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Minimax rates for nonparametric estimation
of the drift functional in
affine stochastic delay equations

Markus Reif}*
Institut fir Mathematik
Humboldt-Universitat Berlin
reiss@mathematik.hu-berlin.de

September 7, 2000

Abstract

Let X be a stationary process satisfying the stochastic differential
equation with time delay

dX(t) = ( ’ X(t+ s)g(s) ds) dt+dw(t), t>0.

-7

The function g € L?([—r,0]) is estimated nonparametrically from the con-
tinuous observation of a trajectory of X up to time T' > 0. The estimation
problem is transformed into an illposed inverse problem with stochasti-
cally perturbed operator and data. The estimator is then constructed
by the Ritz-Galerkin projection method. The L*-risk of the estimator is
asymptotically for T — oo of order T~ %3 in a minimax sense, where g
is assumed to lie in some Sobolev ball of order s. This rate is shown to be
optimal for the estimation problem.

Keywords: stochastic delay equations; drift estimation; stationary Gaus-
sian process; illposed problem; Ritz-Galerkin method; minimax rates
AMS(2000) subject classification: 62G20, 62M09, 65R32, 34K50

1 Introduction

Delay equations, also known as functional differential equations, arise when
the dynamics of a system not only depend on its present, but also on its past
state. Many “real life phenomena” exhibit such a memory effect, e.g. population
growth with an age-dependent fertility. From a mathematical point of view

*This paper was printed using funds made available by the Deutsche Forschungsgemein-
schaft (SFB 373). Helpful comments by Matthias Fengler on the final draft are gratefully
acknowledged.



the deterministic, one-dimensional, linear and autonomous delay equations with
finite memory form the fundamental and best understood subclass among these
equations. They are of the following form:

z(t) = /0 z(t + s)da(s), t>0, (1.1)

-T

ZU(t) = f(t)a te [_ra 0]7

with a positive constant r, an element a of M([—r,0]), the space of signed,
finite measures on [—r,0], and an initial function f € C([-r,0]), the space of
continuous functions on [—r,0].

A basic model for such a dynamic corrupted by stochastic noise is obtained
by adding white noise. With a standard Brownian motion (W (t),t > 0) and
a — possibly random — initial function F' the following stochastic differential
equation will be considered

dX (t) ( " X(t+ s)da(s)) dt +dW(t), t>0, (1.2)

-T

X(t) = F(t), tel[-r0].

In view of applications this may be interpreted as a time continuous analogue
of autoregressive models.

Restricting to stationary processes and assuming absolute continuity of the
measure a with respect to Lebesgue measure (i.e. da(s) = g(s)ds), we aim at
an estimator of g given the continuous observation of one trajectory up to time
T. The asymptotic behaviour of this estimator for T — oo is examined. It is
shown that for densities g in a Sobolev ball of smoothness s the L?-risk of the
estimator has order T~ 2+3 , which is worse than the classical T~ 2+ -rate for the
corresponding white noise model dY (t) = g(t) dt + T~ 2dW (t) (cf. [IbrHas81]).
However, this rate is optimal in a minimax sense.

Wherever it is possible, the results are stated for the general case of signed
measures a, which should simplify the generalisation from measures with den-
sities to other parameter sets, e.g. sums of measures with densities and point
measures. Qur estimator will be derived from the quantities Q7 and by, which
depend on (X (t), —r <t < T) and lead to approximations of the covariance op-
erator @ of the stationary solution and the image Qa of the true, but unknown
parameter a in (1.2).

1.1. Definition. For the process (X(t), —r <t < T) in (1.2) define

T
gr(u,0) = /0 X(t+u)X(E+v)dt, uve[—r0], (1.3)
0
@) = [ ar(sw)duw), peM(-r.0),sef-n0, (14)
s
br(s) = / X(t+8)dX(t), s € [-r0]. (1.5)
0



The covariance operator @ = @, : M([-r,0]) — C([-r,0]) of a stationary
solution (X (t), —r <t < 0) is implicitly defined by the bilinear form

0 0
(Qap, vy =Eo[ | X(u+r)du(u) Xw+r)dv(v)], p,ve M(-r0])

-T -T

or explicitly given in terms of the covariance function ¢, (t) = E,[X (0)X (|¢])]

Qul(s) ;:/ ga(s —u)dp(u), pe M(=r,0), s € [-r,0].

-Tr

Basic results on stochastic delay equations, its stationary solutions and the
continuous dependence on the parameters are presented in the next section. The
rate of convergence of 1.7 to g, and of +br to Q.a is examined in section 3.
By a nice variant of the Kolmogorov continuity test via Sobolev embeddings a

ﬁ—ra‘ce of convergence in function space norms (C* denotes the Holder space

of order «) is obtained in Corollaries 3.2 and 3.4:
For a < % and p > 1 there is a constant Cyop such that for allT > 0
Ea[||T_1QT(Ua v) = qa(u — U)”I(’ja([,r,o]z)] < Cng_p/z'
There is a constant K such that for all T > 0

Eo[[|T~"br — Qaall72(—rop] < KT

The main results about the covariance operator () are gathered in section
4, where it is shown that @ is injective (Theorem 4.1) and @ maps densities in
L?([-r,0]) to the Sobolev space H?([—r,0]) of order 2 (Theorem 4.2). Assume
for a moment () to be known. Then we end up with the illposed inverse problem
to determine the true density g € L?([—r,0]) from bz which is close to Qg, but
Q! is unbounded and may inflate even small errors in the data without control.
The usual deterministic methods for such problems, as for example Tychonov
regularization or projection methods, will nevertheless give rates of convergence
of order T_m, where « is the degree of illposedness of the operator (in our
case a = 2), given the true value is known to lie in a Sobolev ball of order s > 0
(cf. [Baumeister87]).

In our case a method independent of the involved operator is advisable, and
since the covariance operator is positive definite, the Ritz-Galerkin method is
appropriate. Given approximation spaces V,, (e.g. based on splines, cf. Definition
5.5 and Example 5.6), in section 5 an estimator Gr,, € V, of g is obtained by
solving the linear system

<QTGT,n;'Un> = <bT;Un); Yo, € V.

This projection method even leads to an estimator G, which has an interpre-
tation as maximum likelihood estimator (cf. Remark 5.9).



In the deterministic case some results for only approximately known oper-
ators exist (cf. [Hamarik83]). For known operators, but stochastic noise in the
data, which however has to be strongly linked to the operator (the Gaussian
covariance operator must have the same eigenfunctions), convergence results
are proved in [NusPer99] and [MatPer00] using a spectral cut-off method. Inter-
esting enough, they obtain the rate T =Fa=7) where B is the regularity of the
noise. For the white noise model the identity operator is considered (a = 0), but
with white noise (8 = —3), which exactly gives the T~ =+ -rate. As it turns out,
the stochastic error in our case behaves like Brownian motion (i.e. 8 = 1) and
we indeed end up with the minimax rate T~ 26+2-172) . Qur proof of the upper
bound is based on a generalization of the deterministic results for approximately
known operators. The set of parameters is the intersection of a Sobolev ball with
the set of densities which give rise to stationary solutions (condition ve(g) < —0
below, cf. Definition 2.1). The relation A < B means A is less than a uniform
constant times B, A 2 B means the converse and A ~ B stands for A < B as
well as A > B. Theorem 5.8 then reads as follows:

For §>0,s> % assume the true parameter g to lie in H®([—r,0])

with ||g]|s < S. Rescale Gy, to mGTﬂ in the case |G| > S.

Then choosing n(T) ~ Tets yields the uniform rate T-=%s for the
mean square error. More precisely, for § > 0 the following holds:

__2s
SUE ]Eg[”g - GT,n(T) ||%2([—T,0])] S T~ 2s+3,
s<S
v(ll(ggu)ﬁ_—é

Finally, in section 6 the corresponding lower bound is obtained in Theorem
6.2 using Assouad’s cube:

For s >0, S >0 and 6 > 0 the statement

. __2s

inf  sup ]Eg[”g_GT”%Q([fr,O])] 2T =+
T iglls<s
vo(g9)<—0

holds, where the infimum is taken over all o(X(t),0 < t < T)-
measurable mappings with values in L*([—r,0]).

The connection of the nonparametric estimation problem with illposed prob-
lems was first observed in [Rothkirch93]. The deterministic counterpart to the
nonparametric estimation problem, the question whether the trajectory of a
deterministic delay equation uniquely determines the measure a, has been ad-
dressed by [Lunel99]. For small noise a nonparametric estimator for the deter-
ministic trajectory has been proposed in [KutoMou94]. Parametric inference for
affine stochastic delay equations in the case of signed point measures a has been
considered in [KiichMen92], [KuMoB094], [GushKiich99] and [KiichKuto00].

The notation follows the usual conventions. P,, E, and Var, denote proba-
bility, expected value and variance with respect to the underlying parameter a.



Dimension, codimension and range are abbreviated by dim, codim and ran, re-
spectively. For f € C([—r,0]) and p € M ([—r,0]) we shall write (f, u) := [ f dp.
H?([—r,0]) denotes the Sobolev space of order s on [—r, 0], which is obtained by
interpolation from the classical spaces W™P = {f € LP([-r,0]) | f® € LP, 1 <
i <m}, m €N, for p = 2. The Sobolev norm of order s is written as ||-||s,
no subscript stands for the L?-case, hence order 0. For the sake of brevity the
space H*™ = Ug<sH? is introduced. The norm of a measure is always its to-
tal variation norm. Weak convergence of (a,) C M([-r,0]) to a € M([-r,0])
means {f,a,) — (f,a) for all f € C([-r,0]). We say that a constant depends
weakly continuously on the parameter a € M ([—r,0]) if weak convergence of a
sequence in M ([—r,0]) implies convergence of the associated constants.

It is a pleasure for me to acknowledge the support of many people. In par-
ticular, Prof. Kiichler introduced me to stochastic delay equations and advised
me constantly, Dr. Plato and Prof. Himarik gave me many hints for the inverse
problem and Dr. Marc Hoffmann pushed the work considerably by showing me
how to prove lower bounds and insisting on an optimal rate, which is exactly
the one he expected. Many thanks to them and to all the other people I have
not mentioned.

2 Stochastic delay equations

For the deterministic equation (1.1) one can define a fundamental solution and
a characteristic function. These two concepts play the key role for representing
and analysing the solutions, comparable to their counterparts in the theory of
ordinary differential equations.

2.1. Definition. A (weak) solution zo of (1.1) with initial values zo(0) = 1
and zo(t) =0 for —r <t < 0 is called fundamental solution of (1.1).
The function x : C — C defined by

0
xX(A) == xa(A) == A —/ e*® da(s), (2.1)

-r

is called the characteristic function associated to equation (1.1) or just to the
measure a. We set

vo := vo(a) := sup{Re(\) | xo(A) = 0}. (2.2)

The set of all measures a with vo(a) < 0 will be denoted by M~ ([—r,0]) or M~
for short. Its elements will be called M~ -measures.

The following facts concerning the deterministic equation (1.1) are well
known (cf. [HaleLun93] or [DGLW95]). There exists a unique solution of (1.1)
for continuous initial functions f. This solution x can be represented by the —
always existing and uniquely determined — fundamental solution z¢ via

0 0
z(t) = f(0)zo(t) +1 1 zo(t + s —u) f(u) duda(s), t > 0. (2.3)



The zero set of x, is always discrete and the value vo(a) always finite. For all
initial functions one can estimate the asymptotic growth of z by

|z(t)] < € (2:4)

with § > vg(a) arbitrary. Thus, if a lies in M~ the solutions of (1.1) converge
exponentially fast to zero.

Stochastic equations like (1.2) are treated for example in [Mao97], [Mo-
hammed84] and [KiichMen92]. Assuming a standard Brownian motion (W (t),
t > 0) adapted to the filtration (F;) on a probability space (Q2, F,P), this equa-
tion has a unique strong solution X, if the initial function F = F(t,w) is a.s.
continuous in ¢ as well as Fo-measurable in w with IE[||F||20([_T’O] ] < 0. By a
variation of constants formula a version of X for ¢ > 0 is obtained via

X(t) = F(0)xzo(t) + /_0 /_0 Zo(t + s —u)F(u) duda(s) + /Ot xo(t — s) dW (s).
(2.5)

Crucial for statistical purposes is the likelihood ratio of the measures induced
by the processes on the interval [0, T.

2.2. Theorem. The measure px on C([0,T]), induced by X defined by (2.5)
and thus satisfying (1.2), is equivalent to the translated Wiener measure puw
induced by X (0)+W . The likelihood ratio or Radon-Nikodym derivative is given

by

Ar(X,X(0)+ W) = ;lZ—jV(a,T,X) (2.6)

= Edexp((br,a) — ~(Qra,a)) |o(X(s), 0 < 5 < T)],

2
where a is the signed measure in (1.2).

Proof. The proof is an extension of the Girsanov theorem. Note that partial
integration of the representation (2.5) shows that |X ()| may be bounded by
a multiple of W*(t) := supg<,<,|W (s)| which implies E[exp(X (t) — (X ):)] =
1 (cf. the proof of Cor. 5.16 in [KarShr99]). Then in the general case of It6
processes the statement in [LipShir77, Thm. 7.1] — adapted to nonzero initial
values — asserts that the Radon-Nikodym derivative is given by the respective

conditional expectation of the expression
T 0 1 T 0 .
exp / X (t+8) da(s) dX (1) = / ([ X(t+s)da(s))dt | .
0 -7 0 —r

An application of the deterministic and the stochastic Fubini theorem (cf. [Lip-
Shir77, Thm. 5.15]) gives (2.6). O

By [GushKiich00] or general semigroup theory [DaPrZab92, Chap. 11] the
stochastic equation (1.2) admits a stationary solution if and only if the measure



aisin M~ ([-r,0]). A stationary process is obtained by extending the Brownian
motion W to the whole real axis and setting

t

X(t) = / zo(t — 5) AW (s). (2.7)
— 00

The integral may be understood in the Wiener sense, that is by partial integra-

tion, which immediately shows that the paths of X are a.s. a-Hélder continuous

for a < % It is a stationary Gaussian process with covariance function

4a(t) = q(t) = E[X(0)X (|t])] = / " 2o(s)zols + ) ds = = / " i) 26 de
(2.8)

for t € R. Note that the spectral density of X is uniquely determined by the
characteristic function x. One can further show that X is f-mixing. If a is a M~-
measure, then trajectories corresponding to arbitrary initial functions converge
exponentially fast in L2(Q) to the trajectories of the stationary solution (cf.
(2.5) or [MSW&6]). From now on, we shall assume X to be stationary.

For the establishment of a minimax rate it is necessary to establish the
continuous dependence of the covariance function with respect to the underlying
parameter a in (1.2). First a lemma is needed.

2.3. Lemma. If a sequence of measures (an) C M([—r,0]) converges weakly to
a € M([—r,0]) then the associated characteristic functions converge uniformly
on compact subsets of C to the characteristic function of a.

Proof. Let K C C be compact. Since a,, — a weakly the associated character-
istic functions yx, converge pointwise to the characteristic function x of a by
definition. For C-valued continuous functions f € C¢([—r, 0]) set

0
(f):= [ fdlan —a),

such that I,(e"*) = xn(\) — x(A). Now observe that the set of functions {fy =
e | X € K} C Cc([-r,0)) is equicontinuous, hence precompact by the Arzela-
Ascoli theorem, since for all s € [—r, 0]

! iAs
Sup Ifx(s)] < ) g{aﬁ_r,o]lAe | < oo.
Moreover, the weakly convergent sequence (a,, — a) is bounded in norm, hence
S := sup,,|lan — a|| < co. If the convergence ,,(fr) — 0 were not uniformly in
A € K, there would exist e > 0 and (\,,) C K such that |I,,(fx,)| > e foralln €
N. Due to compactness one can assume that f, convergesto an f € Cc([—r,0])
by passing to a convergent subsequence. But then weak convergence gives

ln (Fx)] < [tn(Fan = O+ 11 ()] < Sllfan = FII+ 11 (F)] = 0,

which contradicts the assumption and hence shows uniform convergence. O



2.4. Proposition. Let (ay) be a sequence in M~ ([—r,0]) with covariance func-
tions g, according to (2.8). If a, — a weakly and a € M~ ([—r,0]) with covari-
ance function q, then ||gn — ¢lla = 0 for a < 5. The covariance functions itself

only lie in H3~(R).

Proof. In view of equation (2.8) the associated characteristic functions x, and x
respectively are considered first. The aim is to find a function dominating |x,,|~*
on the imaginary axis. Setting S := sup,||as|| (which is finite) the estimate
Ixn(iy)| > |yl = llanll > |y| — S is obtained. An application of Lemma 2.3 for the
compactum [—2iS, 2iS] shows the convergence

i Ixn(iy)l = min ) [x(iy)|

using a classical argument from analysis for uniform convergence. By definition
of M~ the functions x,, and x do not vanish on the imaginary axis, so that

:=inf mi ' .
m:=inf_ min  |xn(iy)|>0

Hence |xy,(iy)|~! is uniformly dominated by

m~t, —28<y<28
9(y) = :

-1 .
| ¥ | , otherwise

Formula (2.8) and the inverse triangle inequality yield for y € R

W) )| = —= |— .

) =Wl = 2 @)E ™ )
Ix(y) — xn(i9)llx(@y) + xn(iy)|
Ix (iy)?xn (iy)?|
Ix(iy) — xn(iy)|(2ly| + 25)g* (v)
(1 +5%) 72 |x(iy) — xnliy)|.

AN IA

The constant involved is independent of n and y. Taking further into account
Xn — X pointwise by the weak convergence of the measures the dominated
convergence theorem shows that

Jim (I(1+4%)*(4W) = 42 (1))l @) =0
holds for a < g By the characterisation of Sobolev spaces on the real axis via
the Fourier transformation this convergence result is equivalent to ¢ — ¢, — 0
in H*(R) (cf. [AdamsT75]).

Finally, note that the point measure a = —dp leads to an Ornstein-Uhlenbeck
process with covariance function goy (t) = %e"” and spectral density jou (y) =
(2m)~1/2(1 + y?)~ !, so that this covariance function is an element of H*(R) if
and only if s < 3. The result ¢, — gou € H?%~(R) shows that g, € H2(R) is
the exact order of regularity for any covariance function g,. O



2.5. Corollary. The covariance functions are Lipschitz continuous with a Lip-

schitz constant depending weakly continuously on the underlying parameter a €
M=([-r,0]).

Proof. As in the preceding proof, consider the covariance function goy(t) =
%e*“‘ of the Ornstein-Uhlenbeck process. This function is obviously Lipschitz
continuous. By the Sobolev embedding theorem ([Adams75]) and the preceding
proposition, the difference g, —qgou is continuously differentiable for every covari-
ance function ¢q,, hence ¢, is Lipschitz continuous as well. The same argument
shows that the Lipschitz-norm of a difference g,, — g, of covariance functions
associated to measures a,, and a tends to zero if (a,,) converges weakly to a. O

With the estimation problem in mind it is desirable to have a good descrip-
tion of the set of M~ -measures in order to ensure that the estimator lies in
M. However, the characteristic function is nonlinear and two-dimensional sec-
tions of M ([—r,0]) show that M~ has a non-differentiable boundary and is not
even convex (e.g., see [DGLW95]). Fortunately, two topological properties can
be proved, the second one implies that a consistent estimator eventually lies in
M.

2.6. Theorem. The set M ~([—r,0]) is pathwise connected in M ([—r,0])-norm.

Weak convergence of (an) C M([-r,0]) to a € M([—r,0]) implies conver-
gence of (vo(an)) to vo(a). In particular, a, € M~ holds for sufficiently large n
if a is a M~ -measure.

Proof. The key for proving connectedness is the following translation relation:

0
XaA+7)=A+7-— / ere ™ da(s) = Xa, (M)
for da,(s) = —7ddo(s)+e"*da(s) and 7 € R. The map 7 +— a, is norm continuous
and the associated characteristic functions are translated by 7 to the left.
Given a M~ -measure a we construct a path to the M~ -measure —T'dq for
T > ||a||. Two given M~ -measures can then be connected by a path through
—T§o where T is larger than the maximum of both norms. Now choose the path
from a to ar along the described translation map, which obviously remains in
M~. For h € [0,1] construct another path from ar to —T'dy by h — ¢, with
dep(s) = —=Tddo(s) + (1 — h)eT*da(s). This path is again continuous and ¢y, is a
M~ -measure since for Re(\) > 0

[Xen N 2 A+ T| = len +Tdol| > T — ||al| > 0.

Therefore the asserted connectedness has been shown by construction.

Choose S such that S > ||a,|| for all n. Let € > 0 be arbitrary under the
condition that there are no zeroes of the characteristic function x of a on the
lines {A|Re(\) = wg(a) £ e} C C. It is then shown that the number of zeroes of
Xn, the characteristic function associated to a,, is eventually at least one in the
strip ¥ := {\||Re(A) — vo(a)| < €} C C and eventually zero in the half plane
H := {X\|Re(A) > vo(a) + €}, which yields the statement of the theorem.



For arbitrary n € N and A € C with real part Re(A) > v the estimate
[xn(A)| > |A| — e7?"S holds. Therefore the region

R:={\|Re(\) > vo(a) —¢, [A| > Se~ (ol@—ery

does neither contain a zero of x nor a zero of any x,,. The statements about ¥ and
H can consequently be reduced to bounded subsets of these sets by intersecting
with the complement of R. x,, converges on these subsets uniformly to x, as was
shown in Lemma 2.3. By the classical argument principle in complex analysis
[Rudin87, Thm. 10.43] one can calculate the number of zeroes of a holomorphic
function in a bounded region by integrating the quotient of the function and
its derivative over the boundary. By uniform convergence this integral for x,
converges to the one for y, but the value is a natural number, counting the zeroes,
so that it becomes constant for sufficiently large n and equals the number for
X- Since x has no zeroes in H and at least one zero in ¥ the same is eventually
true for x,, which proves the second statement of the theorem. O

2.7. Remark. Using the idea of the proof one can more generally show that
the number of zeroes of x, on any bounded open set in C depends weakly
continuously on the measure a. Properties of the zero set of x, then imply the
result for any right half plane in C.

3 Convergence results

Since X is ergodic in the stationary case, the convergence result
T
T qr(u,0) =T / X (¢ +u)X(t +v) dt — q(u—v) = Elgr(u, 0)]
0
for T — oo is easily established; similarly,

T 'or(s) =T 'Qra+T71 /T X (t+ s)dW(t) = Qa(s).

However, uniformity with respect to u and v as well as the speed of convergence
are important for the asymptotic behaviour of the estimator. First, a classical
moment estimate is needed.

3.1. Theorem. Set Yr(u,v) := T 1qr(u,v) — q(u —v). Then for u,v,u',v' €
[-7,0], m € N and T > 0 the estimate

Eo[(Yr(u,v) = Yr(u',0)*"] ST~™[|(u,0) = (u',0")]|™

holds with a constant independent of T, which may be chosen to depend weakly
continuously on the underlying parameter a € M~ ([—r,0]). The norm symbol
on the right hand side denotes any norm on R”.

10



Proof. The following short hand notations will be used:

Alt) =X(t+u), B@t):=X({t+v)—X({t+v"), a:=qu—-v)—qu-1"),
Ct)y=X@t+v"), Dt)=X({t+u)—Xt+u), 7:=qlu-2)—q —72).

By Definition 1.1 one obtains

YT(“; U) - YT(ula UI)

- % / L)X (4 ) — alu— ) — X(4 )X (0 +0) + gl — o)) di
0

7 | @B -aa+ 5 [ ©wD® -

Using the Minkowski inequality for L>™(Q) yields

I .
Ba{(Vr(u,0) = Yo, )27 < Bol(p [ (@B - a) aipmi/on
1 T
+E( | (€D~ dgmp e,

(3.1)

Both summands can be estimated analogously, so that only the estimate for
the first one will be presented. By symmetry one gets

Bal(z [ (AOBO - o) @™ (32)

1 T T
TTm]Ea[/O /0 (A(t)B(t1) — @) - - (A(tam) Bltam) — @) dtam . .- dt1]

(2m)!

T rt1 tom—1
= T2m / / / Ea[(AlBl _a)"'(AQmBQm — Oé)] dtQm...dtl,
0 0 0

where A; := A(t;), B; :== B(t;) are centered, jointly Gaussian random variables.
In general, for a centered Gaussian random vector (Ny,...Ns,) the following
formula holds true

E[N; - Naol = Y II EweN, (33)

TePs(l,... ,2n) {k,i}eT

where P5(1,...,2n) denotes the set of all partitions of {1,...,2n} into subsets
of cardinality 2. In our case choose n := 2m, No;_1 := A;, No; := B;. In addition
to the terms in (3.3), there are also summands involving «, but the expectations
of these summands cancel with the expectations of the summands, where neigh-
bouring random variables Na;_1, Na; turn up, since @ = E[N2;_1Ny;]. Thus,
one obtains

E[(N1Ny —a) -+ (Nam—1Nam — @)] = > II EVeN).  (3.4)
TePy(1,...,4m) {k,l}eT
Vi:{2i—1,2i} ¢TI’

11



According to (2.4) there are § > 0 and C > 0 such that |g(t)| < Ce~% for all
t € R. Proposition 2.4 and Theorem 2.6 show that ¢ and C' can be chosen to be
weakly continuous. Moreover, ¢ is Lipschitz continuous with a Lipschitz constant
L by Corollary 2.5. Assuming k < [, i.e. t;, > t;, the appearing covariances can
be bounded as follows:

E[ArAl] = q(ti —t) < Ce 00t
]E[AkBl] q(tk — tl +u - U) — q(tk _ tl +u-— ’Ul)

< min(2Ce= & =t=") Ly — o)),
E[BrBl] = 2q(tr—t) —qltx —ti+v—2")—q(ts —t; +v' —v)
< min(4Ce &=t 2Ly —o')).

Every product in (3.4) consists of 2m factors. The bounds for the covariances
decrease with increasing difference t; — t;, which shows that the bound for the
product is the larger the closer the indices {k,{} in the partition I" are. Moreover,
there are at least m factors involving a covariance formed with some By, so that
for all considered partitions T’

H E[NkNl] 5 H e 0(t2i—1—t2:) min(|1} _ v'|, e*&(fgi_lftg.i))-
{k,l}er i=1

The constant in this estimate depends continuously on §, C and L. Applying
this bound to (3.2), the multiple integrals can be evaluated pairwise and one
obtains with | Pz| as number of 2-partitions:

1 / " A®B) — adi?™]

(2m)!| P tai-1
< n;,QTL d H/ / O(tai—a=tad) |y — o | dto; dtai_y

2 ' P
= 7;27|n 2 </ / e %% — '|dsdt>

!
5 |U —v |m </ 7(55 ds)
Tm 0

lv =™

S T m o (3.5)

Note that the constants in this estimate again only depend upon §, C, L and
m. Treating the other summand of (3.1) in exactly the same way, the assertion
has been proved. O

3.2. Corollary. For a < % and p > 1 there is a constant Cyp, depending

continuously on the parameter a, such that for all T > 0

Ea[”T71QT(Uav) —q(u— U)”ga([_r,op)] < Cngipm-

12



Proof. Following the lines of the proof of the Kolmogorov continuity theorem in
[DaPrZab92, Thm. 3.4], the estimate of the preceding theorem and an estimate
similar to (3.5) show that for all 8 < 1 and m € N

Eo[|Y7(2) — Yr(y)*™]
Vel an] S Edf|Yr(0,00P™) + / / d dy
L o2 Jierop T — y[PAE2

S Ry [ 040 - ) ]

s [ [ ey 2 sy
[77"0]2 [77"0]2

< T

An application of the Sobolev embedding theorem with the norm estimate
|-llce < C(a, B,m)||-|lws.2m for & < B — 5 then proves the corollary. O

3.3. Lemma. For X satisfying the stochastic equation (1.2) introduce the ran-
dom function

rr(s) :=/0 X(t+8)dW(t), s € [—r,0].

For continuous versions of br and rr the following holds true in the stationary
case with parameter a € M~ ([—r,0]):

br(s) = Qra(s)+rr(s),Vse|[-r0], P, —a.s., (3.6)
Eo[(rr, )] = 0, pe M([-r,0]), (3.7)
E[(rr,p)’] = T(Qupp), p€ M([~r,0]). (3.8)

Proof. By Kolmogorov’s continuity theorem versions of bT and r7 may be chosen
to be continuous functions on [—r,0]. Since dX (¢ f X (t + u)da(u))dt +
dW (t) holds under P,, the first equality then follows from the definition of by.
The second and the third statement are obtained using the stochastic Fubini
theorem

T 0
(v} = / [ X+ 8) du(s) aw (o

and then applying basic facts about stochastic integrals. O

3.4. Corollary. There is a constant K, depending weakly continuously on the
parameter a, such that for all T > 0 the following bound is obtained

]Ea[”Tile - Qaa”%g([_r’o])] S KTil

13



Proof. The following calculation, using (3.6), triangle inequality, the Fubini the-
orem and Corollary 3.2, yields the result:

0
Eo[IT™ b7 — Qaall’] BT rr — / (4a(- = 8) = T7ar (-, ) da(s)||’]

-7

< 2T Eo[llrrl®] +
2Eq[llga(u = v) = T~ qr(u, 0) & 02 lllal*r
< 2T~ / / Eo[X (u)?] duds + 2r||a||*C3,T ™"

= 2r(q(0) + [lal*C3,)T .

4 Properties of the covariance operator

Motivated by the convergence results of the preceding section, the covariance
operator will be analysed in detail. Note that a covariance operator is always
positive semi-definite and compact.

4.1. Proposition. The covariance operator @ is strictly positive definite, i.e.
for all p € M([—r,0]), u # 0, the inequality (Qu,p) > 0 holds.

Proof. Since @ is positive semi-definite, it suffices to show injectivity. By The-
orem 2.3 the process X induces a measure pux on C([0,7]) equivalent to the
Wiener measure P translated by X (0). X(0) is distributed with normal law
N(0,02), o > 0. Hence for y € M([—r,0]) independence of X (0) from W yields

(Qapr ) =0 & (X(-+7),p) =0 px—as.
& (W(E+r)+X(0),u)=0 PRN(0,0?) —a.s.
0
& E[{W(-+7),u)?] =0 and 1du(s) = 0.
-r
Girsanov’s theorem implies ([RevYor99, Cor. VII.2.3]) that the support of the
Wiener measure on C([0,r]) is the space Co([0,7]) of all continuous functions
starting in zero. Therefore E[(W (- + ), u)?] = 0 implies y = ad_, for some
a € R. The argument relies upon the fact that for all other measures y the set
{f € Co([0,7]) | {f, ) # 0} is a nonempty open subset of Cy([0,r]). The second
condition in the above equivalence implies then a = 0 proving that only u =0
satisfies (Qu, u) = 0. O

From this point on, we shall mainly consider the restriction of the parameter
space M~([-r,0]) to the set of M~-measures with an L?([—r,0])-integrable
Lebesgue density. Abusing the notation, everything defined so far will be applied
to the L2-density directly and not to its generated measure. For instance, we

14



shall consider the covariance operator @ to be defined on L?([—r,0]) and write
for fa g€ L2([—7', 0])

(Qf.9) = /_ /_ q(t—s8)f(t)g(s) dsdt.

From general theory it is known that the covariance operator @ is a trace
class operator. In our case the range can be determined explicitly with respect
to the scale of Sobolev spaces.

4.2, Theorem. The covariance operator is a continuous linear operator @, :
L2([-r,0]) = HZ%([-r,0]). Its range is closed in H?([—r,0]), so that there are
constants Cg > cg > 0 with

cllfIl < 1Qafll2 < Collfll, Y f € L*([~r,0)). (4.1)

The mapping a — @, is weakly-operator norm-continuous. Cq and cg may thus
be chosen to depend weakly continuously on the parameter a € M~ ([-r,0]).

The range of Q, is the whole space H*([—r,0]) if Q, is viewed as an operator
on the space L*([—r,0]) & span(d_p,do).-

Proof. In the case of the Ornstein-Uhlenbeck process one obtains qoy(t) =
%e"t‘, which yields g5 (t) = gou(t) — &y in the distributional sense. Using
Proposition 2.4, this shows that k(t) := ¢/ (t) + do can be interpreted as an
element of H2~([—r,0]) for all parameters a. Denoting the derivative operator
by D one obtains

0 0
D?Quf(t) = D? / Ga(t — 5)(5) ds = / ¢t — 5)(s) ds

-T -T

0
k(t—s)f(s)ds — f(t), feL*([-r,0),t€[-r0].

—-r

Therefore we may write D?Q = D?Q, = —Id+K : L?([-r,0]) = L?([-r,0])
with an operator K on L?([—r,0]) which is compact since H*([—r,0]) embeds
compactly into L?([—r, 0]) for @ > 0. D?Q is thus, as a compactly disturbed iden-
tity operator, a Fredholm operator of index 0 on L?([—r,0]) (see e.g. [Werner95]
for the functional analytic techniques used in this proof).

Let V denote the kernel of D2Q and V1 a complement of V in L2([—r,0]).
Then the restriction D?Q|y 1 is an injective operator with the same range as
D%Q on L*([-r,0]), which is closed by Fredholm theory. The closed graph the-
orem then shows the existence of a constant ¢ > 0 such that

|ID2Qw|| > ¢||lw|| for all w € V.

In particular, one obtains ||Qw|]2 > c||w|| for all w € V+, which proves that
Q|v+ has closed range in H?([—r,0]).
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Now, V is finite dimensional by Fredholm theory, so that .|y has finite
dimensional, hence closed range. The representation of the range as a direct
sum of closed subspaces

ran @ =ran Q|y @ ranQ|y .

shows immediately that ran @ is closed itself. The equivalence of the norms in
(4.1) then follows again from the closed graph theorem by the injectivity of Q.

The estimate for the operator norm ||Qq — Qa., || < ||¢a — da., ||2 in connection
with Proposition 2.4 proves that Q),, — @, in operator norm if a,, = a weakly.
Hence, the operator norms do converge which may be taken for Cg. Putting
Cn = inf) f)=1[|@q, f| the estimate

1Qafll = [|Qa,. fIl = (Qa = Qa, ) fII > (¢n = 1Qa = Qan. [DIIfI]

implies ||Qqf|| > lim sup,, ¢, || f||- The converse estimate

inf ofll < inf an Il +H Qe — Qa,
int 10ufll < inf 1Qu. £II+11Qu — Quc |

shows that the choice cq := inf) =1 [|Q. f|| leads to a weakly continuous con-
stant cg.

Set W+ := ranQ|y+ C H2. Since D2Q|y 1 is injective, we can choose a
subspace W C H? such that ker D> ¢ W and H? = W @ W+. Then, by
surjectivity of D? : H?2 — L%, D?>(W) is a complement to D?(W+) = D?Q(V*)
in L2. The kernel of D? : H? — L? is two-dimensional and the codimension of
ran D?Q)| > equals the dimension of V by Fredholm theory, so that

dimV = codimran D?Q|2 = codim D?Q(V') = dim D*(W) = dim W — 2.

The injectivity of @ now implies that dimW = dimV + codimran@. Alto-
gether codimran @) = 2 follows. A glance at Proposition 2.4 in connection with
gou(t) = Le~It shows that the covariance function is an element of H 3= ([0,r])
and H%_([—r, 0]), if suitably restricted. Hence QJ_,. and Qdy lie in H2(R) and
using the injectivity of () once again yields the surjectivity of @) defined on the
space spanned by L?([—r,0]) and the measures § .., &. O

4.3. Remark. That @ is smoothing of order 2, i.e. has degree 2 of ill-posedness,
becomes plausible if the covariance operator of Brownian motion is considered,
whose kernel is k(s,t) = min(s,t) and which essentially integrates twice.

Similar results for operators acting on the space of continuous functions have
been obtained by [Sakhnovich96].

Later, for the right choice of the approximation spaces the following lemma,
is important, because it shows a very strong uniformity in the behaviour of @,
with respect to a.

4.4. Lemma. If the element ag € M~ ([—r,0]) and the weakly compact set A C
M~ ([-r,0]) are given, then the associated covariance operators satisfy

inf inf M > 0.

a€A ser2(—rop (Qao f> f)
f#0
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Proof. By the positive definiteness of the covariance operator ) one can define
its square root Q/2, which is a bounded operator, and the inverse Q~1/2 of
the square root, which is an unbounded operator. Since in our case the Gaus-
sian measures are equivalent, the Feldman-Hajek theorem [DaPrZab, Thm. 2.23]
implies that ran Q}/ % and ran Q,%2 agree, so that T, := (;01/ 2 i/ % is an iso-
morphism on L2([—r,0]) by the closed graph theorem. Moreover, Qé/ % and thus
T, and its adjoint T, depend continuously on (), and therefore weakly contin-
uously on a. By compactness there is a constant Cr > 0 independent of a € A
and h € L?([—r,0]) such that

73Rl > CrllAl-
. _Al/2,
Thus, setting h := Q5" f yields

(Qaf, 1) _ (QuQuy"h, Qug”’h) _ (Tih,Tih) _
(Quof 1) ) P ="

which is the desired bound. O

4.5. Remark. As is obvious from the proof, we only need that @,, is a covari-
ance operator of a Gaussian measure on L?([—r,0]) which is equivalent to Q.
Hence, the operator Qy with

r 0
QWf(t):/O mint +7,6)f(s = ) ds+ [ f(s)ds,

derived from gy in Theorem 2.2 with E[X (0)?] = 1, will do.

5 Construction of the estimator

The situation discussed so far is the following: We know

lm ~Qr=Qu, Jim Lbr=Qua.
If we knew the limits we would end up with the inverse problem to determine a
from @), a, which in particular shows that a is identifiable after an infinitely long
observation time. However, we only know the operator (),, which is compact,
and the image @QQ,a approximately. Hence we face a delicate illposed inverse
problem.

Since @, is positive definite, but unknown, the obvious choice for treating the
illposed problem is to use the Ritz-Galerkin projection method. The estimator
Gt of g from the observation (X (t), —r <t < T) is hence constructed as the
unique element in a finite-dimensional approximation space V,, C L?([-r,0])
which satisfies

(QTGT,n,Un) = <bT,1)n), Y, € V,. (5.1)
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Choosing a basis of V,, only a system of linear equations has to be solved.
The better Q7 and by approximate (), and Q,a the better V,, has to approxi-
mate functions from the space H*®([—r,0]). This means that a whole range of
approximation spaces comes into play and one has to choose n = n(T") dependent
onT.

The error analysis will be based upon the next general theorem, which has
inherited many ideas from an analogous statement in [Hamarik83]. The occuring
operator R, corresponds to the solution operator for (5.1), u, to the estimator
and u to the true parameter in our context.

5.1. Theorem. Let A be a positive definite operator on the Hilbert space H
and A, be another operator on H with ||A — Ay|| <n. Let u, f, fs € H be given
with Au = f. For a finite-dimensional subspace V,, C H denote the orthogonal
projection on this subspace by P, and assume that P,A,|y, is invertible. Set
Ry = (PyAly,) 'Pu, Ruy := (PuAylv,) ' Py and uy, := Ry f5. Then

llu—unll < [1 4 [[Bngll(|(1d =Pr) All + m)] [|(Td =Py )ul]
+(L+ (| By [[m) | B (Aqu — f5)] (5.2)

holds. If n < ||R,||~" is satisfied, then P, Ay, is invertible with

1 Ball

1 Rngll < ————-
" 1=l Rl

(5.3)
Proof. Suitable applications of the triangle inequality are the main tool for the
first estimate. Note that (P,A|y,) ! is well-defined since (Av,,v,) > 0 for
all v, € V,,. Further observe that R,,A, is a projection on V,, by definition,
that (Id —P,)? = Id — P, holds by the projection property of Id — P, and that
|AId =P,)|| = [|[Id—=P,)*A*|| = ||(Id —P,)A|| is satisfied by selfadjointness.
Thus the estimate (5.2) is obtained:

lu—unll < llu—= Poull + | Pou — RnpAgul| + || Rnn(Aqu — fo)ll
< (Id =Po)ull + (| Bng Ay (P — Id)u]|
H|(Bny — Ru)(Agu = f5)[| + | Rn(Ayu — f5)]]

< [+ | Bagl|([[A(Td =P | + [| Ay — AIDTI(d = Pr) |
H[1 By (A = Ag)ll + 1| B (Agu = f)ll
< L+ (1Rl (1(1d = Pu) Al + m)] | (Id =P )|

(1 4[| BonlIm)[| B (Anu — f5)]]-

Subsequently, the observation

| Rnvnl| _ ||Un” = sup (Avn,vn)fl (5.4)

| Rl = = =
wneVarfo} vl vn ([ PnAvnll  fon)=1

and the analogue for R,; will be useful. The inequality for v, € V,

| PnAnvnll > [|PnAva|l = |Pa(Ay = A)vnll 2 (IRA]I7F = n)llvnll
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shows that P,A,|v, is invertible for n < ||R,||~*. Further calculations give

[|vnll
IRngll = sup —————
" vn €Va\{0} (| P Anvnl|
[lvnl|
< sup
vn || PnAvg|| = nl|vnl
sup, sl
< vn [P Avn ]|
- [[vn |l
1- nsup,, ||PnUAvn||
Rl
1 —nl|Rall’
which is the second estimate (5.3). O

In our case, Qr will play the role of A, in the preceding theorem and the
restricted operator P,Qr|v, will always be invertible almost surely. Before prov-
ing it in great generality we need an almost obvious lemma, the proof of which
is based on a nice idea by Prof. Behrends.

5.2. Lemma. Letn linear independent functions f; : [-r,T] > R, j=1,... ,n,
be given, which vanish in a neighbourhood of T'. Define for t > 0 the translation
operator Ty by

v S fis=1), ifse[-r+t,T] B
Tutfs(s) == {Of ifs€[-r,—r+1t)’ s €Tl

Then for any T > 0 there are points 0 = t1 <ty < ... < ty, < T such that the
m - n functions (T, fj)1<i<m,1<j<n ore linearly independent on [—r,T].

Proof. To prove the lemma it suffices to show the linear independence of the
family (T3, f;) for m = 2 with a point ¢ which lies arbitrarily close to 0, since
then the family F := {f1,..., fn, Tt f1,--- ,Ts, fn} satisfies the conditions of
the theorem and a simple induction over m will yield the result.

For t € (—r, T consider the subspaces

Ny:={A=(A1,.. 5 An) €R™ | Y Njfjliory =0} CR™.
j=1

Note Ny C N, for t > s and Ny_. = {0} for some £ > 0 by linear independence
and the condition on the functions f; near 7. Introduce the points 7; where the
dimension of Ny drops, i.e. 7; := sup{t € (—r,T]| dim N; > j},i=0,...,n. A
choice of t2 € (0,¢) with ¢2 not equal to any distance |7; — 7| will then produce
a linear independent family F. To prove this, consider functions

n n
=) o;f; and Fy=)» BiT,f; with Fy +F, =0.
j=1 i=1
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Assume Fj # 0 and set t* := inf{t € [-r,T]| F1(t) # 0}. It is easily established
that t* > —r+tp since Fa|[_y _y4¢,) = 0. Thus, @ € Ny and by the monotonocity
of the Ny even a € N, is obtained for the smallest 7; with 7; > ¢*. This implies
Fi|_;r;) = 0. Now, F> is the image of some ® unter Ty, and F|_,,;) = 0
then gives <I>2|[_T,T]._t2) = 0. However, the same reasoning applies to ®, and
therefore ®, vanishes on some interval [—r, 7;), where 7 is strictly larger than
7; — t2 by the choice of ¢,. Then F, and hence F; vanish on [—r, 7j + t3) with
Ty + ta > 75 > t*. This is a contradiction to the definition of ¢* and thus
Fy = 0 everywhere. Therefore also F» = 0, but the families (f;) and (T%,f;)
are each linearly independent by assumption and by t2 < € respectively, so that
a = = 0 and the entire family F is linearly independent. O

5.3. Proposition. Let A,, C M ([-r,0]) be a subspace with dim A,, = n < oo
and consider the operator Kt : A, — A,, which is implicitly defined by

(Kb, c) = (Qrb, c) = / ’ / Y r(w,0) db(u) dew), bice Ay,

Then for T > 0 the operator Kt is bijective with probability one.

Proof. Let the points 0 < t; < ... < t, < T be fixed and chosen later. Then
by positive semidefiniteness of K, which is obvious from the second line of
calculations below, the following probability P has to be shown to vanish:

P := P,3a, € 4, \{0}: (Kran,a,) =0)
T 0 2
= P,(3a, € A, \{0}: /0 ( TX(t-i—u)dan(u)) dt = 0)
= P,3a, € 4, \{0}Vte[0,T]: OX(t—f—u)dan(u):O)

0

< P,(3a, € A, \{0}Vi=1,... ,n: X (t; + u)da,(u) = 0)
o -Tr

= Py( the matrix M := ( X (t; + u) db; (u)> is singular ),

—-r ij=1,...,n

where (b1,...,by) is a basis of A,. On the interval [—r + ¢1,T] P, is equivalent
to Pp, the measure of Brownian motion (B(t),—r <t < T) starting at t = —r
in zero (cf. Theorem 2.3). Hence it suffices to show that the matrix M is almost
surely nonsingular under Py, which will be accomplished by showing that it has
— as a random vector in R™*™ — a density with respect to n x n-dimensional
Lebesgue measure, since the set of singular matrices has nonempty interior in
R™™. The covariance matrix C of this normally distributed random vector has
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shown to be singular. Its entries are
Cijri = Ep[M;;My]

0 /0
/_ /_ (r + min(t; + u, tx + v)) db; (u) dby(v)

/i (/OT 1yt (8) dbj (u)) (/OT 1 gyt () dby (u)) ds.

If C is singular, then — again due to positive semidefiniteness — there are coeffi-
cients ()i, j=1,... ,n, Dot all equal to zero, such that

0 = E a0k Cijinl

VLN

T 0 >
= [ (S [ tteara@ ) ds
—r i —r
2

= /T Zaijbj([s - ti,O]) ds,

—-r

where [s — ¢;,0] should be understood as the empty set for s > t;. Putting
Bj(u) := bj([u,0]) with this convention, the calculation shows that the functions
Bj(-—t;) are linearly dependent on [—r, T]. However, the measures b; are linearly
independent on [—r, 0] and so are their primitives B; on [—r, 0], hence on [—r, T'.
The functions B; vanish on the interval (0, T'] and an application of the preceding
lemma shows the existence of ¢1 ... ,t, € (0,T] such that B;(- — t;) is linearly
independent, so that this choice proves P = 0 as asserted. O

5.4. Remark. Whether the operator Q7 is injective on L?([—r,0]) or even on
M([-r,0]), remains an interesting open problem. It is equivalent to the question
whether the linear span of the segments (W (t+s), 0< s <r),0<t<T-r,ofa
Brownian trajectory is a.s. dense in L2([0,r]) or C ([0, r]), respectively. However,
we shall only need the result proved above.

For the convergence of the estimator the approximation spaces must satisfy
the Jackson- and Bernstein-inequalities, also called direct and inverse estimates.

5.5. Definition. A sequence (V},),>1 of subspaces of L?([—r,0]) with dim V,, =
n will be called s-approxzimating, if it satisfies the following inequalities with fixed
constants C; and Cp, where P, denotes the orthogonal projection onto V,:

[|(1d — Py )ul|
(Qun, vn)

where () denotes any covariance operator @, for a € M~ ([—r, 0]) or the operator
Qw from Remark 4.5.

Cillullan™%, VYue€ H* a€ {s,2}, (5.5)

<
> Cpn?||lval?>, Vv, €V, (5.6)
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5.6. Example. A whole class of such s-approximating sequences is provided
by the spaces V,, of splines of order m > max(s,2) with n + 1 uniformly spaced
knots. It is well known that these spaces satisfy the Jackson-inequality (5.5) for
all @ < m (compare e.g. [Schumaker81, Thm. 6.27]). To prove the Bernstein-
inequality (5.6) twofold partial integration shows that for f € L%([—r,0])

2

0 0 0
@ity = [ [ eemineonsos@asdrs ([ g as)

> /_r/_rr+s s)dsf(t)dt

= =2 / F(s) dsf () dt

0
2 [ F@t)*dt

-T

holds with F(t — ft

For a polynomlal p(x ) Zk o arz® with primitive P(z) = —f p(y) dy,
z < 0, one obtains

0 m—1m—1
/ p(x)?dz - z Z agay(k + 14 1)1 (=p)kH+1
k=0 I=

—h

0 0
0 m—1m—1
/P(a:)Qda: = —h2zzka’“ a c(k+1+3)” L(—p)ktitt
—h k=0 =0 +1

Substituting ay := (—h)*¥a; in these expressions shows that the quotient of the
L?([—h, 0])-norms of P and h-p is bounded from below by a constant, since it can
be minimized independently of h. Let us now consider a piecewise polynomial
f on [—r,0] of degree at most m — 1 with (possible) jumps at n — 1 uniformly
spaced interior knots. Then the analogous quotient between the primitive F' of
fon [-r,0] and f itself is bounded from below by a constant times the width
of the subdivision rn~!, which becomes clear as soon as one realizes that the
minimal quotient is attained by the function f that vanishes outside [—r, —r+T]
and minimizes the quotient within this interval. Since splines of order m are
special cases of these piecewise polynomials the Bernstein-inequality holds true
for them.

Further subspaces which may be used could be those arising from a wavelet
multiresolution analysis. However, the proof of the Bernstein-inequality will not
always be immediate and one must pay attention to boundary corrections. Un-
fortunately, the covariance operator @ : L2([—r,0]) — H?([—r,0]) is not surjec-
tive so that the usual duality arguments cannot be used.

5.7. Proposition. Assume that g € H*([—r,0]) with vo(g) < 0, ||g||ls < S is
the true parameter, s,S > 0. Let s-approrimating subspaces (V;,) be given and
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determine the function G, € V,, according to
(QTGrpn,vn) = (br,vn), Yu, € V. (5.7

Introduce the random set

_ 1 1
H = {llgy(v —v) =T qr(u,0)|| < S I(FaQqlvz) I
Then G, satisfies
Ey[llGTn — gl*13] Sn7%° + 0T 1. (5.8)

The constant involved is independent of n and T and depends L?-continuously
on the parameter g.

Proof. With regard to Theorem 5.1 set H := L?([-7,0]), A := Q,, 4, =
T7'Qr, n == |lgp — T~ '¢r|| and fs := T~'br, which implies u, = Gr,,. By
Proposition 5.3 the system (5.7) is almost surely solvable. The condition in H
ensures 7||Ry|| < %, n||Rnpll < 1 holds by (5.3) and the following estimate is
obtained on H:

lg = Grnll < (2 + 2||Rull||(Id = Pr) Q) [|(1d —Pr)gll + %”Rn(QTg — b))l
(5.9)

By the s-approximating property of (V) the Jackson-inequality implies
|(Id —Py)gll < CySn=%, ||(Id —P,)Q,|| < C;Cgon~? and the Bernstein-inequality
implies (cf. (5.4))

|Rall = sup (Qgun,vn)~" S n? (5.10)

~Y
llvnl|=1

uniformly in g € L?([-r,0]) for a bounded parameter set in L?([—r,0]) (cf.
Lemma 4.4 and note the weak compactness of closed bounded subsets of M ™).
Therefore estimate (5.9) reduces to

2
2(1 + nchC,]n_z)Sn_s + T”R”(QT‘() - bT)”

lg = Grall S
< Sn7* + T7Y|Ra(Qrg — br)ll, (5.11)

where the constant does not depend on n and T and may be chosen continuously
with respect to g, since L?-convergence implies weak convergence of the induced
measures.

The last summand is pointwise of order n2, but in a stochastic sense the rate
n? is obtained. With (eq, ... ,e,) as orthonormal basis of V;, we obtain by the
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selfadjointness of ()4, Lemma 3.3 and (5.10)
B[l Rn(Qrg —br)IP] = Eg[D> _((PuQqlv,) " Purz,€:)’]
i=1

= D By llrr, (PaQqlv.) tei)?]

i=1

=T Z<Q9(PHQ9|Vn)_1€z’; (PaQqlv.,) tes)

=1

=T Z<P”Q9 (Pan|Vn )_lez’: (Pan|V" )_161')

i=1
n

= T (ei,Rne:)
i=1

< Tal

An application of the general inequality (A + B)? < 2(A2 + B?) yields
B |G, — glP19] Sn™° + T~ '0?
with the properties of the constant as asserted. O

5.8. Theorem. Assume the hypotheses of the preceding proposition with s > %
and with G, rescaled to mGT’" in the case |Gt .|| > S. Then choosing

n(T) ~ T+ yields the uniform rate T4 for the mean squared error. More
precisely, for § > 0 the following holds:

sup  Ey[llg — Grn(mll’] S T 2545, (5.12)
lglls<s
vo(g9)<—0
Proof. The rescaling always produces a better approximation for g since we
know a priori that ||g|| < ||g]|ls < S holds and since L?([—r,0]) provides a scalar
product, so that this may be considered as an obvious three-point problem in
the Euclidean space R2.
The choice of n(T) gives for the estimate (5.8) asymptotically

__2s
EQ[“g - GT,n(T)HZI'H] 5 T 25+3

the constant depending L2-continuously on the parameter g. Since the Sobolev
ball {f € H*([-r,0])|||flls < S} is compact in L?([—r,0]) and the set {f €
L2([—r,0]) | vo(f) < —6} is closed in L2([—r,0]) by Theorem 2.6, the supremum
of the constants over the compact intersection of these sets remains bounded
and the statement

__2s
sup E!J[”g - GT,n(T)||21H] 5 T 2s+3
llglls<S
vo(9)<—0
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is obtained.
By Theorem 3.1 the estimate Ey[|lg; — 7 ¢7||*™] < T—™ holds and by

(5.10) the asymptotic estimate || R,y |*™ < n(T)*™ ~ T=%s holds, so that

limsup T 545" Bylllgy — T~ gzl | Ry |1P™] <
im sup olllgg qrl| n(T) ] <oo.
T—o0

An application of the generalized Chebyshev inequality yields

. (2s—1)m _ 1
limsup 7 2+ Py(|lg, — T qu||||Rn(T)|| > 5) < oo.

T—o0

Applying the condition s > %, the considered probability tends to zero faster
than any polynomial in T'. By construction, the norm of G, is bounded by S
so that in particular for the complement H¢ of H

2s

]Eg[”g - GT,n”leC] ,S IPQ('HC) 5 T~ 2s+3

holds with a constant that can again be chosen to depend L?-continuously on the
parameter g. The same compactness argument as above applies and the theorem
is obtained by putting the separate estimates on H and H® together. O

5.9. Remark.

e The restriction s > 1 is used for controlling the probability of the set H¢.
It is not clear whether the upper bound holds already for s > 0. The proof
of the lower bound works for all s > 0.

e The estimator Gr,y, constructed in Theorem 5.4, is approximately the
maximum-likelihood estimator of g if g is an element of V,,. This fol-
lows from the fact that %log Ar for large T is well approximated by
(T~ br,9) — 3(T~'Qrg, g) (cf. Theorem 2.2). This function does attain
its maximum on the finite-dimensional space V,, due to the compactness
of balls in V,, and the decay for ||g|| — oo. Setting the derivative with
respect to the functions g € V,, to be zero leads exactly to the equation
br — QTG = 0 for the estimator Gr,,. The proposed nonparametric
estimator may thus be interpreted as a (quasi-)maximum-likelihood es-
timator for a misspecified model, where the misspecification, due to the
approximation properties of V;,, becomes smaller with increasing n.

e An implementation of G, on a computer can deal with discrete ob-
servations only. Moreover, round-off errors in the calculations will occur.
However, as long as these errors have the order T-!/2, the asymptotic
rate of convergence remains the same. This is due to the fact that the
Ritz-Galerkin projection method genuinely deals with errors in the data.
Hence a robust implementation seems feasible.
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6 Asymptotic lower bound

It will now be shown that the rate of convergence found in Theorem 5.8 is
asymptotically optimal. The proof of this lower bound is based upon the so
called Assouad cube using wavelet techniques. First, a lemma simplifying the
likelihood ratio in the stationary case will be proved.

6.1. Lemma. Ifa; and ay are M~ -measures then the likelihood ratio Ar(a1,az)
under Py, of the distributions of the stationary solution X in C([0,T]) according
to Po, and P,, respectively is given by

logAr(ai,a2,X) = logA(as,as,X(0)) (6.1)
1 -
_§<QT(0/1 —a2),a1 — az) + (Fr,a1 — aq),

where A(a1,az, X(0)) denotes the likelihood ratio of X (0) under Py, and Py,
and Qr and 7 are formed using =(¢t) := E[X(¢) | 0(X(s), 0 < s < T)] instead
of X (t) in the definition of QT and rr.

Proof. Since X is a Gaussian process the drift term in the stochastic delay
equation (1.2) is Gaussian and the likelihood ratio (2.6) is simplified:

L Ora,a)).

Ar(X, X (0) + W) = exp((br,a) — 5

For this result use [Thm 7.15, LipShir77], the linearity of conditional expecta-
tions

E[[ X(t+3)da(s) | o(X(w), 0< u<T) = /0 =(t + 5) da(s)

-r -7

and substitute = for X in the calculations of the proof for Theorem 2.2 (I;T

formed analogously). With the notation X; for X with parameter a;, one obtains

under the law P,,:

logAr(ai,az,X) = logAr(X1,X1(0) + W) +log Ar(X1(0) + W, X2(0) + W)
— log AT(XQ, XQ(O) + W)

- 1 - 1, =~
= (br,a1 —a2) — §<QTG1,G1) + §<QTG2;(12)

+log A(a1,as, X (0))

1 .
_§<QTU/1;U/1)
1 .
+§(QT(12, az) +log A(ay, a2, X(0))
= IOgA(alaa2aX(0))

= (Qrag,a; —ay) + (Fr,a; — ap)

—§<QT((11 —az),a1 — a2) + (Fr,a1 — az),

where the decomposition (3.6) and the selfadjointness of Q7 were used. O
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6.2. Theorem. For s >0, S >0 and § > 0 the statement

inf sup Efllg— Gr|?] 2 T =4 (6:2)
T Jiglls<S
vo(g)<—4

holds, where the infimum is taken over all o(X (t), 0 < t < T)-measurable map-
pings with values in L?([—r,0]).

Proof. Take go € H*([—r,0]) with [|go|| < S and vo(go) < —9. Let (¢;) be a
compactly supported wavelet basis of L?(R) which is s-regular. Denote by R; a
maximal subset of Z such that supp ¢, C [—r,0] and supp ¥ N supp Y,p = &
hold for k,k' € R; and k # k'. The cardinality of R;, denoted by S;, grows like
27 with increasing j, hence S; ~ 27. For € € {—1,1}% set

9 =g0+7 D extbjr, (6.3)
kER;

where v = ~(4,T) is — for the moment — arbitrary under the condition v <
2-3(s+32) such that ||g.||s < S is satisfied. Moreover, this implies v29/2 — 0 for
J — o0 so that ||g: — go|| = 0 and hence vo(g:) < —§ holds for sufficiently large
j- Only these values of j shall be considered in the sequel.

Let us now quote [HKPT98, Lemma 10.2] with an adapted notation:

6.3. Lemma (Assouad). Letd := }inf.s.||g.—gr||. Fore = (g;) € {—1,1}1
put e« = (€}) such that

. Eiy lfl ?é k

YU e, ifi=k

If there exist \,p > 0 such that for the likelihood ratio Ar
Pgs (AT(gsk* 795) > ei)‘) Z b, VE, T:

then for any o(X(t), 0 < t < T)-measurable estimator Gt the following lower
bound is obtained:

1
max B, [||Gr — 9:11 > 5515’36”1)- (6.4)

In our case, obviously 0 equals v and Lemma 6.1 shows that under P, the
likelihood ratio is given by (use gc — ge,. = £2v9jx)

IOgAT(gek*agE) = logA(gsk*ag&X(O))

442
- %(QT@bjkﬂpjk) + 2v(Fr, Yjk)

Denote the expression inside the squared brackets by Z = Z(T,j) and note
that the remainder is the log-likelihood ratio of X (0), whose moments may
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be uniformly bounded for arbitrary weakly compact sets K in M™, since its
distribution only depends upon ¢(0) and {g,(0)|a € K} is compact in (0, 00).
By compactness of the considered set of parameters g the asymptotic behaviour
of the log-likelihood ratio will consequently be governed by Z.

The general inequalities Var[X +Y] < 2(Var[X]+Var[Y]) and Var[E[X | F]] <
Var[X] show in combination with Corollary 3.2 and Lemma 3.3

E,.[Z] 2T (Qujk, Vi),
Var,, [Z] < 8y'Ey [((Qr — TQ)vjk, ¥k)?] + 8Tv*(Qujk, Vi)
< 8T’y Elllg — T~ ar 3]s llzs + 8Tv*(Qujn- s
S Ty 278 + Ty Qi Yjn)-
At this point the convergence of T~'qr in C* is crucial. If ||¢x||z2 instead of
ljk]|Lr were used, the proof would only work for s > % (cf. Remark 5.9). In

Corollary 2.7 it was shown that the covariance function ¢ is Lipschitz continuous,
so that one can estimate further using |q(t) — ¢(0)| < L|t| and LOT Pjr = 0:

0 0
@%h%w:=/l[(w—ﬁ—ﬁW%ﬂmmwwwt

0 0
: L/_ _|t_8||¢J'k(t)||¢jk(8)|dsdt
= L/R/Rﬂ—j(t—s)||2j/2¢(t_k)||2j/2¢(s_k)|2_2jd8dt
— —2j 3
= 2L [ [le= sl s
< 2%

The expectation of log A7 remains therefore bounded if v < T—22 holds
asymptotically for T',j — 0o. Moreover, the Chebyshev inequality then shows
that log A7 stays with uniform positive probability in the neighbourhood of its
expectation if the variance remains bounded, i.e. in addition v < T—12% must
be satisfied. Now choose j = j(T) such that 2/ ~ T7%5 and v ~ 2-9+%) as de-
manded at the beginning. This choice implies v ~ T-227 and v~ 28T~ <
25T~%. All conditions on ~ are consequently satisfied and Assouad’s lemma
gives the asymptotic estimate

HzaXEgs [||GT - 95”2] Z 2‘1’)/2 ~ Tiﬁ‘

Since the constant depends continuously on g. and the parameter space is com-
pact, the theorem has been proved. O

Strictly speaking, the proposed estimator G, depends on (X(¢), —r <
t < T), but due to stationarity it may equivalently be defined to depend upon
(X(#),0 <t < T+ r). This additional segment of length r is asymptotically
negligible so that G'r,,, is really asymptotically optimal in the above minimax
sense.
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