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DPLS—Partial Least Squares Program
for Dynamic Path Models

Frank Geppert and Hans Gerhard Strohe

The approach to dynamic modeling with latent variables has been developed
on the base of H. Wold’s partial least squares (PLS). The original PLS esti-
mation algorithm is virtually applicable. In addition to that lagged and leaded
latent variables are used in the iterative process of estimating the weights of the
manifest variables. The path coefficients are estimated by OLS. A redundancy
coefficient allows to measure the forecasting validity. Finally the algorithm has
been programmed in XploRe .

This chapter surveys the theoretical background and explains how dynamic
partial least squares models are implemented in XploRe . The last part
focuses on an example for German share prices.

1 Introduction

In addition to the well known estimation and confirmation approach for path
models, LISREL by Joreskog and Sérbom (1987) the partial least squares (PLS)
algorithm by Wold (1973) has gained popularity as an instrument of analysis
and forecasting in sociometrics and econometrics during recent years. The PLS
approach to path models is data oriented and mostly descriptive or explorative,
the model being defined purely by an algorithm.

The traditional PLS model involves M observable, manifest variables (MV)
y™ (m=1,...,M) and K < M latent, i.e., not directly observable vari-
ables (LV) n* (k = 1,..., K). The latter are assumed to be certain constructs
composed from those MVs. Furthermore, the LVs are assumed to be connected
with each other by the linear inner or structural model:

M= bo+DBn,+v; (1)



where n, = (n}mi....nE )T is the column vector of the scores of all latent
variables n!,... ,n* for one case t (t = 1,...,T), B is a triangular K x K
matrix of path coefficients with zero diagonal, and by is a location parameter
vector usually set equal zero. The error term v; has zero expectation.

What is called the outer or measurement model describes the assumed linear
relations between the MVs and the LVs:

Y1= po+Pm,+e:  (loadings relation) (2)

with a block diagonal M x K matrix P of path coefficients and a zero ex-
pectation disturbance term ;. Again the location parameters py are usually
transformed to zero. The latent variables are taken to be weighted sums of
manifest variables with a block diagonal weight matrix W:

m= W'y (weight relations) (3)

The iterative estimation of the weights W is the main aim of Wold’s PLS
algorithm. The procedure is to start with more or less arbitrarily chosen weights
W. The next stage involves the calculation of proxies n** for the latent variables
nk. n** is a weighted sum of all LVs directly connected with n*.

Finally new weights W = (w,,,x) are estimated by OLS regression between the
MVs and the approxies. The scores of the LVs being approximately known after
stopping the iteration process, we can easily estimate the parameter matrices
B and P by OLS, using model equations (1) and (2) respectively.

More details about PLS are given by Lohmoller (1984) who is the author of
the PLS computer programme LVPLS.

In Section 2 of this paper a PLS-like approach to a class of dynamic mod-
els with latent variables will be suggested. The way to use these models for
prediction will be shown, and a measure for goodness of fit will be deduced.
Then, a computer programme for dynamic partial least squares modelling will
be presented. The final section will show a small five-block model with an first
order autoregressive distributed lag relation between the LVs.



2 Theoretical Background

2.1 The Dynamic Path Model DPLS

The dynamic form of the structural model can be transformed into the exterior
shape of the “normal” PLS model:

ne= Fny+vy (4)
where

F=B+CL (5)

is a matrix containing the lag operator L with Ln; = n;—1. On what we call
now the dynamic PLS model (DPLS)

m= Fn,+vy
Y= Pnt+5t
me= W7y (6)

the original PLS algorithm is applicable. Initially, Boolean design matrices Dp,
D¢ and D p corresponding to the unlagged and lagged dependencies in the inner
model (6) and to the outer model, i.e., to the zero restrictions for the coefficient
matrices B, C and P, must be fixed. The inner model can be illustrated by
a path diagram, including additional arrows for the lagged relationships. The
inner design matrix Dp contains the digit one where there is a connection
between two LVs in the path model and consists of zeros elsewhere. Similarly,
the lag design matrix D¢ consists of ones and zeros corresponding to whether
or not there is assumed to be first order lagged (auto)regression between latent
variables. Dp = (d,x) is the outer design matrix corresponding to whether or
not a variable y™ of Y belongs to the block of a certain latent variable, i.e., a
row n* of H.

2.2 PLS Estimation with Dynamic Inner Approximation

For simplicity, the symbols for the empirically estimated LVs and coefficients
will not be distinguished from those for the corresponding theoretical quantities
in this section. In order to estimate the weight matrix W, the following steps
will be repeatedly executed:



1. Initial representation of the latent variables as components of the manifest
variables with chosen starting values for the matrix W

m= W'y, (7)

2. Standardization of the LVs to unit variance

—1
)

ne:=vVT (I+xHH") *n, (8)

where
HZ(’?17772;---777T); (9)
is the K x T matrix of all time scores of 7; for t = 1,...,T. Elementwise

multiplication of matrices is denoted by *.

3. Calculation of “neighbourhood” variables corresponding to the inner path
model:

n=Fm (10)
F*=B*+C*L+C*TL! (11)
that means
;= B 1 + C* 1 + C* Ty (12)
where B* and C* are suitable inner weighting matrices, e.g.:
B* = (Dp+ D§) xR (13)
C*= DcxA (14)
with Dp and D¢ being the design matrices for the inner model.
R=HH"T (15)
A=H(LH)" T (16)

are the correlation matrix and the first order autocorrelation matrix of
LVs, respectively, with

H =(m,m,...,07), (17)

LH = (nOanla"'anT—l) (18)



4. New values of the weight matrix W are gained by OLS estimation:
Y = wnant* ot if dpr=1  (Wold’s Mode A) (19)
where Dp = (d,x) is the outer design matrix.

5. The estimated coefficients w,,; are substituted for the previous elements
of the weight matrix W

W = (wmk) -

Using this new weight matrix we continue the procedure by repeating step 1.
The iteration process is stopped when subsequent estimations of the LVs 7 in
step 2 do not relevantly differ from the previous ones.

Then the coefficient matrices B and C of the inner model (4)
= (B+CL)n + v (20)

can be estimated by a suitable method for dynamic models, such as OLS,
GLS, Cochrane-Orcutt, ECM etc. The loadings P of the outer model (2) are
estimated by simple OLS.

2.3 Prediction and Goodness of Fit
By substituting (4) for y; in (2) we obtain

= PFn+Pvite

Then substituting (6) for 7, we have
ye = PFWTy, + Pv; + ¢, (22)
or
y = (PBWTy, + POWTy,_1) + (Pvy + &) (23)

Using this prediction formula, we can construct a goodness-of-fit criterion.
From (21) it follows that the predictable part of y; is y; = PFn,. Let
Y* = (yi,...,y%) denote the whole predicted data matrix, H = (m1,...,071)



the matrix of the LVs,and R the empirical correlation or covariance matrix of
H. Then the empirical covariance of these predictions is

cov(Y*) = P F cov(H) F' P* (24)
= PFRFTPT
cow(Y*) = P(B+CL)H H* (B+CL)"PT/T (25)
= (PBHH"BYPY + PC(LH)HYBYPY+PBH(LH)*C*P?
+PC(LH)(LH)"CTP")/T

PBRBTPT+PBACT PT+PCRCT PT+(PBACT PT)" = G*

X

with A being the first order autocorrelation matrix. The inconsiderable in-
accurracy of the last relationship arises from tiny differences that might occur
between the covariances of the latent variables HH” /T and those of the lagged

LVs (LH)(LH)"/T.

It is easy to see that G* contains in its diagonal the variances of the predictable
part, or what Lohmoller (1989) calls the “redundant” part, of the MVs.

Following Lohmoller (1989) again we calculate the ratio of two diagonal matri-
ces

G=(IxG)Ixx,)™" (26)

where ¥, denotes the empirical covariance matrix of the manifest variables.
The entries in the diagonal of G are ratios expressing to what extent the vari-
ance of each manifest variable is reproduced by the variance of the predictable
part, i.e., by the model.

The average of these measures
G? = trace G/M (27)

is the redundancy coeflicient or average redundancy and is used for the evalu-
ation of the goodness of fit of the model.



3 Estimating a DPLS-Model

3.1 The Computer Program DPLS

The very sophisticated computer program LVPLS for static partial least squares
models was developed by Lohmoller (1984)(1989).Unfortunately, it is not effec-
tively applicable to dynamic path models.

The computer programme DPLS (Strohe and Geppert 1997) is available as both
PC-ISP macros and XploRe (Héardle, Klinke, and Turlach 1995) quantlets. The
syntax to control the programme is nearly identical in both versions. In XploRe
it consists of three basic modules. The first one puts the DPLS algorithm within
the XploRe environment into action, the second one calculates a redundancy
measure and the last one is a tool for easier creating input variables. This one
works on the base of several menus and dialogs. So it is not necessary to know
all input matrices exactly in advance and the only input to be prepared by the
use of ordinary XploRe commands is the indicator matrix.

The further input matrices firstly are to be to created and defined by the
above mentioned tool (third basic module) or “by hand”. But if a user wants
to calculate a model several times one after the other and if he/she wants to
modify parameters on the fly in a programmed simulation or something like
this he/she can take an advantage by using the basic programmes directly. In
that case one has to know more about the details of input and output of the
corresponding module.

3.2 Creating Design-Matrices

design = makedesign(y)
generates the design matrices by a dialogue

At first, for running a DPLS session, XploRe has to be started. One must load
the quantlib metrics into memory by using the library command. XploRe
users have to type:

library("metrics")



First, a design-making session (Figure 1) could be started by the command
mentioned above. There y is a n x[-matrix with manifest variables (indicators).
The output design contains several variables. Among them dy is matrix (I X k)
with outer designs (0 or 1). Rows are counting manifest variables. Furthermore,
d is a k x k matrix with inner unlagged designs (0 or 1). No diagonal values
are allowed. The (k x k) matrix d1 contains the inner lagged designs (0 or 1).
Diagonal elements are showing autoregression. The matrix w represents start
weights with same dimensions as dy. It is simply a copy of dy. It is possible to

Create outer design
iLreate inner unlagged
Create inner llagaed design
Quit creating

=10 x|

.2a (Har 7 -]
ire on 1.5.2|

[1,] "Welcome to XploRet™

y=normal[500,9) =]

design=makedesign[y]

design=makedesign(y] j

design=makedesign[y] [
<] | B

Entering gquantlet: makedesign

Figure 1: A session for creating design-matrices in XploRe

address these variables in a container-variable with the point as an separator
between them both. In the case above:



design.dy
design.w
design.dl
design.w

The syntax of makedesign is to be seen below:

Input parameters:

y
n X | matrix, manifest variables (indicators)

Output parameters:

out.dy
I x k matrix, outer designs (0 or 1, rows are counting manifest variables)

out.d
k x k matrix, inner unlagged designs (0 or 1, no diagonals allowed)

out.dl
k X k matrix, inner lagged designs (0 or 1, diagonals are showing autore-
gression)

out.w
I x k matrix, start weights, same as dy

Besides that, it is possible to create all matrices by hand. An easy sample can
be seen below:

library("metrics")

randomize (13409)

b1=0.3

c1=0.6

s=500

nil=normal (s+1)

nllag=ni[1:s,]

nl=ni1[2:rows(nl),] ;innermodel
n2=bl*nl+cl*nilag+normal (rows(nl))/5
n=nl1"n2

nn=n./sqrt(var(n)) ;loadingsmatrix



p=(112]314|0]0]0)~(0l0lOlOI5I6]7)
y=nn*p’+normal (rows(n) ,rows(p))/8
d=(011)~(0]0)

d1=(011)"(0]0)
w=(1]1]1]1]0l0l0)~(OlOlOlOIL]1]1)
myfit=dpls(w,d,w,dl,y,1,3)
myfit.b

myfit.sk

myfit.skl

Q 4p1s01.xpl

3.3 Estimating with DPLS

myfit = dpls(w, d, dy, dl, y, lag, acc)
estimates the weights and loadings matrices

As one could see above, a common XploRe session of DPLS (Figure 2) can be
started by the described command. There dpls denotes the program used and
w is a term for the weights the algorithm is to start with. The term d means
the inner and dy the outer design matrix. Furthermore, d1 is a symbol for an
inner design matrix as well but it contains the lagged connections in the model.
The matrices d, dy and d1 represent our idea about the model structure. The
scalar lag determines the lag order the algorithm has to take into account.
The matrix y contains the time series of all indicators (manifest variables) and
represents virtually all empirical information available. The digit acc stands
for “accuracy” and controls the final stop of the iteration process. The quantlet
dpls uses this number in order to check after every iteration whether or not the
new calculated values are significantly different from the previously calculated
values acc specifying how many decimals are taken into consideration.

The syntax of quantlet dpls has the following structure:

Input parameters:

I x k matrix, start weights

10



k x k matrix, inner unlagged designs (0 or 1, no diagonal values allowed)

dy
I x k matrix, outer designs (0 or 1, rows are counting manifests)

dl
k x k matrix, inner lagged designs (0 or 1, diagonals are showing autre-
gression)

n x | matrix, manifest variables (indicators)

lag
a scalar of lag order

acc

scalar, canceling criterion
Output parameters:
myfit.wg

matrix, weights

myfit.b
matrix, loadings

myfit.sk
matrix, path coefficients

myfit.skl
matrix, lagged path coefficients

myfit.lk
matrix, latent variables

myfit.iter

scalar, number of iterations
The matrices myfit.wg and myfit.b correspond to W and P in (2) and (3),
resprectively. And myfit.sk and myfit.skl are the B and C in (5).

All matrices are structured in a comparable way. The number of rows are sup-
posed to correspond with the number of variables and the number of columns

11



should be identical with the corresponding number of observations. If the fol-
lowing model is taken as an example, which contains 41 manifest variables with
74 observations, then the matrix y has the shape 41 x 74. But the design ma-
trix dy which contains the available connections between every manifest and
every latent variable (“1” for a connection and “0” for none) must have the
shape 41 x 5 because this model contains 5 latent variables. One can observe
the same structure in the matrix w with the difference that the matrix could
contain at the spots of “1” any other value which should be used as starting
weight by the algorithm.

The d and d1 matrices are squared. The rows and the columns stand for
latent variables. And since the following model is designed with connections
all leading to the fifth variable, all rows are filled with noughts except of the last.
This row describes which of the variables are connected to the fifth variable.
With the same logic one has to decode the output variable sk which contains
the unlagged path coefficients in the first part followed by the lagged ones.

Programz  Edit Search Main Ewecute Tool: Window Help

DSl Sle/?

nilag=n1[1:s,] . B %ploRe version 4.2a (Mar 7 i-|
n1=n1[2:rows{n1}),] ;innermodel License will expire on 1.5.2
n2=b1=*n1+c1*n1lag+normal{rows{
n=n1~n2

nn=n./sqrt{var{n)) ;loadingsmg
p=(1]2|3]%]0] 8] 0)™(0] 0] 0] B]5]¢ [1.] "Welcome to XploRet"
y=nn#*p ' +normal{rows{n),rous{p)
d=(8]1)~(0] 8)

d1=(8]1)~(8] 8)
w={1|1[1]1]aja|e)~{(ajaja]aj1]1
myfit=dpls(w,d,w,dl,y,1,3)
myfit.b

myfit.sk

myfit.skl — -

Contents of _tmp

noname.xpl (1.1)

Figure 2: DPLS session in XploRe
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3.4 Measuring the Forecasting Validity

myredun = redun(b, sk, 1k, skl, y)
estimates the redundancy matrices

The last tool for a DPLS session is the module redun. It calculates on the base
of formula (27) the redundancy as a criterion that is used for the evaluation
of the goodness of fit of the model. The described overview shortly shows the
usage of this module.

The syntax of redun is to be seen below:

Input parameters:

b
matrix, loadings
sk
matrix, path coefficients
1k
matrix, latent variables
skl
matrix, lagged path coefficients
y

matrix, manifest variables (indicators)
Output parameters:

red
scalar, redundancy value

redm
vector, redundancy values

13



4 Example: A Dynamic Latent Variable Model
for German Share Prices

4.1 The General Path Model

The main purpose of DPLS in XploRe is the construction of general variables
which optimally represent the dynamics of corresponding set of numerous in-
dicators with their individual but similar dynamics. Indicators or manifest
variables of this sort are share prices. Share price indexes are weighted sums
of individual share prices. Weights are e.g. returns or quantities of stocks pur-
chased. But by usage of dynamic path models the weights will be estimated
as coefficients within the latent variable model. Such a coefficient represents
a sort of importance of the individual share price within the construct of the
latent variable in the context of the whole model.

The question to be answered by this specific model is, whether a certain con-
struct of share prices can show the dynamic dependence of share prices on
economic indicators. This construct could then be used as a kind of new share
price index.

The challenge is to specify a dynamic model that represents the most important
economic relationship of the index as a stable representant of the set of share
prices under consideration.

Besides the latent share price variable (SP), the model under consideration
contains the LV labour market (LM), money market (MM), domestic
economic performance (DP) and foreign market (FM).

The next table shows the manifest variable belonging to these LVs. The next
figure shows the relationships selected: The latent share price variable SP is
assumed to statistically depend on LM, MM, DP, and FM. Furthermore a
first-order auto-regression of SP and a first-order lagged dependency on LM is
supposed. This selection is the result of some previous empirical pilot studies
eliminating further lagged relationships.

14



4.2 Manifest Variables and Sources of Data

Domestic Performance:

Nr: Domestic Performance: Unit:

1 Incoming Orders (Processing Business) 1991=100
2 Incoming Orders (Construction Industry) 1991=100
3 Production (Manufacturing Business) 1991=100
4 Production (Processing Business) 1991=100
5 Commodity Trade (Exportation) Billion DM

Origin of Data: Monthly Reports DBBK without Table 4 and Zahlungsbilanzs-
tatistik DBBK

Foreign Market:

Nr.: Foreign Market: Unit:

6 Dow Jones Industrial Average Index

7 Commodity Trade (Importation) 1991=100
8 US$ against 18 Industrial Countries 1991=100
9 Incoming Orders from Foreign Countries 1991=100
10 Discount Rate USA % p.A.

Origin of Data: Monthly Reports DBBK without Table 4 and Zahlungsbilanzs-
tatistik DBBK

Money Market:

Nr.: MoneyMarket:: Unit:

11 MoneySuppley(M3) BillionDM
12 DiscountRateDBBK %p.A.

13 DM against US$ 1972=100

Origin of Data: Monthly Reports DBBK without Table 4



Labour Market:

Nr.: Labour Market Unit:

14 Gross Earnings Quantity
15 Number of Unemploymed Quantity
16 Vacancies Zahlungsbilanzstatistik Quantity
17 Short-Time Workers Quantity

Origin of Data: Zahlungsbilanzstatistik DBBK

German Stock Prices:

Nr.: German Stock Prices Unit:
18 ALV DM
19 BAS DM
20 BAY DM
21 BMW DM
22 CBK DM
23 DAI DM
24 DBK DM
25 DGS DM
26 DRB DM
27 HEN3 DM
28 HOE DM
29 KAR DM
30 LHA DM
31 LIN DM
32 MAN DM
33 MMW DM
34 PRS DM
35 RWE DM
36 SCH DM
37 SIE DM
38 THY DM
39 VEB DM
40 VIA DM
41 VOW DM

Origin of Data: Deutsche Borse
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4.3 Empirical Results

Both models with levels and with differences had been estimated. Transfor-
mations such as differences or logarithms can easily added within the XploRe
environment. Despite the models on level base have produced some significant
path coefficients and high redundancy we have finally decided for a model on
first difference base.

The Figure 3 shows the path coefficients of the latent variables and the weights
of the manifest variables. Dotted arrows indicate lagged dependencies. The
differentiated latent share-price variable has only a very low autoregressive
component (0.08). This is only 1/10 of the amount found for levels. The
strongest dependency is that on the latent foreign-market variable (0.33). The
weakest one is that on the domestic economic performance (-0.06). We have
found a medium degree dependency on the latent money-market variable (0.26).
Furthermore there is a significant first order lagged relationship with the latent
labour market (0.18).

(redundancy: 0.23) on4 ALY
Incoring Orders {Processing Business) -0.34 _— 0né BAS
Incoring Orders {Construction Industry) oy —— 07 BAY
Froduction (Manufacturing Business) o4 ——— Domesiic 008 BIW
Froduction (Processing Business) 038 — Performance 0os CBEK
Cornodity Trade (Exportation) 034 — -0é ooz DAL
0.0% 0os DEK
S 008 DGS
Do Jones Industrial Average 051 —_— I‘f Qy 0os DEBR
Cornodity Trade (Iraportation) 003 —— Foreign 033 003 HEN3
175§ against 18 [ndusteial Comntriss 077 — Market T German < nos HOE
Incoraing Orders from Foreign Countries oz ——— o002 KAR
Diiscount Rate USh 022 - 008 LHA&
00g LIN
., ) on? WA
Maney Supply (143 oo Money 007 WIMW
Discomt Rate DEBIC 01— Market 00g PRS
DM against 15§ 08— 0os REWE
o0& SCH
o7 SIE
ross Eamings 00 —— -0.01 THY
HNwaber of Unemployed o — Labour o7 VEB
Vacancies 0es — Market o7 VA
Short-Tire Workers ono

Figure 3: A Model with German share prices
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The weights can be interpreted as the partial contribution of the individual
manifest variable within the block of indicators belonging to a latent variable.
In this meaning, it is easily to see that some of the MVs can be dropped because
of their negligible contribution, e.g. importation, gross earnings and each
of the share prices taken alone.
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