € Cltg — 7,00). Now z is an example of a Lyapunov func-
tional (there is no underlying function defined on R, similar to (2.22a) or (2.24));
previously we have dealt with Lyapunov functions. Here we have

|z (t)]* < 2(t)

(and, indeed, z(t) < {1+a}sup,p ]2(t— s)|?) and, if () is a solution of (2.18),
2 (1) = 2002, (1) + a{ 2 (@) = Ja(t — 7)I? or

() < —alz()* +282(t)z(t — 1) — ala(t - 1)
and, based on the discriminant 4{32—a?} of the quadratic form a X2—28XY +aY 2,

the right-hand side of this inequality is negative if |3| < «a. Since it follows that
z(t) is then non-increasing, so is |z(¢)|? and we deduce stability of the null solution
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of (2.18), if |#] < a. Tt is possible to use an appropriate functional for non-linear
equations such as

(1) = —a{z()}’ + Bla(t — 7))

(in the latter case the null solution is stable if |8] < «). Lyapunov functionals can
also be defined [20] for stochastic problems, and their use and numerical simulation
provides avenues for further investigation.

4.8 Further reading

A discussion of (global) exponential stability and numerical exponential stability in
the case of SODEs is available in, for example [13] and also [14]. The papers on
SODEs suggest further lines of enquiry in the case of SDDEs. The work [14] came
to our attention in the closing stages of publishing our Report; these recent papers
have additional citations to earlier work.

5 Conclusions

We have indicated a number of results on the convergence and stability of SDDEs
and of the Euler-Maruyama method for SDDEs using a fixed step h. Perhaps it
would be wise to emphasize that convergence results and stability results are, in their
respective manners, asymptotic results. It is obvious that convergence theorems
relate to what happens to numerical approximations as h Y\, 0; stability results
relate to boundedness for ¢t > ¢y and what happens as ¢ — co. Such results should
not be misinterpreted as relating to a given o > 0 or to transient behaviour of
induced perturbations.

Although the equations and their discrete versions are stochastic, we have relied
upon deterministic results for expectations in order to establish the stability results.
Both the order of convergence and the stability results for the Euler-Maruyama
formula suggest the need to choose a relatively small step. The limitations of
the Euler-Maruyama formula may prove to be significant in practice when other
methods prove to be either more efficient, more accurate, more stable, or more
controllable.
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7 A code for implementing the Euler-Maruyama
method

We include here a code for implementing the Euler-Maruyama method for SDDEs
with multiplicative noise, to enable the reader to explore by experiment the effect
of the choice of stepsize h. The code was written in the language C by Evelyn
Buckwar.

/* This program permits investigation of */

/* the stochastic delay differential equation (SDDE) */

/* dX(t) = £(X(t), X(t-tau))dt + (sigmal+ sigma2 X(t)+ sigma3 X(t-tau))dW(t)*/
/% for t in [0,T], with X(t) =1+ t for t in [-tau,0], */

/* where W(t) is a Wiener process. */

/* Equidistant approximation of X(t) by the explicit Euler scheme */
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/* i) with the time step size delta_xt to provide an ‘exact solution’ */

/* ii) with the time step size delta_y to give an ‘approximate solution’ */
/* It uses the Polar Marsaglia method to generate Gaussian random numbers */
/* (Kloeden and Platen, Numerical solution of stochastic differential */

/* equations, Springer 1992, 1995 ISBN 3-540-54062-8) */

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#tdefine frand() ((double) rand() / RAND_MAX)

const int NumberSteps=2048;
typedef double vector [NumberSteps+1];
FILE *ResultsOut;

char fileout[]= "ResultsOut.dat";
time_t times;
const double t0 = 0.0; /* left end point */

double t_end = 1.0; /* right end point */

double tau= 1.0; /* lag */

double alpha=-1.0; /* parameter in the drift f(t,x,y)*/

double beta=-0.5; /* parameter in the drift f(t,x,y) (lag) */
double sigmal=0.0; /* parameter in the diffusion sigma(t,x,y) */
double sigma2=0.2; /* parameter in the diffusion sigma(t,x,y) */
double sigma3=0.2; /* parameter in the diffusion sigma(t,x,y) */

double deltadiv = 8.0; /* divider for the time step size */

int taudelta= ((int) (NumberSteps * tau))/((int) (t_end - t0));
/* number of steps used for the delay */

int i,j.k,g; /* counters */
int Ratio; /* ratio of the time step sizes */
double tn; /* subinterval point */
double zt; /* the delay term */

double delta_yt; /* time step size of the ’approximate solution’ */
double delta_xt; /* time step size to the ’exact solution’ */
double sqrtdelta_xt; /* square root of the time step size delta_xt */

double GRandl, GRand2; /* gaussian random numbers */
double dwtn; /* wiener process increment w(t_(n+1)) - w(t_n)x*/
double eps; /* mean square error */

vector dwt; /* values of the wiener process increments */
vector xt; /* values of the ’exact solution’ */

vector yt; /* values of the ’approximate solution’ */

void InputData( void );
void simulGRand (double *GRandl, double *GRand2);

/% drift function */

double f(double tn, double xi, double yi)

{

return ( alphakxi + beta * yi);

Y/ £ %/

/% diffusion function */

double sigmaf (double tn, double xi, double yi)
{

return (sigmal+ sigma2 * xi+ sigma3 * yi);
}/* sigma */
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/% initial function */
double Psi(double tt)

{

return (1.0 +tt);
}/* Psi x/

/* measures the mean square error */
double sqrerr(double xt, double yt)

{

double result;
result= fabs(xt-yt)*fabs (xt-yt);
return( result );

}/*

sqrerr */

/* main program : */
void main()

{

InputData() ;

ResultsOut = fopen(fileout,"w");

srand ((unsigned) time(&times));

delta_yt = (t_end-t0)/deltadiv; /* time step size, for approximate solution */
Ratio=(int) (NumberSteps/deltadiv); /* ratio delta_yt: delta_xt */

delta_xt=(t_end-t0) /NumberSteps; /* time step size for the exact solution */
sqrtdelta_xt=sqrt(delta_xt);

tn=t0; /* initialize the time step */
xt [0]=Psi(t0); /* value of the exact solution at zero */
/* generation of the ’explicit solution’ */
for ( i=1; i <= NumberSteps; i++ )
{
tn+t=delta_xt; /* time */

}

if( i%2 ) simulGRand(&GRand1,&GRand2); /* with polar marsaglia method */
else GRand1=GRand?2;
dwt [i-1]=GRand1l#sqrtdelta_xt; /* wiener process increment w(t_(n+1))-w(t_n)x*/
/* Evaluation of the delay term */
if ( (tn - delta_xt - tau) <= 0.0 )

zt Psi(tn - delta_xt - tau);
else zt = xt[i-1- taudelta];
xt[i] = xt[i-1] + f(tn-delta_xt,xt[i-1],zt) * delta_xt

+ sigmaf (tn-delta_xt,xt[i-1], zt)*dwt[i-1];

/* end for - loop */

/* generation of the ’approximate solution’ with explicit Euler-Maruyama */

i=0;
tn=t0; /% initial time  */

zt

= 0.0;

yt[0]=Psi(t0); /* initial value of the explicit euler approximation */
while ( tn < t_end )

{

it++;

’

tn+=delta_yt;

dwtn=0.0; /* sums up the wiener process increments for the current time step */
for (j=1; j <= Ratio; j++) dwtn += dwt[(i-1)*Ratio+j-1];
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/* Evaluation of the delay term */
if ( (tn-delta_yt - tau) <= 0.0 )
zt = Pgi(tn-delta_yt - tau);
else zt = yt[(i-1)*Ratio - taudelta];
/* explicit euler scheme : */
yt[i*Ratiol= yt[(i-1)*Ratio]
+ f(tn-delta_yt, yt[(i-1)*Ratio], zt )* delta_yt
+ sigmaf (tn-delta_yt, yt[(i-1)#*Ratio],zt)*dwtn;

/* interpolation for the other values for illustration purposes: */
if ( Ratio>1 )
for ( j=1; j <= Ratio-1; j++ )
{
yt[(i-1)*Ratio+j]l=yt[(i-1)*Ratio]l+j*(yt [i*Ratio]-yt[(i-1)+*Ratio])/Ratio;
}
}/* end of while- loop */
eps=sqrerr (xt [NumberSteps],yt [NumberSteps]) ;
/* printout : */
tn=t0;
for (j=0; j <= NumberSteps; j++)
{ fprintf (ResultsOut,"%.7G %.7G %.7G\n",tn,xt[j1,yt[j1);
tn+=delta_xt;
}

printf ("finished!, eps = %.7G\n\n", eps);
fclose(ResultsOut);
}/* end of main () */
void InputData( void )
{
char istr[20];
printf ("\n\nThis program approximates the strong solution of the stochastic\n");
printf ("delay differential equation (Ito) on the interval [0,T]\n");
printf ("dX(t)=f (X(t) ,X(t-tau))dt + (sigmal+sigma2 X(t)+sigma3 X(t-tau))dW(t)\n");
printf ("with £(X(t),X(t-tau)) = a * X(t) +* X(t-tau) \n");
printf ("with the initial function Psi(t) =1 + t on [-tau,0] \n");
printf ("using the Euler method and stepsize h = T/N. \n");
printf ("It prints the results to the file %s in the form\n",fileout);
printf("t_n X(t_n) Y_n for n = 0 to %d. \n\n",NumberSteps);
printf ("Press <Enter> to accept the choices, otherwise write yours.\n");
printf ("T = 7.2f ", t_end );
gets(istr);
if ( istr[0] ) t_end = atof ( istr );
printf("tau = %.2f ", tau );

gets(istr);

if ( istr[0] ) tau = atof ( istr );
printf ("N = %.2f ", deltadiv );
gets (istr);

if ( istr[0] ) deltadiv = atof ( istr );
printf("a = %.2f ", alpha );
gets(istr);

if ( istr[0] ) alpha = atof ( istr );
printf("b = %.2f ", beta );
gets(istr);

if ( istr[0] ) beta = atof ( istr );
printf("sigmal = 4.2f ", sigmal );
gets(istr);

if ( istr[0] ) sigmal = atof ( istr );
printf("sigma2 = %.2f ", sigma2 );
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gets(istr);
if ( istr[0] ) sigma2 = atof ( istr );
printf("sigma3 = %.2f ", sigma3 );
gets(istr);
if ( istr[0] ) sigma3 = atof ( istr );
}
/* generates two independent N(0,1) random numbers */
/* by the polar-marsaglia method */
void simulGRand(double *GRand1l, double *GRand2)
{
double V1, V2, W, root;
do

{Vl=2.0% frand()-1.0;
V2 2.0 * frand()-1.0;
W Vi *x V1 + V2 % V2,

¥
while ('((W<=1.0) && (W>0.0))); /* exclude 1n(0) */

root = sqrt(-2.0 * log(W)/W);
*GRand1l = Vi*root;
*GRand2 = V2#*root;

}/* simulGRand */
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