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ABSTRACT 

Fractionally integrated models with the disturbances following a Bloomfield (1973) 

exponential spectral model are proposed in this article for modelling the U.K. 

unemployment. This enables us a better understanding of the low-frequency dynamics 

affecting the series, without relying on any particular ARMA specification for its short-run 

components, which, in general, requires many more parameters to estimate. The results 

indicate that this exponential model, confounded with fractional integration, may be a 

feasible way of modelling unemployment, also showing that its order of integration is much 

higher than one and thus, leading to the conclusion that the standard practice of taking first 

differences may lead to erroneous results. 
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INTRODUCTION 

In this article, an alternative way of modelling the U.K. unemployment by means of 

combining fractional integration with the Bloomfield (1973) exponential spectral model for 

the disturbances is proposed. The main motivation for using the fractional integration 

framework is that it seems much more general than the traditional approaches based on 

deterministic I(0) or unit roots I(1) models. We use the exponential spectral model of 

Bloomfield (1973) because the usual ARMA representations require many more parameters 

to estimate compared with this non-parametric approach, which also produces 

autocorrelations decaying exponentially as in the AR processes. 

 The article is organised as follows: Section 2 briefly describes the concepts of 

fractional integration and of the exponential spectral model of Bloomfield (1973). Section 3 

shows the method of estimating the parameters in this context by using the Whittle 

function, (which is an approximation to the likelihood function), and we also present a 

version of the tests of Robinson (1994) for testing these type of models. In Section 4 we 

estimate and test the models using different measures of the U.K. unemployment while 

Section 5 contains some concluding remarks. 

 

AN EXPONENTIAL SPECTRAL FRACTIONALLY INTEGRATED MODEL 

Many economic time series contain plenty of evidence of nonstationarity and much 

controversy in macroeconomics has revolved around the question of the suitability of I(1) 

or unit root models for describing raw time series as opposed to the so-called trend-

stationary models, where the raw series is described as an I(0) process plus a deterministic 

trend. Unit roots and linear time trends each constitute extremely specialised models for 

nonstationarity, but each has the advantage of conceptual and computational simplicity, and 

they are naturally thought of as rival models because a unit root, with or without a drift, 
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implies a constant or linear trend function, the distinction then being in the disturbance 

terms. 

However, in the last few years, an increasing amount of literature studying the 

source of nonstationarity in macroeconomic time series in terms of fractionally differenced 

time series, has appeared. We can consider a process like 

      ....,2,1,)1( ==− tvxL tt
d   (1)  

where vt is an I(0) covariance stationary process with spectral density which is positive and 

finite at zero frequency. Clearly, if d = 0, xt = vt and the process is �weakly dependent� as 

opposed to the �strong dependence� case when d > 0. The macroeconomic literature 

stresses the cases d = 0 and d = 1 but we can define (1) for any real d by the expansion 

�
∞

= +Γ+−Γ
−+Γ+=−

1
.

)1()1(
)()1(1)1(

j

j
d

jjd
LdL  

If 0 < d < 0.5 in (1) then, xt is a covariance stationary process, having autocovariances 

which decay much more slowly than those of an ARMA process, in fact so slowly as to be 

nonsummable. Models such as (1) provide a type of flexibility in modelling low-frequency 

dynamics not achieved by non-fractional ARIMA models, and stationary fractional models 

have been shown by Granger (1980), Robinson (1978), to arise from aggregation of ARMA 

series with randomly varying coefficients. 

 On the other hand, AR modelling of the I(0) process vt is very conventional, but  

many other types of I(0) process exist, including ones outside the stationary and invertible 

ARMA case. We propose in this paper the use of the exponential spectral model of 

Bloomfield (1973), in which vt is defined exclusively in terms of its spectral density 

function, given by 
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Suppose that vt follows an ARMA process of form 
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where εt is a white noise process and all zeros of φ(L) lying outside the unit circle and all 

zeros of θ(L) lying outside or on the unit circle. Clearly, the spectral density function of this 

process is then 
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where ϕ corresponds to all the AR and MA coefficients and σ2 is the variance of εt. 

Bloomfield (1973) showed that the logarithm of an estimated spectral density function is 

often found to be a fairly well-behaved function and can thus be approximated by a 

truncated Fourier series. He showed that (2) approximates (3) well where p and q are of 

small values, which usually happens in economics. Like the stationary AR(p) model, this 

has exponentially decaying autocorrelations and thus, using this specification, we do not 

need to rely on so many parameters as in the ARMA processes, which always results 

tedious in terms of estimation, testing and model specification. 

 The Bloomfield model for I(0) processes, confounded with the fractional model (1) 

has not been used very much in previous econometric applications (though the Bloomfield 

model itself is a well-known model in other disciplines, eg. Beran, 1993), and one by-

product of this work is its emergence as a credible alternative to the fractional ARIMAs 

which have become conventional in parametric modelling of long memory. Among the few 

examples found in the literature are Gil-Alana and Robinson (1997) and Velasco and 

Robinson (1999). The following section shows the method of estimating and testing the 
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parameters in this context of fractionally integrated models with Bloomfield (1973) 

exponential spectral disturbances. 

 

ESTIMATION AND TESTING IN THE FREQUENCY DOMAIN 

Given a covariance stationary process {xt, t = 1,2,�}, where xt is given by (1)  (with d < 

0.5) and vt is an I(0) process with spectral density function of form as in (2), we are firstly 

concerned with the estimation of the parameters of the model, that is, d and those appearing 

in (2). Based on parametric approaches, d is estimated jointly with all the other parameters 

that specify the model. Since vt is defined in terms of its spectral density function, the 

estimation must be carried out in the frequency domain. 

Fox and Taqqu (1986) assumed Gaussianity, and minimized the Whittle function 

(an approximation to the exact likelihood function) of a covariance stationary process with 

I(0) disturbances of a very general form (and thus, including the Bloomfield (1973) 

exponential spectral model). Calling ψ the parameter vector to be estimated, they 

minimized 
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where I(λ) is the periodogram of the process xt, defined as 
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The estimate was shown to be consistent and asymptotically normal under appropriate 

conditions, which are satisfied by the fractional model (1) with 0 < d < 0.5. Furthermore, 

Velasco and Robinson (1999) show a way of estimating d for nonstationary series with 0.5 

≤ d < 1, and even for any degree of nonstationary (d ≥ 0.5) by means of tapering. Another 
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estimate with the same asymptotic behaviour is obtained if (4) is replaced by a sum over 

the Fourier frequencies, i.e. minimizing 
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with λ j = 2πj/T.  In the model given by (1) and (2), ψ = (d, τ�)�, and 
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Substituting now (6) in (5), the minimum in (5) can be easily carried out through a 

computer programme. 

 We next describe a testing procedure suggested by Robinson (1994) to test the order 

of integration in raw time series in this context of exponential spectral disturbances. 

Suppose we observe {yt, t = 1,2,�T}, where 

          Ttxzy ttt ......,,2,1,' =+= β    (7) 

and zt is a (kx1) vector of exogenous regressors, (like zt = (1,t)� to include, for instance, the 

case of a linear time trend); xt is described by (1) with the disturbances following a spectral 

density function as in (2). In general, we wish to test the null hypothesis 
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for a given real number do. When zt is nonempty, we form 
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and its periodogram  is 
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Unless f in (2) is a completely known function, (e.g., as when vt is white noise), we have to 

estimate the nuisance parameter vector τ. The estimate must be a Gaussian one, that is, it 

must have the same limit distribution as the efficient maximum likelihood estimate based 

on the assumption that v1, v2, �, vT, is Gaussian. One such estimate, which fits naturally 

into the frequency domain setting, is 

              ),(minarg� 2 τστ τ=  

where the minimization is carried out over a suitable subset of Rm, and 
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Next we form 
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Under the null hypothesis (8), Robinson (1994) established under regularity conditions that 
 
 

.)1,0(� ∞→→ TasNs d  (10) 
 
 

The conditions on vt in (10) are far more general than Gaussianity, with a moment 

condition only of order 2 required. An approximate one-sided 100α%-level test of (8) 

against alternatives 

oddH >:1    (11) 

is given by the rule: 

    �Reject  Ho   if    ,"� αzs >      (12) 

where the probability that a standard normal variate exceeds zα is α. Conversely, an 

approximate one sided 100α% level test of (8) against alternatives 

   oddH <:1    (13) 

is given by the rule: 

    �Reject  Ho   if    ".� αzs −<      (14) 

As these rules indicate, we are in a classical large sample testing situation for reasons 

described by Robinson (1994), who also showed that the above tests are efficient in the 

Pitman sense that against local alternatives H1: d = do + δT-1/2 for δ ≠ 0,  the test has an 

asymptotic normal distribution with variance 1 and mean which cannot (when vt is 

Gaussian) be exceeded in absolute value by that of any rival regular statistic. 

 In the following section, a fractionally integrated Bloomfield (1973) model is 

estimated and tested using different measures of the U.K. unemployment. All calculations 
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were carried out using Fortran. A diskette containing the codes for the estimation and 

testing programmes is available from the author on request. 

 

AN EMPIRICAL APPLICATION TO THE U.K. UNEMPLOYMENT 

Four different measures of unemployment were considered. Firstly, we looked at the 

number of people claiming unemployment benefits. This measure is known as the claimant 

count (CC) and is available monthly. We look at this series (Ut) and also at its logarithmic 

transformation (log Ut). Another measure, which is related to the unemployment rate, is the 

CC series as a percentage of the workforce. We also look at this series, (ut), as well as its 

logistic transformation: 

.
1

log*
��
�

�
��
�

�

−
=

t

t
t u

u
u  

All these monthly series start in January 1971 and end in August 1998. These series have 

been investigated in a number of papers by Gil-Alana (1999a,b,c), studying their orders of 

integration in terms of non-parametric and parametric (ARFIMA) models. This article is 

therefore a complementary work in that direction. In all these previous works, the order of 

integration of the U.K. unemployment was found to be much higher than one and thus, 

rejecting the hypothesis of a unit root. 

 In this article we want to investigate the order of integration of the series when the 

disturbances follow a Bloomfield (1973) exponential spectral model. Across Tables 1-4 we 

present the estimated values of d when xt is given by (1) and vt follows the Bloomfield 

(1973) model (2) with m = 0 (i.e., vt is white noise); 1; 2 and 3. These estimates were found 

minimizing (5) using a grid search over the range [-5, 5] for τ and [-0.5, 0.5) for d of length 

0.01 with xt based on the second differences. In all these tables we also display the 

estimated values of d when vt follows an AR(p) process with p = 0; 1; 2 and 3. The 
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estimation in these cases was carried out using the Sowell�s (1992) procedure of estimating 

by maximum likelihood in the time domain. Thus, the difference observed in the estimated 

values of d when p and m are both equal to zero is clearly due to the different method of 

estimation used. 

 Starting with Ut, we observe in Table 1 that if vt is white noise, the estimated value 

of d is 1.66 when using the time domain estimation procedure, and 1.65 when using the 

frequency domain approach. Allowing vt to be weakly parametrically autocorrelated, the 

order of integration of Ut seems to be higher, ranging between 1.83 and 2.05 when 

modelling vt with autoregressions but slightly greater, and ranging between 1.92 and 2.20 

when vt follows the Bloomfield (1973) exponential spectral model. Thus, we observe that 

the order of integration of this series is much higher than one, fluctuating around 2 when 

the disturbances are weakly autocorrelated. 

(Tables 1 and 2 about here) 

 Table 2 displays the results for log Ut. Again all the values are higher than 1. If vt is 

white noise, the estimated value of d is now 1.63 in the time domain and 1.62 in the 

frequency domain. If vt is an AR process, d oscillates between 1.71 and 1.84, and 

modelling vt with Bloomfield (1973), the values of d oscillate between 1.73 and 2.01. Thus, 

we again observe a higher value when using the exponential spectral model. Comparing 

these results with those in Table 1 we observe that using the logarithmic transformation, the 

orders of integration are slightly smaller though still greatly above one. 

 Taking ut as the measure of unemployment, the results are given in Table 3. If vt is 

white noise, the estimated value of d is in both cases around 1.50. That means that if we 

take first differences, the differenced series behaves as in the boundary case between 

stationarity and nonstationarity. Allowing vt to be weakly autocorrelated, the values range 
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between 1.70 and 1.92 when using autoregressions, and between 1.87 and 2.08 with the 

exponential spectral disturbances. 

(Tables 3 and 4 about here) 

 Finally, using the logistic transformation of ut, (u*
t) as the measure for 

unemployment, we again observe that if vt is white noise, the estimated value of d is around 

1.50 but allowing weak dependence in the disturbances, the values of d are slightly higher, 

ranging between 1.64 and 1.81 when vt is AR and between 1.69 and 2.01 with the 

Bloomfield (1973) model. 

 We can conclude the analysis of these four tables by saying that when estimating 

the order of integration of the U.K. unemployment, the value of d seems to be much higher 

than one. Given that both methods of estimation are based on maximum likelihood, 

conventional tests based on the statistic )�(/)�( dSEdd −  were performed, rejecting the unit 

root null (ie., d = 1) in all cases across all series. If the disturbances are white noise, the 

order of integration is slightly higher than 1.60 for Ut and log Ut, and is around 1.50 for ut 

and u*
t.  If we allow the disturbances to be weakly parametrically autocorrelated, the orders 

of integration are even higher, fluctuating between 1.70 and 2.20 in all cases. We also 

observe higher values when using the Bloomfield (1973) exponential spectral model rather 

than the autoregressions, though the difference between them is in all cases smaller than 

0.15. 

 Across Tables 5�8 we test the order of integration of the series using the tests of 

Robinson (1994) described in Section 3. Denoting any of the measures of unemployment 

yt, we employ throughout the model (1) and (7) with zt = (1,t)�, t ≥ 1, zt = (0,0)� otherwise, 

so 

     ...,2,1, =++= txty tt βα   (15) 

      ( ) ,....,2,1,1 ==− tvxL tt
d   (16)  
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treating separately the cases α = β = 0 a priori, (i.e., including no regressors in the 

undifferenced regression);  α  unknown and  β = 0 a priori, (i.e., including an intercept); 

and finally, α and β unknown (i.e., including a linear time trend). We model the I(0) 

process vt to be both white noise (m = 0) and weakly autocorrelated with the Bloomfield 

(1973) model of orders 1, 2 and 3. Clearly, if vt is white noise, when d = 1, the differences 

(1 � L) yt behave, for t > 1, like a random walk when β = 0, and a random walk with a drift 

when β ≠ 0. However, we report test statistics not merely for the null do = 1 in (8) but for do 

= 1.20; 1.40; 1.50; 1.60; 1.80 and 2. 

 The test statistic reported in Table 5 (and also in Tables 6-8) is the one-sided one 

given by (9), so that significantly positive values of this, see (12), are consistent with (11) 

whereas significantly negative ones, see (14), are consistent with (13). A notable feature 

observed across the tables is that s�  is in all the cases monotonically decreasing with respect 

to do. This is something that we should expect of any reasonable statistic, given correct 

specification and adequate sample size, because, for example, we would wish that if d = 

1.20 is rejected against d > 1.20, an even more significant result in this direction would be 

obtained when d = 1 is tested. 

 Starting with Ut in Table 5, the first thing we observe is that the nulls d = 1 and d = 

1.20 are both rejected in all cases in favour of alternatives with d > 1.20. Also, d = 1.40 is 

always rejected except for white noise vt and α = β = 0. If we do not include regressors and 

vt follows a Bloomfield (1973) model, the values of d where Ho (8) is not rejected are 1.50 

and 1.60 when m  = 1; 1.50, 1.60 and 1.80 when m = 2, and all these values along with 2.00 

when m = 3. If we include an intercept or a linear time trend in (7) the results seem more 

conclusive: d = 1.60 is the only non-rejection case for white noise vt; d = 1.80 and 2 are not 

rejected with Bloomfield (1973) disturbances and m = 1 and 2; and d = 2 is the only non-

rejection case with m = 3. These results are clearly consistent with those given in Table 1, 
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where the order of integration was found to be around 1.60 for white noise disturbances and 

ranging between 1.80 and 2 for the exponential spectral model of Bloomfield (1973). 

(Tables 5 and 6 about here) 

 Table 6 reports the results for the log Ut. The most striking point we observed here 

is that the null d = 1 is not rejected in any case when α = β = 0 a priori, however, including 

regressors, this hypothesis is strongly rejected in favour of alternatives with d equal to or 

greater than 1.50. This might relate to the fact that (1-L)d 1 tends to zero for all positive d 

smaller than 1 and this is faster as d aproximates 1, becoming exactly zero when d = 1. 

Thus, it might be the case that when testing for a unit root, the model should include an 

intercept rather than imposing α = β = 0. We see that including an intercept, Ho (8) is not 

rejected for d = 1.60 with m = 0 and ranges between 1.50 and 2 with the Bloomfield (1973) 

disturbances.  

(Tables 7 and 8 about here) 

 Tables 7 and 8 correspond respectively to ut and u*
t. Starting with ut, we again 

observe that the values of d fluctuate between 1.40 and 2. If vt is white noise, d = 1.50 is the 

only case where Ho is not rejected, which is completely in line with the estimation carried 

out in Table 3. Similarly, if vt is weakly autocorrelated and we include regressors, the non-

rejection values are d = 1.80 when m = 1; d = 2 when m = 2; and d = 1.60, 1.80 and 2 when 

m = 3, which is once more consistent with Table 3. Finally, measuring unemployment in 

terms of u*
t, the results are very similar to those given in Table 6 (for log Ut). If we do not 

include regressors, the unit root null hypothesis is not rejected along with other fractionally 

hypotheses with d > 1. However, including an intercept or a linear time trend, all the non-

rejections occur when d ≥ 1.50, clearly showing the nonstationary character of the series. 

 We can conclude by saying that for all these measures of unemployment, the orders 

of integration seem higher than one, and this is observed whether or not we include 



 13

deterministic regressors like an intercept and/or a linear time trend in the model. Thus, 

though we do not stress in this article any particular specialized model for any series, these 

results, as a whole, show that the standard practice of taking first differences when 

modelling the U.K. unemployment may still lead to series with a component of long 

memory behaviour. 

 

CONCLUSIONS 

A fractionally integrated model with the disturbances following a Bloomfield (1973) 

exponential spectral model has been proposed in this article for modelling the U.K. 

unemployment. This type of model can be considered as an alternative to the most-

commonly used fractionally ARIMA (ARFIMA) ones, with the Bloomfield (1973) 

structure describing the short-run dynamics without need of estimating so many parameters 

as in the ARMA case. A method based on the Whitle function for estimating by maximum 

likelihood in the frequency domain, along with a  procedure suggested by Robinson (1994) 

for testing these type of models were performed using four different measures of 

unemployment. These measures were: the number of people claiming unemployment 

benefits, (Ut); its logarithmic transformation, (log Ut); the number of people claiming 

benefits as a percentage of the workforce, (ut); and its logistic transformation, (u*
t). 

Using an estimation procedure based on the frequency domain, the orders of 

integration were found to be around 1.60 for Ut and log Ut, and around 1.50 for ut and u*
t, if 

the disturbances were white noise. Similar results were obtained when estimating through 

the time domain. Allowing weakly autocorrelated disturbances, either through 

autoregressions or through the Bloomfield (1973) exponential spectral model, the orders of 

integration were found to be higher, ranging in all cases between 1.70 and 2.20.  
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Performing the tests of Robinson (1994) on these series, the results lead to the same 

conclusions, with the orders of integration ranging around 1.50 when modelling the 

disturbances as white noise, but obtaining higher values when allowing weak dependence 

on the disturbances. We also observed that in many cases more than one non-rejection case 

appeared. This is however not at all surprising, noting  that when fractional hypotheses are 

entertained, some evidence supporting them may appear, because this might happen even 

when the unit root model is highly suitable. On the other hand, often the bulk of these 

hypotheses are rejected, suggesting that the optimal local power properties of the tests, 

shown by Robinson (1994), may be supported by reasonable performance against non-local 

alternatives. 

The frequency domain approach used in this paper seems to be very unpopular 

amongst econometricians, and though there exist time domain versions of the Robinson�s 

(1994) tests (cf, Robinson, 1991), the preference here for the frequency domain set-up is 

motivated by the somewhat greater elegance of formulae it affords when the Bloomfield 

model is used. 

We should finally mention that we have not intended in this paper to investigate any 

model specification for the U.K. unemployment, rather to show that fractionally integrated 

models with Bloomfield (1973) exponential disturbances are feasible alternatives. The 

results indicate that all these series are nonstationary, with the orders of integration much 

higher than 1. In fact, the above results show that d is in practically all cases higher than 

1.50 and thus, the standard approach of taking first differences still produces nonstationary 

series, which may then lead, when estimating by least squares, to erroneous conclusions. 

Several other lines of research can be developed which should prove relevant to the 

analysis of these and other macroeconomic data. In particular, it would be worth to proceed 

to build up confidence intervals for the fractional differencing parameter, especially in the 
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Bloomfield (1973) case. Also, the question of how best to extend this model to a 

multivariate set-up remains to be investigated. 
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TABLE 1* 

Estimation of the fractionally differencing parameter d  for  Ut 

Fractionally integrated with AR ut Fractionally integrated with Bloomfield ut 
AR(p) Value of d Bloomfield (m) Value of d 

 p  =  0 1.66 m   =  0 1.65 
p  =  1 1.83 m   =  1 1.92 
p  =  2 1.92 m   =  2 2.09 
p  =  3 2.05 m   =  3 2.20  

*: Ut corresponds to the number of people claiming unemployment benefits. 
 
 

TABLE 2* 

Estimation of the fractionally differencing parameter d for log Ut 

Fractionally integrated with AR ut Fractionally integrated with Bloomfield ut 
AR(p) Value of d Bloomfield (m) Value of d 
p  =  0 1.63 m   =  0 1.62 
p  =  1 1.71 m   =  1 1.73 
p  =  2 1.74 m   =  2 1.80 
p  =  3 1.84 m   =  3 2.01  

*: log Ut is the log transformation of the number of people claiming unemployment benefits. 
  
 

TABLE 3* 

Estimation of the fractionally differencing parameter d  for  ut 

Fractionally integrated with AR ut Fractionally integrated with Bloomfield ut 
AR(p) Value of d Bloomfield (m) Value of d 
p  =  0 1.50 m   =  0 1.49 
p  =  1 1.70 m   =  1 1.87 
p  =  2 1.88 m   =  2 2.08 
p  =  3 1.92 m   =  3 2.06  

*: ut is the number of people claiming unemployment benefits as a percentage of the workforce. 
 
 

TABLE 4* 

Estimation of the fractionally differencing parameter d  for  u*
t 

Fractionally integrated with AR ut Fractionally integrated with Bloomfield ut 
AR(p) Value of d Bloomfield (m) Value of d 
p  =  0 1.49 m   =  0 1.49 
p  =  1 1.64 m   =  1 1.69 
p  =  2 1.71 m   =  2 1.83 
p  =  3 1.81 m   =  3 2.01  

*: u*
t is the logistic transformation of ut. 
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TABLE 5* 

Testing d = do for Ut with Bloomfield (1973) exponential spectral disturbances 

 Values of do 
m zt 1.00 1.20 1.40 1.50 1.60 1.80 2.00 

No regressors   18.75     6.26   -1.30   -3.43    -4.86    -6.50    -7.36 
An intercept   34.89   24.18  11.36    5.87     1.60    -3.62    -6.06 

               
m  =  0 

A time trend   34.88   24.15  11.27    5.78     1.51    -3.68    -6.10 
No regressors   11.54     6.44    2.12    0.38    -0.85    -3.05    -4.29 
An intercept   18.24   13.42    9.31    6.97     4.91     1.24    -1.27 

            
m  =  1 

A time trend   18.24   13.36    9.01    6.81     4.74     1.36    -1.21 
No regressors     7.63     5.16    2.76    1.35     1.02    -0.68   -2.34 
An intercept   11.22     8.10    5.63    5.10     3.18     2.05    -0.01 

            
m  =  2 

A time trend   11.23     8.04    5.50    4.92     3.82     1.83     0.46 
No regressors     5.42     5.38    3.54    1.52     1.38     1.16     0.54 
An intercept     8.96     7.24    6.54    5.10     4.30     2.95     0.31 

               
m  =  3 

A time trend     8.94     7.21    6.46    5.01     4.20     2.95     0.41 
     

*: Ut is the number of people claiming unemployment benefits.  In bold: The non-rejection values at the 95%   
significance level. 

 
 
 

TABLE 6* 

Testing d = do for log Ut with Bloomfield (1973) exponential spectral disturbances 

 Values of do 
m zt 1.00 1.20 1.40 1.50 1.60 1.80 2.00 

No regressors   -0.08   -3.39  -5.23  -5.85   -6.34   -7.08   -7.60 
An intercept   28.06  17.49   7.38   3.47    0.44   -3.43   -5.48 

               
m  =  0 

A time trend   28.07  17.40   7.21   3.27    0.25   -3.59   -5.61 
No regressors   -0.14   -2.27  -3.61   -4.02   -4.31   -4.94   -5.45 
An intercept  13.09    8.30   4.60   2.89    1.32   -1.17   -3.04 

            
m  =  1 

A time trend  13.12    8.62   4.33   2.57    1.28   -1.29   -3.09 
No regressors   -0.19   -1.24  -3.33  -3.61   -3.91   -3.97   -4.50 
An intercept    7.22    3.48   2.75   1.22    0.05   -1.49   -2.29 

           
m  =  2 

A time trend    7.25    3.34   2.44   0.84    1.43   -0.34   -0.81 
No regressors    0.21   -0.24  -0.48  -2.17   -3.04   -3.94   -4.83 
An intercept    8.84    7.55   2.55   1.74    1.50    0.90   -0.86 

               
m  =  3 

A time trend    8.84    7.45   2.32   1.45    1.21    0.78   -0.95 
      

*: log Ut is the log transformation of the number of people claiming unemployment benefits.  In bold: The non-
rejection values at the 95%  significance level. 
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TABLE 7* 

Testing d = do for ut with Bloomfield (1973) exponential spectral disturbances 

 Values of do 
m zt 1.00 1.20 1.40 1.50 1.60 1.80 2.00 

No regressors  16.21    4.42  -2.18   -4.00   -5.23   -6.66   -7.43 
An intercept  29.76  15.89   3.63   -0.39   -3.14   -6.13   -7.43 

               
m  =  0 

A time trend  29.76  15.85   3.55   -0.48   -3.22   -6.19   -7.48 
No regressors  10.34    5.55   1.35   -0.15   -1.44   -3.31   -4.51 
An intercept  16.81  12.54   7.89    5.88    3.65    0.69   -1.70 

            
m  =  1 

A time trend  16.82  12.49   7.76    5.70    3.79    0.73   -1.78 
No regressors    6.74    4.39   2.21    0.78   -0.25   -1.53   -2.10 
An intercept  12.45    8.81   6.53    4.02    3.46    2.48    0.69 

            
m  =  2 

A time trend  12.46    8.75   6.38    3.80    3.20    2.15    0.24 
No regressors    4.81    2.14   2.06    0.97   -0.45  -2.14   -2.79 
An intercept    7.31    6.40   3.13    2.20    1.41    0.30   -0.22 

               
m  =  3 

A time trend    7.31    6.37   3.05    2.10    1.32    0.34   -2.12 
     

*: ut is the number of people claiming unemployment benefits as a percentage of the workforce.  In bold: The 
non-rejection values at the 95% significance level. 

 
 
 
 

TABLE 8* 

Testing d = do for u*
t  with Bloomfield (1973) exponential spectral disturbances 

 Values of do 
m zt 1.00 1.20 1.40 1.50 1.60 1.80 2.00 

No regressors   -0.07  -3.49  -5.30  -5.91   -6.39   -7.11   -7.62 
An intercept  24.59  12.56    2.90  -0.32   -2.63   -5.37   -6.74 

               
m  =  0 

A time trend  24.60  12.48    2.74  -0.50   -2.80   -5.52   -6.88 
No regressors   -0.12  -2.26   -3.64  -4.03   -4.45   -5.03   -5.37 
An intercept  12.61   8.32    4.19   2.50    0.96   -1.45   -3.22 

            
m  =  1 

A time trend  12.64   8.20    4.28   2.49    1.18   -1.40   -3.27 
No regressors  -0.16  -1.55   -3.19  -3.52   -3.56   -4.12   -4.65 
An intercept   6.69   4.65    3.84   2.18    0.91   -0.76   -1.63 

           
m  =  2 

A time trend   6.72   4.52    3.51   2.77    2.35    0.39   -0.96 
No regressors  -0.29  -0.66   -1.06  -1.69  -3.92  -4.31   -5.13 
An intercept   5.62   4.10    2.34   1.42    1.23  -1.12   -1.22 

               
m  =  3 

A time trend   5.63   4.02    2.12   1.17    1.04  -1.01   -1.79 
     

: u*
t is the logistic transformation of ut.  In bold: The non-rejection values at the 95% significance level. 
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