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Abstract

In this paper we decompose the Serial Correlation Common Feature (SCCF)
of Engle and Kozicki (1993) in the frequency domain. A collection of time
series is said to share a common cycle if there exists a linear combination
of the predicted series with a zero spectral density at some frequency. Es-
timation and inference can be performed using an Instrumental Variables
(IV) approach or a Canonical Correlation Analysis (CCA). The asymptotic
and finite sample properties are studied and an analysis of the comovement,
between Germany, Austria and the United Kingdom is presented.
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1 Introduction

Economic analysis is often concerned with the analysis of comovement be-
tween time series. The cointegration framework suggested by Granger (1981)
and Engle and Granger (1987) focuses on long-term comovement (that is co-
movement at the zero frequency) between a set of non-stationary variables.
Yet, the analysis of short-term comovement (for example at business cycle
frequencies) has not gained the same popularity. An important contribution
was the concept of “codependence” (Gourieroux and Peaucelle (1993)) or
“common features” (Engle and Kozicki (1993)), where it is assumed that a
set of stationary time series shares common short-term movements (called
common cycles), that is, there exists a linear combination of the series that
is unpredictable. To test such “serial correlation common feature” (SCCF)
two different approaches have been proposed. Engle and Kozicki (1993) con-
struct a test using instrument variables (IV) and Vahid and Engle (1993)
employ a canonical correlation analysis (CCA).

This framework has been applied to investigate problems like the rela-
tive purchasing power parity (Gourieroux and Peaucelle (1993)), the perma-
nent income hypothesis (Vahid and Engle (1993)), cross-country real inter-
est rate differentials (Kugler and Neusser (1991)), convergence of European
economies (Beine and Hecq (1998)) and Okun’s law (Candelon and Hecq
(2000)). However, as pointed out by Cubadda (1999a), even a perfect co-
movement at business cycle frequencies does not imply the presence of a
SCCF. In other words, there is only a weak correspondence between the
concept of SCCF and comovement at particular frequencies. Therefore, it
is difficult to disentangle high frequency comovement (for example due to
seasonal behavior) and common business cycle dynamics that are related to
different ranges of frequencies. Furthermore, as the concept of SCCF requires
that the spectral density matrix is strictly positive at all frequencies, the use
of seasonal adjusted data is problematical (cf. Cubadda (1999a, 1999b)).

In this paper we focus on comovement at particular frequencies by trans-



lating the SCCF' concept in the frequency domain. Such common cycle tests
can be used to analyze comovement at different frequencies. In Section 2
we introduce the basic definitions of our concept. Empirical procedures to
estimate and test common cycles at a particular frequency are considered in
Section 3. The power of the tests are analyzed in Section 4 and in Section 5
the methodology is applied to study the degree of synchronization between
three european countries (Germany, Austria and the United Kingdom). Fi-
nally, Section 6 concludes.

2 Basic Concepts

To illustrate the main ideas, it is useful to consider a simple example. Let
y1; and yo; be two stationary time series that can be decomposed as

Yit = Ct+ Ut (1)
Yoo = YC+ U, (2)

where ¢; is the common cycle and u; and v, are uncorrelated white noise
series. According to the definition of Engle and Kozicki (1993) the series
have a “serial correlation common feature” (SCCF) with the property:

E(yyi — yae|Ii—1) =0, (3)

where I;_; is the information set given by I;_1 = {y1,1-1,Y2.-1, Y12, Y2,6-2, - - - }-
In other words, there exists a linear combination z; = +'y; that is not pre-
dictable conditional on I; ;.

For business cycle analysis this concept of a SCCF seems to be overly
restrictive. For example, assume that u; (or v;) has a high frequency com-
ponent that is predictable using I;_;. An example is a joint seasonal pattern
in the series. Using the concept of Engle and Kozicki (1993) we conclude
that there is no “common cycle” although the predictability is irrelevant for
business cycle analysis. On the other hand the series may share a common
(stochastic) trend so that their long run relationship is predictable. However,
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such long-run properties are analyzed by theories of economic growth while
business cycle theories focus on the cyclical properties of the time series.

Hence, for our analysis we modify the original concept of “common cycles”
(or SCCF) in order to investigate the comovement at particular business
cycle frequencies. To do so we consider the forecast ability of the series in a
frequency domain. Under some well known conditions the optimal prediction
of z; is the conditional expectation & = (z;|[;_1). If z; and the variables in
I; are stationary, then the series & is also stationary and possess a spectral
density f¢(w). In the following definition, we define predictability at some
frequency w* by using the spectral density of &;.

Definition 1: Assume that z; is a stationary time series with E(z) = 0 and
spectral density f,(w) > 0 for all w € [0,7]|. Furthermore, the information
set is defined as I—1 = {yi—1,Yt—2, ...} and fe(w) is the spectral density of
the forecast & = E(z|l—1) = ¥(L)ys—1. The series z; is not predictable at

frequency w*, if fe(w*) = 0.

Our definition is similar to the definition of noncausality at some given fre-
quency as suggested by Geweke (1982) and Hosoya (1991). The latter mea-
sure is also used by Granger and Lin (1996).

Using the definition of predictability at some given frequency, we are able
to define a common cycle at frequency w*.

Definition 2 (Common Cycle): Let y; be a stationary n x 1 vector with a
positive definite spectral density matriz at all frequencies. Then, y; is said to
possess a common cycle with frequency 0 < w* < 7, if (i) the components of
Yy are predictable at frequency w* and (ii) there exists a linear combination
2z = Y'ys that is not predictable at frequency w*.

This definition relaxes the original concept of Engle and Kozicki (1993) by
assuming that only the part of the series related to the business cycle frequen-
cies possesses the SCCF. Obviously, if i, has the SCCF feature according to



Engle and Kozicki (1993), then there are common cycles at all frequencies.
Before considering empirical test procedures we make some remarks that are
related to alternative ways to generalize the SCCF definition introduced by
Engle and Kozicki (1993).

Remark A: The measure can also be applied to cointegrated time series.
Consider the vector error correction model (VECM):

Ay, = af'y 1 + DAy 1 + -+ + LAy p +ur (4)

where y; is a n X 1 vector of integrated time series and «, 3 are n X r matrices
with 0 < 7 < n. The one-step ahead prediction is & = af'y_1 + ['1Ay_1 +
-+, Ay, p is stationary with positive spectral density, in general. However,
if I',..., T, are singular with o 3" and some arbitrary n x r matrices o for
j = 1,...,p, then the prediction of zz = o/ Ay; with o/, = 0 can be
expressed by using the lagged differences of v; = 'y, alone. In this case z; is
unpredictable at frequency zero because &; is a function of Avy_y,..., Av,,
and, therefore, f¢(0) = 0 (see also Gonzalo and Granger (1995)). Hecq et
al. (1998) suggest the concept of “weak form SCCF”. Accordingly, their
framework requires that there exists a matrix v such that 'I'; = 0 for j =
1,...,p but not necessarily 7'« = 0 as in Vahid and Engle (1993). Thus, this
definition allows for a linear combination that is predictable in the long-run

(at frequency zero).

Remark B: Gourieroux and Peaucelle (1993) and Vahid and Engle (1997)
propose a generalization in a different direction. According to their definition,
a vector of time series, 1;, with a codependent cycle has the property

E(Y'yilIi—q) =0 (5)

for some ¢ > 1. Thus, the linear combination +'y; is predictable at forecast
horizons less than g. This generalization is similar in spirit to our concept
as it allows for predictability at short forecast horizons. Our framework,



however, operates in a frequency domain so that predictability is allowed at

high frequencies.

Remark C: In a cautious note Cubadda (1999 a) points out that the SCCF
concept of Engle and Kozicki (1993) is not (or only weakly) related to the co-
movement at business cycle frequencies measured by the coherence between
the series. Indeed the original SCCF concept and the frequency domain ver-
sion considered here are based on a measure of comovement between the
predicted series. If there is a common cycle as defined in Definition 2, then
the predicted series show a perfect comovement at that frequency, while the
observed series (the predictable and the unpredictable part) may exhibit a
weak comovement only. Usually, economic theory make statements about
the expected response to economic shocks. For example, the heterogeneous
consumer hypothesis of Campbell and Mankiw (1989) implies that the im-
pulse responses of income and consumption with respect to the transitory
shock are proportional (see also Vahid and Engle (1993)). If the permanent
component is a pure random walk, this implies that predicted income and
consumption are perfectly correlated although the observed series may only
be weakly correlated.

Remark D: Cubadda (1999a) notes that the SCCF cannot be used for
seasonally adjusted data because the usual seasonal adjustment procedures
introduce a zero spectrum at the seasonal frequencies. This, however, is in
conflict with the SCCF feature that requires a flat spectrum. By focusing on
the frequencies of interest, our frequency based concept is able to cope with
this problem. A zero spectral density at other frequencies does not affect the

analysis, at least in large samples.



3 Empirical test procedures

In order to test for a common cycle at some given frequency w*, we first have
to test, whether the involved time series are predictable at w*. If they are
not predictable at w* it does not make sense to speak of a common cycle (see
also Engle and Kozicki 1993). In a second step, we test whether there exists
a linear combination that is unpredictable at the frequency of interest. For
both steps of the analysis, similar tests can be performed.

Our approach is based on a vector autoregressive (VAR) framework. Let
y; be generated by a VAR(p) model

vy = A+ + Ay p e (6)
= A(L)ys—1 + &,

where ¢, is a n x 1 time series vector and A(L) = Ay + AsL +---+ A, LP!
and L is the lag operator. According to Definition 1, if the matrix A(e™") is
singular, then there exists a linear combination z; = +'y; that is unpredictable
at frequency w*. To simplify the exposition we confine ourselves to a bivariate
system (n = 2). In this case we have

2 = i1t apYie—p +biyas 1+ F Yo p + U (7)
= a(L)yrs1+b(L)y2e 1+ u (8)

where u; is white noise with E(u?) = o2. Notice that the coefficients a,

and b; depend on the vector y. However, to keep the notation clear this
dependency is suppressed in our notation.

The one-step ahead prediction is equal to the conditional expectation

& = E(z|li—1) = a(L)y1—1 + b(L)ya,—1 -

If we want to test whether y; is unpredictable at frequency w* we let v =
[1,0]’, whereas yy; is tested by setting v = [0, 1]".
The prediction & has a zero spectral density at frequency w* if (i) yy,

and yo; have a zero spectral density at w* or/and (ii) the gain functions of
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the filters a(L) and b(L) have a zero at frequency w*. Since we assume that
the series are predictable at w (see Definition 2) condition (i) does not hold.
Condition (ii) is satisfied if

la(e® )| =0 and |b(e*")| =0, 9)

which is equivalent to

p p

Y ascos(w*s) =0 Y assin(w*s) =0

s=1 s=1 (10)
P P

> bscos(w*s) =0 Y bysin(w*s) =0.

s=1 s=1

Let 8 = [a1,...,ap,b1,...,0,]'. Then, we can test the hypothesis by using
the usual Wald, LM or LR statistics for the null hypothesis

Hy: Rw")B=0, (11)
where
cos(w*) cos(w*p) 0 0
w | sin(w*) sin(w*p) 0 0
Rlw") = 0 0 cos(w*) -+ cos(w*p)
0 0 sin(w*) .-+ sin(w*p)

Notice that sin(w*) = 0 for w* = 0 and w* = 7 so that the respective rows
can be dropped in these cases.

To test the hypothesis (11), an instrumental variable approach can be
used that is similar to the one suggested by Engle and Kozicki (1993). Let v =
(1, =],z = [y1,t71, e YLt-py Y215 - - y2,tfp] and @ = [R', R'], where R
is an orthogonal complement of R. Then, the regression (7) can be rewritten

as
Yie = Yol + ﬁ*lﬂff + Uy
= Yoyxu + B, + By, + uy
where
F=@p=0] ad o=@ w =[]
B5 Loy
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Under the hypothesis that v = [1,—7,]" is a cofeature vector, the model
reduces to

Y1t = Y2Y2t + ,Bikll"ft + Uy . (12)

This model can be estimated by using x; (or zj) as the vector of instru-
mental variables. The common cycle hypothesis implies an over-identifying
restriction that can be tested by using Sargan’s test statistic:

T T -1 T

As = 5,° ( > ﬁtacg) ( > acta:t'> ( > xtﬂt> , (13)
t=p+1 t=p+1 t=p+1

where ; denotes the residual of (12) and 62 = T~1 3 @? is the respective

variance estimate. Under the null hypothesis of a common cycle, the test

statistic is asymptotically x? distributed with 3 degrees of freedom.

This test can easily be generalized for a vector of n time series with
the common feature vector v = [1,—7,...,—7,). In this case, we let
Ty = (Y115 o> Ylps Y2,t—1s - <3 Y2,t—ps - - - » Ynt—1» - - - » Ynt—p| and the restric-
tion matrix is R =diag[®(w*), ..., ®(w*)], where
B(w*) = cgs(w:) cgs(w:p)

sin(w*) --- sin(w*p)
The resulting Sargan statistic is asymptotically x? distributed with n + 1
degrees of freedom.

To avoid the normalization that one element of v is set to unity, a limited
information maximum likelihood (LIML) approach or a canonical correlation
approach (CCA) can be employed. The LIML estimator is obtained from

maximizing the variance ratio:

Ile* X*IX* —1X*IY
ALimi = SUp i ; 3 (X 2), 21 ) (14)
PU Y X (XX) XY
where Y = [ypi1,...,yr], X5 = [25,4,...,257] and X = [zp41,...,27]"

The resulting LIML estimate is the eigenvector corresponding to the largest

eigenvalue of the matrix
C=Y'X;(X3'X) "' X3 YYV'X(X'X)"'X'Y)™.
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Following Vahid and Engle (1993) we may also use a Canonical Correlation
approach. Let Py = I — X{(X{'X7)7' X}, where X{ = [2f ,,4,...,2}7]
Furthermore, we define Y = P;Y. Then, the CCA is based on the eigenvalue
problem:

Y'Y — V' XXX XY =0. (15)

Estimates for the vector v are obtained as the eigenvectors corresponding
to the smallest eigenvalues. The existence of a common cycle according to
Definition 2 can be tested by comparing the smallest eigenvalue to the critical
value of the x? distribution with n + 1 degrees of freedom. Using

YVX(X'X)''X'Y =YX (XPXH)IXYY + VXX X)) XY

it is easy to show that the LIML and CCA approaches yield identical test
statistics.

4 Power

To study the local power of the test, we consider the simple model

Yo,0 = bo(L)y1e—1 + vy (16)

where by(L) = a1 — 2cos(wp)L + L?] and {y1+}, {u:} are white noise. De-
spite of the simplicity of this model we are able to derive some important
features of the test for common cycles. A more general model implies addi-
tional parameters and more complicated formulae without gaining additional
insight. Since, the gain function of the filter by(L) is zero at wp, the process
is unpredictable at frequency wy.

Assume, however, that instead of wy we test against the frequency w* =
wo+c/ VT and, thus, we study the local power of the test when the frequency
under test converges to the true frequency with a suitable rate. Using a
Taylor expansion around wg, the process can be represented as

yip =~ b (D)yay1 — T~ 2casin(w*)ya, o + Uy - (17)
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Table 1: Actual and asymptotic power

wo =m/4 wo =m/2 wo = 3m/4
¢ | actual | asympt. | actual | asympt. | actual | asympt.

0.5] 0.068 | 0.069 | 0.128 | 0.133 | 0.066 | 0.069
1.0 | 0.131 0.133 | 0.409 | 0.416 | 0.123 | 0.133
1.5 0.278 | 0.250 | 0.768 | 0.771 0.225 | 0.250
2.0] 0.494 | 0.416 | 0.953 | 0.957 | 0.355 | 0.416
251 0.716 | 0.603 | 0.995 0.996 | 0.500 | 0.603
3.0 0.878 | 0.771 1.000 1.000 | 0.633 | 0.771

Note: Entries of this tables report the rejection frequencies of 5,000
simulations generated according to model (16) with @ = 1. The
sample size is T' = 500 and the 0.05 significance level is used.

where b*(L) = o[l — 2cos(w*)L + L?] Tt follows that the power of the test
depends on ¢ and the frequency w*. The following proposition gives the
distribution of the IV test statistic under such local alternatives.

Theorem 1: Let y;; be generated as in (16), where {y2:} and {u:} are
independent white noise processes with finite variances. Under the local al-
ternative w* = wy + ¢/V/T the test statistic As is asymptotically distributed
as a noncentral x? distributed random variable with noncentrality parameter

2 [2casin(wg)]?
14 2cos(wp)?

From this result two important conclusions can be drawn. First, the test
suffers from a “leakage problem”, that is, the power of the test deteriorates if
the frequency under test tends towards the common cycle frequency. Hence,
the test statistic has problems to detect deviations from the null hypothesis,
if there exists a common cycle with a similar frequency.

Second, the power of the test depends sensitively on the frequency under
test. The maximal power against local alternative is at wy = /2 and for
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wo — 0 and wy — 7, the local power against common cycles with frequencies
close to the hypothesized frequency tends to zero. This should be taken into
account when comparing the test results at different frequencies. Moreover,
this result suggests that the sampling frequency of the test is important
for testing the common cycle hypothesis. For example, using a monthly
frequency instead of quarterly frequency increases the number of observations
by a factor of 3 but on the other hand, the frequency under test also shifts
by the same factor towards zero. Hence, increasing the sampling frequency
does not need to improve the power of the test.

To investigate the reliability of our asymptotic results we simulate time
series according to (16) with o = 1 and 7' = 500. The frequency under test
is w* = wp + ¢/ VT, that is, we test at frequencies close to the frequency of
the common cycle. The results are shown in Table 1. For a common cycle
at wy = 7/2 the empirical power is very close to the asymptotic powers. For
wp = m/4 and wy = 37/4 we found that for small values of ¢ the actual power
is well approximated by the asymptotic power but for increasing values of ¢
the asymptotic theory provides a less accurate approximation to the actual
power. Furthermore, the actual power tends to be asymmetric for substantial
values of c.

Next, we study the power of a VAR(3) process of the form

0 04 0.3 0.2] (18)

_ : n __
Yo = [0.4 0 ]y’f—ﬁgt with E(eee;) = [0.2 0.3

If # = 0.4, then v = [1, —1]' is a co-feature vector and ~'y; is white noise. In
this case we can use the SCCF-tests suggested by Engle and Kozicki (1993)
and Vahid and Engle (1993). These tests can be seen as a joint test for
the hypothesis that there is a common cycle at all frequencies. In contrast,
the tests suggested in Section 3 are based on the hypothesis that there is a
common cycle at some pre-specified frequency. For 6 # 0.4 the process has
no common common cycle and, thus, we are able to compare the power of
the different test statistics. Since the common cycle hypothesis is violated
for all frequencies, it is natural that the joint test is more powerful against

11



Table 2: Size and Power

Common cycle Tests

9 =01 0 =02 0 =03 0 =04

IV |CCA| IV |CCA| IV [CCA| IV [ CCA
m/2 [ 0.715 | 0.688 | 0.368 | 0.359 | 0.127 | 0.127 | 0.048 | 0.051
7/3 | 0.835 | 0.819 | 0.477 | 0.473 | 0.151 | 0.153 | 0.051 | 0.052
7/4 | 0.866 | 0.883 | 0.513 | 0.515 | 0.157 | 0.161 | 0.047 | 0.054
7/10 | 0.901 | 0.897 | 0.552 | 0.556 | 0.172 | 0.174 | 0.051 | 0.055
7/15 | 0.901 | 0.901 | 0.556 | 0.559 | 0.167 | 0.170 | 0.051 | 0.050

SCCF tests
all ]0.935]0.926 | 0.599 | 0.570 | 0.177 | 0.166 | 0.055 | 0.056

Note: Entries of this tables are the rejection frequencies for 10,000 realiza-
tions of model (18). The sample size is T=200 and a 0.05 significance level
is used.

such type of alternatives. We will therefore use the original SCCF tests as
a benchmark for assessing the loss of power when focusing on a particular
frequency only.

The data is generated using normally distributed errors generated with
the Gauss 3.2 package. The sample size is T' = 200 and 10,000 replications
are used. Table 2 presents the rejection frequencies of the tests when the IV
version of the test is used. Letting # = 0.4 we obtain empirical sizes that
are close to the nominal size of 0.05. As expected we find a lower power for
the single-frequency test. Nevertheless, the tests have substantial power for
all frequencies and the power increases when the frequency tends to zero.
Furthermore, the powers of the IV and CCA statistics are very similar.

5 FEuropean Business Cycles

The common cycle framework can be used to investigate the synchronisation
of European business cycles. The fact that a set of economies share common
dynamics constitutes an important condition for the characterization of an
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”Optimal Currency Area” (see Mundell (1961), for example). A number of
empirical studies coped with this problem for the European countries (see for
example Artis and Zhang (1995), Bayoumi and Eichengreen (1993)). Among
them, Rubin and Thygesen (1997) and Beine, Candelon and Hecq (2000) test
for the existence of an European common cycle by using the SCCF framework
of Engle and Kozicki (1993) and Vahid and Engle (1993).

For our application we focus on three European countries: Germany,
Austria and the United Kingdom. The first two countries are expected to
show a strong comovement, whereas Germany and the United Kingdom are
supposed to be loosely linked and should therefore present weaker comove-
ments. We focus on seasonally unadjusted industrial production (IP) indices
for the period ranging from 1975m1-1997m4 extracted from the datastream
database. These indices are also analyzed by Rubin and Thygesen (1997)
and Beine, et al. (2000).

First the series are tested for possible unit roots. In Table 3 the results
of the tests suggested by Hylleberg et al. (1990) are presented. The results
suggest that the series have unit roots at frequency zero and some seasonal
frequencies. It is therefore necessary to remove the unit roots by applying the
annual difference filter Ao = (1 — L'?).} The resulting series are compared
in Figure 1 a) for Germany and Austria and in Figure 1 b) for Germany and
the United Kingdom.

The Akaike information criterion (AIC) suggests that the first system
(German and Austria IP indices) can be represented by a VAR (11) and the
second one (German and United Kingdom industrial IP indices) by a VAR
(9). All equations include a constant term. Table 5 presents the SCCF statis-
tics for both systems. The test statistic based on a 2SLS approach suggested
by Engle and Kozicki (1992) is denoted by "IV” and the canonical correla-
tion statistic due to Vahid and Engle (1993) is denoted by ”CCA”. It turns
out that both tests reject the presence of a common cycle for both system.

Tt is important to note that a possible “overdifferencing” at some seasonal frequencies
does not affect the inference on other frequencies (e.g. business cycle frequencies).

13



Table 3: HEGY Seasonal Unit Roots Tests

Ger Au UK
Lags 1t011 1t06 11010
Model | ¢,sd |c¢,sd,t| ¢,sd |c,8d,t| ¢, sd ¢, sd, t
T -1.02 -1.83 -0.38 -3.14 -0.54 -2.09

Up) -3.16* | -3.13* | -1.66 | -1.70 | -1.16 -0.99
m3Nmy | 6.57° | 6.48" 4.95 4.68 2.60 3.21
msNmg | 11.68* | 11.45* | 6.83" | 6.51" 4.33 2.56
m7Mg 3.61 3.56 | 15.37* | 12.54* | 2.88 3.17
moNmyo | 12.86* | 12.64* | 14.61* | 15.06* | 12.35* 9.08*
m N | 8.17F | 8.24* | 16.57* | 16.62* | 1.69 2.31

Note: This table presents the results of unit root tests at zero and seasonal
frequencies (see Franses (1990)) for models with a constant and seasonal
dummies (c,sd) and with a constant, seasonal dummies and a deterministic
trend (c,sd,t). * indicates a rejection with respect to the 5% critical value.

This confirms the results of Beine et al. (2000), stressing the surprisingly low
degree of synchronisation between European economies.

The results of the common cycle analysis are shown in Figure 1. The
second row show plots of the test statistics for frequencies in the range w €
(0, 7) and the third row presents the respective IV estimates of the parameter
c for the common feature vector v = [1, c|', where both bivariate systems are

normalized such that the coefficient for the German IP series is unity.

Table 4: Test of SCCF

Ger/UK Ger/Au
CCA 188.627* 59.480"
IAY 148.800* 42.926*

Note: Entries of this tables are the rejection frequencies
for 10,000 realizations of model (18). The sample size is
T=200 and a 0.05 significance level is used.
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Figure 1: Common Cycle Analysis
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For Germany and Austria a common cycle is accepted in a range w €
[0.35,0.7] corresponding to a wave length between 8 and 22 months. These
frequencies are higher than the usual range of business cycle frequencies
suggesting that the comovement is to a lesser extend due to a synchronous
business cycle. For typical business cycle frequencies the test statistic is
roughly equal to the 0.01 critical value. For the interval w € [0,0.7] the
estimated cofeature vector is close to v = [1,—1]" and the value ¢ = —1
always lies inside the 95%-confidence intervals. For higher frequencies the
confidence interval covers the value ¢ = 0 suggesting that the German IP
series is not predictable for frequencies higher than 0.8.

Interestingly, the results for Germany/U.K. are quite different. In this
application the common cycle hypothesis is clearly rejected for frequencies up
tow = m/2 (4 months). For higher frequencies, the estimated cofeature vector
is close to v = [1, 0], suggesting that the acceptance of the null hypothesis at
very high frequencies is due to the fact that the German IP is not predictable
at high frequencies.

6 Conclusion

By decomposing the SCCF in the frequency domain we propose tests and
estimators for common cycles at some pre-specified frequency. Such a concept
can be used to analyze the comovement of a collection of time series in
the frequency domain. The advantage of this approach is that the analysis
focuses on particular frequencies (e.g. business cycle frequencies) and, thus,
does not restrict the dynamic relationship of the series at all frequencies.
Consequently, the analysis is robust to problems at other frequencies (e.g.
resulting from a seasonal adjustment of the data).

We study the asymptotic and finite sample properties of the tests and
illustrate the analysis by studying the comovements between three European
countries (Germany, Austria and the United Kingdom). We hope that our

concept of common cycles is also useful to explain short-run comovements of
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other time series.
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Appendix: Proof of Theorem 1:

ProOOF: The null hypothesis that y,; is unpredictable at frequency w is equiv-
alent to R(w*)ﬂ = 0in the model yo; = B'w+uy, where ¢ = [y14-1, Y14-2, Y1,0-3]",
B = [a, —a2 cos(wy), @] and

Bl — cos(—w*) cos(0) cos(w)
R(w’) sin(—w*)  sin(0) sin(w)}
_ [ cos(wr) 1 cos(w)]
—sin(w*) 0 sin(w)
Furthermore R, (w*) = [1,—2cos(w*),1]. From the inverse of Q(w*)" =

[R. (w*)", R(w*)"]" we obtain under the null hypothesis
Yo = Bray + Uy

where 3 =  and x1; = y1,4—1 — 2c0s(W*)y1,1—2 + Y1,4-3-
The IV estimator of 3 is given by

Br = [XP'X(X'X)IX' XXX (X' X) 7 Xy,

where the matrices are defined as in Section 3. From the model assumptions
it follows that

T'X'X 5 oil; o} =E(y},)
1

T 'X'X} =o0? | —2cos(w*)
1

Since the residual vector yg—afx{,t is orthogonal to the vector Z(Z'Z)~'Z' X;
it follows that

(y2 — BiX7) X (X'X) "' X'X;
1
= (yo— BiX7)'X | —2cos(w*)
1
= (yo— B X})X; =0.
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Let

1 cos(w*) —sin(w*)
X*=[X], X5, X)] =X | —2cos(w®) 1 0
1 cos(w*)  sin(w*)

Since the test statistic remains the same if the instruments X are replaced
by X*, the test statistic can be written as

As = 6.%(y2 — BiX7)X(X'X)' X (o — B XT)
= 7,%(yo — BIX])XH(XYX*) XY (y, — BrXT)

It is easy to verify that
T\2E((y, — B X])'X}] = —2casin(w*) + o(1)
and

T-2E[(y, - B1X7)'X3] = 0.

Furthermore,
2 + 4 cos(w*)? 0 0
T'XX* L o2 0 1+ 2cos(w*)? 0
0 0 2 sin(w*)?

and, thus, the limiting distribution of \g is a noncentral x? distributed with
2 degrees of freedom and noncentrality parameter

5 [2casin(w*)]?
14 2cos(w*)?
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