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Abstract

The Normal Inverse Gaussian (NIG) distribution recently intro-
duced by Barndorfl-Nielsen (1997) is a promising alternative for
modelling financial data exhibiting skewness and fat tails. In this
paper we explore the Bayesian estimation of NIG-parameters by
Markov Chain Monte Carlo Methods.

KEY WORDS: Normal Inverse Gaussian distribution, Bayesian Analysis,
Markov Chain Monte Carlo.
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1 Introduction

The empirical distributions of stock returns are typically skew and heavy
tailed, and different families of distributions have been proposed to model
returns. Most notably is the stable Paretian family with a long history, see
McCulloch (1996) and Adler et.al. (1998). More recently the class of NIG-
distributions, an acornym for Normal Inverted Gaussian, has been proposed
by Barndorff-Nielsen (1997). He investigated its properties, the modelling of
NIG-processes, the estimation of NIG-parameters and the fit to real financial
data, see also Rydberg (1997). The NIG-framework has several desirable
properties and opportunities for modeling. A number of problems in finance
can be recasted within this framework, thus taking skewness and heavy tails
into account, as demonstrated by Lillestgl (2000).

In this paper we focus on the estimation of NIG-parameters from the
Bayesian viewpoint using Markov Chain Monte Carlo Methods. We will
explore a convenience prior leading to simple updating formulas. This is
a conjugate prior when an unobserved variate is included in the parameter
set. We will give some examples on estimating real and simulated data, and
make comparisons with the maximum likelihood estimates.

2 The NIG-distribution and a convenience prior

The NIG-distribution may be characterized by four parameters: pu,d,a,
which relates mainly to location, scale, peakedness/heavy tail and skewness
respectively. The moment-generating function of a NIG(«, 3, d7)-variate X
is given by

Mx(t) = Eexp(tX) = exp(pt + 6(v/ a2 — B2 — y/a? — (B + t?)))

From this it is easily derived (let v = v/a? — 3?)
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The density function of X is fairly complicated involving Bessel functions.
However, the distribution has a simple characterization as the marginal dis-
tribution of (X, Z) where

X|Z=2z~N(u+pBz2)
Z ~1G(6,v/a?—p?) where 0<|f|<a

Here IG(6,7y) is the well known Inverted Gaussian distribution (also named
Wald distribution), see Johnson and Kotz (1995).

Barndorff-Nielsen has studied the estimation of NIG-parameters by max-
imum likelihood methods. Given the complicated density this leads to like-
lihood equations that are very complicated and requires extensive program-
ming combined with numerical skills. The program "hyp” developed by Blae
sild et. al. (1992) solves the task, but this may not be readily available. An-
other possilibility is to use an EM type algorithm for maximum likelihood.
This is more easily programmable with less challenging numerics, as long as
the computer environment supports easy calculation of Bessel functions, as
demonstrated by Karlis (2000). Still another possibility is to use the simple
characterization of the distribution above and the fact that IG-variates are
easy to simulate, see Michael et.al. (1976), it may be worthwhile to try a
simulation based approach to the estimation problem.

Now let Y = (X, Z) with distribution as in the characterization above,
i.e. probability density f(y) = f(z,2) = f(z) - f(z | z) where

Fz | 2) = (2m) 2 2 2 (o= (uth2))?

f(2) = (2m)"Y26eD7 3/2, 482271 4722)
that is
f(.T, Z) X (566’)’*ﬁl£z*26,3w+pff%(ﬁ2+72)z7%(uz+62)z_1

If we let 0 = (p, 6, 8,) we see that the joint density is within the expo-
nential family

F(y) = g(O)h(y)eZi=1 4O ®)



where

$1(0) =8
#$2(0) = p
¢3(0) = — (5% +~%)
$4(0) = —(u* +6%)
and
tily) ==
ta(y) = zz71
ta(y) = 52
I 4
ta(y) = 3%

9(8) = 6e77PH

This means that the conjugate prior distribution of @ is then of the form

p(0) ox g(8)0e>i-1 %100

where (ag, a1,az,a3,a4) is a vector of superparameters, where ay, a3 and
a4 > 0. Given n independent realizations y1, y2, ..., Y, Of the variate Y, the
posterior of 8 is of the same form with

n
ag=ag+n and a} =a;+ ztj(yi)
i=1
This is an augmented posterior in the sense that we are really interested
in a distribution of 6 given the observable X, and the Z in Y = (X, 2)
is treated as unobservable or missing. However, we can get at the desired
posterior by using Markov chain Monte Carlo ideas.
A closer look at the chosen distribution for 8 = (u,d, 8,7) shows that
(u, B) is independent of (§,7) and that (u, ) is bivariate normal with cor-
relation




The other parameters are

_ 1 ag
B= 72(1 — s (a2 — E -a1)
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Ug - 2(1 — p?as

Note therefore the expressions for fi/ 03 and (/ 0% given by the two paren-
theses respectively. Note also the binding equation aé / az = a4/az. By the
reparametrization (u, 8) to (7,5) where 7 = p+ 2% -8 we get 7 independent
of 5.

The distribution of (4,7) is

p(6,7) 6aoe—a372+a057—a452 for §>0,v> 0.

By a linear transformation to get rid of the cross-term it is seen that

1 2
6% ~ Gamma(ao + , 04 — &)
2 4as
ag 1
~ 95« Normal(0, —
¥ 24 ormal(0, 2a3)

and that these two variates are independent.

It the case that the conjugate prior is too restrictive to represent our
data, it may be worthwhile to introduce another layer of superparameters.
Most convenient is to take a;’s to be independent and

a; ~ Normal(c;,b;) for i=1,2

a; ~ Exponential(b;) for i=0,3,4.
If we let a = (ag, a1, a2,as3,a4), the posterior of a given 6 is determined as

a1 ~ Normal(cy + Bb1,b1)

ag ~ Normal(co + pbs, ba)

a3 ~ Exponential(bz + v* + ?)

ay ~ Exponential(by + > + 6%)

ag ~ Ezxponential(by + B — v — log(6)).



3 A MCMUC scheme for the posterior

In order to get at the posterior p(6 | ) we use the MCMC scheme using full
conditional.

Let w = (x, z,0) where x is observed, z unobserved, # parameters. Let
ws be a subset of the components of w and w_; the complementary set.

p(ws | w—s) < p(w)

where only the factors involving components of w in any product formula
need to be retained. A special case of this is p(0, z | =), where the marginal
p(0 | z) is our interest. Various schemes for sampling from the posterior is
given Robert and Cassela (1999). The NIG-model fits under the heading of
data augmentation, which is a special case of the Gibbs sampler.

The full conditionals sufficient for the current problem are given by

L p(0,z | z) o< p(z,z | 6)p(0)
2. p(0s | z,2,0 ) < p(z,z | 0)p(0s | 6 )

3. p(z | 2,0) < p(z | 2,0)p(z | 0)
If this is written out in our case, we will see that formula 3 leads to

Z; iid. IG*(8,')

where IG*(9,y) denotes the distribution with density similar to IG, but with
z~2 as multiplicative factor replacing z~3/2. Both distributions are member
of the family of generalized inverse Gaussian distributions GIG(}, d,) with
A= —1/2 and A = —1 respectively.

The parameters in our case are given by

5 = (6 + (X — )2

V=V +p=a

The Z!s can be simulated using the ideas in Michael et.al. (1976), or by
rejection sampling methods, as described in some detail in an appendix.

Formula 2 for the complete parameter set € as well as for (i, 5) and (v, )
separately just reiterates the result of our choice of conjugate prior for the



augmented (X, Z), where the superparameters are updated according to

apy =ap+n

a) :a1+ZXZ~

(1/2 ZGQ-I-ZZ,L-_IXZ'
1
aé:G3+§ZZi

1
[ - -1
a4—a4+2g Z;

New 6 can then be simulated according to the distributional structure given
above. That is, (u,3) bivariate normal and 62> Gamma and vy computed
from § and a simulated Normal variate.

In the case of another layer of parameters we get another set to visit in
each round, determined by the posterior given at the end of the previous
section.

4 The choice of superparameter values

We will now examine the choice of superparameters in order to reflect our
(lack of) knowledge about parameters. It is of course convenient to have
few superparameters to address as is the case with our conjugate prior. A
drawback may be little flexibility, i.e. our choices affect the parameters
jointly in a manner which may not be transparent. A basic restriction for
the expressions of variances to stay positive is

1,

as - ag > ZG,O
From the five updating equations we see that more information is accumu-
lated as ag, a3 and a4 are increasing (since the z’s are non-negative). The
choice of a small ag to reflect prior ignorance may go together with small
a;’s, but with some prior knowledge, and choosing a larger ag, this has to
go along with larger a3 and/or a4 as well to match the restriction. The

parameter p may then be helful for calibration purposes.

A possible consequence of few parameters is when we try to express
ignorance in some sense, it may have unwanted and even contradictory im-
plications. This is in fact the case here, where ay = 0 at first sight, is a



natural choice for ignorance. This means that p = 0 and consequently

_ a2

A= S
~a

7= %
GZ:;E:EWZ
0/23:2173213(52

i.e. we have implicitely assumed that the more certain you are about u
(resp. [, the smaller you expect d (resp. 7) to be, and judged from the
corresponding variances of 62 and y? you are even more certain about that.
So, ag = 0 is an ignorants choice to represent ignorance!

It is likely that opinions are initially formed by observed centers and
shapes of empirical distributions. It seems therefore natural to first reflect
on the parameters (u, ) (stage 1), and then on (d,7) (stage 2), We may first
ask to what extent our knowledge of either of these is affected by the other.
In order to match the expression for the expected value EX = p+ 36771, a
large/small p departing from its prior expected value has to be balanced by a
small/large B compared to its expectation, i.e. g and § have to be negatively
correlated, as reflected by the conjugate prior. It is easily checked that the
linear combination 7 = pu + t - 8 with the smallest prior variance is given by

T=pt o B
2a4
Note from section 2 that this 7 is stochastically independent of 5. EX is
such a linear combination, and it is not unresonable to assume that we are
more certain about EX than any other linear combination of of y and .
This assumption as well as its immediate consequenses will be referred to
later as AO. We see that the corresponding prior mean and variance are

given by
_ a2 2 ].
A0 : = — = —
T 2a4 Ir 2a4

Note that p now has disappeared and that the expressions are the same as
for y in the case of p = 0. If we go back to the original expression for EX
and use the prior independence of (i, 8) and (d,) we get the equation

) a

A0O: E(-)=
(’)’) 2(1,4 a4

as



i.e. our assumption A0 has implications for the two other parameters as well.
Note also that if the ”ignorance” assumption ag = 0 is used in conjunction
with AQ, it implies that § = 0, which leads to the one-point distribution at
1, which is quite the opposite of ignorance!
Let assumption A1l be that the the prior mean equal to zero. We then
get
A0 + Al : as =0

In the case of a non-zero prior mean, we could as well subtract the prior
mean from all observations and start from there.

In order to determine a; we have to be more specific about y or 8. In
the case of ao = 0 we see that

ﬁ/ﬂ:_% ) ﬂ/UZ:_;TO?)'al ) /B/ngal-

Thus 3 determines the sign of a; and ji (opposite) in this case, which holds
in particular for A0 + Al.

Let us also look into assuming fi = 0 (assumption A2) and 8 = 0 (as-
sumption A3). This gives the following restrictions on the superparameters
respectively:

ao

A2 . = .
as Sas al
A3: a1 = a0 as
2a4

with obvious inequalities for the prior expectations less than or greater than
zero. Note that any two of A1, A2 and A3 taken together are equivalent and
corresponds to a; = az = 0, omitting the case of p? = 1 leading to infinite
prior variances of p, 8 and §2.
We may just want combine A0 and A2 to get
) ag

A0+ A2: E(-)=
Y ai

Let us now turn to the prior of (d,7y). It may be harder to have opinions
about this than the prior of (i, ), and it is likely that we want to express
ignorance. We therefore have to choose parameters at the first stage carefully
in order to give room for this. Note that the prior of (4, ). is determined by
the parameters ag, a3 and a4. Recall the binding resctriction above, where
in fact the ratio of ag and a4 is determined by the prior variances of p and



B. As said earlier this is an unwanted restriction, which we have to balance
off according to where our knowledge is best. Note that

ag+1

6% ~ Gammal( Las(1 — p?))

It will be of interest to see numerically how ad hoc assumptions rep-
resenting various types of knowledge will work, when trying to balance or
ignore the consequences for other parameters. Among these are ignorance
assumptions taking ay = 1 or a9 = 2 (assumption B1 and B2), and saying
you are equally uncertain about u and 3, thus taking ag = a4. Of particular
interest is the case ag = a3 = a4, which means that p = —1/2.

10



5 Examples of estimation of NIG parameters

Reliable estimates of the parameters of a heavy tailed distiribution will re-
quire a minimum of observations in the tails, and small data sets of inde-
pendent observations are not likely to give good results. Our experience
so far with the NIG family based on simulated data suggests that difficul-
ties may arise even for 100 observations and that about 400 observations
are desirable, see Lillestgl (2000). We provide here two examples of NIG
parameter fitting, one for simulated data and one for finance data. The
first data set NIG2121 is 400 simulated independent NIG(2,1,2,1) variates.
The second data set FTARET is the monthly nominal returns of the FT-
Actuaries All-Share Index for the UK from January 1965 to December 1995
(372 observations). The empirical distributions are shown as histograms in
Figure 1.

Simulated NIG(2,1,2,1) FTA returns
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Figure 1: Histograms of data sets NIG2121 and FTARET

Descriptive measures are given in Table 1.

Mean StdDev Skewness Kurtosis
NIG2121 2.55 0.85 1.22 3.51
FTARET 5.53 6.05 1.12 14.43

Table 1: Descriptive measures
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In Table 2 we give estimates by the MC-method with single layer of
parameters and two layers of parameters (MC2) and compare this with the
corresponding ML-estimate. The MC estimation with a single layer is based
on a prior taking ag = ag = a4 = 1 and a; = a9 = 0 and iterating 10 rounds
before a sample of o, 8, 1 and § is taken. This is repeated 400 times and is
the basis for calculating the posterior means and the smoothed histograms
to represent posterior densities. The posterior means are estimated by the
average of the sampled values. Estimates obtained by Rao-Blackwellization
is also computed for comparison and as a check for convergence. For the two-
layer estimation the values of the superparameters b;’s and c¢;’s are chosen to
match the expected values of the a;’s for the single-layer specification above.
The ML-estimates are obtained by the program ’'hyp’, and the results are
confirmed by the EM-algorithm of Karlis mentioned above. We have also
computed moment estimates (MM) obtained by inverting the expressions
for the first four moments given in section 2.

a B 7 é
NIG2121 (MC) 1.360 0.868 2.205 0.407
NIG2121 (MC2) 1.669 0.965 2.142 0.579
NIG2121 (ML) 2490 1.343 1.876 1.049
NIG2121 (MM) 2445 1.396 1.872 0.972
FTARET (MC) 0.823 0.742 1.428 1.971
FTARET (MC2) 0.818 0.733 1.486 2.019
(
(

FTARET (ML) 0.174 -0.004 5.662 5.697
FTARET (MM) 0.083 0.015 5.001 2.872

Table 2: Parameter estimates

We see that the parameter estimates of the ML-method and the MC-
method turned out somewhat different for both data sets. Let us first com-
ment on the NIG2121 data.

The MC-method has overestimated y while the ML-method has underes-
timated this parameter. The other three parameters are underestimated by
the MC-method and overrstimated by the ML-method, except for § which
are about on target by the latter method. The low estimate for J§ by the
MC-method is somewhat disturbing. We see that adding the second param-
eter layer has lead to improvement for the MC-method. Now the estimate
of both a and 8 are closer to their true values by this method than the
ML-method, with 8 about on target. The estimate of ¢ is also improved
somewhat, but is still at some distant from the true value. We see that the

12



MM-estimates are fairly close to the ML-estimates. It is also of interest to
compare the first four moments by plugging in the estimated parameter val-
ues in the theoretical expressions for the moments in section 2 and compare
with their true values. The main difference between the methods is that
MC attributes more skewness and kurtosis than the true ones of the parent
distribution, while ML attributes less skewness and kurtosis, and is closer
to "target”.

The smoothed histograms of sampled posterior densities for NIG2121
based on the MC2 simulations are given in Figure 2.

Posterior density alpha Posterior density beta
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Figure 2: Smoothed histograms of sampled posterior densities for NIG2121

Looking at the posterior distributions for the simulated data we see that
the true parameter values for 8 is at the central part of the distribution,
while the true p and « are out in the tails. For § we have been rather
unsuccessful indeed!

For the data set FTARET there are even more striking differences. We
see that The ML-method has given a much higher estimate for p and d
than the MC-method. On the other hand both o and 8 are higher with

13



the MC-method than the ML-method. We see that adding the second layer
has not lead to appreciable changes. Her the MM-estimates differ more
from the ML-estimates, but stay closer the the MC-estimates, except for
the parameter §.

The smoothed histograms of sampled posterior densities for FTARET
based on the MC2 simulations are given in Figure 3.

Posterior density alpha Posterior density beta

T T T T
05 1 05 1
apha. beta

Posterior density mu Posterior density delta

08
25

06

15

05

Figure 3: Smoothed histograms of sampled posterior densities for FTARET

It may be instructive to compare the fits in terms of QQ-plots. For
the NIG2121 data we may compare with the true distribution. Exact com-
putations require access to a Bessel function routine, and we may as well
simulate the distribution. We have simulated n=10000 observations from
the true distribution as well as from the distribution with the estimated
parameters by the ML-method and MC-method respectively. The QQ-plot
is given in Figure 4. We clearly see that the MC-fit is inferior to the ML-fit,
and that the MC2-fit is an imrovement which makes the fit comparable to
the success of the ML-fit, but that the two fits obviously have some distinct
features that separates them.
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QQ-plot NIG2121 ML vs True

QQ-plot NIG2121 MC vs True
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QQ-plot NIG2121 MC2 vs True
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Figure 4: QQ-plot for distributions fitted by ML and MC vs True NIG2121

QQ-plot FTARET ML vs True

QQ-plot FTARET MC vs True

QQ-plot FTARET MC2 vs True
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Figure 5: QQ-plot for distributions fitted by ML and MC vs Observed
FTARET
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For the FTARET data we compare the observed data with data simu-
lated from the distributions fitted by the ML-method and MC-method re-
spectively. We chose here to simulate data of the same size, namely n=372
observations. The resulting QQ-plot is given in Figure 5. It seems that the
ML-fit is superior to both MC-fits.

The comparisons above are based on limited experience so far, and more
suitable choices of prior specifications may hopefully lead to further improve-
ment. More work must be done before general conclusions can be drawn.
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Appendiks: Simulation of IG*-variates

Let V be a chisquare variate with 2 degrees of freedom and compute the
roots with respect to Z of

(vZ - 9)?

V= Z

They are given by

z-24 %(Vi VV2 4 4~5V)

v 2y
Let Z1 and Z> be the minus and plus root respectively, and note that Zs =
62/Z;. Let p = &/ and

2

u?+ 73
z @
w+zi o+ 73

Z =7y  with probability

= Z5  with probability

Then Z is IG*(d,y) An alternative way if simulating IG* variates is by

rejection sampling as follows
1. Generate Z by Z~! being exponential with parameter \ = %(52.
2. Compute T = exp(—3+?)
3. Generate U Uniform[0,1], if 7" > U keep Z otherwise not.

This procedure follows from taking ¢(z | 0) = 2 %exp(—562271) as enve-
lope. A problem with this procedure is that many observations are likely to
be rejected. Some improvement are obtained by taking z~! Gamma/(k, \)
instead, and adjust k£ to the situation at hand. However the improvement
is only slight.
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