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Abstract

Consider a large market with asymmetric information, in which sellers choose
whether to cooperate or deviate and �cheat�their buyers, and buyers decide whether
to re-purchase from di¤erent sellers. We model active trade relationships as links in
a buyer-seller network and suggest a framework for studying repeated games in such
networks. In our framework, buyers and sellers have rich yet incomplete knowledge
of the network structure; allowing us to derive meaningful conditions that determine
whether a network is consistent with trade and cooperation between every buyer and
seller that are connected.
We show that three network features reduce the minimal discount factor necessary

for sustaining cooperation: moderate competition, sparseness, and segregation. We
�nd that the incentive constraints rule out networks that maximize the volume of
trade and that the constrained trade maximizing networks are in between �old world�
segregated and sparse networks, and a �global market�. (JEL: A14, C73, D82, D85,
L14)
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1 Introduction

Economists have long noticed that it is di¢ cult to sustain cooperation in large groups,

especially when the degree of third party observability within a large group is limited.1

Nevertheless, even as markets grow and span across geographic and cultural borders, informal

agreements and cooperation continue to be an important part of markets�activity.

A number of empirical studies document interesting patterns of trade within large groups.

In particular, trade and trust are often concentrated in a subset of all possible relationships.2

This paper suggests an explanation to the observed patterns of trade and trust. We consider

a market with asymmetric information. In every period, sellers with limited supply meet

sequentially with buyers with limited demand and decide whether to cooperate or to defect

and �cheat�a given buyer. Only the buyer cheated observes the seller�s deviation. We model

active relationships as links in a buyer-seller network and ask the following question: what

structures of networks are consistent with an equilibrium in which every buyer and seller

that are connected trade and cooperate with each other? The answer to this question de�nes

a set of networks in which a link between seller s and buyer b implies that b can trust s to

cooperate with him when they trade.

The absence of a satisfactory model of repeated games in networks is often attributed to

the inherent intractability of the problem. The richness of network environments presents

non-monotonicities and discontinuities that are hard to work with in static games, let alone

adding a dynamic layer. Karlan et. al. (2009) o¤er a static model to approximate dynamic

relationships, and argue that "networks are complicated structures, and combining them with

repeated interaction can make the analysis intractable." Lately, several researchers take on

di¤erent approaches to modeling repeated games in networks (see Lippert and Spagnolo

2010, Mihm, Toth, and Lang 2009, and work in progress by Miller and Nageeb, and by Nava

and Piccione). As their approach and research questions di¤er signi�cantly from ours, we

defer the discussion of these papers to section 9. Notably, a repeated games model that is

appropriate for the analysis of networked markets with buyers and sellers has not yet been

1See also Kandori (1992), Greif (1993), and Ellison (1994).
2See also Fafchamps (1996), McMillan and Woodru¤ (1999), Hardle and Kirman (1995), Kirman and

Vriend (2000), Weisbuch et. al. (1996), and Karlan et. al. (2009). We review this literature in section 9.
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suggested.

Our framework alleviates some of the di¢ culties and provides a simple expression that

summarizes all the network information that seller s uses when deciding whether to cooperate

with buyer b or cheat him. Consider a seller s and a buyer b that are connected. The

immediate bene�t for s from cheating buyer b is de�ned by the stage game and does not

depend on the network. On the other hand, the cost of cheating depends on the entire

network structure. As a starting point, consider the simple case that s deviates only in an

interaction with b and cooperates with all other buyers that are connected to her. In this

simple case, for every period that b �punishes� s by not purchasing from her, s loses her

expected per-period future value from cooperation with b, which we denote by FVs;b. If

FVs;b is large, s does not take the risk of deviating and losing the option to trade with b even

if her intertemporal discount factor is low and the immediate bene�t from deviating is large.

In Theorem 1, we establish conditions under which the following one-deviation-principle

holds: FVs;b is a su¢ cient statistic for determining whether a fully cooperative equilibrium

(an equilibrium in which every buyer and seller that are connected always cooperate with

each other) exists.

Despite the signi�cant simpli�cation, FVs;b still depends on the entire network structure

and can be di¢ cult to calculate, especially in large networks. To evaluate FVs;b, s asks the

following question: "What is the probability that I will be able to sell a good to b and not

be able to sell it to any other buyer?" The answer re�ects the probability that s needs b

in a given period, and depends on the network structure in two ways. First, the network

structure determines the frequency of interactions between s and b; when their frequency

of interaction rises, s needs b more, and values more their connection. Second, the network

structure determines the outside options of s if she were not connected to b. When other

buyers with whom s is connected are more likely to buy from s, seller s needs b less. Figure

1 provides an example using two simple networks.
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Figure 1: In every period, let meetings between buyers and sellers occur in a random order,
and let each seller produce one unit of a good and each buyer have demand for one unit of a
good. For both networks, assume that there exists an equilibrium in which every seller and
buyer that are connected cooperate. Then, successful interactions between seller s and buyer
b in the network in �gure 1a are more frequent than in �gure 1b, because in the latter there is
a positive probability

�
p = 1

4

�
that s does not manage to sell to any buyer in a given period.

However, in �gure 1a s has a guaranteed outside option because buyer b0 cannot transact with
any other seller, whereas in �gure 1b, there is a positive probability that b is the only buyer
ready to buy from s, which raises the value of this connection for seller s. Focusing on �gure
1b, if we eliminate the link between s0 and b, the connection between s and b becomes more
valuable due to higher frequency of interactions and the connection between s and buyer b0

becomes less valuable due to an improved outside option for s.

The expectations of seller s with respect to FVs;b depend also on what s knows about the

network. A novel feature of this paper is that we introduce an approach for studying repeated

games with incomplete knowledge of the network structure. Our approach is similar to the

one used by Jackson and Yariv (2007), and Galeotti et. al. (2010) but less restrictive.3 In our

model, sellers and buyers know who they are connected to, and the number of connections

(degree) of each of the buyers or sellers that they are connected to. Additionally, they know

the number of buyers and sellers in the network (nb and ns respectively), as well as some

aggregate information regarding the network structure, such as the degree distribution of

buyers and sellers in the network and the probability of sharing more than one neighbor

with the same individual.

Theorem 1 and Equation (3) show that in any network that admits a fully cooperative

equilibrium and for every seller s and buyer b that are connected, FVs;b can be summarized by

a simple expression that captures FVs;b in a corresponding random tree. Using this insight,

we show that three network features increase the values of links: [1] moderate and balanced

competition: the degrees of every buyer and seller that are connected are similar (Theorem 2

3Galeotti et. al. (2010) and Jackson and Yariv (2007) introduce the analysis of static network games
with incomplete information and are able to reduce signi�cantly the complexity of the analysis and overcome
problems of multiplicity of equilibria.
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and Proposition 3); [2] sparseness: the degrees of sellers and buyers in the network are small

(Theorem 3); and [3] segregation: sellers who have one buyer in common, have connections

to similar sets of buyers overall (Theorem 4).4 For �xed intertemporal discount factors,

our results describe systematic constraints on the structure of networks that can sustain

cooperation.5

If we ignore the incentive constraints and assume that sellers always cooperate, networks

that maximize the expected volume of trade are dense - the exact opposite of [2] above. This

di¤erence is especially robust in stochastic environments, in which sellers�supply is subject

to exogenous �uctuations (Theorem 5).

We suggest social and formal institutions that relax the constraints on the structure of

networks that admit a fully cooperative equilibrium: Reputation Networks, Litigation, and

Third-Party Evaluation Services. The direct e¤ect of each of these institutions on cooperation

is well studied. However, the integration of reduced form models of these institutions into

our framework highlights a new insight: in the presence of either of these institutions, denser

networks can sustain cooperation (Propositions 4 and 5); i.e. these institutions complement

the network rather than substitute for it in enforcing cooperation.

Methodologically, we extend prior literature on games in networks in several ways. Most

notably, while most of the literature focuses on static games (for extensive surveys, see Goyal

2007 and Jackson 2008), we analyze repeated games in networks. In addition, the current

literature focuses either on complete information of the network structure,6 or on incomplete

information where an agent knows only her own degree and the degree distribution of others

in the network. We allow for incomplete yet richer knowledge of the network structure. By

doing so, we achieve tractability in large networks, while maintaining the ability to analyze

complex changes in the network structure. We also provide a model of market activity in

which incomplete knowledge of the network structure persists even with Bayesian agents.

4This notion of segregation in two sided (bipartite) networks is related to the concept of clustering in the
graph theory literature, and to the notion of network closure in Granovetter (1974) and Burt (2001). From
a more applied perspective, segregation is related to the size of each community within a society; a market
is more segregated if each separate community is smaller.

5This is di¤erent from most of the networks literature, in which the constraints on the network structure
come from an exogenous cost of creating or sustaining links.

6E.g. Ballester et. al. (2006), Bramoulle, Kranton, and D�Amours (2009), Chwe (2000), Galeotti (2005),
and Goyal and Moraga-Gonzalez (2001).
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Finally, most related to our paper is Fainmesser and Goldberg (2010) - hereby FG - who

analyze how the structure of an informational network between buyers a¤ects the ability

to sustain cooperation between buyers and sellers. FG show that the impact of the entire

structure of the buyer-seller network on the incentives of a seller to cooperate can be approx-

imated by focusing on the seller�s local neighborhood - a small network that includes only

buyers and sellers that are close to the seller. Furthermore, when sellers have a su¢ cient

level of uncertainty with respect to the network structure, FG �nd that a seller expects her

local neighborhood to look approximately like a random tree - a network that has no cycles

and in which the degrees of buyers and sellers in the network are drawn independently at

random from some degree distribution. We make use of these graph theoretic results in our

characterization of large network for which a fully cooperative equilibrium exists.

The paper is organized as follows. The following section o¤ers two motivating examples.

In section 3, we present the model, and in section 4 we characterize the future value of

links in large networks and derive conditions to determine whether a network admits a fully

cooperative equilibrium. Sections 5 and 6 characterize di¤erences in the future values of

di¤erent links within and across networks and relate these di¤erences to the constraints on

the structure of networks that admit fully cooperative equilibria. Section 7 investigates the

trade-o¤ between sustaining cooperation and maximizing trade volumes. In section 8 we

study institutions that a¤ect the ability to sustain cooperation. Section 9 o¤ers a discussion

of related literature and empirical evidence, and section 10 o¤ers concluding remarks.

2 Examples

To motivate our analysis, we brie�y describe two examples of relevant applications.

2.1 Example 1: job recommendations

The importance of social networks for getting jobs has been long recognized. Granovetter

(1974) documents that more than half of (white-collar) workers use personal connections to

obtain jobs. Bewley (1999) summarizes 24 other U.S. studies that point to similar results.

Fainmesser (2010) shows that transmission of information over social networks can a¤ect the
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timing of hiring in entry-level labor markets.

Consider a group of recommenders (teachers / past employers / head hunters) that have

workers to recommend and a group of �rms that are seeking to hire. A recommender receives

a positive payo¤ from getting a job for her worker. A worker�s ability can be either high

or low, and is observed by the �rm only after the worker is hired (the recommender knows

the ability of the worker). Assuming that �rms want to hire only high quality workers, a

recommender who has a low ability worker can bene�t from recommending the worker to

the �rm as having high ability.

Suppose that we are able to calculate the per-period future value that recommender s

has for the possibility that �rm b hires her worker (given the structure of the market), and

suppose that we are able to establish a one-deviation-principal in this setup. Then, the

maximal cost for s from deviating in an interaction with b is a simple discounted sum of this

future value and we would be able to predict whether it is sustainable to have truthtelling

by recommender s in interactions with �rm b.

2.2 Example 2: catering and food deliveries

The catering and food deliveries industry is a multi-billion dollar industry.7 Consider a group

of caterers and a group of repeated clients that order food frequently.8 Providing good service

costs caterers more than providing low quality service. In the absence of su¢ cient future

payo¤s that are contingent on providing high quality service, a caterer may shirk and provide

low quality service. When su¢ cient future incentives are in place, clients are able to trust

their caterer to provide high quality service.

As in example 1, it will be useful to be able to calculate the future value for every caterer

s from interactions with any client b. Moreover, as eating is a social experience, one might

expect that clients share among themselves information about past experiences with di¤erent

caterers. In that case, being able to calculate the future value provides a useful benchmark

7According to online publications, the catering industry alone includes 10,000 companies with combined
annual revenue of $5 billion (http://www.�rstresearch.com/Industry-Research/Catering-Services.html).

8For example, a repeated client can be a professional event coordinator, or a person in a �rm or a social
or professional group, who organizes the food orders.

7



to evaluate the impact of information sharing between buyers.9

3 Model

Consider a market with a set S = f1; 2; :::; nsg of sellers (recommenders / caterers) and a

set B = f1; 2; :::; nbg of buyers (�rms / clients). Time is discrete. Sellers live forever and

seller s has a discount factor �s. Periods are ex-ante identical. In every period, a seller

has one high quality unit capacity with probability � and no high quality capacity with

probability (1� �), i.i.d. across sellers and periods. � is common knowledge.10 In a given

period, a seller s that has one high quality unit capacity can produce either one low quality

good at no cost, or one high quality good with a cost of cs � 0. A seller with no high

quality capacity can produce only one low quality good at no cost. Goods are non-durable

and cannot be transferred across periods. Buyers live forever and have unit demand (for a

high quality good only) in every period. Each seller s has an active relationship with only

a subset of buyers, denoted by Bs. We �rst de�ne a buyer-seller network that captures the

active relationships of all sellers and later provide the activity rules that de�ne the notion

of an active relationship.

Let m = hS;B;Ei be a network, where E is a set of seller-buyer pairs such that (s; b) 2

E if and only if seller s and buyer b are connected (linked). Let Bs (m) = fb 2 Bj (s; b) 2 Eg

be the set of buyers that are connected to seller s, and let Sb (m) = fs 2 Sj (s; b) 2 Eg be

the set of sellers that are connected to buyer b. The degree of seller s, ds = ds (m) = jBs (m)j

is the number of buyers that are connected to s, and the degree of buyer b, db = jSb (m)j,

is the number of sellers that are connected to b. A path between buyer b and buyer b0 in

network m is a sequence of buyers and sellers (b = b0; s1; b1; s2; :::; sn; bn = b0) such that for

every i 2 f1; 2; ::; ng, f(si; bi�1) ; (si; bi)g � E. The length of a path is the number of edges

along the path. A path (b = b0; s1; b1; s2; :::; sn; bn = b0) is also a cycle if b = b0. A tree is a

network that has no cycles.

For the statement of several of our results it will also be useful to de�ne a notion of a
9In section 8.1 we allow for information sharing between buyers and study its e¤ect on market structure

and cooperation.
10The assumption that � is constant across sellers is without loss of generality.
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degree distribution in a network. Let g =


gS; gB

�
be a pair of probability distributions such

that if we choose a link (s; b) 2 E uniformly at random, gB (d) is the probability that buyer

b has degree d, and gS (d) is the (unconditional) probability that seller s has degree d. Let

G =


GS; GB

�
be such that GS is the CDF of gS and GB is the CDF of gB. We refer to G

as the degree distribution in the network.11

The dynamics of meetings between sellers and buyers in the market is fully determined

by the network structure, and captured by the following process.

Assumption 1 In every period, meetings between buyers and sellers that are connected in

the network occur in a random order, i.i.d. across periods. Formally, in every period, links

from E are drawn uniformly at random and without replacement (all links are chosen in

every period). When a link (s; b) is chosen, s and b meet and get an opportunity to engage

in trade unless either s or b has already traded (with anyone else) in the same period.12

3.1 Trade

When seller s meets with buyer b, seller s decides whether to invest in producing high quality

(if possible) and whether to tell b that the good is of high quality or of low quality. Buyer b

decides whether to purchase the good from s or not. If b purchases the good, seller s receives

a payo¤ of � (minus any production costs). Buyer b receives a positive net payo¤ if the good

is of high quality, and a negative net payo¤ otherwise. Payo¤s are realized at the end of the

period, and buyers and sellers who do not manage to trade in a given period have utility

0.13 ;14

11De�ning the degree distribution in terms of a probability distribution over the degree of a seller (buyer)
at the end of a link is due to Galeotti et. al. (2010) and Jackson and Yariv (2007).
12The idea that interactions in markets have a random component is not new and is formalized in many

models of market activity. As our focus is on the network structure and not on transient and irregular
frictions in markets, we follow much of the networks literature and take the random component as exogenous
(see also Bala and Goyal 2000, Manea 2010, and Pongou and Serrano 2009).
13In our model, depending on the realization of �, a seller�s deviation is either by not investing in high

quality when she has the option to do so, or by telling a buyer that she has a high quality good in a period
that she can produce only a low quality good. Our setup converges to a standard asymmetric prisoner�s
dilemma when � = 1 and c > 0, or when � < 1 and c = 0.
14The model and all of the results extend immediately to games in which both parties have incentives to

deviate, such as the standard prisoner�s dilemma. Similarly, our analysis remains the same for stochastic
games in which payo¤s vary across periods.
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De�nition 1 We say that buyer b and seller s cooperate if when they meet:

1. If s does not have high quality capacity, she truthfully conveys that to b, and if s has

high quality capacity she invests in producing high quality if b purchases the good.

2. Buyer b chooses to purchase the good if and only if s claims to have high quality

capacity.

Note that the pro�t for seller s from not cooperating may depend on the application

through � and cs. Let �s;D be the maximal additional payo¤ that s can ever gain from

deviation. In the adverse selection problem in example 1, seller (recommender) s deviates

by saying that a worker is of high quality when she is not. As a result, s gets bene�ts of

trade that would not have occurred had she told the truth, and �s;D = �. In the moral

hazard problem in example 2, a deviation by a seller (caterer) is saving on e¤ort costs, and

�s;D = cs.

Remark 1 We assume that the payo¤ for a seller from a single transaction (�) does not

depend on the network structure. Introducing bargaining over the network increases the

complexity signi�cantly. Moreover, any reasonable bargaining model will preserve the main

insights of this paper.15 Incidentally, in a bargaining procedure in which sellers make take-

it-or-leave-it o¤ers, it is straightforward to construct equilibria for which our analysis goes

through without changes.16

3.2 Large networks and the knowledge of the network

Our goal is to provide a framework that is suitable for the analysis of large markets. This

has proven to be a di¢ cult task even in the study of static games, and especially when

agents have complete knowledge of the network structure. With repeated interactions, the

analysis soon becomes intractable. Several authors suggest studying environments in which

15The literature on bargaining in networks is in its early stages. Excellent examples of models of bargaining
in networks are provides by Corominas-Bosch (2004), Manea (2010), and Abreu and Manea (2010).
16In section 9, we review evidence from markets in which price seems to be only of second order relative

to the ability to sustain cooperation. In other markets, as in the job recommendations example, there are
no money transfers and the payo¤s represent intrinsic utilities from trade.

10



agents have incomplete information of the network structure. In particular, Jackson and

Yariv (2007), and Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) focus on static

network games in which agents know only their own degree and the degree distribution in

the network.

A novel feature of this paper is that we introduce an approach that is similar to Jackson

and Yariv (2007), and Galeotti et. al. (2010) but less restrictive, and apply it to the study

of repeated games. In particular, sellers (and buyers) know their own degree and the degrees

of every buyer or seller that is connected directly to them, as well as the number of buyers

and sellers in the network (nb and ns respectively) and the degree distribution G.17

Assumption 2 Let Ks (Kb) be the knowledge that seller s (buyer b) has with respect to the

network structure. We assume thatKs =


ds; fdb0gb02Bs ; ns; nb; G

�
andKb =



db; fds0gs02Sb ; ns; nb; G

�
.

What seller s knows about the network is illustrated in �gure 2.

Figure 2

Figure 2: The network from the point of view of seller s who is connected to buyers b and b0.
Seller s knows the identities and degrees of buyers that are connected to her directly and the
degree distribution G of buyers and sellers that are not connected to her directly.

While clearly stylized, assumption 2 captures the idea that participants in the market

have some information on the alternative trading opportunities of their potential trading

partners. Restricting further the knowledge of the sellers and buyers does not change our

analysis. However, we �nd that outside opportunities of trading partners have a �rst order

e¤ect on the incentives to cooperate. Extending the knowledge of sellers and buyers beyond

Ks and Kb may only re�ne their evaluation of their trading partners�outside opportunities.

17Alternative assumptions that allow us to study the e¤ects of segregation on the ability to sustain coop-
eration are analyzed in section 6.2.
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As a result, allowing sellers and buyer to have additional information complicates our analysis

signi�cantly without changing the nature of our results.

To capture the idea that Ks and Kb contain all of the information that sellers and buyers

have with respect to the network structure, we suggest the following assumption.

Assumption 3 A seller s (buyer b) attaches identical probability to the network being any

of the possible networks conditional on Ks (Kb).18

Remark 2 The knowledge that individuals are expected to have in a repeated games setup

deserves further discussion. Clearly, repeated interactions provide sellers and buyers with

opportunities to learn about their environment. However, even excluding purely behavioral

considerations, there are several reasons for market participants not to be able to learn beyond

their close local network and some aggregate characteristics of the global environment. In

appendix A, we provide further discussion of our informational assumptions and provide an

example of an environment in which incomplete knowledge of the network structure persists

even if individuals are Bayesian and interact repeatedly in the network.

Large networks. To capture the idea of large markets, it is useful to consider the

following notion of an increasing sequence of networks.19

De�nition 2 Consider a �nite support degree distribution G, and let m (nb; G) be a network

with nb buyers and a degree distribution G. We say that fm (nib; G)g
1
i=1 is an increasing

sequence of networks if for every j > i, njb > n
i
b.

For some (nb; G) a network m (nb; G) may not exist. In particular, for m (nb; G) to exist

two conditions must be satis�ed: [1] nb must to be such that GB can be induced by some

vector (d1b ; d
2
b ; :::; d

nb
b ); and [2] there must exist some ns and a vector (d

1
s; d

2
s; :::; d

ns
s ) such

that (d1s; d
2
s; :::; d

ns
s ) is consistent with G and

Pns
i=1 d

i
s =

Pnb
i=1 d

i
b. However, for every G, and

starting from some nb, there exists an increasing sequence as required. Moreover, given nb

and G, ns is uniquely determined.

18Assumptions 2 and 3 are consistent with a seller (buyer) having a uniform prior over the set of all
networks given ns and nb. A seller (buyer) then updates her prior using Ks (Kb).
19See Ozsoylev and Walden (2009), and Golub and Jackson (2010) for a similar formulation of large

networks in the context of information di¤usion in networks.
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4 The value of a relationship

In this section we de�ne a notion of a per-period future value (FV) of a connection that follows

a greedy calculation: assume that in all networks all buyers and sellers always cooperate and

consider a seller�s single deviation followed by cooperation with all other buyers connected

to her. Then, the future value of the connection (s; b) in network m is the di¤erence between

the expected payo¤ of seller s in network m and her expected payo¤ in network mn (s; b).

Theorem 1 establishes conditions under which: [1] the naively calculated future values of

links are su¢ cient statistics for determining whether a fully cooperative equilibrium exists,

and [2] the future values of links in a network m can be calculated as if m is a random tree.

The following example demonstrates the simple conditions for cooperation in our model in

a market with a single seller and a single buyer.

Example (a market with one seller and one buyer). Consider a single seller s who

has unit capacity with probability � and a single buyer b. Conditional on cooperation, with

probability �, s needs b in order to trade with a payo¤ � � cs. Note that �s
1��s � � � (� � cs)

equals the maximal punishment that b can punish s (by not purchasing goods from s in

subsequent periods). Therefore, an equilibrium in which seller s and buyer b cooperate exists

if and only if �s
1��s � � � (� � cs) � �

s;D.

In networked markets with multiple sellers and buyers, the analysis is no longer straight-

forward. The maximal e¤ective punishment that could be imposed on a seller s by a given

buyer b depends on: [1] the outside option of the seller, and [2] the frequency of interaction

between s and b. Moreover, both [1] and [2] depend on the strategies of all of the buyers

and seller in the market. To this end, we restrict attention to equilibria in which buyers and

sellers use �trigger strategies�that take the following form.

De�nition 3 We say that buyer b and seller s that are connected in the network use trigger

strategies if when s and b meet they cooperate as long as neither of them deviated unilaterally

in the last T periods and deviate otherwise.

Although milder restrictions are su¢ cient to establish our results, focusing on trigger

strategies has several advantages. Beyond being intuitive and well studied in the economic

13



literature, trigger strategies are found to be commonly used by subjects in the lab,20 and are

often used by people to describe their own intentions and behavior. In relation to example

2 above, a quick glance in online discussion boards and blogs shows that an extreme version

of a trigger strategy, in which T !1, is often claimed to be used by many clients who had

a bad experience with their caterer or food delivery provider.21

De�nition 4 A Strict Trigger Nash Equilibrium (STNE) is a strict Nash equilibrium

in which all buyers and sellers employ trigger strategies.22

In the remainder of the paper, we focus on STNE unless stated otherwise. Extending the

analysis to a corresponding version of Perfect Bayesian Equilibrium complicates the analysis

signi�cantly, but does not change our results.

Note that by de�nition, in any STNE, every buyer and seller that are connected cooperate

with each other. Thus, given a STNE, periods are ex-ante identical. For each seller s and

buyer b, let I tm(s; b) denote the indicator of the event that s sold a unit of a good to b in

period t in a STNE in network m. We note that [1] I tm(s; b) is fully determined by the

realizations of who of the sellers are active in period t and of the order of meetings in period

t; and [2] ex-ante Pr (I tm(s; b)) is independent of t. A greedy calculation of the per-period

future value of the link (s; b) for seller s yields:

FVs;b (m) = � �

24 X
b02Bs(m)

Pr
�
I tm(s; b

0)
�
�

X
b02Bs(m)nb

Pr
�
I tmn(s;b)(s; b

0)
�35 � (� � cs) (1)

Note that it is not at all obvious that we can apply the same logic as in the example above and

claim that seller s cooperates with buyer b as long as �s
1��s � FVs;b (m) > �

s;D. In particular,

we are required to consider more complex deviations of seller s and cannot assume that her

best strategy after deviating in an interaction with buyer b is to always cooperate with all

other buyers in Bsnb. Moreover, even if FVs;b (m) is a su¢ cient statistic for the existence of a
20Engle-Warnick and Slonim (2006) �nd that trigger strategies are often used by subjects in repeated trust

games.
21For a not unusual example see http://www.grubhub.com/chicago/feast/. Note especially the "I will not

do delivery from them again." and the extreme version: "There�s no way in hell I�d ever order from here
again". In other web pages shorter punishment phases are suggested.
22In a strict Nash equilibrium all players play a strict best response.
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STNE, Pr (I tm(s; b)) is a complex object, making is costly to compute and analyze FVs;b (m).

In fact, given the sellers�information sets fKsgs2S, a direct calculation will require each seller

s to compute fPr (I tm(s; b))gb2Bs(m) for each networkm that is possible given her information,

and then average over all such networks. Theorem 1 resolves both of these issues.

Consider a network m with a degree distribution G, and a seller s 2 S with degree ds.

Let �bs 2 (Z+)ds be a sorted vector of the degrees of all buyers in Bs (m). Now, let T d (m; s)

denote the random depth�d tree such that the root r has degree ds, the sorted vector of

degrees of the children of r is �bs, all subsequent non-leaf nodes at an even depth have a

degree drawn i.i.d. from GS, all subsequent non-leaf nodes at an odd depth have a degree

drawn i.i.d. from GB. Note that T d (m; s) can have more or less buyers and sellers than m.

Let FVs;b (T1 (m; s)) , limd!1 FVs;b
�
T d (m; s)

�
.

Theorem 1 establishes that FVs;b (T1 (m; s)) exists and that for a large network m,

fFVs;b (T1 (m; s))gs2S;b2B are su¢ cient statistics to determine whether there exists a STNE

with network m.

Theorem 1 For any network m, fFVs;b (T1 (m; s))gs2S;b2B exist. Moreover, let G be any �-

nite support degree distribution. Then, for any increasing sequence of networks fm (nib; G)g
1
i=1

there exists i such that for any i > i a STNE with network m (nib; G) exists if and only if for

every seller s and buyer b that are connected in m (nib; G),

�s
1� �s

� FVs;b
�
T1

�
m
�
nib; G

�
; s
��
> �s;D (2)

Theorem 1 implies that we can analyze the existence of an STNE in any large network

as if the network is a random tree. The proof of Theorem 1 extends recent results by FG

and is deferred to Appendix B. We now consider the implications of Theorem 1. Consider a

network m = hS;B;Ei with a degree distribution G, and a link (s; b) 2 E. Let T d (m; s; b)

denote the random depth�d tree such that the root r has degree 1, the degree of the only

child of r is db, all subsequent non-leaf nodes at an even depth have a degree drawn i.i.d.

from GS, all subsequent non-leaf nodes at an odd depth have a degree drawn i.i.d. from GB.

In words, T d (m; s; b) is constructed in the same way as the subtree of T d (m; s) that results

from disconnecting all buyers in Bsnb from seller s. In the context of the bigger network
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T d (m; s), Pr
�
I t
T d(m;s;b)

(s; b)
�
captures the probability that buyer b does not purchase a good

before meeting seller s.

Then, the future value of a link in a random tree T d (m; s) can be re-written as:

FVs;b
�
T d (m; s)

�
= � � (�� cs) �Pr

�
I tT d(m;s;b)(s; b)

�
��b02Bsnb

h
1� Pr

�
I tT d(m;s;b0)(s; b

0)
�i
: (3)

With respect to T d (m; s), the expression Pr
�
I t
T d(m;s;b)

(s; b)
�
��b02Bsnb

h
1� Pr

�
I t
T d(m;s;b0)(s; b

0)
�i

captures the probability that in a period t, buyer b has demand for a good when he meets

seller s AND no other buyer b0 2 Bs n b has demand when their link with seller s is chosen.

Thus, seller s sells a good if she is connected to b, but would not have been able to sell a

good has she not been connected to buyer b. The simple expression is due to the the tree

structure that guarantees the independence of
n
I t
T d(m;s;b)

(s; b)
o
b2Bs

of each other. Moreover,

for every seller s and buyer b0 2 Bs, the tree structure and the independence of the degrees

across subtrees guarantee that comparative statics over Pr
�
I t
T d(m;s;b)

(s; b)
�
are governed by

the following simple rule.

Lemma 1 Suppose that for all d � 1, the random tree T d2 = T
d(m; s; b) can be constructed

(on the same probability space) from the random tree T d1 = T d(m0; s0; b0) by performing

only the two operations: 1. appending (as children) subtrees to seller nodes in an arbi-

trary way, and 2. removing (as children) subtrees from buyer nodes in an arbitrary way.

Then Pr
�
I t
T d2
(s; b)

�
� Pr

�
I t
T d1
(s; b)

�

5 Network structure, competition, and cooperation

A higher FVs;b (T1 (m; s)) implies more cooperation in a large network in two ways: [1] hold-

ing �s;D �xed, a higher FVs;b (T1 (m; s)) means that a lower �s is su¢ cient to allow for coop-

eration to be sustained over the link (s; b), and [2] holding �s �xed, a higher FVs;b (T1 (m; s))

means that cooperation can be sustained over the link (s; b) even when the temptation of s

to deviate
�
�s;D

�
is higher.

In this section, we examine the relationship between the structure of network m and

FVs;b (T
1 (m; s)). We later relate our results to the level of competition between sellers
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in m. If many sellers with low degrees are connected to buyers with high degrees, we say

that the network exhibits �erce competition. On the other hand, if sellers with high degrees

are connected to many buyers with low degrees, we say that the network exhibits weak

competition. If in the entire network sellers and buyers have similar degrees, we say that the

network exhibits moderate and balanced competition. In particular, we �nd that the future

values of links are higher when a network exhibits a more moderate and balanced competition.

We start by showing that in a given network m, FVs;b (T1 (m; s)) is lower for links in

which the buyer (seller) has a high degree than for links in which the buyer (seller) has a

low degree.

Proposition 1 :

1. Consider buyers b; b0 2 Bs such that db0 � db. Then, FVs;b0 (T1 (m; s)) � FVs;b (T1 (m; s)).

2. Consider sellers s; s0 2 S such that ds0 � ds and fdbgb2Bs � fdb0gb2Bs0 , and con-

sider buyers b1 2 Bs and b01 2 Bs0 such that db01 = db1. Then, FVs0;b01 (T
1 (m; s0)) �

FVs;b1 (T
1 (m; s)).

Proof. By Lemma 1, as db0 > db we have that Pr
�
I t
T d(m;s;b0)(s; b

0)
�
� Pr

�
I t
T d(m;s;b)

(s; b)
�
,

which when combined with Theorem 1 and Equation (3) completes the proof of Part 1. Part

2 follows directly from Theorem 1 and Equation (3).

If db0 > db, seller s expects fewer periods with demand from b0 than periods with demand

from b
�
Pr
�
I tT1(m;s;b0)(s; b

0)
�
� Pr

�
I tT1(m;s;b)(s; b)

��
. In part 2, seller s0 has connections to

buyers with the same degrees as the buyers that s is connected to and is also connected to

some additional buyers. As a result, s0 has a better outside option in the case that buyer b01

does not purchase the good from her (compared with the outside option of seller s in case

that buyer b1 does not purchase the good from her).

On the other hand, if the degrees of buyers in Bsnb are large, s is more likely to need

buyer b in order to make a sale in period t. For example, in �gure 1a, if we add a connection

between buyer b and some seller s0 that we add to the �gure, the connection (s; b) becomes

less valuable, whereas the connection (s; b0) becomes more valuable.
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Proposition 2 Consider two sellers s and s0 such that [1] ds0 = ds; and [2] there exist

b1 2 Bs and b01 2 Bs0 such that db01 � db1 and fdbgb2Bsnb1 � fdb0gb2Bs0nb01. Then, for every

b 2 Bs and b0 2 Bs0 such that db0 = db, FVs0;b0 (T1 (m; s0)) � FVs;b (T1 (m; s)).

Proof. By Lemma 1, if db01 > db1, Pr
�
I t
T d(m;s0;b01)

(s0; b01)

�
< Pr

�
I t
T d(m;s;b1)

(s; b1)
�
. Plugging

this inequality into Equation (3) for some b 2 Bs and b0 2 Bs0 such that db0 = db yields that

FVs0;b0 (T
1 (m; s0)) � FVs;b (T1 (m; s)).

Proposition 2 captures the positive externality of links: if db01 > db1 seller s
0 expects less

periods with demand from b01 than periods with demand that seller s expects from b1. As a

result, s0 (more than s) is likely to need her other connections in order to sell the good.

Now let

FV s (m) , min
b2Bs

fFVs;b (T1 (m; s))g :

From Proposition 1, if db is large, FVs;b (T1 (m; s)) is small. From Proposition 2, this is

mitigated if for every b0 2 Bsnb, db0 is also very large. Thus, networks in which buyers that

are connected to the same seller have �similar�degrees have a larger fFV s (m)gs2S.

Beyond the immediate neighborhood, Theorem 1 and Lemma 1 allow us to evaluate

the e¤ect of di¤erences in the degree distribution across networks. Let cG bB FOSD GB and
GS FOSD c

GbS, and consider two sellers s 2 S and bs 2 bS that have an identical local

neighborhood, so that the only di¤erence between Ks and Kbs is di¤erence in the degree
distribution in the networks that s and bs are embedded in (m and bm respectively). Theorem

2 shows that [1] if ds = dbs are large enough then the future values of links of seller bs are
higher then the future values of links of s; and [2] if ds = dbs are small enough then the future
values of links of seller bs are smaller then the future values of links of s.
Theorem 2 Let cG bB FOSD GB, and GS FOSD c

GbS, and let m = hS;B;Ei and bm =DbS; bB; bEE be two networks with degree distributions G and bG respectively. Consider sell-

ers s 2 S and bs 2 bS such that dbs = ds and �dbb	bb2Bbs � fdbgb2Bs. Then, there exist ds (m; bm)
and ds (m; bm) such that if ds < ds, then FV bs (T1 (bm; bs)) � FV s (T1 (m; s)), and if ds > ds,
then FV bs (T1 (bm; bs)) � FV s (T1 (m; s)).
The di¤erences in degree distribution that are analyzed in Theorem 2 are illustrated in

�gure 3.
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Figure 3

sellers
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s1

b1

s’1
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m2(n2b;G2)

s3
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s’3

b’3

m3(n3b;G3)

Figure 3: In networks m1, m2, and m3 above, the broken lines represent links to buyers and
sellers that are not in the diagram. For illustration, counting only the buyers and sellers in the
�gure, GS2 FOSD G

S
1 and G

B
3 FOSD G

B
1 .

If GS FOSD c
GbS the aggregate demand per seller in network m is larger that in bm.

This di¤erence in e¤ective demand is captured by the di¤erence between Pr
�
I t
T d(m;s;b)

(s; b)
�

and Pr
�
I t
T d(bm;bs;bb)(bs;bb)

�
even if locally the small environments around (s; b) and around�bs;bb� look the same. In particular, Pr�I t

T d(m;s;b)
(s; b)

�
> Pr

�
I t
T d(bm;bs;bb)(bs;bb)

�
. If sellers

s and bs are connected to many buyers, the di¤erence between Pb2Bs Pr
�
I t
T d(m;s;b)

(s; b)
�

and
Pbb2Bbs Pr

�
I t
T d(bm;bs;bb)(bs;bb)

�
makes s very likely to sell even if she had less connec-

tions, whereas bs has higher values for her links. To illustrate the e¤ect when ds and dbs
are small, consider the case that ds = dbs = 1, the di¤erence between Pr

�
I t
T d(m;s;b)

(s; b)
�
and

Pr

�
I t
T d(bm;bs;bb)(bs;bb)

�
implies that bs is less likely to be able to sell to bb, while s is more likely

to be able to sell to b and values the link more. The impact of di¤erences in buyers�degree

distributions follow a similar logic.

Theorem 2 - Proof. If GS FOSD c
GbS then by Lemma 1, for every b 2 Bs (m) andbb 2 Bbs (bm) such that dbb = db, Pr

�
I t
T d(m;s;b)

(s; b)
�
> Pr

�
I t
T d(bm;bs;bb)(bs;bb)

�
. If ds = 1 than

FVbs;bb (T1 (bm; bs)) � FVs;b (T1 (m; s)) is immediate from Theorem 1 and Equation (3). On

the other hand,

limds=dbs!1
n
�b02Bs(m)nb

h
1� Pr

�
I tT d(m;s;b0)(s; b

0)
�io

=
n
�bb02Bbs(bm)nbb

h
1� Pr

�
I t
T d(bm;bs;bb0)(s;bb0)�io = 0

(4)
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and at the same time

Pr
�
I tT d(m;s;b)(s; b)

�
=Pr

�
I t
T d(bm;bs;bb)(s;bb)� (5)

is independent of ds and dbs. Combining (4), (5) and (3) and evaluating FVs;b
FVbs;bb for any b 2 Bs

and bb 2 Bbs such that db = dbb yields the result that FV bs (T1 (bm; bs)) � FV s (T1 (m; s)).
The implications of Theorem 2 extend those of propositions 1 and 2. A network allows

for a STNE if: [1] buyers have degrees that are similar enough, [2] sellers have degrees that

are similar enough, and [3] buyers�degrees are not too small or too large relative to those

of the sellers that are connected to them. An immediate implication is that there exists a

bliss point to the ratio of buyers to sellers in any small area of the network, as well as in the

network as a whole.

We interpret our results in this section as suggesting that networks that exhibit moderate

and balanced competition support a STNE for a large range of discount factors. Proposition

3 illustrates our interpretation by considering simple networks in which all sellers have the

same degree and same production costs, and all buyers have the same degree. In this special

case, if sellers have degrees that are very high relative to the degrees of buyers (or vice versa),

the future values of links are low. Let cs = c for every s 2 S, and let G
�
dB; dS

�
be a degree

distribution such that gB
�
dB
�
= 1 and gS

�
dS
�
= 1. Note that in a network m with a degree

distribution G
�
dB; dS

�
, for every (s; b),(s0; b0) 2 E, FVs;b (T1 (m; s)) = FVs0;b0 (T

1 (m; s0))

and denote this value by FV T
�
dB; dS

�
. The proof of Proposition 3 is deferred to Appendix

B.

Proposition 3 Let cs = c for all s 2 S. Hold �xed dB, dS, and �. There exist dS
�
dB; �

�
,

dB
�
dS; �

�
, �
�
dS; dB

�
, and dS

�
dB; �

�
, dB

�
dS; �

�
, �
�
dS; dB

�
such that:

1. If dS > dS then FV T
�
dB + 1; dS

�
> FV T

�
dB; dS

�
> FV T

�
dB; dS + 1

�
and if dS < dS

then FV T
�
dB + 1; dS

�
< FV T

�
dB; dS

�
.

2. If dB < dB then FV T
�
dB + 1; dS

�
> FV T

�
dB; dS

�
> FV T

�
dB; dS + 1

�
and if dB > dB

then FV T
�
dB + 1; dS

�
< FV T

�
dB; dS

�
.
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3. If � < � then FV T
�
dB + 1; dS

�
> FV T

�
dB; dS

�
and if � > � then FV T

�
dB + 1; dS

�
<

FV T
�
dB; dS

�
.

It is interesting to see how part 2 of Proposition 3 aggregates our results from propositions

1 and 2, and from Theorem 2: a larger dB corresponds to a combination of a larger degree of

a speci�c buyer (Proposition 1), larger degrees of other buyers connected to the same seller

(Proposition 2) and buyers�degree distribution that is larger in a FOSD sense (Theorem 2).

The �rst implies lower links�values, the second implies higher links�values, and the third has

a non-monotonic e¤ect. As illustrated in �gure 4, the result is non-monotonic in nature.23

Figure 4

sellers

buyers

An increase from a future
value of 0 per link (when the
marginal link is not  needed)
to a positive value

A decrease in links value
when the probability of
interaction with a given
buyer becomes small

Figure 4: When dB is low (e.g. the leftmost network in Figure 4), each of the buyers connected
to a seller is likely to have demand when meeting the seller, and the seller is guaranteed to sell
even if she has fewer connections, raising dB a little decreases the probability of a sale and the
seller needs more connections. However, raising dB too much reduces the frequency with which
a seller interacts with each buyer and the value of each link decreases.

This section concludes that networks that facilitate moderate and balanced competition

are better in sustaining cooperation.24 Consequently, one might expect to �nd moderate

competition in networked markets that manage to rely on bilateral cooperation. In the

following section, we show that the need to enforce cooperation may also constrain (or be

constrained by) the overall connectivity in a network.

23Proposition 3 also sheds light on the role of �. We illustrate that using our job recommendations
example. Recall that a low � implies that only a small fraction of the teachers have high ability students in
every period. Hence, more teachers are required to be connected to every �rm to prevent the competition
from being �too weak�. On the other hand, high � implies that a large fraction of the teachers have high
ability students in every period and in order to restrain the �erce competition a low degree for �rms or a
high degree for teachers is required.
24In a related work on competition and seller�s reputation in an environment with price competition and

no network, Bar-Isaac (2005) �nds that competition can both aid and hinder reputation for quality.
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6 Cooperation as a constraint on connectivity

Throughout the paper, we do not consider exogenous forces that in�uence on the structures

of networks, but rather focus on understanding how the incentive constraints determine

the structure of networks that facilitate STNE. Nevertheless, trade networks are a¤ected

by exogenous changes in the economy. For example, the structure of networks of trade

opportunities is expected to change following processes of modernization that reduce the

costs of creating and sustaining links.25 Using our framework, we can study whether such

changes are consistent with sustaining cooperation.26

We focus on two trends that are suggested in the literature. First, with mobile phones,

E-mail, and modern transportation, maintaining connections is �cheaper�and people and

businesses can a¤ord to have more links. Second, the collapse of geographic barriers may

lead to the rise of large communities and to a decrease in geographical segregation: in the

past people from the same village knew (and traded with) the same set of people, whereas

in the developed world technology enables a �global village,�with only little overlap in the

sets of connections of even close neighbors.27

6.1 Connectivity and congestion

Even with moderate competition, if the degrees of buyers and sellers are �too� large, co-

operation becomes impossible to sustain. Intuitively, the pivotal probability that seller s

manages to sell to a speci�c buyer b, but would not have managed to sell to any other buyer,

is negligible when sellers and buyers have many connections.

Theorem 3 Let m (�;D) be some network in which minb fdbg = D and mins fdsg = � �D.

For every �, �, and FV > 0 there exist D (�; �) such that if D > D then

min
s2S;b2B

fFVs;b (T1 (m (�;D) ; s))g < FV :

25See Watts (2003) for a non technical survey.
26Kranton (1996) studies a di¤erent aspect of the impact of modernization on cooperation. In her model,

producers and consumers that rely on bilateral cooperation are exposed to markets in which the same goods
are traded with no need for cooperation. Kranton shows that cooperation is limited when access to markets
is allowed.
27See also Mobius and Rosenblat (2004).
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Proof. Let dmaxb be the maximal degree of any buyer in network m (so dmaxb > D), and let

IminT d(m;s;b) , min
s2S;b2B

Pr
�
I tT d(m;s;b)(s; b)

�
=
�
Pr
�
I tT d(m;s;b)(s; b)

�
jdb = dmaxb

�
: (6)

Consider a seller s0 that is connected to a buyer b0 such that db0 = dmaxb . Then, substituting

(6) and ds = � �D + k in (3) yields

FVs;b (T
1 (m (�;D) ; s)) � � � (� � c) � IminT d(m;s;b) �

h
1� IminT d(m;s;b)

i��D+k�1
:

Because 0 � Imin
T d(m;s;b)

� 1; we have that limD!1FVs;b (T
1 (m (�;D) ; s)) � 0 for any

k 2 Z+.

Theorem 3 is conceptually related to a broader discussion in both the Market Design

literature and the Networks literature in Economics that recognize circumstances in which

lack of coordination in markets creates congestion that reduces the volume of transactions

in markets and harms assortative and Pareto e¢ ciency.28 In the Market Design literature,

congestion is often due to lack of time to complete search and transactions in the market. In

both literatures, congestion is driven by lack of ability to coordinate on who transacts with

whom.

According to Theorem 3, congestion can occur also at the fundamental level of deciding

who to cooperate with and who to trust. When anyone can potentially cooperate with

everyone else, the value of a cooperating partner goes down as each partner has only a

small in�uence on outcomes. This leads to a congested market in which being potentially

able to cooperate with everyone means that there is no ability to really cooperate with

anyone. A major value creating role of the network is to provide coordination and specify

who cooperates with who. This necessary coordination is lost when sellers and buyers have

many links.

28See also Roth nand Xing (1997), Calvo-Armengol and Zenou (2005), and Fainmesser (2010).
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6.2 Community size and segregation

In this section, we show that, holding all else equal, the ability to de�ne small communities

according to real or arti�cial boundaries might increase the future values of links and thus

improve the ability to sustain cooperation.

For simplicity, let cs = c and let ds = dS, and db = dB for every seller s and buyer b

throughout this section. We extend our analysis to consider networks that are divided into

islands, such that there are no links between a buyer and a seller that are from di¤erent

islands. In each island there are 	 �dB sellers and 	 �dS buyers. 	 2 N represents the size of

each �island community�.29 When comparing across networks with di¤erent 	, we keep dB

and dS identical across the compared networks. This allows us to discriminate between the

e¤ect of di¤erences in community sizes, and the e¤ects of di¤erences in the degrees of sellers

and buyers. Figure 5 provides an illustration of a sample of networks with dS = dB = 2 and

di¤erent values of 	.

Figure 5
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Figure 5: If seller s is informed that 	 = 1, she knows that some seller s0 is connected both to
buyer b and to b0. Thus, seller s knows that there is perfect overlap between Bs and Bs0 and
between Sb and Sb0 . If seller s is informed that 	!1, seller s knows that apart from herself,
there is no other seller to whom both buyer b and b0 are connected. It is also interesting to note
that Theorem 1 implies that in a large network that is chosen uniformly at random conditional
on G

�
dB ; dS

�
, ns, and nb, and without restrictions on 	, seller s behaves as if apart from

herself, there is no seller to whom both buyer b and b0 are connected.

Varying 	 continuously raises technical di¢ culties and is beyond the scope of this paper.

Instead, we focus on two interesting limit cases.

De�nition 5 We say that a network is segregated if 	 = 1. A segregated network is divided

into small islands in which each of a group of dS buyers is connected to each of a group of
29The economic interpretation of �a community�depends on the application and can be de�ned according

to geographical region, interests, race, social status, culture, etc.
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dB sellers. We say that a network is global if it is chosen uniformly at random conditional

on G
�
dB; dS

�
, ns, and nb, and without restrictions on 	.

We are interested in the following question: When does the existence of a STNE in a

segregated network imply that a STNE exists in the corresponding global network and vice

versa? Given that sellers�actions are driven by their expectations of future trade, allowing

for di¤erent network architectures makes a di¤erence for the existence of a STNE only if

sellers are aware of the di¤erences. Thus we make the following assumption,

Assumption 4 Sellers know whether the network is segregated or global.30

In a segregated network mS , it is still true that a STNE exists if and only if for every

seller s and buyer b that are connected, �s
1��s � FVs;b (mS) > �s;D. Consequently, Theorem

4-1-a suggests that in sparse networks that exhibit moderate competition, the following claim

is true: if there exists a STNE in a global network, a STNE also exists in a segregated

network with the same degree distribution. The proof is deferred to the appendix.

Theorem 4 Let mS
�
dB; dS

�
be a segregated network with a degree distribution G

�
dB; dS

�
,

and let FV S
�
dB; dS

�
, FVs;b

�
mS
�
dB; dS

�
; s
�
.31 Then,

1. There exists dS > 1 such that for every dS � dS :

(a) (Moderate competition) There exist dB > 1 such that dS � dB � dB implies that

FV S
�
dB; dS

�
� FV T

�
dB; dS

�
.

(b) (Fierce competition) For every 0 << � < 1
2
there exists dB (�) such that dB � dB

implies that FV S
�
dB; dS

�
� FV T

�
dB; dS

�
.

2. (Weak competition) If dS > dB then FV S
�
dB; dS

�
� FV T

�
dB; dS

�
.

30When 	 = 1 the network topology is unique (up to permutations on the names of buyers and sellers).
Consequently, when the network is segregated sellers put probability 1 on the correct network structure and
our incomplete information environment is equivalent to one of complete information.
31Due to the symmetry across sellers, buyers, and islands, the future value of a link in a segregated network

does not depend on the size of the network (ns and nb) and is identical across links in the network.
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Sketch of the proof. The main idea of the proof can be can be demonstrated using

�gure 6.

Figure 6a
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s’s’’
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Figure 6b
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Theorem 4 is driven by two countervailing forces. On the one hand, without the link (s; b)

in both networks, the segregated network in �gure 6b provides s with a higher probability

of trading than the global network in �gure 6a. This is because in �gure 6b seller s0 does

not face any competition for selling to b, whereas in �gure 6a s0 faces competition for selling

to buyer b00. Therefore, s0 is more likely not to sell to b0 in �gure 6b. This causes the value

of (s; b) in the segregated network (�gure 6b) to be lower than in the global network (�gure

6a).

Now consider �adding back�(s; b) to both networks. In the global network in �gure 6a

the opportunity for seller s to sell the good to buyer b is independent of her opportunity to

sell the good to buyer b0. On the other hand, in �gure 6b the opportunity of seller s to sell

the good to b is negatively correlated with her opportunity to sell the good to b0. In fact, in

the segregated network in �gure 6b, s is guaranteed to be able to trade if she has a link to

b. This causes the value of (s; b) in the segregated network (�gure 6b) to be higher than the

global network (�gure 6a). In the example in �gure 6, the second force dominates and the

value of the link between s and b is higher in the segregated network.

If dB is large, the negative correlation is weak; not being able to trade with b indicates

only that, at most, s has one less competitor for trading with buyer b0 2 Bsnb. However,

it is still the case that a seller with a missing link has higher probability of trading in the

segregated network.

The second part of Theorem 4 is more straightforward. In a segregated network with

more buyers than sellers, a seller is guaranteed to trade with or without her marginal link.

Consequently, the value of each link is zero. This is not true for a global network.
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7 Welfare

In this section, we pose the following questions: [1] under what circumstances can coop-

eration that is supported only by repeated interaction in the network achieve the social

optimum? [2] Which networks maximize aggregate welfare? Which networks maximize con-

strained aggregate welfare when maximal welfare is not attainable? To this end, we now

pose the following two design problems: let �m be any probability distribution over net-

work structures. In the unconstrained network design problem, a planner chooses �m and

compels all sellers (and buyers) to always cooperate. In the cooperation constrained network

design problem, the planner chooses �m and recommends that all sellers (and buyers) al-

ways cooperate. Sellers and buyers are then informed of �m (as well as of their own degrees

and the degrees of buyers and sellers that are connected to them) and follow the planner�s

recommendation if and only if �m admits a STNE. The planner cannot a¤ect any of the

parameters of the model apart from the set of links E, but is allowed to condition her choice

of �m on all of the parameters of the model.

For a given network m, let E[V (m)] = E
hP

s2S
P

b2Bs(m) Pr (I
t
m(s; b))

i
denote the ex-

pected volume of trade (number of transactions) in high quality goods that is achieved in

a given period if all sellers (and buyers) always cooperate. Denote by E[V (�m)] the corre-

sponding value given a probability distribution �m over networks. Let Nuc (�) (N c (�)) be

the solution to the unconstrained (constrained) network design problem. Then,

Nuc (�) = argmax
�m

E[V (�m)]

and

N c (�) = argmax
�m

E[V (�m)]
s.t. �m admits a STNE

Recall that transactions in high quality goods are mutually bene�cial. Thus, the proportion

of welfare loss due to the constraints on the structure of networks that support STNE is

L (�) = 1� E[V (N c (�))]
E[V (Nuc (�))] :

If L (�) = 0, then repeated interactions support the social optimum.
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The following de�nition is useful for interpreting our results.

De�nition 6 An environment is constantly over- (under-) demanded if there are weakly

more (less) buyers than sellers with unit capacity in every period. We call an environment

stationary if it is constantly over- (under-) demanded and stochastic otherwise.

Note also that an environment is stationary if either ns � nb, or ns > nb and � = 1.

An environment is stochastic if ns > nb and � < 1. Theorem 5 shows that there exist a

trade-o¤ between sustaining cooperation and maximizing the volume of trade in stochastic

environments, but not in static ones.32

Theorem 5 :

1. Assume that for every s 2 S, �s
1��s � � � (� � cs) > �

s;D.33 Then

(a) L (�j� = 1) = 0, and

(b) L (�jns � nb) = 0.

2. Let � 2 (0; 1) and assume that for every seller s 2 S, �s 2 (0; 1). Then,

(a) there exists nb 2 Z+ such that for all ns > nb > nb, L (�jnb; ns; �) > 0; and

(b) for any nb 2 Z+ there exists ns 2 Z+ such that for all ns > ns, L (�jnb; ns; �) > 0.

In a stochastic environment, only the complete network (in which each seller is connected

to all buyers) provides the maximal expected volume of trade. However, if there are su¢ -

ciently many buyers and sellers, a dense network cannot support a STNE. Similarly, Part

2-(b) of Theorem 5 relies on the observation that an unbalanced network in which many

sellers are connected to a small number of buyers cannot support a STNE.

32In related work, Lee and Schwarz (2009) analyze interviewing decisions in labor markets. In their setup,
the decision to interview is made after knowing that workers are of at least some minimal quality. Thus,
there are no demand and supply �uctuation. Lee and Schwarz �nd that complete overlap in the interviewing
decisions among groups of �rms maximizes the number of position �lled.
33The requirement that for every s 2 S, �s

1��s ���(� � cs) > �
s;D insures that we are in the more interesting

case where no seller is a pathological defector and where for any seller s there exists some pattern of repeated
interactions that is su¢ cient to incentivize seller s to cooperate with at least one buyer.

28



In a static environment it is no longer the case that the complete network is the only

network that provides the maximal expected volume of trade. For example, if � = 1 or

if ns � nb a network in which no buyer or seller has degree higher than 1 can support

cooperation and facilitate the maximal volume of trade. Even though some sellers or buyers

will be excluded from the market, the expected volume of trade will not be a¤ected.

8 Institutions and networks

Technological progress and the reduction in communication and transportation costs are

often considered the drivers of the growth and �globalization�of networks. However, our

results indicate that there are fundamental constraints on the structure of networks for

which a STNE exists.

In this section, we review three institutions that help to sustain cooperation and examine

their e¤ect on the set of networks for which a STNE exists. The direct e¤ect of each of these

institutions on cooperation is well studied. However, the integration of reduced form models

of institutions into our framework highlights a new insight: institutions that support cooper-

ation allow for the existence of STNEs with denser buyer-seller networks. Consequently, the

di¤erence between markets with and without institutions is underestimated if it is measured

only by the level of cooperation between two parties - institutions a¤ect indirectly also the

volume of trade. This new theoretical prediction was independently suggested in empirical

work on institutions and markets that is reviewed in section 9.

8.1 Community based institutions - reputation networks

Consider a network R that connects di¤erent buyers in B. Let buyers that are connected in

R share with each other information about their past interactions with sellers. For simplicity,

assume that a seller s knows whether any two buyers b; b0 2 Bs are connected in R. When

we add links to R, seller s can lose more than the future value of one link after deviating.

While we cannot show that the set of buyer-seller networks for which a STNE exists expands

monotonically with the addition of links to R, it is true that adding a su¢ cient number of

links to R expands the set of buyer-seller networks for which a STNE exists.
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Proposition 4 (FG) Consider a market with S, B, �, fcsgs2S, f�sgs2S, and
�
�s;D

	
s2S.

For a given R let MR be the set of buyer-seller networks for which a STNE exists. Let

R1 be the reputation network in which every two buyers are connected. Then, for any R,

MR �MR1
.

Recall that Theorems 3 and 4 suggest that in the absence of institutions, networks that are

denser and less segregated have lower values of links. Following Proposition 4, high quality

reputation network have the potential to enable cooperation in such networks. However,

FG show that some buyer-seller networks do not admit a STNE even when the reputation

network is captured by R1.

8.2 Transaction oriented institutions - litigation and third-party

evaluation services

Litigation allows buyers that were �cheated� to prosecute the deviating seller in order to

get compensation and punish the seller directly. Third-party evaluation services inspect

the goods before trade occurs in order to expose deviations before trade has taken place,

decreasing the potential gains from deviation.

Let �L be the probability that a buyer who was harmed by a deviation succeeds in

prosecuting the deviating seller and receives a compensation � (without loss of generality, �

is also the penalty for the seller). Let �E be the probability that a third-party evaluation

service detects that a low quality good is of low quality, in which case, the deviation of the

seller is exposed even though trade does not occur, and buyers can punish the deviating

seller.34 The following Proposition shows that an increase in the quality of either institution

(an increase in �L; �; or �E), increases the set of networks for which a STNE exists. The

proof is immediate and therefore omitted.

Proposition 5 Consider a market with S, B, �, fcsgs2S, f�sgs2S, and
�
�s;D

	
s2S. Let

M�L;�;�E be the set of buyer-seller networks for which a STNE exists given �L, �, and �E.

If c�L � �L, b� � �, and c�E � �E then M�L;�;�E �Mc�L;b�;c�E .
34For simplicity, assume that an evaluation service never mistakes a good product to be of low quality.

30



9 Discussion

In this section, we discuss the predictions of the model, review evidence, and discuss the

relation to existing literature.

9.1 Community structure and cooperation

Our model predicts that networks that are especially good in sustaining cooperation are: [1]

moderately competitive: the degrees of a buyer and a seller that are connected are similar

(Theorem 2 and Proposition 3); [2] sparse: the degrees of sellers and buyers in the network

are small (Theorem 3); and [3] segregated : sellers who have one buyer in common, have

connections to similar sets of buyers overall (Theorem 4).

The result that networks facilitate cooperation better when they are sparse is in con-

trast with some existing theoretical literature, in which adding links helps cooperation. In

particular, the literature on repeated games in networks provides a couple of interesting net-

work based extensions of the literature on community enforcement that started with Kandori

(1992), Greif (1993), and Ellison (1994). In Lippert and Spagnolo (2010) and in Mihm, Toth,

and Lang (2009) increasing the number of links increases the number of bilateral games that

a player plays in every period. Consequently, adding links generally improves the ability to

sustain cooperation.35 Our focus is di¤erent. First, while increasing the number of links in

our model can increase trade opportunities, there is a separation between the network struc-

ture and the capacity of each seller and buyer.36 Second, we focus on buyer-seller networks

in which contagion equilibria are not realistic nor feasible. As a result, our framework allows

links to be substitutes or complements and additional links can improve or harm cooperation.

This allows us to explain why cooperation is limited to sparse networks without assuming

an exogenous cost of creating and maintaining a link.

The empirical literature provides ample evidence on the role of networks in markets

and �nds that additional links can either improve or harm cooperation. The literature on

35Kinateder (2008) o¤ers a di¤erent model of repeated games, in which all of the players play a common,
multi-player game, and a network is used for transferring information about deviations. Clearly, adding more
links in this setup helps to sustain cooperation.
36In this aspect, our model is more similar to Jackson et. al. (2010) who study a gift exchanges game.
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the micro�nance industry in developing countries �nds exceptionally low default rates even

without a centralized credit bureau. Similar to our predictions, micro�nance institutions

are very local. In every developing country there are signi�cant parts of the population

that have no access to loans, independent of their economic status, while others can take

multiple loans simultaneously, suggesting that some individuals are part of the market�s

network while others are excluded. Moreover, our model predicts that strategic default occurs

when many lending institutions o¤er loans to the same borrowers, and do not condition the

loan on repayment of debt to some of the other lenders. While the evidence is far from

being conclusive, Chaudhury and Matin (2002) and McIntosh and Wydick (2005) document

evidence that is consistent with this observation.

Research in other markets in developing and transition economies provide further evi-

dence consistent with the prevalence of networks of cooperation and the requirement that

they should be sparse. Fafchamps (1996) surveys manufacturing and trading �rms in Ghana

and �nds that �rms rely on repeated bilateral interactions to enforce contracts. McMillan

and Woodru¤ (1999) who study trading networks in Vietnam �nd that a �rm trusts its

customer enough to o¤er credit when the customer �nds it hard to locate an alternative

supplier.

In developed countries, market activity is also found to be in�uenced by connections and

repeated interactions in a network. Hardle and Kirman (1995), Kirman and Vriend (2000),

and Weisbuch et. al. (1996) document a network of consistent loyalty and preferential

treatment between buyers and sellers within the �sh market in Marseille. Kirman and Vriend

assert that the standard asymmetric information model "seems a too loose application of the

textbook argument". They explain that this is because there is a �xed population of buyers

and sellers in this market and "every buyer (loyal or not) is a potential repeat buyer" so "a

seller would have an incentive to deliver good quality to every single buyer". Incidentally,

the selective supply of high quality by sellers to only a subset of the population of buyers is

consistent with our model - sellers do not have the incentives to maintain reputation with

all of the buyers, even if all are potential repeated customers.

In labor markets, as illustrated by example 1 in section 2.1, many hiring decisions are

a¤ected by patterns of connections in the market. Fainmesser (2010) allows for truthful com-
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munication of workers�qualities along connections in a network and �nds that the patterns

of connections can a¤ect not only the number and identities of workers hired, but also the

timing of hiring in entry-level labor markets. This provides yet an additional motivation to

study which networks can facilitate truthful revelation of private information.

9.2 Trade, institutions, and growth

Our results formalize the idea that in the absence of trust facilitating institutions, markets

su¤er from a signi�cant disadvantage as they are forced to compromise on the volume of

trade in order to improve the enforcement of informal contracts. Consequently, even when

there is evidence of high level of trust and cooperation in individual transactions, markets

with missing institutions are paying a cost via a reduction in overall trade.

While our analysis is stylized, the prediction that trust enhancing institutions allow for

denser networks to sustain STNEs is consistent with empirical evidence. In developing

countries, Fafchamps (1996) �nds that the absence of reputation mechanisms limits the

economic reach of manufacturing and trading �rms in Ghana, and Johnson et. al. (2002)

show that the main e¤ect of belief in the court system is to encourage the formation of

new relationships. The complementarity of networks and institutions in the context of the

transition to market economies in Eastern Europe is also documented in Woodru¤ (2002).

More generally, there is much evidence that countries with better institutions tend to trade

more and grow faster (see Dollar and Kraay 2003 and reference therein).

10 Conclusion

This paper presents a framework that greatly simpli�es the analysis of repeated games in

networks and provides intuition relevant in many markets.

In contrast with previous literature on networks and markets (see Kranton 1996 and

references therein), we do not analyze markets and networks as two mutual exclusive and

competing ways to conduct the same activity. We rather focus on markets that are networked.

We �nd that even when every agent in the market can potentially approach any other agent,

the need to trust ones partners constrains the trade in the market and allows only certain

33



networks to sustain long term cooperation. We are motivated by evidence that networks are

present in many market interactions and suggest that understanding their role improves our

understanding of markets.

Our results show that the network structure matters. On one hand, dense and global

networks have the potential to maximize trade. On the other hand, these same networks

cannot sustain cooperation in environments with asymmetric information and moral hazard.

Without cooperation in these environments, there is a risk that no trade will take place at

all (see Akerlof 1970).

Consistent with existing evidence, we show that welfare is maximized when proper insti-

tutions are in place, and that improving transportation and communication technologies is

not enough to promote markets in the lack of trust enhancing institutions.

11 Appendix A: repeated games and incomplete knowl-
edge of the network

In this section, we suggest that studying environments in which individuals have only in-
complete knowledge of the network is insightful beyond the tractability it provides. Clearly,
repeated interactions provide sellers and buyers with opportunities to learn about their envi-
ronment. However, even excluding purely behavioral considerations, there are several reasons
for market participants not to be able to learn beyond their close local network and some
aggregate characteristics of the global environment.
First, much of the economic literature suggests that learning is costly. Consider market

participants that learn optimally given the information that they acquire and process, but
have costs of information acquisition and processing.37 Assume that market participants
learn directly about the network structure (e.g. viewing a person�s links in social networking
websites, going through old call or shipment records, or gathering other information on past
interactions of a seller or buyer). It is easy to write a model in which assumption 2 is a
result. For example, a model in which there are increasing costs of learning information
on participants that are at a large distance. On the other hand, if participants focus on
frequencies of their own trade to infer the network structure, it is not clear what sellers�
beliefs are likely to converge to. In the latter case, assumption 2 is a stylized approximation
of the knowledge held by market participants in the long run.
Second, real world networks are dynamic structures, links are added and removed, and

buyers�demand changes over time. Nevertheless, the aggregate attributes of networks (such
as the degree distribution) seem to be stable over time. Moreover, the local environments

37Non-network examples include models of search with memory constraints (e.g. Dow 1991), or limited
attention (e.g. Schwartzstein 2009), as well as models of costly information acquisition (e.g. Verrecchia
1982).
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of most individuals changes only infrequently. The study of agents� ability to learn the
network structure in a changing environment poses many interesting open questions that are
beyond the scope of this paper. For now, we suggest that there are market environments in
which incomplete knowledge of the network persists over time even for Bayesian agents. We
o¤er below an example of one such environment. While the description of the environment
requires more notation, it relies on simple assumptions: [1] buyers are divided into separate
groups (buyers from the same group can be connected to di¤erent subsets of sellers); [2]
only a small subset of the buyers in each group have demand in a given period; [3] all of
the buyers that belong to the same group share information about past transactions; and [4]
a seller s is connected to buyers from ds groups. Under these assumptions, as the market
becomes large, it is impossible for buyers and sellers to learn much beyond Ks (Kb). At the
same time, the repeated nature of the interactions remains intact.

11.1 A market environment in which incomplete knowledge of the
network persists over time even for Bayesian agents

Let buyers live in di¤erent locations, in every location l 2 L there is a set Bl of buyers. A
buyer from location l is connected to dl sellers. A seller s has connections to buyers from
ds locations. For each location l, let the degree distribution of all of the sellers connected
to buyers from l be identical to the degree distribution of sellers in the market, and be i.i.d.
across buyers from l and across connections of each buyer b 2 Bl. Denote by mu the (�xed)
underlying network of locations and sellers which is de�ned as follow: a seller and a location
are connected if the seller is connected to at least one buyer from location l.
In every period, only a subset of buyers have unit demand. We call such buyers active.

Let bl;active buyers be active in location l in every period, chosen randomly and i.i.d. across
locations and periods with the following restriction: a seller s has a connection to one active
buyer from each location from a (�xed) set of ds locations in every period. Within a period,
sellers and buyers that are connected meet in a random order (as described in section 3).
After transacting, a buyer learns the true quality of the good, and shares it with all of the
other buyers in her location.
Note that the degree distribution of the network between sellers and active buyers,

G =


GS; GB

�
, is constant across periods and is determined by L, fdlgl2L, S, fdsgs2S,

and
�
bl;active

	
l2L.

Holding
�
bl;active

	
l2L �xed, as jBj ; jSj ; jLj ;

��Bl�� ! 1, the network m that is generated
in every period has a strong random component. Focusing on large markets with random
selection of active sellers and buyers creates an environment in which the network structure
changes over time without changes to agents�local environments or to the degree distribution.
Consequently, complete knowledge of the network is obsolete, and our analysis holds without
any changes for anything between agents who know the full network structure in every
period and agents who know only basic information that includes their own degree, the
degree of their direct neighbors, and the degree distribution G. Clearly, precise conditions
are required to establish that the network m is chosen uniformly at random from all of the
networks with

P
l2L b

l;active buyers, jSj sellers, and with degree distribution G. We leave the
exact conditions necessary as an open question for future research. However, as our analysis
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throughout the paper suggest, our results are not sensitive to the small changes in the details
of the randomization process behind sellers�beliefs, and much of the proofs can be replicated
with alternative randomization schemes for the selection of networks.

12 Appendix B: proofs

Theorem 1 - Proof. We note that if there exists any STNE in network m, there
exists also a STNE in network m in which buyers employ grim trigger strategies (after being
cheated, buyers do not buy from the cheating seller ever again). Thus, for the reminder of
the proof, we focus on the case that buyers and sellers employ grim trigger strategies. Fur-
thermore, since buyers never have incentives to deviate unilaterally when all sellers employ
trigger strategies, we are left to prove the conditions for sellers only.
Consider a network m and assume that all buyers and sellers employ grim trigger strate-

gies. Consider a seller s who considers whether to deviate or cooperate with all of the buyers
that are connected to her, or to deviate in interactions with a subgroup of the buyers con-
nected to her bBs � Bs, starting with some buyer b 2 bBs. Let us (m) be the expected utility
of seller s from using her best response given her knowledge and belief as implied by the
network m and assumptions 2 and 3: Let ucs (m) be the expected utility of seller s from using
the strategy �always cooperate�given her knowledge and belief as implied by the network m
and assumptions 2 and 3.
Let seller s meet with buyer b in network m. If seller s deviates in her interaction with

buyer b her expected utility is �s;D+�sus (mn (s; b))��sucs (m). Thus, the strict best response
of seller s is always cooperate with all buyers connected to her if and only if,

ICs (m) , min
b2Bs

�
�s (u

c
s (m)� us (mn (s; b)))� �s;D

	
> 0 (7)

Let
n
m (nib; G) js; d; fdjg

d
j=1

o1
i=1

be an increasing sequence of networks such that seller s

belongs to all networks in m (nib; G) and for any i, the degree of seller s in m (n
i
b; G) is d and

the degrees of all of the buyers that are connected to seller s are captured by fdjgdj=1. Then
we note the following observation.

Lemma 2 (FG) Let G be any �nite support degree distribution. Then, for any increasing se-
quence of networks

n
m (nib; G) js; d;

�
db
	
b2Bs

o1
i=1
and for any l, limd!1 ICs(T

d
�
m
�
nlb; G

��
),

and limi!1 ICs

�n
m (nib; G) js; d;

�
db
	
b2Bs

o�
both exist, and equal one-another.

Note that when G is �nite there is only a �nite combination of ds and fdbgb2Bs feasible
under G. Therefore, by Lemma 2, there exists i such that for any i > i a STNE with network
m (nib; G) exists if and only if for every seller s and buyer b that are connected in m (n

i
b; G),

ICs(T
1 �m �nib; G� ; s� > 0 (8)
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In the �nal step of the proof we show that for any network m,

sign

�
min
s;b

�s
1� �s

� FVs;b (T1 (m; s))� �s;D
�
= sign

n
min
s
ICs(T

1 (m; s)
o

(9)

Noting that

ucs (m) =
1

1� �s

X
b2Bs

Pr
�
I tm(s; b)

�
(10)

We can rewrite (1) in the following way

FVs;b (m) = �s (u
c
s (m)� ucs (mn (s; b))) (11)

It follows immediately from (7) and (11) that for any s 2 S,mins;b �s
1��s �FVs;b (T

1 (m; s))�
�s;D < 0 implies that mins ICs(T1 (m (nib; G) ; s) < 0. We are then left to prove that
mins ICs(T

1 (m (nib; G) ; s) < 0 implies that mins;b
�s
1��s � FVs;b (T

1 (m; s))� �s;D < 0.
Assume by contradiction that there exists a seller s such that ICs(T1 (m (nib; G) ; s) < 0

and minb2Bs
�s
1��s �FVs;b (T

1 (m; s))��s;D � 0. If the optimal strategy of seller s involves a
deviation in an interaction with a single buyer b and cooperation with anyone else thereafter
then ICs(T1 (m (nib; G) ; s) = minb2Bs

�s
1��s � FVs;b (T

1 (m; s)) � �s;D < 0 and we�re done.

Otherwise, consider a sequence of deviation with all buyers in bBs � Bs, and let bb 2 bBs be
the last buyer such that seller s deviates in an interaction with bb and cooperates with anyone
else thereafter. Thus,

min
b

�s
1� �s

� FVs;b
�
T1

�
mn
� bBsnbb� ; s��� �s;D < 0:

Substituting in (3) yields that for the buyer b that solves the minimization problem,

FVs;b

�
T1

�
mn
� bBsnbb� ; s�� > FVs;b (T1 (m; s)) which completes the proof.

Lemma 1 - Proof. Consider the following algorithm for matching buyers and sellers
in a networkm = hS;B;Ei. First, choose an ordering � of E uniformly at random from all of
the jEj! possible orderings of E. Second, repeat the following action iteratively: examine the
link (s0; b0) that was chosen �rst in the ordering among the links that have not been removed
in a previous step. If s0 is active, match s0 to b0 and remove from the ordering all the links
(s; b0) and (s0; b) for all s 2 Sb; b 2 Bs. We note that in any STNE, in any period t, the
algorithm above can be coupled with the market activity, such that (s0; b0) are matched if and
only if they trade with each other in period t. Consequently, we can interpret Pr (I tm(s; b)) as
the probability that edge (s; b) is selected by the appropriate randomized matching algorithm.
Following this interpretation, Lemma 1 follows immediately from Proposition 1 of Gamarnik

and Goldberg (2010) who study randomized greedy algorithms for matchings in a graph, and
the relationship between the local and global properties of the set of matchings of a graph.38

38I thanks David Goldberg for suggesting this proof. An earlier and much longer proof that introduces an
algorithm for approximating Pr (Itm(s; b)) in large networks is available form the author.
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Proposition 3 - Proof. We prove �rst all of the inequality that involve a comparison
of FV T

�
dB; dS

�
and FV T

�
dB; dS + 1

�
. Since FV T

�
dB; dS

�
= ��(��c)�Pr

�
I tT1(m;s;b)(s; b)

�
�h

1� Pr
�
I tT1(m;s;b)(s; b)

�idS�1
, Lemma 1 implies that when dS is large and when dB and �

are small, an increase in dS decreases FV T
�
dB; dS

�
by both increasing Pr

�
I tT1(m;s;b)(s; b)

�
and the power argument.
We now prove the inequalities that involve a comparison of FV T

�
dB; dS

�
and FV T

�
dB + 1; dS

�
.

To see that when dS > 1 there exist small enough dB � 1 for which the result for small dB
hold, it is immediate that for any dS > 1,

�
FV T jdB = 1

�
<
�
FV T jdB = 2

�
. The result

for small � follows the same reasoning. Similarly, to see that there exists small enough dS

for which the result for small dS hold, it is immediate that for dS = 1,
�
FV T jdB = 1

�
>�

FV T jdB = 2
�
.

For the remainder of the proof, we treat dB as a continuous variable. We show that
@FVs;b=@d

B < 0 for large � and dB, and that @FVs;b=@dB < 0 for large dS. First, note that

@FV T=@dB = � �
�
1� Pr

�
I tT1(m;s;b)(s; b)

��dS�2 � �@ Pr �I tT1(m;s;b)(s; b)� =@dB� ��
1� Pr

�
I tT1(m;s;b)(s; b)

�
� dS
	
� (� � c) :

Thus, the sign of @FV T=@dB is determined as the opposite of the sign of
n
1� Pr

�
I tT1(m;s;b)(s; b)

�
� dS
o

(recall that Pr
�
I tT1(m;s;b)(s; b)

�
is decreasing in dB by Lemma 1). If Pr

�
I tT1(m;s;b)(s; b)

�
and

dS are small, 1�Pr
�
I tT1(m;s;b)(s; b)

�
� dS > 0 and @FV T=@dB < 0, and vice versa. It is only

left to note that by Lemma 1, Pr
�
I tT1(m;s;b)(s; b)

�
is decreasing in dB and �, and increasing

in dS.

Theorem 4 - Proof. Part 1a: Consider the case where dS = 2 and dB = 2 that is
captured in Figure 6.
We start by analyzing FV S (2; 2) in Figure 6b. Assume that both b and b0 are willing

to purchase from s conditional on having demand when they meet. Then, (conditional on
having a unit supply) s sells in period t with probability 1. Now assume that b is unwilling
to purchase from s and that b0 is willing to purchase from s conditional on having demand
when they meet. The probability that b0 has demand when he meets s is

�
1� 1

3
�
�
. To see

why, note that b0 has demand when meeting s unless the link (s0; b0) is the �rst one to be
chosen among f(s; b0) ; (s0; b0) ; (s0; b)g. Therefore

FV S (2; 2) =

�
1�

�
1� 1

3
�

��
(� � cs) =

1

3
� � (� � cs) (12)

We now turn to consider FV T (2; 2) in Figure 6a. Let x be the probability that when s0

and b0 meet, b0 has demand. More generally, for any seller and buyer that are connected, x
is the probability that the buyer has demand when they meet. Then

FV T (2; 2) = x (1� x) (� � cs)
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Focusing on the link (s0; b0) we note that 1� x can be rewritten as the union of the two
following mutually exclusive events:

1. The event that [1] s produces in period t, [2] when s and b meet, b does not have
demand, and [3] s and b0 meet before s0 and b0 meet.

2. The event that [1] s produces in period t, [2] when s and b meet, b has demand, [3] s
and b0 meet before s and b meet, and [4] s and b0 meet before s0 and b0 meet.

The probability of the former is 1
2
� (1� x) whereas the probability of the latter is

�
�
1
3
� "
�
x for some " > 0. The addition of " accounts for the fact that b has demand

when he meets s indicates that (s; b) is more likely to have been chosen early. Thus,

1� x = 1

2
� (1� x) + �

�
1

3
� "
�
x

and

FV T (2; 2) =
6� 3�

6� �� 6"�

�
1� 6� 3�

6� �� 6"�

�
(� � cs) (13)

We conclude that FV T (2; 2) < FV S (2; 2) if 6�3�
6���6"�

�
1� 6�3�

6���6"�

�
< 1

3
�, which holds for

every 0 � � and " � 1. To complete the proof of part 1, note that FV T (1; 2) = FV S (1; 2)
and FV T (1; 1) = FV S (1; 1) because when dB = 1 the global and segregated networks are
identical.
Part 1b: Consider the case where dS = 2 and dB ! 1. Let the de�nition of x carry over
from the proof of Part 1.
Consider a seller s that is connected to buyers b and b0. In the segregated network, the

probability that b does not have demand when meeting s and b0 has demand when meeting
s is the probability that: [1] s is the �rst to meet b and not the �rst to meet b0; or that [2]
s is the second to meet b and seller s0 who met b before s was the �rst to meet b0. When
dB !1 this can be shown to equal

�
1� 1

��(dB�1)

�
� 1
��(dB�2) .

In the global network (in the limit when dB !1) a seller has ��
�
dB � 1

�
�
�
(1� x) + x �

�
1
2
� "
��

distinct competitors for selling to each of the buyers she is connected to. A competitor is an
active seller that is connected to the same buyer and that cannot sell to their other connected
buyer. Therefore, x = 1

��(dB�1)�[1� 1
2
x�"x]

. Again, " > 0 because the fact that a competitor�s

other link was useful, implies that it was chosen early, so the probability that the relevant
link was chosen before is less than 1

2
. Therefore,

FV T
�
dB; 2

�
=

1

� � (dB � 1) �
�
1� 1

2
x� "x

�  1� 1

� � (dB � 1) �
�
1� 1

2
x� "x

�! (� � cs) .
As � 9 0 and dB ! 1, x is small (and in particular x < 1

2
), so a lower bound on x

provides a lower bound on x (1� x) and we can focus on demonstrating that x (1� x) ��
1� 1

��(dB�1)

�
� 1
��(dB�2) for 0 << � <

1
2
.
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From x = 1

��(dB�1)�[1� 1
2
x�"x]

we get that 1 + "x2 � � �
�
dB � 1

�
= x � � �

�
dB � 1

�
� 1

2
x2 �

� �
�
dB � 1

�
and " = 0 provides a lower bound on x. Denote this lower bound as x such

that 1
��(dB�1) = x � 1

2
x2 and x = 1

��(dB�1) +
1
2
x2 � 1

��(dB�1) . Consequently, x �
1

��(dB�1) +

1
2

�
1

��(dB�1)

�2
. Plugging x = 1

��(dB�1) +
1
2

�
1

��(dB�1)

�2
into x (1� x) yields that (1� x)x ��

1�
�

1
��(dB�1) +

1
2

�
1

��(dB�1)

�2��
�
�

1
��(dB�1) +

1
2

�
1

��(dB�1)

�2�
and it is su¢ cient to show that�

1�
�

1
��(dB�1) +

1
2

�
1

��(dB�1)

�2��
�
�

1
��(dB�1) +

1
2

�
1

��(dB�1)

�2�
�
�
1� 1

��(dB�1)

�
� 1
��(dB�2) for

every � < 1
2
.

With some algebra this becomes �+ 1
2
� (d

B�2)
(dB�1) +

1
�
� (d

B�2)
(dB�1)2 +

1
4�2
� (d

B�2)
(dB�1)3 � 1. Recalling

that � > 0 and d!1 this is simpli�ed to �+ 1
2
+ 0 + 0 � 1 which hold for every � < 1

2
.

Part 2: In a segregated network with more buyers than sellers, a seller is guaranteed to
trade with or without her marginal link. Consequently, the value of each link is zero. This
is not true for a global network.

Theorem 5 - Proof. Part 1-(a): consider a network m1 in which all agents on the
short side of the market have degree one and the maximal degree of any agent in the network
is 1 (e.g. if ns > nb than all buyers have degree 1, nb sellers have degree one, and ns�nb sellers
have degree 0). By de�nition, for every (s; b) 2 E, �s

1��s �FVs;b (m1) =
�s
1��s ���(� � cs) > �

s;D.
Applying Theorem 1 and noting that E [V (m1j� = 1)] = min fnb; nsg completes the proof.
Part 1-(b): The networkm1 from Part 1-(a) guarantees that E [V (m1jns < nb)] = � �ns

and that �s
1��s � FVs;b (m1) > �

s;D as required.
Part 2-(a): Assume by contradiction that for any nb there exists nb > nb and ns > nb

such that L (�jnb; ns; �) = 0. Let nts be the number of sellers that are able to produce in
period t. The contradiction assumption implies that there exists �m such that in every
period min fnb; ntsg trades take place and that mins2S

h
�s
1��sFVs;b(�m)� �

s;D
i
> 0. In

particular, in every period t such that nts < nb the number of trades need be n
t
s, independent

of which are the sellers that produce. The only networkm that guarantees that nts take place
is the complete network in which for every s, ds = nb, and for every b, db = ns. Consider
such a network. When nb ! 1, the probability that in period t a seller s sells if all of the
buyers are willing to buy from her, and does not sell if all but one of the buyers is ready to
buy from her is bounded above by

min

�
nb
� � ns

; 1

�
�min

�
nb � 1
� � ns

; 1

�
: (14)

To see why (14) is an upper bound, recall that in networkm all seller are symmetric and note

thatmin
n

nb
��ns ; 1

o
is the probability that any seller manages to sell in a networkm when ��ns

produce. We claim that min
n
nb�1
��ns ; 1

o
is smaller than the probability that s sells in period

t if only nb � 1 of the buyers are willing to buy from her. This is because there is a positive
probability that some seller s0 sells to b before meeting any other buyer. Conditional on that
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event, the probability that seller s sells in period t is min
n

nb�1
��ns�1 ; 1

o
> min

n
nb�1
��ns ; 1

o
.

To conclude the proof, let ns = f (nb). Then, for any function f : Z+ ! Z+ such that
f (k) > k for all k 2 Z+,

lim
nb!1

FVs;b(m) = lim
nb!1

�
�s

1� �s
� (� � cs) �

�
min

�
nb
� � ns

; 1

�
�min

�
nb � 1
� � ns

; 1

���
= 0

which contradicts the assumption that mins2S
h

�s
1��s � FVs;b(�m)� �

s;D
i
> 0.

Part 2-(b): Fix nb and assume by contradiction that for any ns there exists ns > ns such
that L (�jnb; ns; �) = 0. Let nts be the number of sellers that are able to produce in period
t. The contradiction assumption implies that there exists �m such that in every period
min fnb; ntsg trades take place and that mins2S

h
�s
1��sFVs;b(�m)� �

s;D
i
> 0. However, given

that � < 1, to satisfy that in every period min fnb; ntsg trades take place, �m must provide
each seller with a positive probability of selling in every period that she produces. Thus,

min
s2S

�
�s

1� �s
FVs;b(�m)� �s;D

�
< min

s2S

�
�s

1� �s
� nb
ns
� (� � cs)� �s;D

�
< 0

and for ns
nb
> maxs2S

�s(��cs)
(1��s)��s;D , we have that

min
s2S

�
�s

1� �s
� nb
ns
� (� � cs)� �s;D

�
< 0:

This completes the proof by contradiction to mins2S
h

�s
1��sFVs;b(�m)� �

s;D
i
> 0.
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