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1 Two Natural Extensions of Maskin Monotonic-

ity, and Why They Are Inappropriate

A first natural idea to extend Maskin monotonicity into a property that would
be applicable on any domain of individual choice functions is to use Bernheim
and Rangel’s (2009) extended revealed preference, as defined at the beginning
of Section 4 of the main paper. For each individual i, each state θ, and each
option x, the lower contour set LCi(x, θ) of x given θ is now the set of options y
such that x unambiguously dominates y given Ci(·, θ). The property of Maskin
monotonicity can then be reproduced as stated on page 11 of the main article.
Unfortunately, a look at the SCR fij from Proposition 7 in the main text
shows that Nash-implementable SCRs may violate this extension of Maskin
monotonicity. To see this, consider θ ∈ Θ such that θi ∈ Ai and θj ∈ Θj \ Aj
ranks x as the best element of Z. In that case, fij(θ) = x, and the extended
lower contour set of x for i is empty. Changing i’s type to θ′i ∈ Θi \ Ai such
that x is second best expands that extended lower contour set to a non-empty
set. The extension of Maskin monotonicity would then require fij to pick x at
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(θ′i, θ−i) if it was a necessary condition for Nash implementability, since fij is
implementable. On the contrary, fij(θ′i, θ−i) is the element that is top ranked
for i instead of x.

Maskin monotonicity means that the option that is selected at θ should
remain selected if it becomes more appealing in the individual preference or-
derings. Here is a natural choice-based extension of this idea. An option x ∈ X
is more appealing according to C ′ than to C if C ′(S) = x, for each S such that
C(S) = x.

Choice-Based Monotonicity (CBM) Let θ, θ′ ∈ Θ. If f(θ) is more appeal-
ing according to Ci(·, θ′i) than Ci(·, θi), for each i ∈ I, then f(θ′) = f(θ).

The property is in fact not new, as it first appeared in Aizerman and Aleskerov
(1986) in their study of the aggregation of individual choice functions into so-
cial choice functions. It is not difficult to check that any social choice function
that is Nash implementable must satisfy CBM (either directly, or as an im-
mediate corollary to Proposition 1 in the main paper). While an interesting
necessary condition, CBM turns out to be too weak, as it does not guaran-
tee Nash implementability when combined with Property N. Here is a simple
example to illustrate this fact.

Example 1 Let X = {a, b, c}, let C1(·, θ1) be the rational choice function
associated to the ordering a � b � c, let C2(·, θ2) be the rational choice function
associated to the ordering b � c � a, let C3(·, θ3) be the rational choice function
associated to the ordering c � b � a, let C1(·, θ′1) be the choice function that
coincides with C1(·, θ1) except that C1({a, b}, θ′1) = b, and let C1(·, θ′′1) be the
choice function that coincides with C1(·, θ1) except that C1({a, c}, θ′1) = c. It is
then easy to see that the social choice function f , defined by f(θ1, θ2, θ3) = a,
f(θ′1, θ2, θ3) = b, and f(θ′′1 , θ2, θ3) = c, satisfies CBM and N. Yet it is not
Nash implementable, as a consequence of Proposition 1. Indeed I now show
that f violates Property M. Given that f(θ) = a, and given the definition
of C1(·, θ1), it must be that X1(θ) = {a, b, c}, or {a, b}, or {a, c}, or {a}.
Notice that C1({a, b, c}, θ′1) = a, C1({a, b}, θ′′1) = a, C1({a, c}, θ′1) = a, and
C1({a}, θ′′1) = a. For Property M to be satisfied, f(θ′1, θ2, θ3) or f(θ′′1 , θ2, θ3)

should have been equal to a.

2



2 Proof of Proposition 1

For necessity, let (M,µ) be a mechanism that implements f , let θ ∈ Θ, and
let m∗(θ) be a Nash equilibrium of the game induced by (M,µ) at θ. Let then
Xi(θ) = {µ(mi,m

∗
−i(θ))|mi ∈ Mi}, for each i ∈ I. By definition of imple-

mentation and of Nash equilibrium, we have: f(θ) = µ(m∗(θ)) = Ci(Xi(θ), θ),

for all i and all θ, which proves the first part of property M. Suppose now
that there is a θ′ such that Ci(Xi(θ), θ

′) = f(θ), for all i ∈ I. Then m∗(θ)

forms a Nash equilibrium of the game induced by (M,µ) at θ′, and hence
f(θ′) = µ(m∗(θ)) = f(θ), by definition of Nash-implementability, which proves
the second part of property M.

As for sufficiency, consider the set of messages Mi = X ×Θ×Z+, for each
i ∈ I, and µ : M → X defined as follows:

1. If mi = (f(θ), θ, 0), for each i, then µ(m) = f(θ).

2. If there is j ∈ I such that mi = (f(θ), θ, 0), for each i ∈ I \ {j}, and
mj = (x, θ′, α) 6= (f(θ), θ, 0), then µ(m) = x if x ∈ Xi(θ), and µ(m) =

f(θ) otherwise.

3. In all other cases, µ(m) = x, where x is the first component in the
report of the individual with the lowest index among those who submit
the highest integer.

First notice that the strategy profile m∗(θ) = (f(θ), θ, 0) forms a Nash
equilibrium of the game induced by (M,µ) at θ, following the first condition
in Property M.

Second, consider a strategy profile m that forms an equilibrium in θ, and
let x be the resulting outcome. Suppose first that mi = (f(θ′), θ′, 0), for
each i. Then x = f(θ′), and the condition of Nash equilibrium imply that
Ci(Xi(θ

′), θ) = f(θ′), for each i. The second condition in Property M implies
that f(θ′) = f(θ). Transitivity thus implies that x = f(θ), as desired. Suppose
next that there exists j ∈ I such that mi = (f(θ′), θ′, 0), for each i ∈ I \ {j},
and mj = (x, θ′′, α) 6= (f(θ′), θ′, 0). The conditions for Nash equilibrium imply
that Cj(Xj(θ

′), θ) = x and Ci(X, θ) = x, for all i ∈ I \ {j}. The additional
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condition that distinguishes M from M implies that x = f(θ), as desired.
Finally, in all other cases, the conditions for Nash equilibrium imply that
Ci(X, θ) = x, for each i ∈ I, and the additional condition that distinguishes
M from M implies that x = f(θ), as desired. �

3 Additional Results on Nash Implementation

Here are two related characterization results of Nash implementability, one for
social choice rules that need not be single-valued, and one for environments
with private consumption.

Proposition 1’ (Necessary, and Sufficient Conditions for Nash-

Implementability of Multi-Valued Social Choice Rules) If a social
choice rule F is Nash-implementable, then there exists a function Xi : {(x, θ) ∈
X ×Θ|x ∈ F (θ)} → P (X), for each i ∈ I, such that:

1. Ci(Xi(x, θ), θ) = x, for each x ∈ F (θ) and each θ ∈ Θ.

2. For all θ, θ′, and x ∈ F (θ), if Ci(Xi(x, θ), θ
′) = x, for each i ∈ I, then

x ∈ F (θ′).

If, in addition, x ∈ F (θ) for any θ and any x for which there exists i such that
Cj(X, θ) = x for all j ∈ I \ {i}, then F is Nash-implementable.

The proof is virtually identical to that of Proposition 1, and is left to the
reader.

The next result applies to the house allocation problem (see Section 5 of
the paper), where consumption is private.

Proposition 1” (Necessary, and Sufficient Conditions for Nash-

Implementability of Social Choice Rules in the House Alloca-

tion Problem) If a social choice rule F : Θ → OI is Nash-implementable,
then there exists a function Xi : {(x, θ) ∈ X ×Θ|x ∈ F (θ)} → P (O), for each
i ∈ I, such that:

1. Ci(Xi(o, θ), θ) = oi, for each o ∈ F (θ) and each θ ∈ Θ.
2. For all θ, θ′, and all o ∈ F (θ), if Ci(Xi(o, θ), θ

′) = oi, for each i ∈ I,
then o ∈ F (θ′).
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If, in addition, o ∈ F (θ) for any θ and any o for which there exists i and
o′ such that Cj(O, θ) = oj, for all j ∈ I \ {i}, and either Ci(O, θ) = oi or
Ci(Xi(o

′, θ), θ) = oi, for some o′ ∈ F (θ), then F is Nash-implementable.

Again, the proof is virtually identical to that of Proposition 1, and is left to
the reader.

4 More on the Relation Between P and M

P implies M on domains that contain only individual choice functions that
satisfy IIA (see Theorem 3.2.1 in Dasgupta et al. (1979)). The next example
shows that this implication need not hold when considering richer domains
that may contain individual choice functions that violate IIA.

Example 2 Let X = {a, b, c, d}, I = {1, 2}, and Θ̄i be the set of all strict
rational preferences on X such that d is first or second-best. Suppose that
Ci(S, θi) = arg max�(θi)Ai(S), where Ai(S) contains the first two elements of
S according to the alphabetical order.1 These choice procedures are consistent
with the model described in Section 7 of the main paper and, more specifically,
are rationalizable in the sense of Cherepanov et al. (2009), Lleras et al. (2010),
Manzini and Mariotti (2012), and Masatlioglu et al. (2012). Consider the
social choice function f : Θ̄→ X defined as follows:

f(θ) =


a if a �(θ1)x and a �(θ2)x,∀x ∈ {b, c, d}
b if b �(θ1)x and b �(θ2)x,∀x ∈ {a, c, d}
c if c �(θ1)x and c �(θ2)x,∀x ∈ {a, b, c}
d otherwise.

In other words, f picks d except if an alternative is top best for both individ-
uals. It is easy to check that f satisfies Property P (and is implementable in
dominant strategies, thanks to the sufficient condition in Proposition 3 of the

1Notice that Ci(·, θi) 6= Ci(·, θ′i), for all θi, θ′i ∈ Θ̄i such that θi 6= θ′i.
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main paper) with

Xi(θ−i) =


{a, d} if a �(θ−i)x, ∀x ∈ {b, c, d}
{b, d} if b �(θ−i)x, ∀x ∈ {a, c, d}
{c, d} if c �(θ−i)x, ∀x ∈ {a, b, c}
{d} otherwise.

On the other hand, f violates Property M (and hence is not Nash-implementable).
Let θ be such that d is ranked top for both individuals. The first condition in
Property M implies that Ci(Xi(θ), θi) = d, for both i = 1, 2. Hence i pays
attention to d, and X∗i (θ) contains at most two elements: X1(θ) = {x, d} and
X2(θ) = {y, d}, for some x, y ∈ {a, b, c, d}. If θ′ is such that z ∈ X \{d, x, y} is
top-ranked and d is second-best, for both individuals, then Ci(Xi(θ), θ

′
i) = d, for

both i = 1, 2, which would contradict the second condition in Property M, given
that f(θ′) = z. Hence f violates Property M, and is not Nash-implementable.

5 Pareto Correspondence for Choices with Lim-

ited Consideration

In this section I focus on the model of choice with fixed consideration sets
described in Section 7.1 of the main paper. This model imposes a structure
on the violations of rationality. Indeed, individuals are assumed to have a
standard preference, but appear irrational because they maximize it only over
the subset of feasible options they actively consider. Irrationality is thus un-
derstood as a mistake, and a paternalistic mechanism designer would find the
normative criterion of Pareto efficiency in terms of the true underlying pref-
erences more appealing than the rationale behind FBRE or FEff (arguments
along these lines were first provided by Masatlioglu et al. (2012) and Rubin-
stein and Salant (2012)).

The definition of such a criterion is not necessarily unequivocally defined,
because a same choice function may be associated to multiple underlying pref-
erences. For each θi ∈ Θi, let ρ(θi) be the set of θ∗i such that Ci(S, θi) =
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arg max�(θ∗i ) S, for all S ∈ P (X). Notice that ρi is non-empty valued by con-
dition (2) from the main paper. Condition (3) from the main paper implies, in
addition, that ρi is single-valued if and only if, for each x, y ∈ X, there exists
S ∈ P (X) such that Ai(S) = {x, y}. For the necessary condition, suppose
that x, y are such that Ai(S) 6= {x, y}, for all S ∈ P (X). Consider then two
rational types θ∗i and θ̂∗i such that x and y are ranked below any other element
of X, y is below x in θ∗i , and above it in θ̂∗i . It is easy to check that the choice
functions generated by θ∗i and θ̂∗i given Ai are identical, and hence we have
found a type in Θi for which ρi is multi-valued. For the sufficient condition,
consider two rational types θ∗i 6= θ̂∗i . Then there exist x and y such that x �θ∗i y
and y �θ̂∗i x. Then the associated choice functions must take different values
at any S such that Ai(S) = {x, y}, and ρi must be single-valued.

So, to avoid unnecessary conceptual issues associated to the possibility of
multiple underlying preferences, I will assume until the end of this section
that for each x, y ∈ X, there exists S ∈ P (X) such that Ai(S) = {x, y}.
Natural models of choice with limited attention verify this assumption. For
instance, individuals may pay attention to all options when few are available,
but consider only strict subsets of feasible alternatives when many are avail-
able. Under this assumption, the Pareto correspondence can unequivocally be
defined as follows:

F Pareto(θ) = {x ∈ X|x is Pareto efficient given ρ(θ)},

where ρ(θ) = (ρi(θi))i∈I , for each θ ∈ Θ. It is easy to check (see arguments
along these lines in Salant and Rubinstein (2008) and Masatlioglu et al. (2012))
that there is no systematic inclusion between F Pareto, on the one hand, and
FBRE or FEff , on the other hand, except of course that they all coincide with
the classic notion of Pareto efficiency on the rational domain.

The next result is negative: F Pareto is implementable if and only if all
participants are rational.

Proposition 12 F Pareto is Nash-implementable if and only if Ai(S) = S, for
each S, i (or Ci(·, θi) is rational, for all i and all θi).

Proof: It is well-known that the Pareto correpondence is Nash-implementable
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on the domain of rational choice functions, and hence we will focus on the
necessary condition. Suppose that there exist S ∈ P (X) and i ∈ I such that
Ai(S) ( S. Let S∗ be a set with that property for i, and such that no larger set
has that property for i (i.e. Ai(S) = S for any set S larger than S∗). Let then
x ∈ S∗ \Ai(S∗), and consider θ∗i ∈ Θ∗i such that options in X \ S∗ are ranked
above all others, and x is ranked top among remaining options. Suppose also
that the ranking associated to θ∗j is strictly opposite to the ranking associated
to θ∗i , for all j ∈ I \ {i}. Let θ ∈ Θ be such that ρ(θ) = θ∗. Observe that
x ∈ F Pareto(θ). Consider now the set Xi(x, θ) as given in Proposition 1’.
Cθi(Xi(x, θ)) = x implies that Ai(Xi(x, θ)) ⊆ S∗. If Ai(Xi(x, θ)) = S∗, then
Xi(x, θ) is strictly larger than S∗, thereby contradicting the maximality of S∗.
Hence Ai(Xi(x, θ)) ( S∗. Let then x′ ∈ S∗ \ Ai(Xi(x, θ)), and consider the
rational type θ̂∗i ∈ Θ∗i that differs from θ∗i only in that x′ is now ranked top
among all options in X. Let θ̂ ∈ Θ be such that ρ(θ̂) = θ̂∗. The second part of
the necessary condition in Proposition 1’ implies that x should also belong to
F Pareto(θ̂i, θ−i) if it were Nash-implementable, but it doesn’t since x′ Pareto
dominates x. Hence it must be that Ai(S) = S, for each i ∈ I and each
S ∈ P (X), to avoid the contradiction, and we are done proving the result. �

6 Proof of Proposition 5

I start by showing that FBRC is not Nash-implementable. Consider a type
profile θ where each individual i 6= 1’s choice function is derived by maximizing
the ordering where o∗1 is most preferred, o∗i+1 is second most preferred, o∗i+2

is third most preferred, etc., with the convention that I + 1 = 2. The first
individual’s choice function at that state is derived by maximizing the ordering
where o∗2 is most preferred, o∗3 is second most preferred, etc., and o∗1 is least
preferred, except that C1({o∗1, o∗i }, θ1) = o∗1, for each i > 1. The allocation ō
where the first individual keeps his endowment, and each subsequent individual
gets the endowment of his follower (with I getting 2’s endowment) belongs to
the FBRC(θ). Indeed, no object unambiguously dominates the endowment for
the first individual, and hence a blocking coalition cannot contain 1. Notice
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then that ō is such that each individual other than the first receives his most
preferred object in O \ {o1}, and hence it is impossible to find a blocking
coalition that does not contain 1 either, which shows indeed that ō ∈ FBRC(θ).
By definition of θ, the first part of the necessary condition in Proposition 1”
can be satisfied only if ōi ∈ Xi(ō, θ) and o∗1 6∈ Xi(ō, θ), for all i 6= 1, and
X1(ō1, θ) = {ō1}, or {ō1, o∗i }, for some i ≥ 2. If X1(ō1, θ) = {ō1}, then
the second part of the necessary condition implies that ō ∈ FBRC(θ′1, θ−1),
where θ′1 is the rational choice function derived from θ1 by changing the first
individual’s choice over pairs that contain o∗1. To see that is is impossible,
observe that FBRC(θ′1, θ−1) coincides with the regular core since all individual
choice functions are rational at that type profile, and hence the core coincides
with the outcome of the top-trading cycle procedure, which will have 1 and 2

achieve their most-preferred choice by trading their objects. In the case where
X1(ō1, θ) = {ō1, oi}, for some i ≥ 2, consider j ∈ I \{1, i}, and the type θ′1 that
differs from θ1 only in that C1({o∗1, o∗j}, θ′1) = o∗j instead of o∗1. The second part
of the necessary condition in Proposition 1” implies that ō ∈ FBRC(θ′1, θ−1)

if it were Nash-implementable, but it doesn’t, as {1, j} can unambiguously
improve upon ō by trading with each others.

I now show that FC is Nash implementable on any Θ. By definition of FC ,
one can associate to any x ∈ FC(θ) a collection (T x,θi )i∈I of subsets of O such
that Ci(T x,θi , θi) = xi, for each i ∈ I, and for all coalition S and all allocation
α that is feasible for S, there exists a member i of S such that αi ∈ T x,θi . It is
easy to check that the conditions 1. and 2. given in Proposition 1” are satisfied
for Xi(x, θ) = T x,θi . Suppose now that θ and i ∈ I are such that Cj(O, θj) = oj,
for each j ∈ I\{i}. If Ci(O, θi) = oi as well, then one concludes that o ∈ FC(θ)

by taking Tj = O, for all j ∈ I. If Ci(Xi(o
′, θ), θi) = oi, for some o′ ∈ FC(θ),

then one concludes that o ∈ FC(θ) by taking Tj = O, for all j ∈ I \ {i} and
Ti = Xi(o

′, θ) (notice that o∗i ∈ Ti, by definition of Xi(o
′, θ)).

Consider a type profile θ, x ∈ FC(θ), a group S, and an allocation o′ ∈
F(S). Hence there exists i ∈ S such that o′i ∈ Ti and Ci(Ti, θi) = xi. It is thus
impossible to find o′ ∈ F(S) such that o′i unambiguously dominates xi, for all
i ∈ S, and x ∈ FBRC(θ). This establishes that FC ⊆ FBRC .
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Finally, if θ is such that Ci(·, θi) is rational, for each i ∈ I, and x belongs
to the core for the associated revealed preferences, then define Ti as the lower
contour set of x according to the revealed preference, for each i. By definition,
Ci(Ti, θi) = x, for all i. If there is S and x′ ∈ F(S) such that x′i ∈ O \ Ti,
for each i ∈ S, then x′i is revealed preferred to xi for all i ∈ S, thereby
contradicting the fact that x belongs to the core. This shows that FC contains
the core. The other inclusion follows from the fact that FC ⊆ FBRC , and
FBRC coincides with the core when individual choice functions satisfy IIA. �

7 Core vs. Top Trading Cycle

This section follows the discussion from Section 5 in the main paper. If indi-
vidual choice functions satisfy IIA, then FC coincides with the core, and hence
the allocation resulting from the top trading cycle is the only element in the
core (which also coincides with the unique competitive equilibrium). Here is
an example to show that the outcome of the top trading cycle, α∗(θ), need
not be the only element of FC(θ) for states associated to individual choice
functions that may violate IIA.

Example 3 Suppose that I = {1, 2, 3}, and consider a type profile θ so that
C1(O, θ1) = o∗3, C2(O, θ2) = o∗2, C3(O, θ3) = o∗3, C2({o∗1, o∗2}, θ2) = o∗1, and
C3({o∗2, o∗3}, θ3) = o∗2. The top trading cycle leaves individuals with their ini-
tial endowments. Consider the alternative allocation β = (o∗3, o

∗
1, o
∗
2). It also

belongs to FC(θ). This can be proved using T1 = O, T2 = {o∗1, o∗2} and
T3 = {o∗2, o∗3}. Notice indeed that Ci(Ti, θi) = βi, by definition of Ti, θ and
β. To conclude the argument, one must show that, for all S ∈ P (I) and all
α ∈ F(S), there exists i ∈ S such that αi ∈ Ti. This is trivially true if 1 ∈ S,
since T1 = O. If 1 6∈ S, then the feasibility of α implies that α3 ∈ O \ {o∗1}.
Hence the property is true by choosing i = 3 if he is a member of S. Fi-
nally, if neither 1 nor 3 are members of S, then it must be that S = {2} and
F(S) = {o∗2} ⊆ T2, which establishes the property and the fact that β ∈ FC(θ),
as desired.
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8 fij is Nash implementable

This section follows the discussion from Section 6 in the main paper. To save
on notations, fij will be denoted by f in this section. Let σ : Z → Z be an
isomorphism such that σ(z) 6= z, for all z ∈ Z. Define Xi, Xj : Θ→ P (X) as
follows:

Xi(θ) =

{
Z ∪ {γ(σ(f(θ)))} if θi ∈ Θi \ Ai
Z ∪ {γ(f(θ))} if θi ∈ Ai,

Xj(θ) =

{
{f(θ)} if θi ∈ Θi \ Ai
Z if θi ∈ Ai,

and let Xk(θ) = {f(θ)} for all θ and all k 6= i, j.
As for the mechanism used in the proof of Proposition 1, consider the set

of messages Mk = X × Θ × Z+, for each k ∈ I. The outcome function,
µ : M → X, is a bit different though:2

1. If mk = (f(θ), θ, 0), for each k, then µ(m) = f(θ).

2. If there is k ∈ I \ {j} such that ml = (f(θ), θ, 0), for each l ∈ I \ {k},
and mk = (x, θ′, α) 6= (f(θ), θ, 0), then µ(m) = x if x ∈ Xk(θ), and
µ(m) = f(θ) otherwise. If ml = (f(θ), θ, 0), for each l ∈ I \ {j}, and
mj = (x, θ′, α) 6= (f(θ), θ, 0), then µ(m) = x if x ∈ Xj(θ), and µ(m) = c

otherwise (cf. definition of c in the main paper).

3. In all other cases, let k be the individual between i and j who submit
the highest integer (say k = i if both integers are equal). Let z be an
arbitrary fixed element of Z. If k = i and the first component of i’s
message, call it x, belongs to Z ∪ {γ(σ(y))} (resp. Z if y ∈ X \ Z),
where y is the first component of j’s message, then µ(m) = x. If x does
not belong to Z ∪ {γ(σ(y))} (resp. Z if y ∈ X \ Z), then µ(m) = z. If
k = j and the first component of j’s message, call it x again, belongs to
Z, then µ(m) = x. If x does not belong to Z, then µ(m) = z.

2While Property M is satisfied for this family (Xk)k∈I , the extra condition that distin-
guishes M from M is not always satisfied.
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I start by checking that the strategy profile m∗(θ) = (f(θ), θ, 0) (whose
associated outcome is f(θ)) forms a Nash equilibrium of the game induced by
(M,µ) at θ. The set of options that individual i can reach by changing his
message is Xi(θ), and it is easy to check that Ci(Xi(θ), θi) = f(θ), by definition
of Xi. The set of options that individual j can reach by changing his message
is Xj(θ)∪{c}, and again it is easy to check that Cj(Xj(θ)∪{c}, θj) = f(θ), by
definition of Xj. For all k 6= i, j, Ck(Xk(θ), θk) = f(θ), since Xk(θ) = {f(θ)}.

Next, consider a strategy profile m that forms an equilibrium in θ′, and let
x be the resulting outcome. We have to prove that x = f(θ′). Notice that for
any m, individual i faces a set of options S that contains Z, plus in some cases
an option in γ(Z). If θ′i ∈ Θi \ Ai, then

f(θ′) = Ci(Z, θ
′
i) = Ci(S, θ

′
i) = x,

where the first equality follows from the definition of f , the second equality
follows from the fact that S equals Z plus (in some cases) an element of γ(Z),
out of which a individual who is not subject to the attraction effect picks the
same element as when choosing in Z, and the third equality follows from the
Nash equilibrium condition for i at θ′. Hence x = f(θ′), as desired, and from
now on I assume that θ′i ∈ Ai.

Consider the case where mk = (f(θ), θ, 0), for each k. Then x = f(θ), and
the condition of Nash equilibrium implies in particular that Ci(Xi(θ), θ

′
i) =

f(θ). This is impossible if θi ∈ Θi \ Ai, as Ci(Xi(θ), θ
′
i) = σ(f(θ)) 6= f(θ) in

that case. Hence θi ∈ Ai, which implies Xj(θ) = Z. The Nash equilibrium
condition for j at θ′ is Cj(Z ∪ {c}, θ′j) = f(θ). Given that θ′i ∈ Ai, it must be
that f(θ′) = Cj(Z, θ

′
j), and hence x = f(θ) = f(θ′), as desired.

Consider now the case whereml = (f(θ), θ, 0), for each l ∈ I\{i}, andmi =

(y, θ̂, α) 6= (f(θ), θ, 0). Given that θ′i ∈ Ai, it must be f(θ′) = Cj(Z, θ
′
j). Notice

that the condition of Nash equilibrium for j at θ′ requires x = Cj(Z ∪{c}, θ′j).
Hence x = f(θ′), as desired.

Consider the case where ml = (f(θ), θ, 0), for each l ∈ I \ {j}, and mj =

(y, θ̂, α) 6= (f(θ), θ, 0). The condition of Nash equilibrium for j at θ′ implies
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that y ∈ Xj(θ). Hence x = y ∈ Z. The Nash equilibrium condition for i
at θ′ requires x = σ(y) (remember that θ′i ∈ Ai). Hence there is no Nash
equilibrium in this case.

Let k ≥ 3, and consider the case whereml = (f(θ), θ, 0), for each l ∈ I\{k},
and mk = (y, θ̂, α) 6= (f(θ), θ, 0). The equilibrium outcome (x) in that case
is equal to f(θ). Yet, the Nash equilibrium condition for i at θ′ requires
x = σ(f(θ)) (remember that θ′i ∈ Ai). Hence there is no Nash equilibrium in
this case either.

Finally, consider any combination of messages that would form a Nash
equilibrium at θ′ that we have not considered yet. The Nash equilibrium con-
dition for j at θ′ requires x = y = Cj(Z, θ

′
j). The Nash equilibrium condition

for i at θ′ requires x = σ(y) (remember that θ′i ∈ Ai). Hence it is not possible
to find a Nash equilibrium in that case either. �

9 Endogenous Frames and Backward Induction

This section follows the discussion from Section 8 in the main paper. The
first individual is assumed to be “fully” rational (see footnote 16 in the main
paper), while there is no restriction on the second participant’s behavior. I
restrict attention to two-stage mechanisms of perfect information where the
mechanism designer systematically delegates the choice of the frame to the
first individual (instead of picking the frame himself). Formally, a two-stage
mechanism is composed by a finite set M1 of messages for the first individual,
a finite set M2(m1) of messages for the second individual, for each m1 ∈ M1,
and a function µ that associates an outcome in X to each pair of messages.
The extensive-form associated with this mechanism starts with the first indi-
vidual choosing an action (m1, φ) ∈ M1 × Φ, and ends with the second indi-
vidual choosing afterwards an action in m2 ∈ M2(m1). The outcome is then
µ(m1,m2). The backward induction equilibrium at θ of such a mechanism is a
couple (m∗1(θ),m

∗
2(θ)) of messages and a frame φ∗(θ) such that

µ(m∗1(θ),m
∗
2(θ)) = C

φ∗(θ)
2 ({µ(m∗1(θ),m2)|m2 ∈M2(m

∗
1(θ))}, θ)
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µ(m∗1(θ),m
∗
2(θ)) = C1(C

φ
2 ({µ(m1,m2)|m2 ∈M2(m1)}, θ)|m1 ∈M1, φ ∈ Φ}, θ),

for all θ ∈ Θ. The social choice function f : Θ1 × Θ2 → X is implementable
by backward induction if there exists a mechanism (M1,M2(·), µ) such that,
for each θ, the backward induction equilibrium (m∗1(θ),m

∗
2(θ), φ

∗(θ)) is such
that f(θ) = µ(m∗1(θ),m

∗
2(θ)). It is easy to characterize the set of social choice

functions that are implementable in this sense.

Proposition 13 The social choice function f is implementable by backward
induction if and only if there exists a sequence (Sk)

K
k=1 of non-empty subsets of

X such that f(θ) = C1(X1(θ), θ), where X1(θ) = {Cφ
2 (Sk, θ)|k = 1, . . . , K, φ ∈

Φ}, for each θ ∈ Θ.

Proof: To establish the sufficient condition, let M1 = {m1, . . . ,mK}. Let
M2(mk) be a set of |Sk| messages, and µ be such that {µ(mk,m2)|m2 ∈
M2(mk)} = Sk, for each k. It is easy to check that the resulting two-stage
extensive-form game implements f by backward induction.

As for the necessary condition, let f be a social choice function that is
implementable by backward induction via some mechanism (M1,M2(·), µ).
Let K be the total number of messages in M1, and enumerate them so that
M1 = {m1, . . . ,mK}. Let then Sk = {µ(mk,m

′)|m′ ∈ M2(mk)}, for each
k. The two conditions for (M1,M2(·), µ) to implement f then imply that
f(θ) = C1(X1(θ), θ), where X1(θ) = {C2(Sk, θ)|k = 1, . . . , K, φ ∈ Φ}, for each
θ ∈ Θ, as desired. �

The following example illustrates how implementation by backward induc-
tion allows for frames to vary with types, which was impossible when consid-
ering implementation in Nash equilibrium or in dominant strategies.

Example 4 Consider the following variant of the problem studied by de Clip-
pel et al. (2011) for the selection of arbitrators. There are five candidates:
X = {a, b, c, d, e}. Types encode strict preference orderings for both parties,
but while the first party chooses by maximizing that ordering, candidates are al-
ways presented in a list, and the second individual makes his choice by applying
Rubinstein and Salant’s (2006) “Stop When You Start To Decline” procedure
introduced in Section 7.2. Here is a variant with frames of de Clippel et al.’s
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(2011) shortlisting mechanism. The first party can choose an order for the can-
didates, and any one subset of X that contains three candidates. Candidates in
the subset selected by the first individual are then presented in a list that is con-
sistent with the order chosen by the first individual, and the second individual
is free to appoint any candidate from that list to rule the case. The mech-
anism implements the social choice function f , where f(θ) = C1(X1(θ), θ1),
with X1(θ) = {Cφ

2 (S, θ2)|S ∈ Σ, φ ∈ Φ}, for each θ ∈ Θ, where Σ is the set of
subsets of X that contains three candidates, and Φ is the set of lists over X.
It is easy to check that this social choice function picks the first individual’s
top candidate whenever that candidate is not the worse option for the second
party, and the first individual’s second-best candidate otherwise. At equilib-
rium, frames change with the second individual’s type: the first individual’s
top candidate appears first on the shortlist and the worst candidate for the sec-
ond individual appears second, when the first individual’s top candidate is not
the worst for the second party, whilw the first individual’s second-best candidate
appears first on the shortlist and his most preferred candidate appears second,
when the first party’s top candidate is the worst for the other individual. It is
also easy to check that there is no frame that the mechanism designer can pick
in order to implement this social choice function either in Nash equilibrium
(because it violates Property M for any list), in dominant strategies (because it
violates Property P for any list), or by backward induction (there is no way to
satisfy the condition of Proposition 13 when φ is fixed for all θ in the definition
of X1(θ) instead of being a variable).
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