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Geoffroy de Clippel†

This Version: June 2012

Abstract

Implementation theory assumes that participants’ choices are ratio-
nal, in the sense of being derived from the maximization of a context-
independent preference. The paper investigates implementation under
complete information when the mechanism designer is aware that in-
dividuals suffer from cognitive biases that lead to violations of IIA, or
cannot exclude the possibility of such “irrational” behavior.

1 Introduction

Implementation under complete information is a classic problem in mechanism
design. The designer would like to implement a rule that selects acceptable
outcomes as a function of a problem’s characteristics. Unfortunately, while
commonly known among participants, these characteristics are unknown to
him. He must thus rely on their reports to tailor his selection of outcomes.
Taking into account the participants’ incentives to misrepresent their informa-
tion, what are the rules that the designer can effectively implement?

Characteristics encode participants’ preferences in standard implementa-
tion models. However, there is ample evidence in marketing, psychology and
behavioral economics that people’s choices need not be consistent with the
maximization of a preference relation. Classic examples, which have played
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a key role in recent developments in choice theory,1 include status-quo bi-
ases, attraction, compromise and framing effects, temptation and self-control,
consideration sets, and choice overload. This paper expands implementation
theory so as to be applicable in these circumstances as well. States will encode
the participants’ choice functions instead of their preferences, and results will
be derived without requiring these choice functions to be rationalizable.

To illustrate the scope of my analysis, here are a few out of many applica-
tions that fit my framework, but not standard models.

(a) (Hiring with Attraction Effect) Members of a hiring committee are
meeting to select a new colleague. Up to six candidates are considered: a, b, c,
a′, b′ and c′. The first three candidates are above the bar, while the last three
fall below. For each x ∈ {a, b, c}, x′ is similar to x, but dissimilar to other
candidates. In the spirit of the “attraction” effect,2 the committee members’
individual choices may be influenced by the availability of a similar inferior
alternative, e.g. choosing b out of {a, b, c}, but choosing a out of {a, a′, b, c}.
Finding which outcomes can be selected as a function of committee members’
characteristics thus falls beyond the scope of standard implementation theory.

(b) (Matching with Consideration Sets) Mechanism design has been ap-
plied extensively to matching. Shapley and Scarf’s (1974) house allocation
problem is one of the simplest matching environments, and more generally
one of the simplest examples of exchange economy. If individuals have an un-
derlying preference, but pick options out of feasible sets by maximizing that
ordering over a subset of options they actively consider (e.g. m houses that are
closest to their workplace, for some fixed integer m), then choices may appear
irrational. This behavior falls in the general category of choice with consider-

1See e.g. Kalai et al. (2002), Manzini and Mariotti (2007), Ambrus and Rozen (2009),
and de Clippel and Eliaz (2012) for choices resulting from the combination of multiple
conflicting selves, see Masatlioglu and Ok (2005) for choices with a status-quo bias, see
Rubinstein and Salant (2006) for choices with order effects, see Bernheim and Rangel (2009)
and Salant and Rubinstein (2008) on framing, see Cherepanov et al. (2009), Manzini and
Mariotti (2012), Lleras et al. (2010), or Masatlioglu et al. (2012) on limited attention, see
Lipman and Pesendorfer (2011) for a survey on choices with temptation and self-control.

2First identified by Huber et al. (1982), it has been documented since then in various
empirical and experimental settings, see references in Ok et al. (2011, footnotes 2 and 3).
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ation sets that has been documented in the marketing literature (see Wright
and Barbour (1977)) and studied more recently in the economics literature as
well (see Cherepanov et al. (2009), Lleras et al. (2010), Manzini and Mariotti
(2012), or Masatlioglu et al. (2012)).

(c) (Collective Choice with Limited Willpower) Individuals in a support
group are committing to make joint decisions. They take part in this group
to achieve a common long-term goal. The problem is that individual choices
are also influenced by a conflicting short-term goal. In a stylized model, sup-
pose for instance that individuals on their own pick the option that is best
for the long-term goal, under the constraint that there are at most k superior
alternatives for the short-term goal. The parameter k thus captures the indi-
vidual’s willpower in this example. Violations of the property of independence
of irrelevant alternatives (IIA), a classic necessary and sufficient condition for
rationality, are then likely to occur: one may be able to resist eating a slice
of pizza for lunch when the alternative is a salad, but unable to resist both
the burger and the pizza slice, and go for the slice if these two options are
available on the menu in addition to the salad.3

(d) (Groups as Participants)4 The president of a University is consulting
the chairs of its various departments to implement a new policy. The chair
of each department knows the preferences of its members, and make choices
given what is feasible by following some aggregation procedure. As is well
documented in the social choice literature, the choice behavior of the chairs
will (in fact, must) violate IIA in most cases.

A social choice rule (SCR) associates a set of outcomes to each state. A
mechanism is a collection of sets of messages, one such set for each individual,
and a function that associates an outcome to each profile of messages. A
mechanism implements a SCR if the set of equilibrium outcomes coincides with
the set of outcomes prescribed by the SCR, at every state. Implementation

3Such choice pattern is consistent with k = 1, a long-term goal that ranks the salad
above the pizza slice, in turn above the burger, and an opposite short-term goal.

4This interpretation motivated Hurwicz’s (1986) work, a discussion of which is available
at the end of this Introduction.
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admits different meanings depending on what is meant by an “equilibrium.” I
will focus on the two main forms of implementation: in Nash equilibrium and
in dominant strategies (see definitions in Section 2).

Section 3 is devoted to the identification of necessary, and sufficient condi-
tions for a SCR to be implementable in either sense, thereby extending classic
results by Dasgupta et al. (1979) and Maskin (1999),5 from the special case
of domains containing only rational choice functions to any domain of choice
functions. Identifying these properties is critical to understand the limits of
implementation in applications, some of which will be covered in this paper.
Perhaps more insightful than their specific mathematical formulation, it turns
out that intuitive analogues of Maskin monotonicity - based either on Bern-
heim and Rangel’s (2009) extended revealed preferences, or directly on choices
- are inadequate for characterizing SCRs that are Nash implementable. Co-
incidentally, the notion of “augmented revelation mechanism,” introduced by
Mookherjee and Reichelstein’s (1990) to characterize Nash-implementability
on the rational domain, happens to play a key role in characterizing imple-
mentation in dominant strategies in my framework.

Shedding light on the implementation problem requires more than stating
the abstract conditions for implementability. Instead, one must understand
what they imply in applications. Here are some of the main results I derive.

(i) (Efficiency) The Pareto correspondence is one of the most well-known ex-
amples of Nash implementable SCR. An outcome is Pareto efficient if there is
no alternative that is preferred by all participants. Rooted in individual prefer-
ences, this notion does not immediately apply in the absence of IIA. Bernheim
and Rangel (2009) extend the Pareto correspondence to general choice func-
tions: an outcome is BR-efficient if there is no alternative that unambiguously
dominates it, where an outcome o′ unambiguously dominates an outcome o if
o is never picked out of feasible sets that contain o′. I show that BR-efficiency
is not Nash implementable. On the other hand, I provide in Section 4 an

5The paper circulated as a working paper from 1977 and 1998. Surveys on the large
literature on implementation theory include Maskin (1985), Moore (1992), Palfrey (1992,
2002), Corchón (1996), Jackson (2001), Maskin and Sjöström (2002), and Serrano (2004).
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alternative (intuitively appealing) definition of efficiency that coincides with
Pareto’s definition when individuals are rational, systematically selects a non-
empty subset of Bernheim and Rangel’s concept, and is Nash implementable
on all domains (see Proposition 4).

(ii) (Core in Simple Matching Problems) The core of an exchange econ-
omy is another important SCR that is Nash implementable. An allocation is
in the core if there is no way to make the members of any coalition better off by
re-allocating their endowments. As in the case of efficiency, this concept does
not apply in the absence of IIA. Section 5 studies the core in the context of the
house allocation problem. Bernheim and Rangel’s (2009) extended revealed
preference leads to a core that is not always Nash implementable. I suggest a
sensible alternative definition, and show that it is Nash implementable on all
domains (see Proposition 5).

(iii) (Rich Domains) The literature contains numerous “impossibility re-
sults,” which are useful to delineate the limits of implementation. The main
lesson from that literature is that dictatorial rules are essentially the only
implementable single-valued SCRs if participants may hold many varied pref-
erences. Kalai et al.’s (1979) free triple condition captures the essence of this
rich domain assumption. Inspired by it, I propose a choice-based notion of
rich domain in the absence of IIA, and use it to extend classic impossibility
results (see Proposition 6). Violations of IIA make this extension a bit more
permissive though. In the hiring example discussed in (a) above, for instance,
there exist implementable SCRs that vary with the reports of participants
other than the dictator (see Proposition 7).

(iv) (Specific Classes of Biases) Results descibed so far are general in that
they apply to any or numerous classes of individual choice behaviors, with no
particular restrictions in mind. The abstract conditions for implementability
also prove useful to understand the limits of implementation in the presence of
specific biases. Three applications will serve as illustration. Given the promi-
nence of such procedures in the recent choice literature, I start by studying
problems involving individuals who maximize preferences over fixed consider-
ation sets. The resulting domain is not rich even if underlying preferences are
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unrestricted. Unfortunately, strong negative results apply in this setting as
well (see Proposition 8). More permissive results exist when considering other
classes of biases. Collective choice problems with limited willpower, as pre-
sented in (c) above, offer a first example. A simple mechanism indeed allows
to systematically achieve the best element according to the common long-term
objective if sufficiently many individuals participate (see Proposition 11). The
mechanism effectively allows to add up the participants’ limited willpower,
resulting in a larger aggregate willpower for the group. Section 7.2 also identi-
fies a class of biases in the context of choice from lists (Rubinstein and Salant
(2006)) for which there exists an anonymous single-valued SCR that is both
Nash implementable and implementable in dominant strategies.

Choices can sometimes be influenced by external conditions, another form
of “irrationality.” For instance, the meal picked in a cafeteria may vary with
the order in which options are displayed, or the level of a person’s retirement
savings may depend on the level of a default rate. This idea is captured
theoretically by the concepts of “frame” (see Salant and Rubinstein (2008))
or “ancillary condition” (see Bernheim and Rangel (2009)). As suggested in
various examples (see e.g. Camerer et al. (2003), and Thaler and Sunstein
(2003, 2008)), external conditions can sometimes be chosen by the mechanism
designer and, if so, it must be done wisely. Section 8 concludes the paper with
a discussion of this issue in relation to my other results.

To summarize, the scope of implementation theory has so far been lim-
ited to problems where individual choices can be rationalized via context-
independent preferences, while numerous studies have shown this to be unre-
alistic in various circumstances. Fortunately, this restriction can be dispensed
with. Classic necessary and sufficient conditions extend. Though not trans-
parent enough to understand at once which rules are implementable, they can
be used effectively to help mechanism designers work around specific biases to
implement new non-trivial SCRs. These conditions also played a key role in
identifying natural extensions of classic concepts, such as the core or Pareto
efficiency, that are Nash implementable on all domains.
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Related Literature

The importance of taking behavioral biases into account when designing mech-
anisms is attracting attention in the popular press, especially since Thaler and
Sunstein’s (2008) book “Nudge.” This interest is also apparent in the aca-
demic literature, with an effort to adapt models in industrial organization to
determine the best contracts that a monopolist or competing firms can offer
to maximize their profits when customers are subject to specific choice biases
(see Spiegler’s (2011) book for a synthesis).

The present paper extends implementation theory to problems where indi-
vidual choices may violate IIA, and investigates applications involving specific
classes of behavioral biases. These applications are rooted in recent progress
made in choice theory to better understand bounded rationality, for instance
models of choice with consideration sets (Cherepanov et al. (2009), Manzini
and Mariotti (2012), Masatlioglu et al. (2012)), or the model of choice from
lists (Rubinstein and Salant (2006)). Proposition 1, which offers necessary and
sufficient conditions for Nash implementability, is the only result in this paper
that has some precedence in the literature. Indeed, Hurwicz (1986) was the
first to highlight that Maskin’s (1999) result extends beyond rational choice.
Unfortunately, his extension is pertinent only when individual choice func-
tions are multi-valued,6 while many standard models in choice theory involve
single-valued functions, the topic of this paper. Korpela (2012) independently
derived a sufficient condition for Nash implementability that is similar to the
one I derive in Proposition 1.7 Independently of both Korpela and I, Ray
(2010) derived necessary conditions for Nash implementability. Closer to Hur-
wicz, his results also boil down to Maskin’s standard result when individual
choice functions are single-valued, and are thus not useful in my framework.

The papers by Hurwicz, Korpela and Ray extend Maskin’s result on Nash
implementability in various directions, but do not study what the implications

6Indeed, his notion of “generalized Nash equilibrium” presumes that each individual picks
options that are undominated for an underlying relation that may be intransitive and/or
incomplete. Yet, such choice procedures deliver single-valued choice functions only if the
underlying relations are complete and transitive, that is only if participants are rational.

7I thank Rene Saran for the reference.
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may be in relevant applications (such as those described in (i) to (iv) above, for
instance). As far as I know, the topic of implementation in dominant strategies
has never been discussed in the past in the absence of IIA.

A few other relevant references include Eliaz (2002), who studies full im-
plementation in Nash equilibrium that is robust to the presence of any number
of “faulty” individuals below a fixed threshold, where faulty individuals may
behave in any possible way; Saran (2011), who studies under which conditions
over individual choice correspondences over Savage acts does the revelation
principle hold for weak Nash implementation with incomplete information;
and Glazer and Rubinstein (2011), who introduce a mechanism design model
in which both the content and framing of the mechanism affect the agent’s
ability to manipulate the information he provides.

2 Definitions

Let I be the set of individuals, let Θ be the set of possible states, let X be the
(finite) set of available options, let P (X) be the set of non-empty subsets of
X, and let Ci(·, θ) : P (X)→ X be i’s choice function when the state is θ, with
Ci(S, θ) ∈ S, for all S ∈ P (X). Individuals have private values if there exist
type sets (Θ1, . . . ,ΘI) such that Θ = Θ1 × . . . × ΘI and Ci(·, θ) = Ci(·, θ′),
for all θ, θ′ such that θi = θ′i. In that case, i’s choice function will be denoted
Ci(·, θi). A choice function C : P (X) → X is rational if there exists a strict
preference � such that C(S) = arg max� S, for each subset S of X. As is well-
known, a choice function C is rational if and only if it satisfies the property of
“independence of irrelevant alternatives” (IIA): C(R) = C(S) for all subsets
R, S of X such that R ⊆ S and C(S) ∈ R.

A social choice rule (SCR) is a correspondence f : Θ → X that selects a
subset of options for each state. A mechanism is a profile ((Mi)i∈I , µ) where
Mi is the (finite) set of messages available to i, and µ : M → X is the outcome
function (M := ×i∈IMi).

A strategy for individual i is simply the choice of a message in Mi. In
a Nash equilibrium, each player’s strategy must deliver his most-preferred
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option within the set of options he can generate by varying his own strategy,
given that others play their part of the equilibrium. This definition admits
a straightforward extension to contexts involving individual choice functions
that may violate IIA (in which case one cannot use revealed preferences as
Nash did): each individual’s strategy leads to an outcome that coincides with
his choice within the set of outcomes he can generate by varying his own
strategy, while others play their part of the equilibrium. Formally, a profile
of strategies (m∗i (θ))i∈I forms a Nash equilibrium of the game induced by the
mechanism (M,µ) at a state θ if

µ(m∗(θ)) = Ci({µ(mi,m
∗
−i(θ))|mi ∈Mi}, θ), for all i ∈ I. (1)

When IIA is satisfied and thus revealed preference exists, a strategy is
dominant for a player if, whenever combined with arbitrary strategies for the
others, it delivers his most-preferred option within the set of options he can
generate by varying his own strategy, while others play this arbitrary strategy
profile. This definition also admits a straightforward extension to contexts
involving individual choice functions that may violate IIA: a strategy is domi-
nant for a player if, whenever combined with arbitrary strategies for the others,
it deliver his choice within the set of options he can generate by varying his
own strategy, while others play this arbitrary strategy profile. Formally, a
message mi is a dominant strategy for individual i at θ if

µ(mi,m−i) = Ci({µ(m′i,m−i)|m′i ∈Mi}, θ), for all m−i ∈M−i.

Any profile of dominant strategies thus forms a Nash equilibrium.
The mechanism (M,µ) implements the SCR f in Nash equilibrium if it

admits a Nash equilibrium at every state, and

f(θ) = {µ(m∗(θ))|m∗(θ) is a Nash equilibrium at θ}

for all θ ∈ Θ. If such a mechanism exists, then f is said to be Nash imple-
mentable. The mechanism (M,µ) implements the SCR f in dominant strate-
gies if it admits a dominant strategy profile at every state θ, and

f(θ) = {µ(m∗(θ))|m∗(θ) is a dominant strategy profile at θ},
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for all θ ∈ Θ. If such a mechanism exists, then f is said to be dominant
strategy implementable.

3 Necessary and Sufficient Conditions

This section offers abstract necessary and sufficient conditions for implementabil-
ity in either sense. They will prove useful in subsequent sections to determine
which SCRs are implementable in relevant applications.

3.1 Nash Implementation

I restrict attention to single-valued SCRs. Some more general results are
provided in the supplemental appendix.

Let’s start by reminding the essence of Maskin’s (1999) result. “Monotonic-
ity” is the key property that emerged from his work.

Maskin Monotonicity Suppose that Ci(·, θ) is rational, for each i ∈ I and
each θ ∈ Θ. Then a single-valued SCR f : Θ → X is Maskin Monotonic
if f(θ′) = f(θ), for each θ, θ′ such that LCi(f(θ), θ) ⊆ LCi(f(θ), θ′) for each
i ∈ I, where LCi(x, θ) = {y ∈ X|x �i (θ)y} denotes the lower contour set of
x given the preference ordering �i (θ) associated to Ci(·, θ).

Though necessary, the property is not quite sufficient, and various conditions
have been proposed over the years to complete it so as to guarantee Nash im-
plementability. Perhaps the simplest and most well-known remains Maskin’s
“No Veto.”

No Veto Suppose that Ci(·, θ) is rational, for each i ∈ I and each θ ∈ Θ.
Then a single-valued SCR f : Θ → X satisfies no veto if f(θ) = x, for each
θ ∈ Θ for which there exists i ∈ I such that x is top-ranked according to �j (θ),
for each j ∈ I \ {i}.

Maskin’s (1999) classic result establishes that the two following results hold
on any domain that contain only rational choice functions: 1) a SCR is Nash
implementable only if it is Makin Monotonic, and 2) any SCR that is both
Maskin Monotonic and satisfies No Veto is Nash implementable if #I ≥ 3.
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The following property offers one straightforward extension of No Veto to
more general individual choice functions.

Property N Let θ ∈ Θ. If there exist x and i ∈ I such that Cj(X, θ) = x, for
all j ∈ I \ {i}, then f(θ) = x.

The question of how to extend the more substantial property of Maskin
Monotonicity is of greater interest. I show in the supplemental appendix
that two natural definitions, a monotonicity property based on Bernheim and
Rangel’s (2009) extended revealed preference and the choice-based monotonic-
ity property proposed by Aizerman and Aleskerov (1986) in their study of the
aggregation of individual choice functions into social choice functions, are both
inappropriate for characterizing implementable SCRs.

Here is another property that coincides with Maskin Monotonicity when
individual choice functions satisfy IIA, and that will be useful for my purpose
in that it is necessary for Nash-implementability, and sufficient once combined
with Property N.

Property M For each i, there exists a function Xi : Θ→ P (X) such that

1. Ci(Xi(θ), θ) = f(θ), for all θ ∈ Θ and all i ∈ I,

2. For all θ, θ′, if Ci(Xi(θ), θ
′) = f(θ), for all i, then f(θ′) = f(θ).

The property requires that, for each state θ and each individual i, one can
find a set Xi(θ) of alternatives such that i picks f(θ) out of Xi(θ) when the
state is θ. In addition, if all individuals pick f(θ′) out of Xi(θ) when the
state is θ′, then f(θ′) must coincide with f(θ). Consider now the special case
where individual choice functions satisfy IIA at all states. If Property M is
satisfied for some profile (Xi)i∈I , then so is it for any other profile (X ′i)i∈I

that is larger (i.e. Xi(θ) ⊆ X ′i(θ), for each i and θ), provided that the first
condition in Property M remains satisfied. Hence Property M is equivalent to
that same property applied to the largest profile for which the first condition
remains valid, i.e. Xi(θ) = LCi(f(θ), θ), and the second condition in Property
M indeed boils down to Maskin monotonicity in that case.

One is now ready to extend Maskin’s result to any domain: 1) a single-
valued SCR is Nash implementable only if it satisfies Property M, and 2)
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any single-valued SCR that satisfies both M and N is Nash implementable if
#I ≥ 3. Yet, it will be useful in applications below to have slightly weaker
sufficient condition. Multiple papers have been written to characterize Nash-
implementability on rational domains. My objective here is not to find ex-
tensions of these various results to my more general framework. Instead, I
propose a condition inspired from these papers that is adequate to cover all
the applications discussed in the rest of the paper. Finding a single condition
that would be both necessary and sufficient for Nash-implementability on any
domain remains an open question of theoretical interest.

Property M There exists a function Xi : Θ → P (X), for each i ∈ I, such
that the two conditions in Property M are satisfied, and if there exists j ∈ I,
θ, θ′ ∈ Θ, and x ∈ X such that Ci(X, θ) = x, for all i ∈ I \ {j}, and either
Cj(X, θ) = x or Cj(Xj(θ

′), θ) = x, then f(θ) = x.

The restriction added to M to get M are weaker than N, since it applies only
under some additional condition on j’s choice.

Proposition 1 (Necessary, and Sufficient Conditions for Nash-

Implementability) Let f be a single-valued SCR. If f is Nash implementable,
then it satisfies Property M. If #I ≥ 3, and f satisfies Property M, then it is
Nash implementable.

3.2 Dominant Strategy Implementation

I restrict attention to private values in this section. I start with an extension
of the revelation principle to my more general domain where states encode
individual choice functions, in order to characterize the set of SCRs that are
implementable in dominant strategies.

Proposition 2 (Weak Revelation Principle) Consider a problem with
private values. The SCR f is implementable in dominant strategies if and only
if it is single-valued, and there exists a setMi of messages, for each i ∈ I, such
that truth-telling is a dominant strategy for every type profile in a mechanism
where individual i’s message space is Θi∪Mi, for each i ∈ I, and the outcome
function coincides with f when all individuals report types.

12



This weak revelation principle highlights that, as is the case when individ-
ual choice functions satisfy IIA, there is no loss of generality for the mechanism
designer to make his decision on which option to implement based solely on
the individuals’ direct reports about their types. On the other hand, the fact
that individuals’ choices may violate IIA implies that the mechanism designer
may want to add some ‘decoy messages’ to ‘nudge’ individuals to see truth-
telling as a dominant strategy. Obviously, Proposition 2 boils down to the
classic revelation principle when individual choice functions satisfy IIA, as
messages inMi can be deleted without changing the individuals’ behavior in
the mechanism. Note that the exact same class of mechanisms was introduced
by Mookherjee and Reichelstein (1990) under the name of “augmented revela-
tion mechanism” to state their “augmented revelation principle.” They show
that any SCR which is Nash implementable (on rational domains) can be im-
plemented by an augmented revelation mechanism for which truthtelling is one
equilibrium, and then state the “selective elimination condition” to guarantee
that truth is the only equilibrium, thereby providing a sufficient condition for
Nash implementability. The non-type auxiliary messages are used there to de-
stroy undesired equilibria without introducing new ones, while here they are
used to influence individual choice behaviors.

The fact that Mi may have to be non-empty makes this weak revelation
principle less helpful than its more standard version in the special case where
preferences are rational. Phrasing a tractable condition that is both necessary
and sufficient seems out of reach. Yet the weak revelation principle allows to
derive simpler necessary and sufficient conditions that share some similarities
with Property M, and will prove useful in applications below.

Property P For each i ∈ I, there exists a function Xi : Θ−i → P (X) such
that Ci(Xi(θ−i), θi) = f(θ), for all θ ∈ Θ.

The property requires that, for each i and each profile θ−i of types for the
other individuals, one can find a set Xi(θ−i) of alternatives such that i picks
f(θ) out of Xi(θ−i) when the state is θ.

Proposition 3 (Necessary, and Sufficient Conditions for Imple-
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mentability in Dominant Strategies) Consider a problem with private
values. If a SCR f is implementable in dominant strategies, then it satisfies
Property P. Conversely, if a SCR f satisfies property P for the specific se-
quence of functions (X∗i )i∈I , where X∗i (θ−i) = {f(θi, θ−i)|θi ∈ Θi}, for each
θ−i and each i, then f is implementable in dominant strategies.

Despite their slight resemblance, there is no systematic logical relation be-
tween M and P (and no general logical implication between Nash-implementation
and implementation in dominant strategies). The fact that M does not always
implies P is already true on some domains containing only rational choice func-
tions (see Theorem 7.2.3 and the discussion that follows it in Dasgupta et al.
(1979)). P implies M on domains that contain only individual choice functions
that satisfy IIA (see Theorem 3.2.1 in Dasgupta et al. (1979)), but I provide
an example in the supplemental appendix to show that this logical implication
breaks down when considering more general individual choice functions.

4 Efficiency

The Pareto correspondence is one of the most standard examples of SCR that
is Nash implementable8 on rational domains, but unfortunately is not well-
defined without the existence of a revealed preference (i.e. in the absence
of IIA). One possible extension of the Pareto correspondence is proposed by
Bernheim and Rangel (2009). Following their definition, an option a is unam-
biguously preferred to an alternative b given a choice function C if C(S) 6= b,
for all S such that a ∈ S. Though necessarily incomplete when IIA is violated,
this revealed ordering and the associated Pareto principle may still allow to
compare some options. An option is BR-efficient if there is no alternative
option that is unambiguously preferred by all individuals. Let FBRE be the
SCR that associates to each state θ the set of BR-efficient options at θ.

I now suggest an alternative extension of Pareto efficiency in the absence
of IIA. To motivate the definition, notice that the Pareto criterion for rational

8The paper restricts attention to single-valued individual choice functions (equivalent to
focusing on strict preferences on rational domains). It is impossible in that case to implement
multi-valued SCRs in dominant strategies (as observed in Proposition 2).
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preferences can be rephrased in terms of “freedom of choice” instead of revealed
preferences. Picking an option x could be interpreted as implicitly giving
each individual i the freedom to choose from a subset that contains x and is
contained in its lower contour set. As Pareto efficiency has no implications
in terms of fairness, these lower contour sets (one for each individual) can
be relatively small or relatively large. Yet it cannot be that all of them are
small. More precisely, an option x is Pareto efficient if and only if one can
find an implicit choice set for each individual out of which he would pick x,
and such that each alternative belongs to the implicit choice set of at least one
individual. Indeed, y is a Pareto improvement over x if and only if one cannot
find an individual whose lower contour set for x contains y. The argument in
terms of freedom of choice instead of revealed preference has the advantage
of admitting a straightforward extension for individual choice functions that
need not satisfy IIA. This leads to an extension of the Pareto correspondence
that is different from FBRE. An element x is efficient according to FEff if one
can associate to each individual i an implicit choice set Yi such that, for each
alternative y ∈ X \{x}, there is at least one individual who was free to choose
y, but decided to pick x instead. Formally.

FEff (θ) = {x ∈ X|(∃(Yi)i∈I subsets of X) : Ci(Yi, θ) = x, for all i, and X = ∪i∈IYi},

for each θ ∈ Θ. Notice that FEff has non-empty values, as needed, since it
includes any option x such that x = Ci(X, θ), for some i ∈ I.

Proposition 4 Suppose that X contains at least three elements. FEff is Nash
implementable on all domains, while FBRE isn’t. FEff ⊆ FBRE, and FEff

coincides with the set of Pareto optimal options on rational domains.

An advantage of the definition of FEff (and FBRE) is that it is phrased
exclusively in terms of observables (i.e. choices), and is thus independent of
a specific model or way to interpret choices. Of course, if a modeler strongly
believes in a model (which requires at the very least that this model is not
contradicted by observed choices), then he may well disagree with the fact that
FEff captures a reasonable notion of efficiency. For instance, I will discuss in
Section 7 models where individuals make choices by maximizing a well-defined
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preferences, as rational agents would do, but need not pay attention to all
feasible alternatives. If one believes that this is the way choices are deter-
mined, then one may reject the idea that observing an individual i picking x
out of Yi means that i had the freedom to choose any alternative option y in
Yi. Arguments along these lines can be found in Salant and Rubinstein (2008)
and Masatlioglu et al. (2012). I study in the supplemental appendix the cor-
respondence that associates to each state the set of Pareto efficient allocations
for the true underlying preferences in the model of choice with consideration
sets. Unfortunately I show that it is not always Nash implementable either.
Independently of whether one finds FEff a desirable SCR or not, it remains a
fact that it is Nash implementable on all domains.

As FEff constitutes a selection of Bernheim and Rangel’s (2009) extended
notion of efficiency, it is important to understand why options that are con-
sidered efficient according to their definition need not be according to mine.
Consider a case where available options are labeled according to the letters in
the alphabet. All individuals except the first have a rational choice function
that coincides with the natural ordering. The first individual has the same
choice function except that he picks option z out of any pair that contains
it. Option z is BR-efficient, since z is not unambiguously dominated by any
alternative for the first individual. Yet it is not efficient according to my def-
inition. Indeed, the implicit choice set for all individuals different from the
first must be the singleton {z}, as this is the worst option for them. The
implicit choice set for the first individual must be a pair that contains z given
his choice function. Hence, for any profile of implicit choice sets (Yi)i∈I , most
feasible alternatives do not belong to any implicit choice set if each individual
i picks z out of Yi.

5 Core in House Allocation

The core is another important example of SCR that is Nash implementable
when individual choice functions satisfy IIA. In this section, I present results
on this topic without requiring IIA in the context of Shapley and Scarf’s (1974)
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house allocation problem, a classic matching environment.
Each individual owns one unit of an indivisible object. Let O denote the

set of all objects: O = {o∗i |i ∈ I}, where o∗i is i’s initial endowment. Then
X = {z ∈ OI |zi 6= zj,∀i 6= j}. To avoid individual choice correspondences,
while assuming that individuals care only about the object they consume,
choices are defined in this section over subsets of O instead of X. So each
state θ defines a choice function Ci(·, θ) : P (O)→ O for each individual i. As
before, a SCR is a function that associates an element of X to each element of
Θ, but elements in the range of f are now vectors with I components, given
the specific structure of X. A similar point applies to the outcome function of
mechanisms. Condition (1) defining a Nash equilibrium thus now becomes:

µi(m
∗(θ)) = Ci({µi(mi,m

∗
−i(θ))|mi ∈Mi}, θ).

For each group S of individuals, let then F(S) be the set of house alloca-
tions that can be achieved by its members. Formally, F(S) is the set of α ∈ OS

such that {αi|i ∈ S} = {o∗i |i ∈ S} and αi 6= αj whenever i 6= j. Inspired by
the definition of FEff , consider the following SCR:

FC(θ) = {x ∈ F(I)|(∃(Ti)i∈I subsets of O) : Ci(Ti, θ) = xi, ∀i, and

(∀S ∈ P (I))(∀α ∈ F(S))(∃i ∈ S) : αi ∈ Ti}

In order to make sure that FC is a well-defined SCR, I need to check that
it is non-empty valued. For this, consider the following extension of Shapley
and Scarf’s (1974) top trading cycle procedure. Fix a state θ, and compute
at that state the object that each individual i would pick if he was free to
choose any element of O. Draw an arc from individual i and j if and only if
Ci(O, θ) is j’s endowment. This graph must have at least one cycle. Implement
the trades induced by all these cycles, and let O′ ( O be the set of objects
remaining, i.e. O′ = {o∗i |i ∈ S} where S is the set of individuals who weren’t
part of a cycle. Then iterate the procedure with the remaining individuals
and objects. Call α∗(θ) the resulting allocation of objects. Let’s check that
α∗(θ) ∈ FC(θ), for each θ ∈ Θ. For each individual i, let Ti be the set of
objects remaining when he became part of a trading cycle in the procedure.
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The fact that Ci(Ti, θi) = α∗i (θ) thus follows immediately from the definition
of that cycle in the procedure. Let S ∈ P (I), α ∈ F(S), and let j be one of the
individuals in S who is among the earliest to be part of a trading cycle in the
induction. Then αj ∈ Tj, for each α ∈ F(S), by definition of the induction, of
F(S) and of Tj. I have thus proved indeed that α∗(θ) ∈ FC(θ).

Bernheim and Rangel’s (2009) extended revealed preference can also be
used to define an extension of the core that is applicable in particular to the
house allocation problem. Say that coalition S BR-blocks an allocation α if
there exists β ∈ F(S) such that βi unambiguously dominates αi, for each
i ∈ S. The BR-core, denoted FBRC , then associates to each profile θ of types
the set of allocations α ∈ F(I) such that there is no coalition S that BR-blocks
α. I now provide a result in the spirit of Proposition 4.9

Proposition 5 Suppose that O contains at least three elements. FC is Nash
implementable on all domains, while FBRC isn’t. FC ⊆ FBRC, and FC coin-
cides with the core on rational domains.

Remark 1 If individual choice functions satisfy IIA, then FC coincides with
the core, as just observed, and hence the allocation resulting from the top trad-
ing cycle is the only element in the core (which also coincides with the unique
competitive equilibrium). However, α∗(θ) need not be the only element of FC(θ)

for states associated to individual choice functions that may violate IIA. An
example in that regard is provided in the supplemental appendix.

6 Rich Domains

An option x is said to be most preferred according to a choice function C if
C(S) = x, for every S that contains x. Given a most preferred option x, an

9Bade (2008) studies the house allocation problem in the presence of individual choice
functions that need not satisfy IIA. She defines two notions of efficiency and of cores, one
based on Bernheim and Rangel’s (2009) revealed preference, cf. FBRE and FBRC , and one
based on an alternative revealed ordering whereby a � b if there exists S that contains b
and such that C(S) = a. The latter ordering is complete but often intransitive, leading
in many cases to the emptiness of both concepts (efficiency and core). She does not study
the implementability of the various concepts she defines, but instead defines the top-trading
cycle (same as above) and serial dictatorship procedures to show that an equivalence result
by Abdulkadiroglu and Sonmez (1998) does not extend to the case where individual choice
functions violate IIA.
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option y is said to be second most preferred according to a choice function C if
C(S) = y, for all S that contains y but not x. Given a most preferred option
x, and a second most preferred option y, an option z is said to be third most
preferred according to a choice function C if C(S) = z, for all S that contains
z but not x, nor y. Rational choice functions systematically admit a most,
second most, and third most preferred option, but violations of IIA does not
necessarily preclude the existence of such options either.

In this section, I restrict attention to problems with private values. A
single-valued SCR f : Θ→ X has a rich domain if for each x, y, z ∈ Range(f)

and each individual i, there is a type θi ∈ Θi such that x is most preferred
according to Ci(·, θi), y is second most preferred, and z is third most pre-
ferred. Having a rich domain thus means that the mechanism designer cannot
exclude10 that participants have a most, a second most, and a third most pre-
ferred option, and that any three options in the range of f can play these roles
(no restriction in “tastes”). This boils down to a simplified version of Kalai
et al.’s (1979) free triple condition when individual choice functions satisfy
IIA. Classic impossibility results in such case imply that dictatorial rules are
the only Pareto efficient SCRs with a range of at least three elements that
are either Nash implementable or implementable in dominant strategies. Here
is an extension of these results to numerous new domains that include types
associated to individual choice functions that violate IIA.

Proposition 6 Consider a problem with private values. Let f : Θ → X

be a single-valued SCR that has a rich domain, is BR-efficient,11 and whose
range contains at least three elements. If f is either Nash implementable or
implementable in dominant strategies, then there exists a unique j and Xj :

Θ→ P (X) such that f(θ) = Cj(Xj(θ), θj) and Range(f) ⊆ Xj(θ), for each θ.

Individual j in the previous proposition qualifies as a dictator insofar as
the corresponding SCR picks x whenever x is his most-preferred option. The
simplest example of SCR meeting the assumptions of Proposition 6 is given

10“Cannot exclude” means that these different properties are met by some types.
11The result remains true if BR-efficiency is replaced by the alternative notion I introduced

in Section 4, since FEff ⊆ FBRE .
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by f(θ) = Cj(Range(f), θj). Yet, violations of IIA make it possible for more
subtle SCRs to be implementable as well. Indeed, notice Xj(θ) can possibly
vary with θ−i. Here is indeed an example. Consider the hiring problem with
attraction effect discussed in the Introduction. Let Z be a set of candidates
who are above the bar, out of which members of a committee I must hire one
applicant. For every z ∈ Z, there exists a candidate γ(z) ∈ X \ Z that is
similar to z but clearly ranked below the bar. Having the option to pick γ(z)

may nudge some participants to pick z out of Z ∪ {γ(z)}, in the spirit of the
attraction effect (Huber et al. (1982)). Those who are not subject to that
effect are assumed to overlook the feasibility of γ(z). Formally, the type sets
are assumed to satisfy the following conditions. For each i ∈ I, there exists a
subset Ai of types that are subject to the attraction effect:

1. if θi ∈ Ai and z ∈ Z, then Ci(Z ∪ {γ(z)}, θi) = z,

2. if θi ∈ Θi \ Ai and z ∈ Z, then Ci(Z ∪ {γ(z)}, θi) = Ci(Z, θi).

Given that γ(z) is similar to z, it will also be required that Ci(γ(Z), θi) =

γ(Ci(Z, θi)), for all θi ∈ Θi and all i ∈ I. Though not needed, I will also
assume that there exists an option c ∈ X that is so bad or dissimilar that it
does not influence choices out of subsets of Z independently of individuals’
types: Ci(S ∪ {c}, θi) = Ci(S, θi), for all subset S of Z and all θi. This will
greatly simplify arguments in the proof of Nash implementability in the next
proposition. It is easy to see that numerous domains that are rich over Z
satisfy these assumptions.

For each i, j ∈ I, consider the following SCR: fij(θ) = Ci(Z, θi) if θi ∈
Θi \ Ai, and fij(θ) = Cj(Z, θj) if θi ∈ Ai. In other words, individual i deter-
mines the outcome when he is not subject to the attraction effect. Otherwise
individual j does. The range of fij is Z whenever the domain is rich over Z.
Also, fij(θ) ∈ FEff (θ) ⊆ FBRE(θ), for all θ. Notice how individual j’s type
plays a role in determining the final outcome being implemented, despite the
fact that i qualifies as a dictator according to my earlier definition. The SCR
fij is implementable both in Nash equilibrium and in dominant strategies.

Proposition 7 Let i, j be any two individuals. Then the SCR fij is imple-
mentable both in Nash equilibrium and in dominant strategies.
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7 Applications to Specific Classes of Biases
This section studies implementation on domains where individual choices can
be described by specific models capturing structured departures from ratio-
nality. Results in Sections 4 and 5 establish that some important multi-valued
SCRs are Nash implementable. Proposition 6, on the other hand, establishes
that few single-valued SCRs are implementable (either in Nash equilibrium
or in dominant strategies) when the domain is rich. In perspective of these
results, the question is whether there are ways to exploit specific biases to
define non trivial single-valued SCRs that are implementable. I focus on three
applications: problems with fixed consideration sets, problems with lists, and
problems involving individuals who fight temptation with limited willpower.
The associated domains of choice functions need not be rich, even when allow-
ing for a diverse range of behavior within those classes of biases. While results
remain strongly negative on the first domain, they are more permissive on the
other two.

7.1 Fixed Consideration Sets

In this subsection, I focus on problems where individuals are maximizing a
preference relation, but may overlook some feasible alternatives when picking
their choices. Such an idea was first introduced in the marketing literature,
where the feasible set describes the set of all options the individual is aware of,
while the consideration set is the subset of those options that the individual ac-
tively considers when making his decision (see e.g. Wright and Barbour (1977)
and Roberts and Lattin (1991), see also Lleras et al. (2010) and Masatlioglu
et al. (2012) for a recent elaboration on this idea in choice theory). Simi-
larly, in Cherepanov et al. (2009), each individual is assumed to maximize his
preference over the subset of options that he can “rationalize,” in the sense of
being maximal within the feasible set for at least one “rationale.” Manzini and
Mariotti (2012) offer yet another motivation for the framework studied in this
subsection. They suggest that people may overlook dominated categories of
options when making choices out of large sets. For instance, when having to
choose among many restaurants, one may first decide to focus only on some
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specific cuisine (e.g. italian), and then pick the best option within that cate-
gory, while one would consider all the options (and perhaps prefer a mexican
restaurant over an italian alternative) when there are only a handful of them.
Similarly, one may restrict attention to apartments in a one mile-radius from
one’s workplace when there are numerous apartments available for rent, but
would drop that restriction if only few are available. The model of choice from
lists introduced in the next subsection provides additional examples, if indi-
viduals pay attention to the first k(s) elements of any list with s elements. The
key assumption underlying the results in this subsection is that consideration
sets do not vary with the state.

Restricting attention to problems with private values, I assume in addition
that, for each individual i, there exists a consideration correspondence Ai :

P (X) → P (X), associating to each set S ⊆ X of feasible options the subset
Ai(S) ⊆ S of options that he actually considers, such that

∀θi ∈ Θi,∃θ∗i ∈ Θ∗i , ∀S ∈ P (X) : Ci(S, θi) = arg max
�(θ∗i )

Ai(S), (2)

where Θ∗i denotes the set of rational types. In other words, individual i picks
the option that maximizes �(θ∗i ) over Ai(S). While consideration sets are
fixed in this subsection, underlying preferences/tastes are left unrestricted:

∀θ∗i ∈ Θ∗i , ∃θi ∈ Θi,∀S ∈ P (X) : Ci(S, θi) = arg max
�(θ∗i )

Ai(S). (3)

Despite the fact that preferences are unrestricted, domains derived from con-
ditions (2) and (3) are usually not rich, and so Proposition 6 does not apply.
Indeed, an option that is feasible but not considered in some choice problem
is not most preferred according to the definition of the previous section. Does
implementation become more permissive in societies with individuals who have
different consideration sets? Unfortunately the answer is negative.

Proposition 8 Consider a problem with private values which satisfies con-
ditions (2) and (3). Let f be a single valued SCR whose range contains at
least three options. Then f is Nash implementable (implementable in domi-
nant strategies, respectively) if and only if there exists j ∈ I and S ∈ P (X)

such that Range(f) = Aj(S) and f(θ) = Cj(S, θj), for all θ ∈ Θ.

Consideration sets do not vary with types in this subsection. The negative
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conclusions derived in the previous proposition need not apply otherwise. For
instance, the hiring problem with an attraction effect from the previous sec-
tion could be rephrased with types specifying preferences and consideration
sets, and yet Proposition 6 shows that there exist implementable SCRs that
vary with the type of multiple individuals. The next two subsections contain
other instances of more permissive results because consideration sets vary with
states.

7.2 Choice from Lists

I now present a more permissive implementation result for specific classes of
choice procedures defined on lists. Assume, for instance, that the mechanism
designer has labeled the various options as “Option 1 is (. . . )”, “Option 2 is
(. . . )”, etc. This establishes a natural list l, which simply amounts to an
enumeration of the elements of X, (xk)

|X|
k=1. It is then assumed that, for any

feasible set, individuals investigate the relative appeal of its various elements
in an order that is consistent with the mechanism designer’s labeling system.
A first example of choice procedure I will consider is given by Rubinstein and
Salant’s (2006, Example 6) “Stop When You Start to Decline.” In this model,
individuals are endowed with a complete and transitive strict preference or-
dering on X (which, in the present paper, may vary with their types), and
check options out of any feasible set S ⊆ X by following the sequence that is
consistent with the list’s enumeration. They continue this process as long as
the next option improves upon the last according to their preference. The op-
tion picked from S is then the last in this improving sequence, i.e. the last one
they paid attention to before finding a new option that is worse according to
their preference. A second example of choice procedure covered in this subsec-
tion, is Simon’s (1955) satisficing procedure, as formalized in Rubinstein and
Salant (2006, Example 2). In this alternative model, individuals are endowed
with a utility function and a real number that represents a threshold (both of
which may now vary in with their types). Again, they are assumed to check
options out of any feasible set S ⊆ X by following the sequence that is consis-
tent with the list’s enumeration. They then pick the first option whose utility
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is larger than the threshold. If no option meets this requirement, then they
pick the last option they have looked at among those that are feasible. The
satisficing procedure leads to choices that happen to satisfy IIA, but whose
revealed preferences belong to a class that has not been studied so far in the
implementation literature. “Stop When You Start to Decline” leads to choices
that violate IIA, and thus are not compatible with preference maximization.

More generally, I will consider in this subsection any domain Θ with private
values such that type profiles satisfy the following condition: for each i and
each θi ∈ Θi, if there exists K ∈ {1, . . . , |X|} such that S = {x1, . . . , xK},
then

Ci(S, θi) =

{
Ci(X, θi) if Ci(X, θi) ∈ S
xK if Ci(X, θi) 6∈ S.

(4)

This condition only restricts the way people choose out of subsets of the form
{x1, . . . , xK} for some K ∈ {1, . . . , |X|}. It is thus a weaker requirement than
IIA. On the other hand, the condition Ci(S, θi) = xK if Ci(X, θi) 6∈ S imposes
a restriction on choices that isn’t covered by IIA. It is easy to check that the
two choice procedures presented in the previous paragraph lead to individual
choice functions that satisfy condition (4).

Remark 2 If individuals are rational, and have single-peaked preferences on
the list, then they satisfy condition (4). Notice also that choice functions gen-
erated by applying the satisficing procedure satisfy IIA, and can thus be ratio-
nalized by the maximization of a complete transitive strict ordering, but that
this underlying preference need not be single-peaked.

Let f l be the (single-valued) SCR that selects the first option in the list
that is picked out of X by at least one individual: f l(θ) = xkl(θ), where
kl(θ) = min{k ∈ {1, . . . , |X|}|(∃i ∈ I) : xk = Ci(X, θi)}. It is easy to check
that it is anonymous, has full range, selects elements of FEff , and thus a
fortiori guarantees BR-efficiency as well.

Proposition 9 Consider a domain Θ that satisfies condition (4). Then f l is
Nash implementable if |I| ≥ 3. It is also implementable in dominant strategies.
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I now establish a weak converse. For each i ∈ I, let Θ̄i be the domain
of all choice functions that satisfy condition (4). Of particular interest is the
case where choice functions arise from the ‘stop when you start to decline’
procedure. Let ΘD be the subsets of choice functions that can be generated
by this procedure (varying the underlying preference to which it is applied).
I will focus on (the more restrictive concept of) implementation in dominant
strategies via simple mechanisms. Simple mechanisms allow each individual to
send a message which is an option in X, i.e. Mi = X. Otherwise, the concept
of implementation is the same as in Section 2.

Proposition 10 Let f be a single-valued SCR defined over a domain Θ ⊆ Θ̄

that includes ΘD. If f is BR-efficient,12 anonymous, and implementable in
dominant strategies via a simple mechanism, then f = f l.

7.3 Building Willpower in Groups

Temptation is often understood in economics through the lens of commitment
preferences (see Lipman and Pesendorfer (2011) for a survey): an individual
who anticipates having to fight temptation at the time of making a choice,
may want to commit to a smaller set of options. By contrast, the focus in
the psychology literature is often on individuals who make choices while being
tempted, and how they deplete their willpower when exercising self-control
(see e.g. Baumeister and Tierney (2011)).13

Here is a stylized model of choice that captures temptation, self-control
and willpower in a way that is closer to the psychology literature. There are n
individuals with a common long-term goal. This long-term goal is difficult to
achieve due to the presence of tempting alternatives: choices are also influenced
by a short-term craving. Each individual has some limited willpower to exercise

12The result also holds with the weaker requirement that f is Pareto efficient at each type
profile for which all individuals are rational.

13First attempts to capture willpower in economics include Ozdenoren et al. (2010) who
study the optimal management of willpower over time, and Masatlioglu et al. (2011) who
study commitment preferences for individuals who anticipate having to fight temptation
with limited willpower when having to make a choice.
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self-control. In this example, willpower is captured by the number of tempting
options an individual can overlook to better fulfill his long-term goal. Formally,
if T is the set of feasible options, �L (an ordering of X) captures the long-
term goal, �S (another ordering of X) captures the short-term craving, and
i’s willpower is captured by a positive integer ki, then i’s choice out of T is the
most-preferred element for �L among those that are dominated by at most
ki alternatives according to �S. Such behavior typically leads to violations of
IIA. For instance, one may be able to resist eating a slice of pizza for lunch
when the alternative is a salad, but unable to resist the temptation of both
the burger and the pizza slice, and go for the slice if these two options are
available on the menu in addition to the salad. This choice pattern can be
explained if ki = 1, the long-term goal ranks the salad above the pizza slice,
and the pizza slice above the salad, while the short-term preference is exactly
opposed.

Consider now a situation where a state determines a common long-term
goal, and the individuals’ (possibly different) short-term cravings. Is there a
way to combine the individuals’ limited willpower to help them better fulfill
their common long-term goal? One idea is to decentralize the burden of choice
by letting each individual be ‘in charge of’ only a small number of alternatives.
Here is a simple mechanism to achieve this. For each i, let Ai ⊂ X be the
subset of ki elements that individual i will be in charge of. Let’s assume
that

∑
i∈I ki ≥ #X. In that case, we can define these sets in such a way

that ∪i∈IAi = X. Each individual picks a message in support of one of the
elements he is in charge of, as well as a non-negative integer representing the
intensity with which he makes that statement. Formally, Mi = Ai × Z+. The
outcome is the option supported by the individual with most intense report
(using any fixed tie-breaking rule if multiple messages are reported with the
highest intensity).

The mechanism has the property that, for any message profile, individual
i can generate at most ki + 1 options (the outcome associated to that mes-
sage profile plus those in Ai) when varying his own message, out of which
he picks the option that is best for his long-term goal. Clearly, the option
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that is top ranked in X for the long-term goal is an equilibrium outcome of
this mechanism, e.g. with the individual in charge of it suggesting it with
intensity 1 and all other individuals supporting other options with intensity 0.
Conversely, any Nash equilibrium outcome must be the best element in X for
the long-term goal. Otherwise, the individual in charge of it will deviate by
supporting it in a message whose intensity is larger than the messages from
all other individuals. We have thus proved the following result.14

Proposition 11 If
∑

i∈I ki ≥ #X, then the SCR that systematically selects
the top-choice of the common long-term goal is Nash implementable.

8 Concluding Remark: Frames

Choices can sometimes be influenced by external conditions. For instance,
the meal picked in a cafeteria may vary with the order in which options are
displayed, or the level of a person’s retirement savings may depend on the
level of a default rate (see Thaler and Sunstein (2008)). This idea is captured
theoretically by the concepts of “frames” (see Salant and Rubinstein (2008))
or “ancillary conditions” (see Bernheim and Rangel (2009)).

The model discussed so far can be amended to encompass this added flexi-
bility. Let Φ be a finite set of frames that the mechanism designer can choose
from (e.g. the default saving rate for retirement, the list in which to present
items, an initial allocation of houses in the house allocation problem, etc.).
Choice functions are now indexed by frames: Cφ

i (·, θ) : P (X) → X, for each
i and each θ, with Cφ

i (S, θ) ∈ S, for all S ∈ P (X).15 A SCR f : Θ → X

14The proposition can also be proved by defining adequate functions Xi, and checking
Property M. The alternative argument just followed show that the SCR is also imple-
mentable via a mechanism that is simpler and more intuitive than the canonical mechanism
defined in the proof of Proposition 1. The mechanisms derived either way does not admit a
dominant strategy at any state, and hence does not implement the SCR in dominant strate-
gies. I conjecture that it is not implementable in dominant strategies, but this remains an
open question.

15 Bounded rationality now acquires an additional dimension. For instance, an individual’s
choices may satisfy IIA for each given frame, but be boundedly rational because these choices
vary with frames. Many examples of endowment effects, or Rubinstein and Salant’s (2006)
version of Simon’s (1955) satisficing procedure, fall in this category.
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is implementable if there exists a frame φ ∈ Φ such that f is implementable
in the problem (Θ, Cφ). It should be clear that all the results derived so far
extend to this problem after the frame has been fixed. Adding frames thus
expands the set of SCRs that the mechanism designer can implement, but does
not require additional theoretical work.

Since individuals must know the rules of the mechanism before playing
it, frames cannot vary with the state. It is well-known that considering dy-
namic games expands the set of single-valued SCRs that are implementable
(in subgame-perfect equilibrium). A new feature when considering dynamic
games in the present model is the added possibility of having frames vary
endogenously with underlying states. The supplemental appendix contains a
characterization of SCRs that are implementable by backward induction in
a two-stage mechanism where a fully16 rational individual moves first, before
another individual makes a choice that determines the final outcome. It then
offers an example to illustrate how implementation in this sense allows for
frames to vary endogenously with states.

16In the sense of satisfying IIA and being unaffected by frames (e.g. a profit maximizing
firm or the head cook of a school cafeteria).
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Appendix

Proof of Proposition 1 The proof is a direct adaptation to my setting
of arguments by Maskin (1999) and Moore and Repullo (1990), and is thus
relegated to the supplemental appendix. �

Proof of Proposition 2 The sufficient condition is obvious. For the neces-
sary condition, single-valuedness follows at once from the fact that individual
choice functions are single-valued. Next, suppose that f is implementable in
dominant strategies via the mechanism ((Mi)i∈I , µ). Let m∗ : Θ → M be a
profile of strategies such that m∗i (θ) is a dominant strategy at θ, and m∗i (·)
varies only with θi (such a profile can always be constructed since a dominant
action at a state θ remains dominant for individual i at any θ′ such that θ′i = θi,
given private values). Let thenMi be the set of messages that do not belong
to the image of the function m∗i (·). For each i ∈ I, let gi : Θi ∪Mi → Mi be
the function defined as follows: gi(mi) = m∗i (mi) if mi ∈ Θi and gi(mi) = mi if
mi ∈Mi. Let then µ∗ : ×i∈I(Θi∪Mi)→ X be the function defined as follows:
µ∗(m) = µ((gi(mi))i∈I). It is easy to check that truth-telling is a dominant
strategy in every type profile for this new mechanism. �

Proof of Proposition 3 For the necessary condition, consider a ‘direct’
mechanism as derived in Proposition 2, and let µ denote its outcome function.
Define Xi(θ−i) = {µ(mi, θ−i)|mi ∈ Θi ∪Mi}, for each i, θ. Property P then
follows at once from the fact that truth-telling is a dominant strategy. As
for the sufficient condition, the fact that f satisfies Property P for (X∗i )i∈I

implies that truthtelling is a dominant strategy in the direct mechanism where
individuals report their types and the outcome function coincides with f . �

Proof of Proposition 4 Let’s start by showing that FBRE is not Nash
implementable. Suppose that X = {x1, . . . , xK}. Consider a state θ = (θi)i∈I

where, for each i 6= 1, Ci(Y, θi) is the option in Y that has the lowest index
(satisfies IIA). Suppose that C1(·, θ1) follows the same pattern, except that
C1({x, xK}, θ1) = xK instead of x, for each x ∈ X \ {xK} (violates IIA).
Hence xK ∈ FBRE(θ). Proposition 1’ in the supplemental Appendix extends
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Proposition 1 to the case of multi-valued SCRs. By definition of θ, the first part
of the necessary condition in Proposition 1’ can be satisfied only if Xi(xK , θ) =

{xK}, for all i 6= 1, and X1(xK , θ) = {xK}, or {xK , x}, for some x ∈ X \{xK}.
If X1(xK , θ) = {xK}, then the second part of the necessary condition implies
that xK ∈ FBRE(θ), for all θ, which is clearly not true. In the case where
X1(xK , θ) = {xK , x}, for some x ∈ X \ {xK}, consider an option y different
from both x and xK , and the state (θ′1, θ−1), where θ′1 differs from θ1 only
in that C1({xK , y}, θ′1) = y instead of xK . The second part of the necessary
condition in Proposition 1’ implies that xK must belong to FBRE if it were
Nash implementable, but it doesn’t, as y unambiguously dominates xK .

I now show that FEff is Nash implementable on any Θ. By definition of
FEff , one can associate to any x ∈ FEff (θ) a collection (Y x,θ

i )i∈I of subsets
of X such that Ci(Y x,θ

i , θ) = x, for each i ∈ I, and X = ∪i∈IY x,θ
i . Let’s then

check the sufficient conditions in Proposition 1’. Take Xi(x, θ) = Y x,θ
i . The

two parts of the necessary condition follow at once by definition of FEff . As
for the additional condition needed for sufficiency, it is trivially satisfied by
FEff since FEff (θ) includes by definition any x such that x = Ci(X, θ), for
some i ∈ I.

Consider a state θ, and x ∈ FEff (θ). The condition Ci(Yi, θ) = x implies
that none of the elements in Yi \ {x} unambiguously dominates x for i. The
condition X = ∪i∈IYi implies that it is impossible to find an alternative that
would be unambiguously preferred to x by all individuals. In other words, x
is BR-efficient, and I have proved that FEff ⊆ FBRE.17

Finally, if θ is such that Ci(·, θ) is rational, for each i ∈ I, and x is Pareto
efficient for the associated revealed preferences, then define Yi as the lower
contour set of x according to the revealed preference, for each i. By definition,
Ci(·, θ)(Yi) = x, for all i. If there is x′ ∈ X such that x′ ∈ X \ Yi, for each
i ∈ I, then x′ is revealed preferred to x for all i, thereby contradicting the
efficiency of x. This shows that X = ∪i∈IYi, and hence FEff contains all the
Pareto efficient options. The other inclusion, namely that FEff (θ) is included

17Going back to the example presented in the first paragraph of the proof, notice how
xK ∈ FBRE(θ) \ FEff (θ).
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in the Pareto set, follows from the previous paragraph, since FBRE coincides
with the Pareto set when individuals are rational. �

Proof of Proposition 5 The definition of the core is closely related to that
of efficiency, applying a similar argument to all coalitions instead of just the
grand coalition. The proof thus shares some similarity with that of Proposition
4, and is relegated to the supplemental appendix. �

Proof of Proposition 6 I provide the proof only for the case of Nash imple-
mentability. The proof for dominant strategy implementation is very similar
and thus left to the reader.

Let x, y, z be any three elements in the range of f , let Θxyz
i be the set of

all six rational strict orderings on {x, y, z}, and let αxyzi : Θxyz
i → Θi be a

function that associates a type θi ∈ Θi to each �i∈ Θxyz
i such that x is most

preferred according to Ci(·, θi), y is second most preferred, and z is third most
preferred. Next consider the SCR φxyz : Θxyz → X defined as follows:

φxyz(�) = f(αxyz(�)),

for each �∈ Θxyz (with the convention αxyz(�) := (αxyzi (�i))i∈I). The proof
of this lemma now proceeds in various steps.

Step 1 Range(φxyz) = {x, y, z}.

Proof: For each a ∈ {x, y, z}, consider the profile of strict orderings � on
{x, y, z} such that a is top-ranked by all individuals. Hence a is most-preferred
by all individuals at αxyz(�), and BR-efficiency implies that φxyz(�) = f(αxyz(�
)) = a. Hence {x, y, z} ⊆ Range(φxyz). I prove the opposite inclusion by
contradiction. By definition of most preferred, second most preferred, and
third most preferred elements, any element in {x, y, z} unambiguously dom-
inates any element in X \ {x, y, z} at type profiles in the image of αxyz.
The definition of φxyz and the fact that f is BR-efficient then imply that
Range(φxyz) ⊆ {x, y, z} as well, and hence Range(φxyz) = {x, y, z}. �
Step 2 φxyz is Maskin monotonic.
Proof: Suppose that φxyz(�) = a ∈ {x, y, z}, and that a’s rank increases for
each individual when moving from � to �′. a = φxyz(�) = f(αxyz(�)) and
the first part of Property M imply that Ci(Xi(α

xyz(�)), αxyzi (�i)) = a, for
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each i ∈ I. The definition of �′ implies that Ci(Xi(α
xyz(�)), αxyzi (�′i)) = a,

for each i ∈ I. The second part of property M implies that f(αxyz(�′)) = a,
and hence φxyz(�′) = a, as desired. �
Step 3 There exists a unique j such that, for all a, b, c in A and all �∈ Θabc,
φabc(�) is top ranked for �j.
Proof: By the previous step and the usual result on the rational domain, for
each x, y, z, there exists a unique j such that φxyz(�) = top(�j), for each
�∈ Θxyz. I just need to prove that j does not vary with x, y, z. It is obviously
sufficient to show that x, y, z and x, y, z′ lead to the same j. Suppose, on the
contrary, that the first triplet leads to j, while the second leads to j′, with
j 6= j′. Consider then �∈ Θxyz such that x is top ranked according to �j,
y is top ranked according to �i, and x is second best according to �i, for
each i ∈ I \ {j}. By definition of j, I must have φxyz(�) = x. The first part
of property M implies that x ∈ Xi(α

xyz(�)) and y 6∈ Xi(α
xyz(�)), for each

i ∈ I \ {j}. Let �′∈ Θxyz′ be derived from � by replacing z by z′. I have
that Ci(Xi(α

xyz(�)), αxyz
′

i (�′i)) = x, for all i ∈ I, and hence φxyz′(�′) = x,
by the second part of Property M and the definition of φxyz′ . This implies a
contradiction with the definition of j′, as desired. �
Step 4 There exists j ∈ I such that f(θ) = a, for each a ∈ Range(f) and
each θ ∈ Θ such that a is most preferred according to Cj(·, θj).
Proof: Let j be the individual as identified in the previous step, and let a and
θ be as in the statement. Suppose, to the contrary of what I want to prove,
that f(θ) = b 6= a. The first part of Property M implies that a 6∈ Xj(θ). Let
c be a third element in the range of f , and let �∈ Θabc be such that a is top
ranked according to �j, b is second best according to �j, and b is top ranked
according to �i, for each i ∈ I \ {j}. The second part of Property M implies
that φ(�) = f(α(�)) = b, thereby contradicting the definition of j. �

Step 5 There exists j ∈ I and Xj : Θ → P (X) such that Range(f) ⊆ Xj(θ)

and f(θ) = Cj(Xj(θ), θj), for each θ ∈ Θ.

Proof: Pick j as identified in the previous step. The existence of the Xj follows
from Property M. All what needs to be proved is that Range(f) ⊆ Xj(θ), for
all θ. Suppose, on the contrary, that x ∈ Range(f) \Xj(θ), for some θ ∈ Θ.
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So f(θ) 6= x. Part 2 of Property M then implies that f(θ′j, θ−j) = f(θ), for any
θ′j such that x is most preferred and f(θ) is second most preferred according
to Cj(·, θj), a contradiction with the previous step. �

Proof of Proposition 7 The proof for Nash implementability is provided in
the supplemental appendix. As for dominant strategies, consider the following
mechanism: Mi = Θi ∪ {m∗}, Mj = Θj, Mk = ∅, for all k 6= i, j, µ(mi,mj) =

fij(mi,mj) if (mi,mj) ∈ Θi ×Θj, and µ(m∗,mj) = γ(Cj(Z,mj)).
I simply have to check that truth-telling is a dominant strategy for each

participant. If individual j reportsmj, then the set of outcomes that individual
i can generate by varying his report is Z ∪ {γ(Cj(Z,mj))}. If i’s type is
θi ∈ Ai, then he wants to pick the outcome Cj(Z,mj), which coincides with
fij(θi,mj) = µ(θi,mj), and hence truth-telling is a dominant strategy. If i’s
type is θi ∈ Θi \ Ai, then he wants to pick the outcome Ci(Z, θi), which
coincides with fij(θi,mj) = µ(θi,mj), and hence truth-telling is a dominant
strategy. Consider now individual j. If individual i reports mi ∈ Ai, then the
set of outcomes that individual j can generate by varying his report is Z. If
j’s type is θj, then he wants to pick the outcome Cj(Z, θj), which coincides
with fij(mi, θj) = µ(mi, θj), and hence truth-telling is a dominant strategy. If
individual i reports mi ∈ Θi \ Ai, then the set of outcomes that individual j
can generate by varying his report is {Ci(Z, θi)}. Truth-telling is thus trivially
a dominant strategy as well, for all types of individual j. Finally, if individual
i reports m∗, then the set of outcomes that individual j can generate by
varying his report is γ(Z). If j’s type is θj, then he wants to pick the outcome
γ(Cj(Z, θj)), which coincides with fij(m

∗, θj) = µ(m∗, θj), and hence truth-
telling is a dominant strategy. Hence my mechanism does indeed implement
fij in dominant strategies. �

Proof of Proposition 8 The sufficient condition, namely that such f ’s are
Nash implementable, is straighforward to check. I thus focus on the necessary
condition. Let ρi : Θ∗i → Θi be the function that associates to each rational
type θ∗i the (unique) type θi such that Ci(S, θi) = arg max�(θ∗i ) Ai(S), for all
S ∈ P (X) (cf. equation (3)). Define ρ : Θ∗ → Θ and φ : Θ∗ → X as follows:
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ρ(θ∗) = (ρi(θ
∗
i ))i∈I and φ(θ∗) = f(ρ(θ∗)), for each θ∗ ∈ Θ∗. I now prove that φ

is Maskin monotonic. Consider thus θ∗, θ̂∗ ∈ Θ∗ such that

LCi(φ(θ∗), θ∗i ) ⊆ LCi(φ(θ∗), θ̂∗i ). (5)

If f is Nash implementable, then it satisfies property M, thanks to Proposition
1. Hence f(ρ(θ∗)) = Ci(Xi(ρ(θ∗)), ρi(θ

∗
i )), or f(ρ(θ∗)) ∈ Ai(Xi(ρ(θ∗)) and

Ai(Xi(ρ(θ∗)) ⊆ LCi(φ(θ∗), θ∗i ). Combining this with condition (5), it must
be that f(ρ(θ∗)) is the maximal element in Ai(Xi(ρ(θ∗)) according to �(θ̂∗i )

as well. Part 2. of Property M thus implies that f(ρ(θ̂∗)) = f(ρ(θ∗)), or
φ(θ̂∗) = φ(θ∗), as desired. Applying a standard result on the rational domain,
I conclude that there exists j ∈ I such that φ(θ∗) = arg max�(θ∗j )[Range(φ)],
for each θ∗ ∈ Θ∗. Notice that Range(φ) ⊆ Range(f), by definition of φ.
Condition (2) implies the converse inclusion, and hence

φ(θ∗) = arg max
�(θ∗j )

[Range(f)], (6)

for each θ∗ ∈ Θ∗.
Property M implies that f(θ) = Cj(Xj(θ), θj) = arg max�θj Aj(Xj(θ)),

for each θ ∈ Θ∗. I now prove that Range(f) ⊆ Aj(Xj(θ)), for each θ.
Suppose, to the contrary of what I want to prove, that there exist θ ∈
Θ and x ∈ Range(f) \ Aj(Xj(θ)). Let θ∗ ∈ Θ∗ be such that ρ(θ∗) = θ

(such a θ∗ exists, thanks to condition (2)). Consider then θ̂∗j ∈ Θ∗j ob-
tained from θj by bringing x to the top, while keeping all the other com-
parisons unchanged. The second part of property M implies that φ(θ̂∗j , θ

∗
−j) =

f(ρj(θ̂
∗
j ), θ−j) = f(θ) (because x 6∈ Aj(Xj(θ))), which then contradicts the

fact that φ(θ̂∗j , θ
∗
−j) = arg max�(θ̂∗j ) Range(f). In order to avoid this con-

tradiction, it must thus be the case that Range(f) ⊆ Aj(Xj(θ)), for each
θ. Consider now θ̄∗ ∈ Θ∗ such that the elements in the range of f are
ranked below any other element of X according to �(θ̄∗j ). If there exists
x ∈ Aj(Xj(ρ(θ̄∗))) \ Range(f), then one would reach a contradiction with
the fact that f(ρ(θ̄∗)) = arg max�(ρ(θ̄∗j ))Aj(Xj(ρ(θ̄∗))). Hence it must be
that Aj(Xj(ρ(θ̄∗))) = Range(f). The result then follows by choosing S =

Xj(ρ(θ̄∗)). �
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Proof of Proposition 9 I start by showing that f l is Nash implementable.
This will follow from Proposition 1 after checking that f l satisfies Property
M. Let i ∈ I and θ ∈ Θ. Define Xi(θ) = X if Ci(X, θi) = f l(θ), and
= {x1, . . . , f

l(θ)} if Ci(X, θi) 6= f l(θ).
I start by checking the first condition in Property M. If Ci(X, θi) = f l(θ),

then Xi(θ) = X and Ci(Xi(θ), θi) = f l(θ). If Ci(X, θi) 6= f l(θ), then Ci(X, θi)
comes after f l(θ) in the list, and hence Ci(Xi(θ), θi) is the last element of
Xi(θ), which is f l(θ), as desired. Let’s now check the second condition in
Property M. Let θ, θ′ be such that Ci(Xi(θ), θ

′
i) = f l(θ), for each i ∈ I. Notice

that f l(θ′) cannot come strictly after f l(θ) in the list, since Xi(θ) = X, for
at least one individual i. Notice that it cannot come strictly before either,
as this would require Ci(X, θ′i) to fall strictly before f l(θ), for at least one
individual i, which would contradict Ci(Xi(θ), θ

′
i) = f l(θ). Hence it must be

that f l(θ′) = f l(θ).
I can conclude the proof of Nash implementability by checking the addi-

tional condition that distinguishes Property M from M . Let j ∈ I, θ, θ′ ∈ Θ,
and x ∈ X be such that Ci(X, θ′i) = x, for each i ∈ I \{j}, and Cj(Xj(θ), θ

′
j) =

x or Cj(X, θ′j) = x. If Cj(X, θ′j) = x, then f l(θ′) = x, by definition of f l. If
Cj(Xj(θ), θ

′
j) = x, then Cj(X, θ′j) does not come before x in the list. Combin-

ing that with the other conditions on the choice for each i 6= j, I conclude that
f(θ′) = xkl(θ′) = x, as desired.

I now check that f l is implementable in dominant strategies. For each i

and each θ, let kl−i(θ) = min{k ∈ {1, . . . , |X|}|(∃j ∈ I \{i}) : xk = Cj(X, θj)}.
Observe that kl−i(θ) is independent of θi. Hence {xk ∈ X|k ≤ kl−i(θ)} is also
independent of θi, and will thus be denoted Xi(θ−i). Let’s check that f l(θ) =

Ci(Xi(θ−i), θi), for all θ. Suppose first that kl(θ) = kl−i(θ). Then Ci(X, θi)

does not come before xkl−i(θ) in the list, and Ci(Xi(θ−i), θi) = xkl−i(θ), given
the assumption on choice functions. Hence C(Xi(θ−i), θi) = xkl(θ) = f l(θ),
as desired. Suppose next that kl(θ) < kl−i(θ). Hence Ci(X, θi) comes before
xkl−i(θ) in the list, and Ci(Xi(θ−i), θi) = Ci(X, θi) = xkl(θ), given the assumption
on choice functions. Again, Ci(Xi(θ−i), θi) = f l(θ), as desired.

The result from the previous paragraph also implies that {f l(θi, θ−i)|θi ∈
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Θi} = {Ci(Xi(θ−i), θi)|θi ∈ Θi} = Xi(θ−i). The sufficient condition from
Proposition 3 applies, and f l is thus implementable in dominant strategies. �

Proof of Proposition 10 Let Θ∗i be a set encoding all the choice functions
associated to the maximization of a preference ordering that is single-peaked
on the list. Notice that applying the “stop when you start to decline” pro-
cedure to a single-peaked preference delivers the same choice function as by
maximizing it. Hence I may think of Θ∗i as a subset of ΘD and thus also of
Θ. The simple mechanism will implement f in dominant strategies on Θ∗. By
Moulin (1980), there must exist I − 1 elements of X (interpreted as choices of
“phantom” voters) such that f coincides on Θ∗ with the median of these points
and {Ci(X, θi)|i ∈ I}. The unique dominant strategy for type θi ∈ Θ∗i is to
send the message x = Ci(X, θi). All the elements of X are thus already used
by types in Θ∗i , and hence, for any set of messages, f must coincide with the
median of these messages and the phantom voters’ choices. I now conclude
the proof by showing that all the phantom voter’s choices must fall on the first
element of the list. Suppose not. Then it is not difficult to check that one
can select messages for I − 1 individuals such that, combined with the phan-
tom voters’ choices, the set of medians that the missing voter can generate by
changing his message constitutes a connected subset Y of the list that does
not contain the first element of the list. Consider now an individual i, and a
type θ∗i for that individual such that the first element of the list is best for him,
the second one is worst, and each element thereafter in the list is better than
the previous. If the individuals other than i send those messages associated
to Y , then i’s best response is to send a message that coincides or follows the
last element of Y . On the other hand, if all the other individuals send the
message that coincides with the first element of the list, then i’s best response
is to send that same message. Hence the simple mechanism has no dominant
strategy if phantom voters’ choices do not all fall on the first element of the
list - a contradiction. Hence all these choices do fall on the first element, and
the mechanism must select the left-most message among those that have been
sent. Since Θ ⊆ Θ̄, sending Ci(X, θi) is a best response for each type θi ∈ Θi

and each i, and hence f = f l. �
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