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Abstract

Ellsberg’s experiment involved a gamble with no ambiguity (N) and a gam-
ble where the prize that could be won is objectively known, but the winning
probability depends on the (ambiguous) urn’s composition (P). We extend this
by including a gamble where the winning probability is objectively known, but
the prize depends on the urn’s composition (C), and also gambles where both
the probability and the prize depend on the urn’s composition, and can either
be correlated positively (D) or negatively (M). Among transitive subjects who
prefer N to P, 40% prefer D to N, 74% prefer D to P, 97% prefer D to M, and
the modal ranking (about 39%) satisfies D<N<P,C. We show that this behav-
ior is compatible with the Max-Min Expected Utility model if every prior in
the set of priors has a high enough variance, a property that we call ‘skeptical
pessimism.’
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1 Introduction: Extending Ellsberg

In the seminal experiment suggested by Ellsberg (1961), subjects are presented with
an urn containing a fixed number of balls, say 60 and are told that 20 of these balls
are black, while the remaining ones are either red or green. However, they are not
informed of their relative proportions – only that they could be between 0 and 40
red and green balls. A single ball will be randomly drawn from the urn, and the
subjects are asked to choose between three gambles which pay some prize, say $20,
if the ball drawn is of a particular color, and nothing otherwise. In one gamble the
“winning” color is black, in another it is red, and in the third it is green. The typical
finding is that a majority of the subjects choose the gamble in which the winning
color is black, i.e. they prefer the option for which the number of balls is known,
the so-called unambiguous option.1 It is well known that if we interpret this choice
as a strict preference to bet on black rather than to bet on any of the other colors,
then this behavior is not consistent with expected utility maximization using a belief
compatible with the information provided.2 This behavior is usually referred to as
ambiguity aversion.

In the Ellsberg experiment when a subject chooses to bet on ‘red’ or ‘green’, her
probability of winning is uncertain – because she does not know the number of red
or green balls – while the amount that she could win is known to her – $20. Put
differently, the Ellsberg experiment tests the choice between options in which the
probability of winning depends on the color of a ball extracted from an ambiguous
urn, but the outcome - the amount of the prize - is known. In this paper we extend
the original Ellsberg experiment by introducing gambles in which the composition
of the ambiguous urn affects either the likelihood of winning (like Ellsberg), or the
amount that may be won, or both.

We have three goals in mind. The first goal is empirical in nature: do individuals
approach these various forms of dependence on the urn composition in the same way?
Suppose an individual prefers a gamble with no ambiguity, where neither the odds
of winning nor the amount of the prize depend on the composition of the urn, to a
gamble where only the odds depend on the urn’s composition. Would this individual
also choose the non-ambiguous gamble over one where both the odds of winning and
the prize depend on the urn’s composition? We address these questions in a laboratory
setting, and we show that a large fraction of subjects does not.

Our second goal is to use the behavior that we observe in this richer domain to
derive additional restrictions for the theoretical models used for choice under uncer-

1See, amongst many, the survey in Camerer (1995), the recent experimental investigation of
Halevy (2007), and the references therein.

2To see why, assume instead that the agent is an Expected Utility maximizer with a prior π over
which ball will be extracted. Since must have π(black) = 1

3 , and since the agent strictly prefers
betting on black than on red or green, then it must be the case that both π(red) and π(green) are
smaller than 1

3 . But this means that π(black)+π(red)+π(green) < 1, which means that π is cannot
be a probability distribution over {black, red, green}.
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tainty. This is motivated by the observation that, while many of these models are
general enough to allow for a wide range of behaviors, the cost of this generality is
that they have a limited predicting power. To see why, consider one of the most
well-known of these models, the MaxMin Expected Utility Model (MMEU) of Gilboa
and Schmeidler (1989). According to it, the agent has a set Π of prior beliefs over
the state space, and evaluates each option using the expected utility computed with
the most pessimistic belief in the set Π. The model contains no prescriptions on the
properties of this set of beliefs (except that it must be compact and convex), offer-
ing therefore limited restrictions on the predicted behavior. We will argue that the
empirical evidence that we collect in our experiment could be used to derive novel
restrictions about which priors should belong to this set, and which priors should not.
That is, we do not use our experimental data to suggest that we should generalize
the model. Rather, we use our data to suggest that we should focus on a special case
of it. This would naturally increase its predictive power.

Finally, we will use our empirical findings to discuss some of possible interpreta-
tions of ambiguity-aversion or Ellsberg-type behavior that are at times suggested.

In our experiment subjects face the three-color Ellsberg urn described above (60
balls, 20 of which are Black, the others are Red or Green). The typical Ellsberg
experiment asks subjects to rank the following two options:

N : If a black ball is drawn, the prize is $20. Otherwise, the prize is $0.

P : If a red (green) ball is drawn, the prize is $20. Otherwise, the prize is $0.

Option N (for ‘No ambiguity’) is the typical gamble without ambiguity, while P
(for ‘Probabilities’) is gamble in which the probability of winning is ambiguous. In
addition to the comparison between N and P , in our experiment subjects are asked
questions involving also the following gambles:

C : If a black ball is drawn, the prize equals the number of red (green) balls.
Otherwise, the prize is $0.

D : If a red (green) ball is drawn, the prize equals the number of red (green) balls.
Otherwise, the prize is $0.

M : If a red (green) ball is drawn, the prize equals the number of green (red) balls.
Otherwise, the prize is $0.

In option C (for ‘Composition’) the amount of the prize depends directly on the
composition of the urn, while the probability of winning does not; in D (for ‘Double
dependence’) both outcomes and probabilities depend on the urn’s composition, and
both values are (perfectly) positively correlated; in M (for ‘Mixed dependence’) both
the outcomes and probabilities depend on the urn’s composition, but here both values
are (perfectly) negatively correlated. In each question, each type of gamble with some
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form of ambiguity (P,C,D,M) is presented to the subjects always in two variants, one
in which the ‘winning’ color is red, and the symmetric one in which the ‘winning’ color
is green. Since our treatment is entirely symmetric, and since in our data subjects do
not seem to treat red and green differently, in our discussion we refer to the generic
option. Subjects are asked all pairwise comparisons between N, P, C, and D, and are
also asked to compare M and D, and M and N. In addition, subjects answer questions
meant to elicit their attitudes toward risk and to examine the consistency of their
answers.

We recruited 108 subjects and obtained the following results. First, 80 subjects
(74%) express a transitive ranking, and our analysis focuses on them.3 Second, 84%
(67 out of 80) exhibit the standard Ellsberg behavior, i.e. they rank N above P.
An almost identical proportion is found if we look at the ranking of N and C: 85%
prefer N to C (68 out of 80). That is, we find that subjects exhibit a similar attitude
towards having either the winning probability or the amount of the prize (but not
both) depend on the unobserved composition of the urn. However, when we also
consider D things change considerably: only 50% of the subjects choose N over D
(40 out of 80). That is, half of the subjects are not averse to having both the odds
of winning and the amount of winnings depend on the composition of an ambiguous
urn.

To further investigate the attitude towards D, because we elicit all binary com-
parisons between the options above, if we focus on transitive subjects we can classify
subjects who are ambiguity averse in the standard sense (N < P) into three types:

1) those who rank D at the bottom (N < P < D);
2) those who rank D at the top, i.e. subjects who are ambiguity averse in the stan-
dard sense but prefer the option in which both prizes and odds depend on the urn
composition to the one with no ambiguity (D < N < P); and
3) subjects who choose N over D, but who prefer to have both the prize and the prob-
ability depend on the urn’s composition than to have only the probability depend on
it (N < D < P).

In our dataset, amongst the subjects who prefer N to P , only 26% rank D at the
bottom (18 out of 68). Instead, 40% rank D at the top, while 34% rank it in the
middle. This means that 40% of subjects who exhibit standard Ellsberg-behavior also
rank D above N, and a total of 74% rank D at least as high as P.4 Furthermore, if we
partition our population into types according to their preference between D, N, C,
and P, then the most frequent types are the subjects who rank D as the best option,

3Since our analysis is not able to identify indifferences, non-transitive answers are not necessarily
‘irrational’, but could be simply due to the fact that subjects break indifferences in a way which is
not consistent across the questions.

4While in the comparison between N and P the risk attitude of the agents does not matter, this
is no longer true for the ranking between N and D. But even if we focus only on (weakly) risk averse
subjects, our results remain unchanged: 40% rank D at the top, 34% in the middle, and 26% at the
bottom. That is, these results do not seem to be connected with the agent’s risk attitude.
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then N, and then C or P (they represent 33% of the total population, 39% of the
ambiguity averse one). We should also emphasize that, since the questionnaire in-
cludes all pairwise comparisons and since we are focusing only on transitive answers,
then a subject who ranks D at the top must have chosen D against N, P, C, and M.
That is, to rank D on top they must choose D not only once, but consistently across
questions.

Coherently with the results above, subjects seem to uniformly dislike M: amongst
the transitive ones, 90% rank N above M (72 out of 80), and of the subset of the
subjects who are asked to compare D and M, 97% prefers D (34 out of 35). That
is, almost all subjects prefer the option in which the two unknown values (winning
probability and prize) are (perfectly) positively correlated (D), to the option in which
they are (perfectly) negatively correlated (M).

Finally, subjects tend to compare P and C with N in a similar way, and to be
almost evenly distributed in their preferences between the two: 53% of the subject
prefer P to C (42 out of 80). We also find significant gender effects: the attraction
towards D seems to be much stronger for men rather than women.

We then turn to investigate the consequences of our findings in light of well known
models of ambiguity aversion. Focusing on the MaxMin Expected Utility (MMEU)
model, we show that the behavior we document is compatible with this model, but
it suggests restrictions on the set of agents’ priors Π. To illustrate this, consider first
of all the typical ‘classroom explanation’ of the Ellsberg behavior with the MMEU
model: Suppose the decision-maker holds a set of priors that includes the belief that
there are only 15 red balls in the urn, as well as the belief that there are only 15
green balls. Then, if the agent evaluates each option using the worst possible prior
in the set, she should strictly prefer betting on red or betting on green to betting on
black. She would then rank N above P. However, for the same reason she should also
rank N above D, and even P above D – in contrast with our findings. That is, the set
of priors of the typical ‘example’ of MMEU preferences is not compatible with our
observations.

At the same time, the MMEU model can generate the ranking D<N<P. However,
this happens if, and only if, every prior in Π has a ‘high’ variance on the number of
red balls.5 Intuitively, D is an option in which the probability of winning and the
amount that is won are positively correlated. In particular, the expected gains from
D increase with the number of red (green) balls in a convex fashion. This means that,
if the agent’s belief on the number of red balls has a high variance, then the expected
utility of D computed for each of these priors is relatively high. We can characterize
this condition precisely: a risk-neutral MMEU subject exhibits D< N<P if, and only
if,

VARπ ≥ 202 − Eπ[x]2 ∀π ∈ Π (1)

(where Eπ[x] and VARπ are, respectively, the expectation and the variance of the

5That is, if we look at the marginal belief that each prior has on the number of red balls, it must
have a relatively ‘high’ variance.
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marginal of π over the number of red balls). That is, each prior in the set of priors
must have a variance above a threshold, where this threshold is higher the lower the
expected value of the prior.6 In particular, if the agent has a ‘pessimistic prior,’ with
an expected value below 20, as ambiguity aversion would imply, then this prior must
also has a relatively ‘high’ variance – the higher the further below 20 the expected
value is.

Condition (1) may be interpreted as follows. On the one hand, a decision-maker
who is concerned about the lack of objective information when evaluating an act may
contemplate the “worst case scenario,” i.e. an extremely pessimistic prior belief. On
the other hand, even when she is pessimistic, this decision-maker should consider the
fact that ‘she doesn’t really know,’ and she should also considers the possibility that
‘she is wrong in being pessimistic.’ In fact, Condition (1) implies that there is no π
in Π with Eπ < 20 and π({21, . . . , 40}) = 0: even when the agent acts as pessimist
(Eπ < 20), she should always allow for the possibility that there are more than 20
red balls in the urn (π({21, . . . , 40}) > 0). This is a decision maker who is never sure
of her pessimism, and who acknowledges her lack of precise information by including
some variance in her beliefs. We call this behavior “skeptical pessimism.”7 We also
discuss similar requirements for another well-known model of ambiguity aversion,
Second Order Expected-Utility: in this case the decision-maker would express her
“skepticism” by putting low weight on pessimistic beliefs with low variance.

We conclude this introduction with a small discussion on the compatibility of our
empirical findings with some of the interpretations of ambiguity-aversion, and of the
typical Ellsberg behavior, that are sometimes informally suggested. In fact, while the
behavior of our subjects is compatible with existing representations, it raises questions
as to in which sense it represents a true ‘aversion to ambiguity:’ at the end of the day,
a large fraction of our subjects do prefer a gamble with a fair amount of ambiguity, D,
to a gamble with no ambiguity, N. In fact, ambiguity-aversion is at times informally
associated with the näıve idea of aversion to incomplete information. That is, consider
an uncertain prospect that pays a prize in each state. This prospect can be described
by a table that for every state gives information about the likelihood of that state and
the amount of the prize. Each piece of information can either be precise - a number -
or ambiguous - an interval. This interpretation suggests that if we compare two tables,
where one is obtained from the other by changing some of the precise numbers into
intervals (containing the original precise numbers), then the decision-maker would
prefer the prospect given by the original table. This interpretation appears to be
incompatible with D<N<P, the modal ranking in our experiment. In fact, in some
sense N depends on black just like D depends on red, but while on black we have a
precise information, on red we do not, and the gamble D could be seen derived from
the gamble N after we replace both the likelihood of winning, 20/60, and the prize

6We also derive the corresponding conditions for D < P and D < M, both of which impose
minimal bounds on the variance of the priors in Π and are strictly milder requirement that (1).

7We thank Paolo Ghirardato for suggesting this term.
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that could be won, 20$, with an interval that represents the number of red balls.
This does not seem to be compatible with the interpretation above, although, as we
have seen, it is compatible with some of the most well-known models of ambiguity
aversion.8

The remainder of the paper is organized as follows. Section 2 describes the exper-
imental design and results. Section 3 presents the restrictions that the observed data
impose on the MaxMin Expected Utility model, and briefly discuss similar restrictions
to other theoretical models. Section 4 concludes.

2 The laboratory experiment

2.1 Design

The experiments were conducted in the Social Science Experimental Laboratory
(SSEL) at the California Institute of Technology. Subjects were undergraduate stu-
dents at Caltech, recruited from a pool of volunteer subjects, maintained by SSEL.
There were a total of four sessions, with a total of 108 subjects. No subject par-
ticipated in more than one session. Each of the sessions were conducted using the
following procedure. The subjects were handed two packets, one containing instruc-
tions and another containing a list of questions. (Appendix A contains a copy of the
instructions, and Appendix B contains one example of a questionnaire.) The exper-
imenter stood in front of the subjects with a non-see-through bag that contained 60
poker chips. The subjects were told that 20 of the chips are black, r chips are red,
and g chips are green, where r + g = 40. It was emphasized to the subjects that
they were not told how the values of r and g were determined. Subjects were also
told that they could inspect the content of the bag at the end of the experiment.9 In
all four sessions, the questionnaire included questions in which subjects was asked to
choose a single lottery from a list containing two or more lotteries.10 All questions

8Another well-known interpretation for ambiguity aversion relates to issue preferences. As sug-
gested in Ergin and Gul (2009), subjects might prefer gambles that depend only on one uncertain
issue against others that depend on two uncertain issues. Indeed, in our case the gamble D depends
on two issues (the color of the ball extracted and the composition of the urn), while P depends only
on one (the color of the ball extracted), and yet most subjects rank D<N<P. At the same time,
however, in our case the two issues are not independent, but perfectly correlated – rendering the
intuition very different from the standard case discussed in the literature.

9In three of the four sessions this was in fact requested by one or more subjects.
10In sessions 1 and 2 the questionnaire also included questions where subjects were asked to assign

a monetary value to lotteries, using the Becker-DeGroot-Marchak (BDM) mechanism. However, this
procedure proved to be complicated and many subjects seemed not to understand it. (For example,
many subjects gave a monetary evaluation of $20 to the gamble N , which pays $20 if a black ball is
extracted, and $0 otherwise.) Moreover, it is well-known that the BDM mechanism might not elicit
the true ranking in situations of choice under uncertainty (see Karni and Safra (1987)). Finally,
pricing objects (and especially artificial lotteries) is a new and foreign task for most of our subjects,
while they make choices on a regular basis. This suggests that responses to choice problems may
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were handed at the same time, and subjects were allowed to modify their answers.
Moreover, the experimenter explicitly advised them to review their choices after they
completed the questionnaire, before turning it in. Once all participants have finished
answering and reviewing their questionnaires, the experimenter proceeded as follows.
Standing in front of the subjects, he first randomly drew a chip from the cloth-bag.
Then, using a pair of die, the experimenter drew one question number from the ques-
tionnaire. Subjects were then paid according to the amount specified by the lottery
they have chosen for the drawn question, plus a show-up fee of $7. (Note that this
sometimes involved counting the number of red and green chips in the bag.)

In the questionnaire itself, each of these lotteries was framed as follows: “If
BLACK, then $ , if RED then $ and if GREEN then $ ”. (The instructions ex-
plained to subjects what we mean by the term “lottery.”) The ordering of the options
in each question was of two kinds. For approximately half of the subjects, the options
were listed in a descending order of the amount of objective information provided,
while this ordering was reversed for the remaining subjects.11 In each question sub-
jects are asked to choose only one option, but are not allowed to express the strength
of such preference. We are therefore unable to separate the cases of indifferences
from those of strict preference using only our data.12 At the same time, however, the
relatively large fraction of transitive answers suggest that subjects were not simply
indifferent between all options and gave random answers.

Subjects answered two types of questions: questions meant to elicit a ranking
between the gambles in {N,P,C,D,M}, described above, and questions meant to test
for basic properties of their preferences such as risk-aversion and various forms of
coherence across choices. In the questions of the first kind, subjects were asked
all pairwise comparisons between {N,P,C,D}, to choose between M and N, and, for
sessions 3 and 4, also between M and D.

As we mentioned before, each of these options except N were presented to subjects
in two forms: with winning color red, or winning color green. For example, in the

be more reliable than responses to pricing questions. For these reasons, our analysis will ignore the
answers to the BDM questions. In order to use the choice data from these sections, we test whether
the presence of the BDM questions had any significant impact on the answers given, and found that
it did not.

11That is, for half the subjects, whenever N was available it was listed first, and if P or C were
available, each would be listed before D and M. In a question containing both P and C, P appeared
first in an odd numbered session and second in an even-numbered session. Similarly, a lottery where
a prize is won if a red ball is drawn appeared in an odd-numbered session before a lottery where a
prize is won if a green ball is drawn, while the opposite ordering took place in the other sections.

12The issue of separating strict and weak preferences in a framework with ambiguity is well known,
and to our knowledge no easy solutions have been suggested. In particular, it is well-known that
the usual technique according to which subjects choose both options when indifferent, and then
the experimenter randomizes, would not work in the case of uncertainty – being ambiguity averse,
subjects have a strict preference for hedging, and would value the external randomization even when
they are not indifferent. Also, as discussed in footnote 6, eliciting monetary valuations via the BDM
method is problematic.
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question that asks subjects to compare N with P, subjects are confronted with three
options:

Question 1. Which lottery do you prefer?
If BLACK then $20, if RED then $0 and if GREEN then $0
If BLACK then $0, if RED then $20 and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $20

We adopted a framework of absolute symmetry between red and green in order
to avoid the risk that subjects might make an inference about the composition of
the urn from the questions that were asked. We then classify subjects as ranking N
above P if they choose the first alternative, while P above N if they choose the second
or the third. That is, because each treatment is entirely symmetric with respect to
red and green, we disregard any difference between red and green in the answers. As
discussed below, our data seem to support the fact that subjects were in fact treating
red and green indifferently (see Section 2.2.1).

Evidence for the subject’s risk attitude was elicited by a question testing whether
the subject was risk-loving or not (question 7 on the questionnaire):13

Question 7. Which lottery do you prefer?
If BLACK then $40, if RED then $0 and if GREEN then $0
If BLACK then $0, if RED then $20 and if GREEN then $20

Since most models of decision-making under uncertainty impose some variant of
the sure-thing principle, we also test whether subjects satisfy two forms of coherence
using the following three questions (Question 2, 9 and 10 respectively):

Question 2. Which lottery do you prefer?
If BLACK then $20, if RED then $0 and if GREEN then $0.
If BLACK then $r, if RED then $0 and if GREEN then $0.
If BLACK then $g, if RED then $0 and if GREEN then $0.

13This question tests for weak risk aversion: it separates subjects who are risk neutral or strictly
risk averse, from subjects who are strictly risk loving. We are mostly interested in these subjects
since in this setup strict risk loving would induce a different behavior, and because risk neutrality
plays a special role in our theory analysis, and therefore we would like to allow for it. At the same
time, as a robustness check, about half of our subject pool (sessions 3, 4) was also asked a question
meant to elicit whether they are strictly risk averse: they are asked to choose between a gamble
that pays $40 if a black chip is extracted ($0 otherwise), versus a gamble that pays $13 (<40/3)
no matter which ball is extracted (Question 8 in the questionnaire). Subjects behaved coherently
between the two questions – only 7 subjects gave the inconsistent answer of showing strict risk
aversion in one question and strict risk loving in the other. At the same time, however, only about
30% of subjects showed strict risk aversion, and the data suggest that our focus on weak instead of
strict risk aversion is inconsequential: the analysis in the paper would be essentially identical if we
used the answers to Question 8 instead of Question 7 when we test for the role of the risk attitude.
For this reason, in what follows we focus only on the answers to Question 7.
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Question 9. Which lottery do you prefer?
If BLACK then $20, if RED then $20 and if GREEN then $20.
If BLACK then $r, if RED then $r and if GREEN then $r.
If BLACK then $g, if RED then $g and if GREEN then $g.

Question 10. Which lottery do you prefer?
If BLACK then $20, if RED then $20 and if GREEN then $20.
If BLACK then $r, if RED then $20 and if GREEN then $20.
If BLACK then $g, if RED then $20 and if GREEN then $20.

A coherence in the answers to the questions above is related to Savage’s P2 (Ques-
tion 2 and 9) and P3 (Questions 2 and 10).14 At the same time, however, such coher-
ence is naturally much weaker than P2 and P3, and it is in fact satisfied by most of
the models that study ambiguity aversion, which violate Savage’s postulates.15 For
later discussion, let us also point out that if we were to make the (additional) as-
sumption that the likelihood of a black ball being extracted is considered objectively
equal to 1/3, then these two forms of coherence would correspond to the Certainty-
Independence condition of Gilboa and Schmeidler (1989): in fact, each of the options
in Question 2 could be seen as a mixture between the corresponding option in Ques-
tion 9 and $0, with weight 20

60
; and each option in Question 10 can be seen as the same

mixture between the corresponding option in Question 9 and $20, again with weight
20
60

.16 A subject is said to be “regular” if she gives coherent answers in Questions 2
and 9. A subject is said to be “regular*” if she gives coherent answers in Questions
2, 9, and 10.

2.2 Analysis

2.2.1 Basic Facts

Before we conduct a thorough analysis of the data, we need to obtain some evidence
on the extent to which subjects gave consistent answers. We begin by checking how
many subjects were transitive. Out of the 108 subjects, 80 (74%) do not violate
transitivity. (We refer to the this group as Transitive in the subsequent analysis.)
We should emphasize that transitivity is a relatively demanding requirement in this

14By ‘coherent’ we understand that if subjects choose the first alternative in Question 2, they
should also choose the first alternative in the latter questions. Conversely, if they choose the second
or the third alternatives in Question 2, they should choose again either the second or the third option
in the other questions.

15For example, both forms of coherence would be compatible with S̄-act-independence Axiom of
Casadesus-Masanell et al. (2000), and would in fact be satisfied by their representation.

16In turns, the coherence between the answers in Questions 2 and 10 would correspond to the
Weak Certainty-Independence condition of Maccheroni et al. (2006).
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context, as it involves a coherent answer to all the pairwise comparisons above.17

One potential explanation for the relatively high fraction of transitive subjects may
be that subjects answered questions in pen and paper, and could - and were explicitly
advised to - review their answers after they were done.18

As a further test of consistency, we examined how many subjects are regular and
regular*. We find that 86 (80%) of the 108 subjects are regular, of which 71 (89%
of the transitive subjects; 66% of the total pool) are also transitive. 55 subjects are
regular* (69% of transitive subjects; 51% of the total pool), and all of them are also
transitive.

We also test both for effects of the order in which options appear in each question,
and for the effects of the presence of different questions in the last two sessions using
the Kolmogorov-Smirnov (K-S) test.19 We find no such effect both for the general
population and for transitive subjects.20 To gain some preliminary evidence on the
extent to which subjects actually deliberated on the questions, we test whether in
each question the distribution of answers is significantly different from the uniform
distribution (over possible answers), and find that it is. (The K-S test yielded p values
of 0.0000 for all questions.) Together with the relative high fraction of transitive
subjects, we understand this as a signal that subjects were not answering randomly.

As discussed above, our analysis ignores the distinction between the two types
of lotteries in which D,P,C and M are presented – the ones involving red and those
involving green. The implicit assumption is that subjects are indifferent between
having the prize, or the likelihood, or both, depend on the number of red balls or
on the number of green balls, as the description of the problem would suggest. To
verify the validity of this assumption, we test whether there are significant differences
between the proportion of subjects who chose to bet on red and the proportion of
subjects who chose to bet on green in each of the relevant questions (i.e. excluding
the questions where there is no distinction between red or green), and we find that
there are not (the p-values of the K-S tests are 0.0000 for all questions).

17Moreover, as we mentioned in the introduction, a violation of transitivity need not represent
a violation of ‘rationality,’ but could simply be due the fact that subjects break indifferences in
different way depending on the questions.

18This could be naturally problematic if were we were aiming to test transitivity. But of course
our goal here is the opposite: assuming the existence of a underlying transitive ranking between the
available options, we are trying to find the procedure that best elicits it.

19Recall that in Sessions 1 and 2 we ask subjects for their monetary evaluations using the BDM
mechanism. We need to test that the presence of these questions did not affect the results.

20More precisely, we ran a K-S test to compare the distribution of responses, both on all subjects
and also on the restricted sample of transitive subjects. In both cases, the test yielded that at the 1%
level we cannot reject the null hypothesis that the two distributions are the same. The one exception
is the question in which subjects were asked to choose between P and C. For that question, the null
hypothesis of equal distributions is rejected at the 10% but not at the 5% level.
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2.2.2 Distribution of Rankings

We start by classifying subjects according to their attitude towards risk and towards
standard ambiguity (N vs. P), and compare these proportions with the typical findings
in the literature. A subject is said to be weakly Risk Averse (wRA) if she choses the
gamble that pays $20 if red or green ball is drawn over the gamble that pays $40 if
black is drawn (Question 7 above). We say that a subject is weakly Ambiguity Averse
(wAA) if she exhibits the classical Ellsberg behavior of ranking N above P. Table
1 below depicts the distribution of subjects according to attitude towards risk and
uncertainty using the definitions above.

Table 1: Percentage of Subjects Ambiguity Averse in Probabilities and Risk Averse

Total (108) Transitive (80) Regular (71) Regular* (55)
wRA 72 67% 55 69% 49 69% 39 71%
wAA 85 79% 67 84% 60 85% 47 85%
wRA & wAA 58 54% 47 59% 43 61% 37 67%

The data above seem to be in line with previous studies. First, a large majority
of subjects prefer N to P: between 79% and 85% depending on the subject pool we
look at. Second, a slightly smaller number, but still a majority, exhibit (weak) risk
aversion: between 67% and 71%. Third, more than half the subjects (54%-67%) show
both features at the same time. That is, in line with previous studies, both tendencies
seem to be widespread in the subject pool and to coexist in many subjects.

We now turn to analyze the ranking that transitive subjects give to the options
N, D, P, and C. We can analyze the distribution across all possible 24 rankings of
these 4 alternatives. (The relative ranking of M will be discussed later, since we do
not elicit it against all possible options.)

We start by focusing on subjects who rank N above P – the standard Ellsberg-
behavior. There are 12 possible rankings with N better than P: Table 2 presents the
relative distribution, according to different consistency requirements: transitivity,
regularity and regularity*. (Notice that the table represents only the types that were
encountered in the data.)

A few observations stand out:

• The largest type, in each of the subgroups, is D<N<P<C. In each subgroup
this type makes up about a quarter of the subjects.

• About 40% of the subjects who exhibit the typical Ellsberg behavior of choosing
N over P, also choose D over N. That is, many subjects seem to dislike having
the probability of winning depend on the composition of the urn (P), but have

12



Table 2: Distribution of Rankings for Ambiguity Averse subjects

Type Transitive Regular Regular*
N < P < C < D 5 7% 5 8% 3 6%
N < C < P < D 9 13% 9 15% 7 15%
N < D < C < P 6 9% 6 10% 4 9%
N < D < P < C 11 16% 9 15% 8 17%
N < C < D < P 6 9% 6 10% 5 11%
N < P < D < C 2 3% 2 3% 2 4%
D < N < P < C 16 24% 15 25% 12 26%
D < N < C < P 10 15% 7 12% 6 13%
D < C < N < P 1 1% 1 2% 0 0%
C < N < P < D 1 1% 0 0% 0 0%

Total : 67 100% 60 100% 47 100%

the opposite attitude when the urn composition affects both the probability and
the amount won (D).

• Only 1 subject (1%) amongst those who rank N above P prefers C to N. That
is, subjects seems to treat the choice between N and C the same way they treat
the choice between N and P.

• Almost all subjects (more than 90%) prefer D to either C or P. A large majority
prefers D to P (74%), or D to both C and P (66%).

• About 90% of the subjects prefer C or D to P.

• The preference between C and P is fairly evenly divided: 34 subjects prefer P
to C, 33 subjects prefer C to P. (It is 25 and 22 for regular* subjects.)

• The preference between N and D, and between P and C, do not seem to be
independent. If we focus on the subjects to prefer C to P (33), then 22 (66% of
the 33) prefer N to D, while only 11 prefer D to N. Conversely, if we look at the
subjects who prefer D to N (27), 16 (59% of the 27) also prefer P to C, while
only 11 prefer C to P.

To summarize, there are two main findings in our data. First, subjects seem to
treat gambles where only the prize amount depends on the urn’s composition (C)
in a similar way in which they treat gambles where only the probability of winning
depends on the composition (P): almost no subject who ranks N above P ranks C
above N; and the ranking between P and C is evenly distributed in the population.
Second, subjects seem to treat ‘double, correlated dependence’ (D) differently than

13



how they treat either form of dependence in isolation: 40% of subjects who rank N
above P and C, also rank D above N; almost 74% rank D above P; and 90% rank
D above P or C. We should emphasize again that for a transitive subject to rank D
at the top, she needs to choose D not only once, but in all questions in which it is
compared to N, P, and C.

The fact that many subjects prefer “double dependence” to “prize/probability
dependence” and even to “no dependence,” raises the question of whether these results
are driven by the presence of risk-loving subjects. In fact, while risk attitude plays
no role in the comparison between N and P – only the attitude towards ambiguity
matters – this is no longer true when the comparison involves D or C: both options
could, at least theoretically, return any amount in the {$0, . . . $40} range. To address
this, we perform an identical analysis focusing on subjects who are (weakly) risk
averse, as defined above. The results appear in Table 3.21

Table 3: Distributions of Rankings for (Weakly) Risk and Ambiguity Averse subjects

Type Transitive & wRA Regular & wRA Regular* & wRA
N < P < C < D 3 6% 3 7% 2 5%
N < C < P < D 6 13% 6 14% 5 14%
N < D < C < P 2 4% 2 5% 1 3%
N < D < P < C 9 19% 8 19% 8 22%
N < C < D < P 5 11% 5 12% 4 11%
N < P < D < C 2 4% 2 5% 2 5%
D < N < P < C 12 26% 11 26% 9 24%
D < N < C < P 7 15% 6 14% 6 16%
C < N < P < D 1 2% 0 0% 0 0%

Total : 47 100% 43 100% 37 100%

As evident from Table 3, the proportion of types stays roughly the same when we
restrict attention only to the (weakly) risk-averse subjects: for example, the fraction
of subjects who rank D above N remains 40%. This suggests that the main force
driving the ranking above is indeed the attitude towards ambiguity rather than the
attitude towards risk.

Next, we analyze the subjects who rank P above N – those who would usually
be classified as (weakly) ambiguity-loving. Table 4 displays the distribution of these
types.

21As we mentioned before, about half of our subjects were also asked a question meant to elicit
strict risk aversion. The conclusions below would remain identical if we focused on the subjects who
showed strict risk aversion, instead of focusing on weakly risk averse ones as we do here.
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Table 4: Distributions of Rankings for Ambiguity Loving subjects

Type Transitive Regular Regular*
P < D < N < C 1 8% 1 9% 1 13%
P < D < C < N 1 8% 1 9% 1 13%
D < C < P < N 4 31% 4 36% 4 50%
C < D < P < N 1 8% 0 0% 0 0%
D < P < N < C 2 15% 2 18% 0 0%
D < P < C < N 4 31% 3 27% 2 25%

Total : 13 100% 11 100% 8 100%

First, note that very few subjects in our sample belong to this group: only 13 out of
a total of 80 transitive subjects (about 16%). Second, by far the most common types
in this group are the subjects who rank D at the top and N at the bottom. Together
they represent 62% of the subjects who prefer P to N (75% if we look at regular*). In
particular, if we focus on regular and regular* subjects, the most common types are
those attracted to gambles where the prize amount depends on the urn’s composition,
as expressed by the ranking D<C<P<N. Notice also that almost half of the these
subjects are not (weakly) risk-averse.

Finally, we turn to discuss how subjects rank M against the other options. In
the experiment we did not elicit the relative ranking of M against every possible
alternative. Rather, all subjects were asked to compare M against N, and about half
of the subjects (sessions 3 and 4, 49 subjects in total) were also asked to compare M
and D. The results are presented in Table 5 and 6.

Table 5: Ranking of M and N

Type Total Transitive Regular Regular*
M < N 15 14% 8 10% 7 10% 4 7%
N < M 93 86% 72 90% 64 90% 51 93%

Total : 108 100% 80 100% 71 100% 55 100%

The results are very clear: Almost all subjects prefer N to M and D to M. That
is, when asked to choose between two gambles, one in which both the prize amount
and the probability of winning it are perfectly positively correlated (D), and the
symmetric one in they are perfectly negatively correlated (M), almost all subjects
prefer the former.
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Table 6: Ranking of M and N

Type Total Transitive Regular Regular*
M < D 3 6% 1 3% 1 3% 1 4%
D < M 46 94% 34 97% 29 97% 23 96%

Total : 49 100% 35 100% 30 100% 24 100%

2.3 Gender Effects

We conclude our analysis of the experimental data by examining gender differences
in behavior. Our subjects were asked to specify their gender at the beginning of the
questionnaire, and our subject pool included 39 women (36%). We start by noticing
that we find no significant difference in the behavior of male and female subjects in
the standard Ellsberg questions: the proportion of subjects who rank N<P is 77%
for women, and 80% for men (85% and 83% if we focus on transitive subjects). Mild
differences appear in risk aversion: 72% of women are (weakly) risk averse, against
64% of men, which become 81% and 63% if we focus on transitive subjects.

Gender effect, however, are much more significant if we look at the ranking of
the options introduced by our experiment. In particular, let us focus on transitive
subjects who rank N<P, and look at the ranking of N, P, and D, and of P and C.
Results appear in Tables 7 and 8.

Table 7: Gender Effects on the ranking of N, P, D

Type M F Total
N < P < D 10 22% 7 32% 17 25%
N < D < P 14 31% 9 41% 23 34%
D < N < P 21 47% 6 27% 27 40%

Total : 45 100% 22 100% 67 100%

Two features stand out. First, men seem to rank D at the top more frequently
than women: only 27% of women rank it at the top versus 47% of men. That is,
our results on the special role played by D seem stronger when we focus on men, and
less strong in women. Also the relative ranking of P and C seems different. While in
the aggregate data we showed that subjects are evenly split between the two options,
when we divide across genders we find that, in fact, a small majority of men seem to
choose C over P, while a (larger) majority of women choose P over C.22

22The difference is even larger when we focus on (weakly) risk averse subjects: in this case 77%
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Table 8: Gender Effects on the ranking of P and C

Type M F Total
P < C 19 42% 15 68% 34 51%
C < P 26 58% 7 32% 33 49%

Total : 45 100% 22 100% 67 100%

3 Theory and Data: Compatibility and Restric-

tions

3.1 The MaxMin Expected Utility model

We now turn to analyze the results of our experiment in light of one of the most well-
known models of choice under ambiguity: the MaxMin Expected Utility (MMEU)
model of Gilboa and Schmeidler (1989). According to this model, for every state
space Ω and set of consequences X, agents are endowed with a utility function u over
X and with a convex and compact set of priors Π over Ω such that each available
option (act) is evaluated by ambiguity averse agents using a functional of the form

V (f) = min
π∈Π

∫
Ω

∫
X

u(f(w)(x))dx dω.

(The min is replaced by a max in case of ambiguity loving.) The usual interpretation
is that ambiguity averse (loving) agents do not have a single belief over the states
of the world, but rather a whole set of them, and they evaluate each option using
the most pessimistic (optimistic) prior in the set. We refer to Gilboa and Schmeidler
(1989) for an in-depth discussion.

We focus initially on the MMEU model for three reasons. First, it is one of the
most common and most-well known model for choice under ambiguity. Second, it
is the most restrictive model within a large and well-known class of models, which
means that (i) if the behavior is compatible with MMEU, it is compatible also with
any model in this more general class, and (ii) if the observed behavior suggests any
further restriction for the MMEU model, then there would be further restrictions also
for the more general models.23 Third, one of the postulates that distinguish MMEU

of women choose P over C versus 43% of men. When we focus on (weakly) risk averse subjects,
numbers change slightly also for the gender effects of the ranking of N, P, and D: the proportion of
men who rank D at the top remains 47%, while that of women rises to 29%.

23That is, say that the observed behavior satisfies also some additional property which is not
implied by the MMEU model. (In this sense, the observed behavior suggests further restrictions on
the MMEU model.) Then, this additional property should also be satisfied by models that generalize
MMEU, suggesting restrictions for these models as well.
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from other models is C-independence. While we do not test this property directly,
as we argued above we do test a property reminiscent of it, and we find that it is
satisfied by 69% of the transitive subjects, whom we called regular*. As we have seen,
our results seem to remain unchanged when we focus specifically on them.

In order to use the MMEU model to study the behavior in our experiment, we
need to specify both the space of consequences X and the state space Ω. A natural
candidate for the former is the set of possible money amounts that may be won by
the agent (e.g. X = {0, . . . , 40}). To specify the latter we need to include all the
possible events that are subject to uncertainty: the number of red balls ({0, . . . , 40}),
and the color of the ball that is drawn ({R,G,B}). We consider therefore Ω =
{0, . . . , 40} × {R,G,B}. At the same time, however, we focus on the specific case
in which all beliefs in Π are compatible with the actual composition of the urn in
the experiment. In particular, we posit two conditions. First, any prior must assigns
probability 1/3 to a black ball being extracted (i.e. to the event {B} × {0, . . . , 40}).
Second, conditional on there being x red balls in the urn, then the agent must assign
probabilities x/20, (40−x)/20, and 1/3 respectively to R,G,B.24 (The priors we thus
identify are the only ones compatible with the given information on the composition
of the urn – the objectively rational beliefs of Gilboa et al. (2010); see Cerreia-Vioglio
et al. (2011) for more.) With these restrictions it is easy to see that the marginal
belief assigned to the number of red balls {0, . . . , 40} identifies uniquely the belief
on the full state space Ω. For this reason, in our analysis below we focus only on
the marginal beliefs over {0, . . . , 40}, referring to them as ‘priors,’ which means that
our analysis de facto proceeds as if the state space were simply {0, . . . , 40}. This is
without loss of generality if we focus on beliefs satisfying the restrictions above, and
it also allows us to express our conditions more clearly.25 Define Ω̂ := {0, . . . , 40}.

We start by analyzing the utility of each of our five gambles under the MaxMin
Expected Utility model.26 By u we understand a generic continuous function from
R+ to R. Let us introduce some additional notation: for every π ∈ ∆(Ω̂), denote by
Eπ[x] the expectation of π, i.e. Eπ[x] =

∑40
x=0 π(x)x. Eπ[x2] and Eπ[u(x)] are defined

analogously. VARπ denotes the variance of π. Table 9 displays the utility of each
option for ambiguity averse (N<P) agents, and for ambiguity averse and risk neutral
ones (u(x) = x). (Since every utility is multiplied by 1

60
, for simplicity it is dropped

from Table 9.) Notice that the utility of ambiguity loving agents can be obtained
trivially by replacing the min with a max in the second and third column.

Our next task is to understand if the observed rankings are compatible with the

24For example, if the agent is sure that there are no red balls (π({R,G,B} × {0}) = 1), then she
must assign probability zero to R (π({R} × {0, . . . , 40}) = 0).

25Indeed we will have to be careful to always refer to the original states space whenever required,
e.g. if we wish to characterize sets of priors to be convex.

26As we discussed, each alternative D,P,M, and C is presented to the subjects in two forms,
depending on the winning color. For simplicity, we consider here only the option in which the
‘winning color’ is red. (For M we consider the case in which if red ball is extracted, the agent wins
$g.) The case of green is symmetric.
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Table 9: Utility of each act using the MaxMin Expected Utility Model

Act Amb. Averse Amb Av and Risk Neutral
N 20 u(20) 202

P min
π∈Π

Eπ[x] u(20) min
π∈Π

Eπ[x] 20

C min
π∈Π

20 Eπ[u(x)] min
π∈Π

20 Eπ[x]

D min
π∈Π

Eπ[xu(x)] min
π∈Π

Eπ[x2] =min
π∈Π

VARπ + Eπ[x]2

M min
π∈Π

Eπ[xu(40− x)] min
π∈Π

40Eπ[x]− VARπ − Eπ[x]2

MMEU model, and if they are, what are the implied restrictions on the parameters of
the model. For simplicity, we address these questions by first assuming risk neutrality.
We then extend our conclusions to the general case.27

We start by considering whether a risk neutral MMEU subject could rank D<N.

Observation 1. A risk neutral MMEU subject with set of priors Π ranks D<N if,
and only if,

VARπ ≥ 202 − (Eπ[x])2 ∀π ∈ Π. (2)

Moreover, the condition above implies that there is no π ∈ Π such that Eπ[x] < 20
and π({21, . . . , 40}) = 0. That is, every prior in Π with an expected value below 20
must assign a strictly positive probability to there being strictly more than 20 red
balls.

(If we consider subjects who are not risk neutral, condition (2) becomes Eπ[xu(x)] ≥
202.) Observation 1 shows that the ranking D<N<P is compatible with the MMEU
model, but only if the variance of all priors in the set of priors Π is above a certain
threshold. In particular, Condition (2) posits that if an agent has a prior in his set
of priors with an expected value below the ‘symmetric’ value of 20 – i.e. if she has
a ‘pessimistic’ prior in terms of the number of red balls – then this prior should also
have a non-trivial variance. This variance must be higher than the difference between
the square of 20 and the square of the expected value.

One possible interpretation of Condition (2) is the following. While subjects could
act as if they were pessimistic about the number of red or geen balls – they have a
prior with a low expected value – they cannot act as if they were sure about this
pessimistic valuation: they should incorporate in this prior the awareness that they

27One the one hand, risk neutrality allows us to obtain much simpler expressions while conveying
the main idea of the restrictions that we find. On the other hand, as we have seen in our data the
role of the agent’s risk attitude seems to be secondary, since when we focus on (weakly) risk averse
subjects the rankings change minimally.
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are being pessimistic. In fact, as mentioned in the second part of Observation 1,
Condition (2) also implies that every pessimistic prior in Π must also assign a strictly
positive probability to there being strictly more than 20 red balls: that is, even for
the pessimistic priors, while the expected value can be below 20 (Eπ[x] < 20), the
agent must admit the possibility that there are, in fact, strictly more than 20 balls
(π({21, . . . , 40}) > 0). We denote this behavior Skeptical Pessimism.

As we discussed in the introduction, Condition (2) is not compatible with the
casual “classroom” example of MMEU. For instance, any degenerate prior according
to which there are only r < 20 red balls (π(r) = 1) is not compatible with Condition
(2) – this prior has an expected value below 20, but a zero variance.

Condition (2) gives us the restrictions on Π that are necessary and sufficient for a
risk neutral MMEU agent to rank D<N. We derive similar conditions that guarantee
that the agent ranks D< P and D<M.

Observation 2. A risk neutral MMEU subject with set of priors Π ranks D < P if
and only if

min
π∈Π

VARπ + Eπ[x]2 ≥ min
π∈Π

20Eπ[x] (3)

If the most pessimistic priors for the evaluation of D and P were the same and equal
to π, then (3) becomes

VARπ ≥ 20Eπ[x]− Eπ[x]2 (4)

where Eπ[x] ≤ 20 (because the agent ranks N < P ). Notice that Condition (4) is
strictly weaker than Condition (2).

Observation 3. A risk neutral MMEU subject with set of priors Π ranks D <M if
and only if

min
π∈Π

2 ∗ (20Eπ[x])− VARπ − Eπ[x]2 ≥ min
π∈Π

VARπ + Eπ[x]2 (5)

If the most pessimistic priors for the evaluation of D and M were the same and equal
to π′, then, the (5) becomes

VARπ′ ≥ 20Eπ′ [x]− Eπ′ [x]2 (6)

where Eπ′ [x] ≤ 20 (because the agent ranks N < P ). Notice that Condition (6) is
strictly weaker than Condition (2).

(If we consider subjects who are not risk neutral, (3) becomes min
π∈Π

Eπ[xu(x)] ≥
min
π∈Π

20Eπ[x], while (4) becomes Eπ[xu(x)] ≥ 202. Condition (5) becomes min
π∈Π

Eπ[xu(x)] ≥
min
π∈Π

2 ∗ (20Eπ[u(x)])− Eπ[xu(x)].))

Observation 2 and 3 show that to obtain D<P or D<M we need to impose on
Π conditions that are reminiscent of Condition (2), but are strictly weaker. In fact,
while they apply only to some of the priors in Π (whereas (2) applies to all), they also
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posit restrictions on the minimal variance of the members of Π in line with the notion
of skeptical pessimism. Both conditions, for example, are violated by the ‘classroom
example’ of MMEU mentioned before.

If we look at our data in light of the results above, we notice that if subjects were
modeled using the MMEU representation, then almost all of the ambiguity averse
subjects would have to satisfy at least one of the conditions above. In fact, 97% rank
D<M and would satisfy Condition (5); 74% rank D<P and would satisfy Condition
(3); 40% would rank D<N and satisfy Condition (2). Moreover, while Condition (2)
applies to ambiguity averse subjects, it is easy to see that an ambiguity loving one
(P<N) who is also risk neutral must have D<N.28 This is true in our data: every
subject who ranks P<N also ranks D<N.

Finally, the discussion above emphasizes how the MMEU model need not be a
model of ‘extreme pessimism,’ as one might be tempted to say from its functional
form. As we have seen, while in this model agents use priors with a ‘low’ expected
value, at the same time these priors could also have a high variance and allow for the
possibility of good outcomes – inducing the agent to chose an ambiguous option, D,
against a non-ambiguous one, N.

3.2 Second-Order Expected Utility Models

The MaxMin Expected Utility model is only one amongst the many models of ambi-
guity aversion that have been suggested in the literature.29 Some of these models are
strict generalization of MMEU, and for each of them it is not hard to derive conditions
that guarantee D<N<P in the spirit of those derived for the MMEU model.30 Other
well-known models represent ambiguity-averse behavior via Second-Order Expected
Utility (SOEU). In these models, subjects evaluate each act using a functional of the
form

U(f) =

∫
∆(Ω)

µ(π)φ
( ∫

Ω

∫
X

u(f(w)(x))dx dω
)
dπ (7)

where µ is a prior over priors and φ is a concave function. (Ambiguity loving subjects
are modeled using a convex φ.) The idea is that subjects have a prior over priors µ, and
they aggregate the expected utility computed with each prior via a concave function
φ, where the concavity of φ leads to ambiguity aversion just like the concavity of a

28 To see why, notice that we have D<P iff maxπ∈Π V ARπ +Eπ[x]2 ≥ maxπ∈Π Eπ[x] 20. Consider
now π̄ = argmaxEπ[x]; since the agent is ambiguity loving it must be that Eπ̄[x] ≥ 20. But then
maxπ∈Π Eπ[x] 20 = Eπ̂[x] 20 ≤ Eπ̂[x]2 ≤ Eπ̂[x]2 + V ARπ̂ ≤ maxπ∈Π V ARπ + Eπ[x]2. Therefore,
D<P. Since P<N, we have D<P<N.

29Halevy (2007) surveys many of these models, and conducts an ingenious experiment in which he
compares behavior in the standard Ellsberg treatment with treatments with objective risk in order
to differentiate which of these models provides a more accurate description of subjects’ behavior.

30Among many, see for example the Variational Preferences of Maccheroni et al. (2006), the
Uncertainty Averse Preferences of Cerreia et al. (2010), the Biseparable Preferences of Ghirardato
et al. (2004), or the MBC preferences of Ghirardato and Siniscalchi (2010).
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utility function leads to risk aversion in von-Neumann Morgenstern Expected Utility.
Models of this kind appear in Klibanoff et al. (2005), Ergin and Gul (2009), and Seo
(2009).

One of the main differences between the MMEU and SOEU models is that in the
former the agent either considers a prior π, or disregards it entirely; by contrast, in
latter the agent may assign different weights to different priors. This is a relevant
difference if we aim to find the equivalent to Condition (2) for models of the latter
class. In fact, for the MMEU model we have argued that priors that are pessimist
and have a low variance should not be considered at all by an agent who ranks
D<N. This allows us to suggest restrictions on the set of priors Π. By contrast, an
agent with SOEU preferences could rank D<N and also consider priors that are both
pessimistic and have a low variance, in the sense that they belong to the support of µ,
by assigning to them a ‘smaller’ weight. In particular, in the SOEU case we observe
D<N as long as µ satisfies some specific restrictions on the induced variance on the
number of red balls. It would hold in two cases. First, if µ gave a relatively high
weight to the priors with ‘high’ variance. In this case we would have D<N even if
the agent is ‘very ambiguity averse’ (φ is ‘very concave’). Alternatively, it would also
hold if µ admits in its support priors with a low variance, but these priors are very
different from one another, in such a way that the expectation of µ, which is a prior
over Ω, has a relatively high variance over the number of red balls. In this latter case,
we would have D < N as long as the agent is not ‘too ambiguity averse’ (φ is mildly
concave).31

Almost identical arguments could be used to find equivalent restrictions to the
model of prior uncertainty of Cerreia-Vioglio et al. (2011), and similar arguments
lead to similar restrictions for other well-known models like Segal (1987), Schmeidler
(1989), Halevy and Feltkamp (2005), and Siniscalchi (2009).

4 Conclusion

This paper extends the classical Ellsberg experiment to investigate decision-makers’
reaction to gambles in which the prize amount, the probability of winning, or both,
may depend on the composition of an ambiguous urn. Most of our subjects exhibit
the same attitude towards ambiguity when either the prize or the probability (but
not both) are unknown. However, a large fraction of our subjects display a different
attitude when both the winning probability and the amount of the prize are positively
correlated and depend on the unobserved composition of the urn: If we focus on
the subjects who prefer the gamble with no ambiguity to the gamble in which the
probability of winning depends on the urn composition, then 40% of them rank both

31For example, consider some µ with these two degenerate priors in its the support: 1) there are
40 red balls and the probability of R is 2

3 ; 2) there are no red balls and the probability of R is zero.
Then, for mildly concave φ such agent would rank N<P and D<N.

22



of these gambles below the one in which both the prize amount and the probability
of winning depend on the urn’s composition.We show that this behavior could be
rationalized in a MMEU model by requiring that every prior in the set of priors of
the agents has a non-trivial variance. In particular, the variance should be above
a threshold which is higher the more pessimistic the prior is – a condition that we
called skeptical pessimism.

While our result tests for the presence of skeptical pessimism with a simple modi-
fication of the typical Ellsberg experiment, it would be interesting for future work to
test if similar conditions on the variance of the priors hold in other settings as well.

Appendix A: Instructions

Subjects received the following instructions.32

INSTRUCTIONS

This is an experiment in decision making. Various research institutions have
provided the money for this experiment.

The experimenter will stand in front of you with a non-see-through bag that
contains 60 poker chips.

• 20 of these chips are BLACK,

• r chips are RED and

• g chips are GREEN,

• where r+g=40.

You are not told how many RED and GREEN chips there are. All you know is
that the number of RED chips plus the number of GREEN chips is 40. Thus, the
number of RED chips and the number of GREEN chips may be any whole number
between 0 and 40 such that the sum of these two numbers is 40.

Note that you are also not told how the number of RED and GREEN chips (i.e.
r and g) is determined.

32 What follows are the instructions that subjects received during sessions 3 and 4. They differ
from those they received during sessions 1 and 2, since in those sections subjects were also asked
to specify their willingness to pay for each option, with a BDM mechanism. (The instructions
therefore contained an explanation of the mechanism.) As we mention in the main text, however, we
disregard these answers in our analysis, and conduct robustness tests that shows that the presence
of these questions had no (significant) impact on the answers. For these reason, we report here the
instructions that subjects received for sections 3 and 4 only. (The instructions for the sessions 1 and
2 are available upon request.)
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At the end of the experiment, each of you may inspect the content of the bag
In this experiment you are asked to answer a questionnaire. In the questionnaire

you are first asked to tell us your gender, your SAT score, and your year of birth.
This is followed by list of questions in which you are asked to choose among lotteries.
The following are examples of what we call a lottery.

Example 1: If the chip drawn is BLACK, you win $12, but if the chip drawn is
either RED or GREEN, you win nothing.
Example 2: If the chip drawn is BLACK or RED, you win nothing, but if the chip
drawn is GREEN you win an amount of money equal to the number of GREEN chips.

Note that the prize amount in a lottery may depend on the number of RED and
GREEN chips as in Example 2 above.

In the questionnaire, you will be given a list of lotteries and will be asked to choose
ONE lottery from the list, which you most prefer. In each question the number of
lotteries will vary between 2 and 4. The following is an example of a question where
you are asked to choose ONE lottery out of THREE:

Which lottery do you prefer?
If BLACK then $12, if RED then $0 and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $g
If BLACK then $0, if RED then $r and if GREEN then $0

Please answer all the questions. If you wish to change your answer, please mark
your final answer clearly.

Please take your time in answering all the questions. You have plenty of time to
think about each question. When you have finished answering all of the questions,
please review all of your answers by reading the whole questionnaire again.
Note that there is no advantage to finishing quickly as the experiment will end only
when everyone has finished answering.

Once all participants have finished answering and reviewing their questionnaire,
we will proceed as follows:

1. The experimenter will randomly draw a chip from the cloth-bag (in front of
everybody).

2. Using dice (in front of you), the experimenter will draw one question number
from the questionnaire.
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3. You will then be paid according to the amount specified by the lottery you have
chosen for that question, plus a show-up fee of $7. (This might involve counting
the number of red and green chips in the bag.) For example, suppose the lottery
you chose for the question stated that “If the chip drawn is BLACK, you win
$12, but if the chip drawn is either RED or GREEN, you win nothing.” Then
if the experimenter draws a black chip you win $12; if the experimenter draws
a red or a green chip, you win nothing.

Payments

• You will receive a show-up fee of $7, which is your to keep regardless of the
decisions you make in the experiment.

• You will also be paid an amount that will depend on the question that is ran-
domly selected, the answer you gave to that question and the chip that is drawn.

Summary To summarize:

1. You will be presented with a cloth-bag containing 60 chips, 20 of which are
BLACK, the others are GREEN and RED. The total number of RED and
GREEN chips is 40 but you are not told how many of these are RED or GREEN.
In addition, you are not told how the number of RED or GREEN chips was
determined.

2. You will be presented with a list of questions in which you will be asked to
choose between lotteries.

3. After you have answered all the questions, please review them to make sure you
are satisfied with the answers you gave.

4. Finally, the experimenter will draw a chip from the cloth-bag, and then:

(a) For each of you, she will roll a dice to randomly select one of the questions
of the questionnaire;

(b) You will be paid the amount specified by the lottery you selected, plus a
show-up fee.

Appendix B: Questionnaire

Subjects answered the following questionnaire.33

QUESTIONNAIRE

33This is the Questionnaire that subjects answered to in sessions 3 and 4. As we mentioned before,
the Questionnaire in sessions 1, 2 was different (see footnote 32), and it is available upon request.
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Please Indicate
Gender
Year of Birth
SAT Score

Please answer each of the following questions:

Question 1

Which lottery do you prefer?
If BLACK then $20, if RED then $0 and if GREEN then $0.
If BLACK then $0, if RED then $20 and if GREEN then $0.
If BLACK then $0, if RED then $0 and if GREEN then $20.

Question 2

Which lottery do you prefer?
If BLACK then $20, if RED then $0 and if GREEN then $0
If BLACK then $r, if RED then $0 and if GREEN then $0
If BLACK then $g, if RED then $0 and if GREEN then $0

Question 3

Which lottery do you prefer?
If BLACK then $20, if RED then $0 and if GREEN then $0
If BLACK then $0, if RED then $r and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $g

Question 4

Which lottery do you prefer?
If BLACK then $0, if RED then $20 and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $20
If BLACK then $r, if RED then $0 and if GREEN then $0
If BLACK then $g, if RED then $0 and if GREEN then $0

Question 5

Which lottery do you prefer?
If BLACK then $0, if RED then $20 and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $20
If BLACK then $0, if RED then $r and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $g

Question 6
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Which lottery do you prefer?
If BLACK then $r, if RED then $0 and if GREEN then $0
If BLACK then $g, if RED then $0 and if GREEN then $0
If BLACK then $0, if RED then $r and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $g

Question 7

Which lottery do you prefer?
If BLACK then $40, if RED then $0 and if GREEN then $0
If BLACK then $0, if RED then $20 and if GREEN then $20

Question 8

Which lottery do you prefer?
If BLACK then $13, if RED then $13 and if GREEN then $13
If BLACK then $40, if RED then $0 and if GREEN then $0

Question 9

Which lottery do you prefer?
If BLACK then $20, if RED then $20 and if GREEN then $20
If BLACK then $r, if RED then $r and if GREEN then $r
If BLACK then $g, if RED then $g and if GREEN then $g

Question 10

Which lottery do you prefer?
If BLACK then $20, if RED then $20 and if GREEN then $20
If BLACK then $r, if RED then $20 and if GREEN then $20
If BLACK then $g, if RED then $20 and if GREEN then $20

Question 11

Which lottery do you prefer?
If BLACK then $20, if RED then $0 and if GREEN then $0
If BLACK then $0, if RED then $g and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $r

Question 12

Which lottery do you prefer?
If BLACK then $0, if RED then $r and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $g
If BLACK then $0, if RED then $g and if GREEN then $0
If BLACK then $0, if RED then $0 and if GREEN then $r
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