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ExploRing Persistence in Financial Time
Series

David Lee

1 Introduction

If financial time series exhibits persistence or long-memory, then their uncon-
ditional probability distribution may not be normal. This has important im-
plications for many areas in finance, especially asset pricing, option pricing,
portfolio allocation and risk management. Furthermore, if the random walk
does not apply, a wide range of results obtained by quantitative analysis may
be inappropriate. The capital asset pricing model, the Black-Scholes option
pricing formula, the concept of risk as standard deviation or volatility, and the
use of Sharpe, Treynor, and other performance measures are not consistent
with nonnormal distributions. Unfortunately, nonnormality is common among
distributions of financial time series according to observations from empirical
studies of financial series.

Strict assumptions have to be imposed on the returns of the financial asset to
yield an explicit formula for practical applications. For example, in one of the
strictest forms, we have to assert that the returns are statistically independent
through time and identical across time for a cross-section of returns. Under
the assumptions, we can derive a simple and yet elegant relationship between
risk and return, as in the case of the security market line. These assumptions
can be relaxed, and skewness as well as excess kurtosis can be easily accommo-
dated using other distributions. For example, we can be more flexible in the
specification of the distribution function using log-normal or stable class such
as Pareto-Levy or stable Paretian distributions (e.g. Cauchy and Bernoulli), of
which the normal distribution is a special case.

Models that take into account the asymmetric and fatter tails empirical distri-



bution have been used to model financial time series behaviour. Recent studies
concentrated on models that assume returns are drawn from a fat-tailed distri-
bution with finite higher moments. These include t¢-distribution, mix-normal
or conditionally normal. Closed-form expressions that give meaningful rela-
tionship are rare and in most cases, the results are not easy to manipulate
mathematically or empirically implemented. Furthermore, once nonlinearity
is introduced, the possibility is infinite. It becomes difficult analytically and
intuitively. In most cases, the mode of analysing and solving the problem is
computational.

However, observations suggest that many aspects of financial behaviour may
be nonlinear, Attitudes towards risk and expected return are evidently nonlin-
ear, contrary to what unconditional CAPM and other linear models suggest.
Derivatives pricing is also inherently nonlinear. Therefore, it is naturally to
model such behaviour using nonlinear models.

Once we abandon the random walk hypothesis and without more specific the-
oretical structure, it is difficult to infer much about phenomena that spans a
significant portion of the entire dataset. One area that can yield important
insights and addresses some of the violations is long range dependence or the
phenomena of persistence in time series. In this chapter, our efforts are focused
on exploring persistence in financial time series.

A time series persists in the sense that observations in the past are correlated
with observations in the distant future and the relationship may be nontrivial.
In the frequency domain, this is characterised by high power at low frequencies,
especially near the origin. Detection of long range dependence or persistence
has importance implications for short-term trading and long range investment
strategies. Transaction costs are not negligible for tactical asset allocation
based on short-term strategies and long-horizon predictability may be a more
genuine and appropriate form of exploiting profit opportunities. Allocation
decisions will be sensitive to the time horizon and may be dependent on the
degree of long-term memory.

Empirically, most results of the study of long-memory are focused on financial
markets from the developed economies. Here, we look at the stock indices and
exchange rates of markets in Asia. We have obtained results on indices and
currencies of 10 countries using XploRe.



2 Hurst and Fractional Integration

2.1 Hurst Constant

The Hurst constant H is an index of dependence and lies between 0 and 1
(Hurst 1951). For 0 < H < 0.5, the series is said to exhibit antipersistence.
For 0.5 < H < 1, the series is said to possess long-memory or persistence. For
H = 0.5, the series is said to be independent. Although the early work of Hurst
was to address the problem of setting a level of discharge such that the reservoir
would never overflow or fall below an undesirable level, recent applications have
used the Hurst to analyse the fluctuations in financial markets.

In financial markets, H has been interpreted as an indicator of range of depen-
dence, of irregularity and of nervousness (Hall, Hardle, Kleinow, and Schmidt
1999). A higher H signals a less erratic or more regular behaviour; a lower H
reveals a more nervous behaviour. For example, May (1999) has used the Hurst
constant to generate buy-sell signals for financial time series. His strategy em-
ploys the H constant to gauge the stability of the time series. A large Hurst
constant signals greater stability and persistence of uptrend, over at least short
periods of time. Trade in the financial instruments is said to be subject to less
nervousness and enjoys more stability. When H falls below a certain level, it
signals that the market is nervous and a sell-signal is given.

2.2 Fractional Integration

A long-memory time series is fractionally integrated of degree d, denoted by
I(d), if d is related to the Hurst constant by the equality d = H — 0.5. If
d > 0.5 (H > 1), the series is nonstationary. In case 0 < d < 0.5, then
the series is stationary. The non-integer parameter d is also known as the
difference parameter. Notice that if a series is nonstationary, one can obtain a
I(d) series with d in the range of (—0.5,0.5) by differencing the original series
until stationary is induced. When d = 0, the series is an I(0) process and said
to have no long-memory.



3 Tests for I(0) against fractional alternatives

A common feature of the first three tests is the use of the heteroskedastic
and autocorrelation consistent (HAC) estimator of the variance (Newey and
West 1987) for normalisation. The lag-length @ is a user-chosen number.

(i) Lo’s robust rescaled range test (Lo 1991)): lo
(ii) KPSS test (Kwiatkowski, Phillips, Schmidt, and Shin 1992): KPSS
(iii) GKL test (Giraitis, Kokoszka and Leipus 1998): rvlim

The fourth is a nonparametric test

(iv) Lobrob Test (Lobato and Robinson 1998): lobrob
This test is nonparametric in the sense that the test is constructed using
the approximation of the spectrum. The bandwidth can be an user-chosen
number but Lobato and Robinson (1998) has suggested a plausible m for
empirical applications.

4 Semiparametric Estimation of Difference Pa-
rameter d

These estimators are semiparametric estimators. The estimators involve the
unknown parameter of interest d, in the parametric relation

1-D)y =z t=1,2,...,

where L is the lag operator. The spectra density f,()) is estimated nonpara-
metrically imposing the condition that 0 < fy(0) < oo, with mild regularity
assumptions in a neighbourhood of zero frequency, and its behaviour away from
zero is unrestricted. The three estimators of interest are:

(i) GPH (Geweke, and Porter-Hudak 1983)
(ii) Average Periodogram (Robinson 1994)

(iii) Semiparametric Gaussian (Robinson 1995)



Further discussions can be found in Chapter ??. We shall use the default
bandwidth for estimation given by the quantlets. Further discussions regarding
bandwidth selection can be found in Delgado and Robinson (1996).

5 ExploRing the Data

5.1 Typical Spectral Shape

Figures 1 and 2 are plots of the periodogram and spectral density for the returns
computed from DBS50 index. We can see that as frequency approaches zero,
the spectral density estimate displayed in Figure 2 increases rapidly. Granger
(1966) has observed that this is a “typical spectral shape” of many observed
economic time series. Figures 3 and 4 are plots of the periodogram and spectral
density for the first difference of the returns computed from DBS50 index.
Taking the first difference of the series, we now observe that the spectral density
estimate is zero at zero frequency and it increases with f. These results are
consistent with 0 < f,(0) < oo, and (1 — L)%, = .
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Figure 1: Spectral density for the returns computed from DBS50 index
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Figure 2: Periodogram for the returns computed from DBS50 index

5.2 Typical Distribution: Mean, Variance, Skewness and
Kurtosis

We use the command descriptive to obtain the summary statistics of DBS50
returns. We observe that the returns distribution is a “typical thicker-tail and
asymmetric” distribution of many observed financial time series (Campbell, Lo,
and Mackinlay 1997, Chapter 7). The daily return has extremely high sample
kurtosis of 50. This is a clear sign of thicker tails or leptokurtic. The skewness
estimate is -1.87. If one believes in the finite higher moments, then using fat-
tailed distributions are consistent with the empirical observation. Figure 5
plots the histogram and Figure 6 will give an idea of the degree of deviation
from normal distribution.

Contents of desc
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Figure 3: Spectral density for the first difference of the returns computed from
DBS50 index

[ 5,] "nn

[ 6,] " Mean 0.0104578"

[ 7,] " Std.Error 0.589856 Variance 0.34793"
[ 8,] " n

[ 9,1 " Minimum -12.0418 Maximum 6.37548"
[10,]1 " Range 18.4172"

[11,] " n

[12,] " Lowest cases Highest cases "

[13,1 " 1935: -12.0418 4688: 3.45313"
[14,1 " 1934: -6.11557 4509: 3.91006"
[15,1 " 1937: -5.96022 4498: 4.03957"
[16,1 " 1469: -4.72795 1936: 6.26283"
[17,1 " 2430: -4.27287 2684: 6.37548"
[18,] " n

[19,] " Median 0.004296"

[20,] " 25% Quartile -0.239372 75% Quartile 0.272342"
[21,] " n

[22,] " Skewness -1.87137 Kurtosis 50.9346"
[23,] " n

[24,] " Observations 4740"
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Figure 4: Periodogram for the first difference of the returns computed from
DBS50 index

[25,] " Distinct observations 4705"

[26,] non

[27,]1 " Total number of {-Inf,Inf,NaN} o"

[28,] non

[29,1 " "
[30’] "non

6 The Data

The daily data on equity and currency are supplied by Bloomberg. These are
the data watched by investors on a real time basis. Asset allocation and buy/sell
recommendations/decisions for fund managers are sometimes based on reports
that rely on these data. The return data are calculated from 1975 to 1998 for
ten markets and nine currencies against the USD. The ten markets are Singa-
pore (DBS50), Hong Kong (HSI), Malaysia (KLCI), Japan (NKY), Philippines
(PCOMP), Indonesia (JCI), South Korea (KOSPI), Thailand (SET), Taiwan
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Figure 5: Histogram of returns of DBS50

(TWSE) and USA (INDU). The nine currencies against USD are SGD, HKD,
MYR, JPY, PHP, IDR, KRW, THB and TWD.

7 The Quantlets

The followings are the quantlets for producing the results in next section. Each
quantlet is just an example and is executed using the data for each country.

Quantlet 1:

library("times")
x=read ("dbs50.dat")
nobs=4740
x=x[1:nobs]

spec(x)

pgram(x)

library("times")
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Figure 6: Comparison with Normal distribution of returns of DBS50

x=read ("dbs50.dat")
nobs=4740
x=x[1:nobs]
y=tdiff (x)

spec(y)

pgram(y)

@ as1mo1 .xpl
Quantlet 2:

library("stats")

x=read ("dbs50.dat")

nobs=4740

output ("dbs50sum.out","reset")
x=x[1:nobs]

descriptive(x,"z")
library("plot")
setsize(480,320)

plothist(x)
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gr=grqqn(x)
plot(gr)

library("smoother")

h=(max (x)-min(x))*0.05
fh=denest (x,h,"qua")
fh=setmask(fh,"line")
library("plot")
plotdisplay2=createdisplay(1,1)
show(plotdisplay2,1,1,fh)
t1l="Density Estimate"
x1="Return"

yl="density fh"

setgopt (plotdisplay2,1,1,"title",tl,"xlabel",x1,"ylabel",yl)
output ("dbs50sum.out","close")

@ as1m02 .xpl
Quantlet 3:

library("times")
x=read ("dbs50.dat")
nobs=4740

output ("dbs50x.out","reset")
x=x[1:nobs]

y=x

1=1lo(y)

k1=kpss(y)
k=rvlim(y)
t=lobrob(y)
g=gph(y)
d=robwhittle(y)
dd=roblm(y)

h=hurst (y,50)

1

k1

k

t

g
d
dd
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h
output ("dbs50x.out","close")

@ as1m03 .xpl

8 The Results

8.1 Equities

DBS50 HSI KLCI NKY PCOMP JCI KOPSI SET TWSE INDU
lo statistics

Q=5 1.28 1.12 1.65 2.16 1.4 1.62 2.15 1.85 1.56 1.26
Q =10 1.25 1.1 1.63 2.17 1.36 1.62 2.18 1.77 1.69 1.29
Q =25 1.16 1.07 1.53 2.1 1.23 1.5 2.02 1.63 1.71 1.31
Q =50 1.08 1.09 1.4 2.04 1.17 1.42 1.89 1.59 1.69 1.29
KPSS statistics

Order = 1 0.16 0.05 0.29 1.33 0.29 0.3 0.81 0.87 0.03 0.14
Order = 2 0.12 0.04 0.23 1.46 0.2 0.18 0.7 0.58 0.11 0.15
Order = 3 0.1 0.04 0.2 1.36 0.16 0.15 0.59 0.48 0.11 0.15
V/S statistics

Constant

Order = 1 0.06 0.05 0.09 0.14 0.07 0.26 0.09 0.06 0.01 0.03
Order = 2 0.04 0.04 0.07 0.16 0.05 0.16 0.08 0.04 0.06 0.03

Order = 3 0.04 0.04 0.06 0.16 0.04 0.13 0.07 0.03 0.06 0.03

Trend

Order =1 0.06 0.05 0.08 0.3 0.08 0.28 0.26 0.18 0.01 0.06
Order = 2 0.03 0.04 0.06 0.33 0.06 0.17 0.23 0.18 0.06 0.06
Order = 3 0.03 0.04 0.05 0.31 0.04 0.14 0.19 0.18 0.06 0.07
Bandwidth 630 916 767 874 313 326 490 330 697 1190

lobrob Test -3.16 -1.24 -1.61 0.27 =-2.9 -1.43 -4.58 -3.47 0.82 1.95

d: gph -0.09 -0.12 0.07 0.12 -0.03 0.08 0.05 0.02 0.07 -0.06
Bandwidth 1185 1174 1352 946 747 946 1025 700 1713 1522
d: lmrob 0.05 0.04 0.04 -0.010.04 0.12 -0.005 0.1 =-0.11 -0.03
Bandwidth 593 B87 676 473 374 473 512 350 857 761

d: lmrob 0.09 0.04 0.05 0.01 0.04 0.01 0.08 0.1 -0.02 -0.02
Bandwidth 206 293 338 237 187 237 266 175 428 381

d: lmrob 0.06 -0.03 0.08 0.07 0.16 0.07 0.11 0.09 0.06 -0.006
Bandwidth 1185 1174 1352 946 747 946 1025 700 1713 1522

d: robwhittle 0.01 0.02 0.01 -0.03 0.05 0.18 -0.1 0.07 -0.26 -0.03
Bandwidth 593 587 676 473 374 473 B12 350 857 761
d: robwhittle 0.09 0.09 0.04 -0.04 -0.012 -0.05 0.07 0.09 -0.1 -0.04

Bandwidth 206 293 338 237 187 237 266 175 428 381
d: robwhittle 0.06 -0.01 0.04 0.12 0.16 0.03 0.08 0.12 0.08 -0.03
Hurst 0.35 0.35 0.34 0.3 0.26 0.42 0.16 0.27 0.53 0.34
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8.2 Exchange

SGD HKD MYR YEN PHP IDR KRW THB TWD
lo statistics

Q=5 1.72 2.48 1.53 1.42 1.43 1.85 1.88 2.03 2.48
Q =10 1.74 2.37 1.63 1.38 1.57 1.73 1.89 1.99 2.34
Q =25 1.63 2.27 1.56 1.28 1.53 1.63 1.63 1.8 2

Q =50 1.6 2.3 1.46 1.23 1.45 1.49 1.49 1.67 1.87
KPSS statistics

Order = 1 0.19 0.9 0.23 0.12 0.17 0.34 0.15 0.11 1.71
Order = 2 0.22 1.04 0.26 0.1 0.27 0.27 0.19 0.12 1.42
Order = 3 0.19 0.98 0.22 0.08 0.26 0.23 0.13 0.09 1.05
V/S statistics

Constant

Order = 1 0.18 0.17 0.08 0.09 0.04 0.1 0.09 0.09 0.16
Order = 2 0.21 0.2 0.09 0.07 0.07 0.08 0.11 0.1 0.14
Order = 3 0.18 0.2 0.07 0.06 0.07 0.07 0.08 0.07 0.11
Trend

Order = 1 0.18 0.23 0.08 0.09 0.084 0.18 0.1 0.09 0.61
Order = 2 0.21 0.27 0.09 0.08 0.133 0.14 0.13 0.1 0.5
Order = 3 0.18 0.25 0.07 0.06 0.132 0.12 0.09 0.08 0.37
Bandwidth 884 635 1281 1278 347 397 427 869 840

lobrob Test -0.71 -3.75 0.93 -3.26 2.73 -1.53 -12.16 -3.97 -8.55

d: gph -0.07 0.09 0.1 0.05 0.23 0.3 -0.08 0.01 0.04
Bandwidth 1135 1135 1526 1523 455 456 1111 1142 900
d: lmrob 0.01 0.12 -0.005 0.04 -0.07 0.04 -0.11 0.05 0.09
Bandwidth 567 568 763 761 227 228 556 571 450
d: lmrob 0.04 0.07 -0.04 0.06 -0.07 0.1 0.18 0.08 0.12
Bandwidth 284 284 381 381 114 114 278 286 225
d: lmrob 0.09 0.03 0.12 0.1 0.09 0.11 0.34 0.11 0.15
Bandwidth 1135 1135 1526 1523 455 456 1111 1142 900
d: robwhittle -0.02 0.12 0.04 0.01 -0.07 -0.006 -0.48 0.03 0.07
Bandwidth 567 568 763 761 227 228 556 571 450
d: robwhittle 0.02 0.11 -0.23 0.04 -0.27 0.11 0.17 0.1 0.09
Bandwidth 284 284 381 381 114 114 278 286 225
d: robwhittle 0.11 0.03 0.07 0.11 0.1 0.029 0.3 0.14 0.15
Hurst 0.256 0.38 0.46 0.26 0.3 0.33 0.51 - 0.43

Recent studies suggest that long-memory is present in absolute returns and
square of returns. We have not reported the results for absolute and squared
returns. The results here seem to suggest that some returns series exhibit
long-memory characteristics. The returns calculated from the indices Nikkei,
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KOSPI, and SET exhibit persistence characteristics according to the first three
tests. The nonparametric test lobrob seems to suggest that DBS50, JCI,
KOSPI, SET and INDU also possess long-memory.

For the exchange rates, it is not surprising that most exchange rates exhibit
persistence as most countries manage their currencies either in the form of
managed float, pegging or some form of capital control. What is surprising
though, is the non-detection of persistence in MYR and IDR, which was ex-
pected to exhibit persistence. The deliberate intervention in the market and
managed depreciation over the years, especially for Ruppiah, did not show up
as persistence in the series.

9 Practical Considerations

Previous studies of long-memory and fractional integration in time series are
numerous. Barkoulas, Baum, and Oguz (1999a), Barkoulas, Baum, and Oguz
(1999b) studied the long run dynamics of long term interest rates and cur-
rencies. Recent studies of stock prices include Cheung and Lai (1995), Lee
and Robinson (1996), Andersson and Nydahl (1998). Batten, Ellis, and Hogan
(1999) worked with credit spreads of bonds. Wilson and Okunev (1999) searched
for long term co-dependence between stock and property markets. While the
results on the level of returns are mixed, but there is general consensus that the
unconditional distribution is non-normal and there is long-memory in squared
and absolute returns. The followings are some issues. Though not mutually
exclusive, they are separated by headings for easier discussions:

9.1 Risk and Volatility

Standard deviation is a statistical measure of variability and it has been called
the measure of investment risk in the finance literature. Balzer (1995) argues
that standard deviation is a measure of uncertainty and it is only a candidate,
among many others, for a risk measure. Markowitz (1959) and Murtagh (1995)
both found that portfolio selection based on semi-variance tend to produce
better performance than those based on variance.

A normal distribution is completely characterised by its first two statistical
moments, namely, the mean and standard deviation. However, once nonlinear-
ity is introduced, investment returns distribution is likely to become markedly

14



skewed away from a normal distribution. In such cases, higher order moments
such as skewness and kurtosis are required to specify the distribution. Stan-
dard deviation, in such a context, is far less meaningful measure of investment
risk and not likely to be a good proxy for risk. While recent developments are
interested in the conditional volatility and long memory in squared and ab-
solute returns, most practitioners continue to think in terms of unconditional
variance and continue to work with unconditional Gaussian distribution in fi-
nancial applications. Recent publications are drawing attention to the issue of
distribution characteristics of market returns, especially in emerging markets ,
which cannot be summarized by a normal distribution (Bekaert et al. 1998).

9.2 Estimating and Forecasting of Asset Prices

Earlier perception was that deseasonalised time series could be viewed as con-
sisting of two components, namely, a stationary component and a non-stationary
component. It is perhaps more appropriate to think of the series consisting of
both a long and a short memory components. A semiparametric estimate d
can be the first step in building a parametric time series model as there is no
restriction of the spectral density away from the origin. Fractional ARIMA,
or ARFIMA, can be use for forecasting although the debates on the relative
merits of using this class of models are still inconclusive (Hauser, Potscher, and
Reschenhofer 1999), (Andersson 1998). Lower risk bounds and properties of
confidence sets of so called ill-posed problems associated with long-memory pa-
rameters are also discussed in Potscher (1999). The paper casts doubts on the
used on statistical tests in some semiparametric models on the ground that a
priori assumptions regarding the set of feasible data generating processes have
to be imposed to achieve uniform convergence of the estimator.

9.3 Portfolio Allocation Strategy

The results of Porterba and Summers (1988) and Fama and French (1988) pro-
vided the evidence that stock prices are not truly random walk. Based on these
observations, Samuelson (1992) has deduced on some rational basis that it is
appropriate to have more equity exposure with long investment horizon than
short horizon. Optimal portfolio choice under processes other than white noise
can also suggest lightening up on stocks when they have risen above trend and
loading up when they have fallen behind trend. This coincides with the conven-
tional wisdom that long-horizon investors can tolerate more risk and thereby

15



garner higher mean returns. As one grows older, one should have less hold-
ing of equities and more assets with lower variance than equities. This argues
for “market timing” asset allocation policy and against the use of “strategic”
policy by buying and holding as implied by the random walk model.

Then there is the secondary issue of short-term versus long-horizon tactical as-
set allocation. Persistence or a more stable market calls for buying and holding
after market dips. This would likely to be a mid to long-horizon strategy in
a market trending upwards. In a market that exhibits antipersistence, asset
prices tend to reverse its trend in the short term thus creating short-term trad-
ing opportunities. It is unclear, taking transaction costs into account, whether
trading the assets would yield higher risk adjusted returns. This is an area of
research that may be of interest to practitioners.

9.4 Diversification and Fractional Cointegration

If assets are not close substitutes for each other, one can reduce risk by holding
such substitutable assets in the portfolio. However, if the assets exhibit long-
term relationship (e.g., to be co-integrated over the long-term), then there may
be little gain in terms of risk reduction by holding such assets jointly in the
portfolio. The finding of fractional cointegration implies the existence of long-
term co-dependence, thus reducing the attractiveness of diversification strategy
as a risk reduction technique. Furthermore, portfolio diversification decisions
in the case of strategic asset allocation may become extremely sensitive to the
investment horizon if long-memory is present. As Cheung and Lai (1995) and
Wilson and Okunev (1999) have noted, there may be diversification benefits in
the short and medium term, but not if the assets are held together over the
long term if long-memory is presence.

9.5 MMAR and FIGARCH

The recently developed MMAR (multifractal model of asset returns) of Man-
delbrot, Fisher and Calvet (1997) and FIGARCH process of Baillie, Bollerslev,
and Mikkelsen (1996) incorporate long-memory and thick-tailed unconditional
distribution. These models account for most observed empirical characteristics
of financial time series, which show up as long tails relative to the Gaussian
distribution and long-memory in the volatility (absolute return). The MMAR
also incorporates scale-consistency, in the sense that a well-defined scaling rule
relates return over different sampling intervals.
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10 Conclusion

Besides those issues discussed above, the implications for deviation from Gaus-
sian and white-noise process are not fully understood yet for the pricing of the
underlying instruments and the implications for derivatives will be challenging
to derive. The discussions in this chapter are not meant to be exhaustive on
the issues surrounding long-memory or persistence in financial time series, with
the related problems of deviation from normality, and different time interval.
We have no doubt that the literature addressing these issues will continue to
grow and alternative models will be suggested.

In this chapter, We concentrated on searching for long-memory in Asian finan-
cial time series. As in previous studies, we found mix evidence of long-memory
in Asia stock indices and exchange rates. Finally, we have not adequately dealt
with the issue of bandwidth selection in this study and it is likely that the
conclusion is sensitive to the choice of bandwidth. Some automatic selection of
bandwidth will be desirable and future research should be conducted.
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