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Abstract

In many auctions, the auctioneer is an agent of the seller. This delegation
invites corruption. In this paper we propose a model of corruption, examine
how corruption affects the auction game, how the anticipation of corruption
affects bidding, and how it altogether changes the revenue ranking of typical
auctions. In addition we characterize incentive schemes that may prevent
corruption, and compare them to the fee schedules employed by major auc-
tion houses.
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1. introduction

Whenever people face scarcity, some may be tempted to cheat. This is true

for ordinary thieves as well as for bidders in an auction for a government

construction job, or for those who compete for the right to host the Olympic

games. In this paper we study corruption, as a special form of cheating in

auctions.

Corruption is generally defined as the “misuse of a position of trust for dis-

honest gain.” In an auction context, corruption refers to the lack of integrity

of the auctioneer. It occurs whenever the auctioneer twists the auction rules

in favor of some bidder(s), in exchange for bribes. Corruption may be a sim-

ple bilateral affair between one bidder and the auctioneer, but it may also

involve collusion among several bidders who jointly strike a deal with the

auctioneer.

Corruption is a frequently observed and well documented event in many gov-

ernment procurement auctions. For example, the bidding for the construc-

tion of a new metropolitan airport in the Berlin area was recently reopened

after investigators found out that Hochtief AG, the winner of the auction, had

illegally acquired the application documents of the rival bidder IVG.1 As an-

other example, in 1996 the authorities of Singapur ruled to exclude Siemens

AG from all public procurements for a period of five years after they deter-

mined that Siemens had bribed Choy Hon Tim, the chief executive of Singa-

pur’s public utility corporation PUB, in exchange for supplying Siemens with

information about rival bids for a major power station construction project.2

Of course, corruption in an auction cannot occur if the seller is also the auc-

tioneer. Corruption is only an issue if the auctioneer is the agent of the seller.

Such delegation occurs if the seller lacks the expertise to run the auction him-

self, or if the seller is a complex organization like the collective of citizens

1See Wall Street Journal, Aug. 19, 1999.
2See Berliner Zeitung, Feb. 2, 1996.
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of a community, a state, or an entire nation. It does not matter whether the

auctioneer-agent is a specialized auction house or a government employee.

What matters alone is the fact that the auctioneer acts independently on be-

half of the seller.

Corruption can also not work in an open-bid auction simply because it lacks

secrecy. However, open auctions may not be feasible if the bids are compli-

cated documents, as is the case of auctions for major construction jobs or

for the right to host the Olympics. In such auctions sealed-bids seems to

be the only feasible auction form. The fact that bids are sealed supplies the

secrecy needed for corrupt games being played between the auctioneer and

one or several bidders.

Given the quantitative importance of auctions and the temptation of corrup-

tion, three questions emerge. Are the usual sealed-bid auctions that are used

for procurement vulnerable to corruption? Is corruption harmful in an effi-

ciency sense? Can we make auctions corruption-proof? We will show that

the answers to these questions are Yes, Maybe, and Yes. Standard sealed-

bid auctions are indeed vulnerable to corruption, corruption may be socially

inefficient, but fortunately there are ways to make auctions corruption-proof.

We also show that corruption has important distributional effects. Specifi-

cally, if the number of bidders is sufficiently large, bidders’ expected equilib-

rium payoffs are unaffected by the possibility of corruption — a consequence

of the revenue equivalence principle. However, there is a transfer of wealth

from the seller to the agent who acts as auctioneer. Moreover, the seller also

bears the cost of the whole expected punishment.

Furthermore, we find that revenue equivalence breaks down if widespread

corruption schemes that involve all bidders are feasible. In that case, corrup-

tion also involves a transfer of expected payoffs from the seller to bidders.

This case is interesting because it is congruent to other examples of break-

down of revenue equivalence studied in the literature, such as the analysis
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of collusive auction rings by Graham and Marshall (1987), of the breaking-up

of partnerships (see Cramton, Gibbons, and Klemperer (1987)), and of the

so-called Amish auctions (see Engelbrecht-Wiggans (1994)).

2. structure of the game

There is one seller of a single good who faces n risk neutral potential buy-

ers. The seller has hired an auctioneer to run either a sealed-bid first-price

or a sealed-bid second-price auction. From the auctioneer’s perspective bid-

ders’ valuations are iid random variables. Therefore, the auction game is

a standard symmetric independent private values model, which is however

supplemented by a corruption game.

In the sealed-bid first-price auction, the corruption game is as follows: After

bids have been submitted, the auctioneer reveals the second highest bid to

the highest bidder. The auctioneer allows the highest bidder to lower his bid

to the level of the second highest bid, in exchange for a bribe.

In the sealed-bid second-price auction, the corruption game is slightly more

involved: The auctioneer reveals the three highest bids to the highest and

the second highest bidder. The three parties agree on removing the second

highest bid in exchange for side payments.

Corruption is detected with probability δ, in which case the auctioneer pays

a penalty p0, the winning bidder pays a penalty p1, and, if the second highest

bidder is also involved, he pays a penalty p2. The penalty takes the form of a

jail sentence or the like; it is not a payment to the seller. Also, if corruption

is detected, the original bids have to be paid, i.e. b1 in the first-price and b2

in the second-price auction.

After the auction, the price paid is published, in order to make sure that the

auctioneer does not simply ignore the highest or the two highest bidders,

respectively.
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Valuations v1, . . . , vn are independent draws (no affiliation) from the distri-

bution F with support [0,1]. We denote the distribution of the highest val-

uation of n draws with F1, and the distribution of the highest valuation of

n − 1 draws with G1. By the iid assumption, F1 = Fn and G1 = Fn−1. We

denote the joint density of the ith and jth highest valuations of n draws

with fij . b1, . . . , bn denote the bids. W.l.o.g. we order bidders in such a way

that bi á bi+1.

A bidding strategy is a map βi : vi , bi. An equilibrium is a profile of strate-

gies (β1, . . . , βn) such that βi is a best reply for i given the strategies of all

other bidders. An equilibrium is symmetric if all bidders use the same strat-

egy, β1 = · · · = βn.

We denote the equilibrium strategy of the symmetric equilibrium of the first-

and second-price auction with corruption with β1 and β2, respectively. We

call the corresponding auctions in which corruption is not part of the game

the standard first- and second-price auctions, respectively, and denote the

respective symmetric equilibrium bid functions with B1 and B2.3

3. sealed-bid first-price auctions

The surplus from corruption that the auctioneer and the winning bidder can

share is the difference of the winning and the highest losing bid times the

probability of not being detected, minus the expected penalty imposed on

the winning bidder and on the auctioneer if corruption is detected,

S(b1, b2) := (1− δ)(b1 − b2)− δ(p0 + p1). (1)

We assume proportional sharing of this surplus and denote the share re-

ceived by the auctioneer with αS(b1, b2).
3For a survey of the results of the standard first- and second-price auctions without

corruption see McAfee and McMillan (1987) and Wolfstetter (1999, Chapter 8).
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The winning bidder’s payoff if he does not engage in corruption is

un(v1, b1) := v1 − b1,

and if he does engage in corruption his expected payoff is

uc(v1, b1, b2) := un(v1, b1)+ (1−α)S(b1, b2).

Corruption pays if the surplus is positive, i.e. if the following bribe condition

is satisfied,

b1 − b2 >
δ(p0 + p1)

1− δ =: γ. (2)

Therefore, corruption occurs if and only if the winning bid exceeds the second

bid by γ or more.

A bidder’s expected payoff, given that all rival bidders play the strategy β1,

is a weighted sum of expected payoffs in the corruption and no corruption

regimes,

u(v,b) :=
∫ β−1

1 (max{b−γ,0})

0
uc(v, b, β1(v2))dG1(v2)

+
∫ β−1

1 (b)

β−1
1 (max{b−γ,0})

un(v, b)dG1(v2)

= (v − b)G1(β−1
1 (b))+ (1−α)

∫ β−1
1 (max{b−γ,0})

0
S(b,β1(v2))dG1(v2).

(3)

Proposition 1 (who wins and who loses) Consider a symmetric equilibrium.

The possibility of corruption does not affect bidders’ expected payoffs, it makes

the auctioneer better off, and the seller worse off. Corruption also causes a

social deadweight loss if the penalty for corruption is a jail sentence; this dead-

weight loss equals the expected disutility of penalties.

Proof: Bidders’ equilibrium payoffs are u∗(v) := u(v,β1(v)). By the En-

velope Theorem together with (3) we have u∗′(v) = ∂u
∂v (v, β1(v)) = G1(v).
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Integration yields

u∗(v) :=
∫ v

0
G1(x)dx +u∗(0).

G1 is the probability of winning the auction. Evidently, u∗(0) = 0, because

by bidding some b > 0, the zero-valuation bidder might win the auction and

get something which is worthless to him; if he loses the auction, he never

receives a bribe because corruption involves only the winning bidder and the

auctioneer. Therefore, bidders’ equilibrium payoffs are determined by the

allocation rule G1 only, as in the standard auction.

The auctioneer must be weakly better off by the possibility of corruption,

because otherwise he would not participate. Therefore, the seller must be

worse off. Since the allocation rule is unchanged, the expected gain from

trade is unchanged as well. Thus, every expected gain of the auctioneer must

be matched by a corresponding loss of the seller.

There is, however, another source of losses. If corruption occurs there is

a positive probability that someone will be punished. If the penalty takes

the form of “burning utility” (for instance by sending the winner and the

auctioneer to jail), corruption entails a deadweight loss equal to the expected

disutility of the penalty. This loss is borne by the seller alone, in addition to

the transfer from the seller to the auctioneer. �

Altogether, corruption induces bidders to compete for the gain from corrup-

tion by bidding more aggressively to such an extent that they do not benefit

from it. The auctioneer is the only one gaining in expectations, and his gain

is paid for by the seller. The seller, however, pays more than what the auc-

tioneer receives (in expectations), because he also loses the expected value

of the penalties δ(p0 + p1) if the penalties take the form of a jail sentences

(as opposed to payments to the seller). Thus, depending on the from of the

penalties, corruption may reduce social welfare.
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Proposition 2 (corruption makes bidders aggressive) Bidders with suf-

ficiently low valuations bid the same as in the standard first-price auction,

whereas bidders with higher valuations bid more aggressively, but still below

their true valuation. Formally, let v∗ := B−1
1 (γ), then∀v à v∗ β1(v) = B1(v),

and ∀v > v∗ B1(v) < β1(v) < B2(v).

Proof: (i) “β1(v) = B1(v) for v à v∗.” If b à γ, bidders’ payoff func-

tion (3) reduces to

u(v,b) = (v − b)G1(β−1
1 (b)).

This is simply the payoff function of the standard first-price auction. Hence,

for sufficiently small valuations, the equilibrium bid function equals B1. This

is true if B1(v) à γ, or equivalently if v à B−1
1 (γ) =: v∗.

(ii) “β1(v) > B1(v) for v á v∗.” Suppose v > v∗, then we know that

corruption occurs with positive probability. Hence, if bidders would bid as

in the standard first-price auction, β1(v) = B1(v), their expected payment

in the game with corruption would be less than their expected payment in

the standard first-price auction, for otherwise corruption would not pay and

would therefore never occur. But this contradicts revenue equivalence. Thus,

β1(v) > B1(v) for all v > v∗.

(iii) “β1(v) < B2(v).” Assume v > v∗, δ(p0 + p1) = 0 (hence γ = 0), and

α = 0. Then corruption takes place for sure. Moreover, corruption is free

to the winning bidder because he will not be punished, δp1 = 0, and the

auctioneer participates for free, α = 0. In this case, the game is a standard

second-price auction and therefore bidding must be the same, β1(v) = B2(v).

Now consider an increase in the cost of corruption, i.e.δ(p0+p1) > 0 orα > 0.

Since v > v∗ corruption occurs with positive probability, but corruption

is costly. This is consistent with revenue equivalence only if bids are less

aggressive than in the second-price auction, thus β1(v) < B2(v). �

7



Clearly if corruption is detected with certainty, δ = 1, corruption never pays

and the game collapses to the ordinary first-price auction. In this case γ = ∞,

or equivalently v∗ = ∞, hence everyone has a valuation smaller than v∗ and

so corruption never occurs in equilibrium. This finding can be strengthened.

Corollary 3 (corruption-free equilibria) All bidders bid as in the stan-

dard first-price auction and corruption does not occur, with certainty, if and

only if δ á B1(1)
B1(1)+p0+p1

=: δ∗.

Proof: “If.” If δ á δ∗, then γ á B1(1), hence v∗ = B−1
1 (γ) á 1, and v à v∗

for all v .

“Only if.” If δ < δ∗, then γ < B1(1), hence v∗ = B−1
1 (γ) < 1, and, with

positive probability, some bidder has a valuation that exceeds v∗. These

bidders will bid more than in the standard first-price auction and engage in

corruption, with positive probability. �

This result says that one only needs sufficient monitoring (δ∗ à δ à 1), not

perfect monitoring (δ = 1), to rule out corruption.

We conclude that the sealed bid first-price auction is vulnerable to corrup-

tion, that it hurts only the seller, and may give rise to a deadweight loss.

An immediate resolution of this problem is to run an open auction instead.

However, in many circumstances, this may not be feasible, for instance if the

bids are complicated documents, such as bids for major construction jobs

or Olympic games. A sealed-bid second-price, or Vickrey auction, however,

could help. It is not vulnerable to the kind of corruption we have been study-

ing because the winning bidder is supposed to pay the second bid anyway.

To make corruption work in the Vickrey auction requires the second bidder

to be involved in the corruption scheme as well. This is the topic of the next

section.
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4. sealed-bid second-price auctions

The sealed-bid second-price auction is not vulnerable to a corruption scheme

that involves only the auctioneer and the winning bidder because they alone

cannot change the price. They need the collaboration of the second bidder.

Instead of allowing the winning bidder to lower his bid, bidder 2 is bribed

to withdraw or lower his bid. If this scheme succeeds the winning bidder

pays only the third bid. Altogether, this requires the collaboration of three

parties who must share the gain from corruption: the auctioneer, bidder 1,

and bidder 2.

Assume n á 3. The surplus to be shared by the auctioneer and bidders 1 and

2 is equal to

S(b2, b3) := (1− δ)(b2 − b3)− δp̄, (4)

where p̄ := p0 + p1 + p2 and p0, p1, p2 are the penalties imposed upon the

auctioneer and bidders 1 and 2, respectively. Again, we assume proportional

sharing of the surplus and denote the respective shares with α0, α1, α2, with

α0 +α1 +α2 = 1.

Now consider a bidder with valuation v who makes the bid b. If he happens to

win the auction, his payoff is equal tou1n if he does not engage in corruption,

u1n(v1, b2) := v1 − b2,

and equal to u1c if he does engage in corruption

u1c(v1, b2, b3) := u1n(v1, b2)+α1S(b2, b3).

If he loses the auction he may still gain something. Indeed, in the event that

b is the second highest bid and corruption occurs, his payoff is equal to the

bribe he receives,

u2c(b, b3) := α2S(b, b3).

9



Corruption pays if the surplus is positive, i.e. if the following bribe condition

is satisfied,

b2 − b3 >
δp̄

1− δ =: γ. (5)

In words, corruption occurs only if the second bid exceeds the third bid by

γ or more.

Taking rivals’ strategies as given, bidders’ expected payoffs are

u(v,b) :=
∫ β−1

2 (b)

0

∫ v2

β−1
2 (max{β2(v2)−γ,0})

u1n(v,β2(v2))f23(v2, v3)dv3dv2

+
∫ β−1

2 (b)

0

∫ β−1
2 (max{β2(v2)−γ,0})

0
u1c(v, β2(v2), β2(v3))f23(v2, v3)dv3dv2

+
∫ 1

β−1
2 (b)

∫ β−1
2 (max{b−γ,0})

0
u2c(b, β2(v3))f13(v1, v3)dv3dv1.

Substituting the payoff functions yields

u(v,b) =
∫ β−1

2 (b)

0
(v − β2(v2))dG1(v2) (6)

+α1(1− δ)
∫ β−1

2 (b)

0

∫ β−1
2 (max{β2(v2)−γ,0})

0
(β2(v2)− β2(v3)− γ)f23(v2, v3)dv3dv2

+α2(1− δ)
∫ 1

β−1
2 (b)

∫ β−1
2 (max{b−γ,0})

0
(b − β2(v3)− γ)f13(v1, v3)dv3dv1.

Proposition 4 (second-price auction) Suppose n á 3. Then Proposition 1

applies also to the second-price auction.

Proof: We only need to show that revenue equivalence applies. Similar to

the proof of Proposition 1 we can show that

u∗(v) :=
∫ v

0
G1(x)dx +u∗(0).

Therefore, bidders’ equilibrium payoffs are as in the standard auctions if and

only ifu∗(0) = 0. But this follows immediately from (6) becauseβ−1
2 (β2(0)) =

0, which entails that, for v = 0, (6) is an integral over a null set.

The rest of the proof is analogous to the proof of Proposition 1 and therefore

omitted. �
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Interestingly the above result does not apply if there are only two bidders. In

this case revenue equivalence is destroyed, and it may happen that a bidder

who stands no chance of winning the auction bids quite aggressively, because

he speculates on earning a bribe for withdrawing his bid, which lowers the

price paid all the way down to zero.

The surplus from corruption simplifies in this case to

S(b2) := (1− δ)b2 − δp̄.

For b à γ, bidders’ objective function is as in the standard second-price

auction,

u(v,b) :=
∫ β−1

2 (b)

0
(v − β2(v2))dG1(v2).4

For b > γ, bidders’ objective function becomes

u(v,b) :=
∫ β−1

2 (b)

0
(v − β2(v2))dG1(v2)

+α1(1− δ)
∫ β−1

2 (b)

β−1
2 (γ)

(β2(v2)− γ)dG1(v2) (7)

+α2(1− δ)(1− F1(β−1
2 (b)))(b − γ).

This last term is the expected value of the share of the surplus from corrup-

tion that the losing bidder receives. We will show that, depending upon the

parameters of the game, this last term can upset revenue equivalence.

Proposition 5 (failure of revenue equivalence) Revenue equivalence does

not generally hold if n = 2.

Proof: As in the case n á 3, we have

u∗(v) :=
∫ v

0
G1(x)dx +u∗(0). (8)

4If n = 2, then G1 = F , but for clarity we stick to the more general notation.
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We now show that in a symmetric equilibrium one may have u∗(0) > 0,

which together with (8) destroys revenue equivalence. Consider the following

counterexample: Let δ = α0 = α1 = 0, α2 = 1, then γ = 0. For v = 0, (7)

becomes

u(0, b) = −
∫ β−1

2 (b)

0
β2(v2)dG1(v2)+ (1− F1(β−1

2 (b)))b.

For b < β−1
2 (1) we have

u(0, b) á − b
∫ β−1

2 (b)

0
dG1(v2)+ b − bF1(β−1

2 (b))

= b
[
1−G1(β−1

2 (b))− F1(β−1
2 (b))

]
. (9)

It follows immediately thatu(0, b) > 0 for a sufficiently small but strictly pos-

itive bid b. Therefore, in a symmetric equilibrium one must have u∗(0) > 0.

�

Remark: There is an interesting analogy between the present failure of rev-

enue equivalence and the auctions with price-proportional benefits to bid-

ders. Examples of such auctions are the Amish auction to settle an indivisi-

ble inheritance among family members (Engelbrecht-Wiggans, 1994), auction

rings that divide the gain from collusion (Graham and Marshall, 1987), and

the breaking-up of partnerships through auctions (Cramton et al., 1987). In

his analysis Engelbrecht-Wiggans establishes that such auctions “unbalance

revenue equivalence.” Just like in the present context, the reason for this re-

sult is that even the player who stands no chance to win the auction collects

some payment. Hence u∗(0) > 0, which implies that bidders’ equilibrium

payoffs u∗(v) are greater than the level reached in standard auctions.

5. more elaborate auctions and corruption schemes

So far we have restricted the analysis of coalitions in corruption schemes to

the smallest possible size, and we restricted the analysis to the two most
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common auction rules. In this section we consider some less common auc-

tions and allow for more elaborate corruption schemes that involve larger

coalitions.

If coalitions involve more bidders, the benefits from corruption can be raised

by further lowering the equilibrium price, yet this gain has to be shared

among more members. Moreover, with each illegal contact between two par-

ties there is a risk of detection. Therefore, the larger the coalition, the more

likely corruption is detected.

A general corruption scheme in a more general auction framework is as fol-

lows: Consider a k-price auction, k ∈ {1, . . . , n}, which awards the item to

the highest bidder who is asked to pay the k-th highest price. The winning

bidder has the option to offer to bidder i a bribe in exchange for withdrawing

his bid. Let c be the number of bidders participating in the corrupt coalition.

c = 1 means that the corruption scheme involves only the winning bidder

and the auctioneer; c = 5 means that the winner has bribed four other bid-

ders to drop their bids. c = 0 means that the winning bidder does not engage

in corruption. If corruption is not detected, the winning bidder pays bk+c ,

otherwise he pays bk and all involved bidders and the auctioneer are penal-

ized. This more complex corruption scheme is clearly also available in the

first-price auction: Several loosing bidders can be bribed to drop their bids,

and the winning bidder may lower his bid below the original highest losing

bid.

What do we know about the validity of our results if such involved corruption

schemes are available? Proposition 1 goes through if and only if revenue

equivalence holds in these more complicated games as well. However, there

are more constellations where revenue equivalence fails.

As an instructive digression let us study the reasons for the failure of rev-

enue equivalence in Proposition 5 more closely. Considering a second-price

auction, and assuming that the corruption scheme involves at most three
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players (the highest and the second-highest bidder and the auctioneer), we

found that revenue equivalence holds if n á 3 (Proposition 4). The reason

why this works is that in a symmetric equilibrium the bidder with a valuation

equal to zero will never receive a bribe because the third bid exceeds his own

with certainty; hence u∗(0) = 0. This is not true if n = 2. After all, with two

bidders there is no third bid, so the bribe condition requires only that the

losing bid be high enough. Under some parameter constellations, aggressive

bidding by the zero value bidder is indeed part of a symmetric equilibrium.

His probability of winning the auction is still zero, but he does always receive

a bribe in equilibrium, thus u∗(0) > 0, destroying revenue equivalence.

If more involved corruption schemes with arbitrarily large coalitions are fea-

sible, revenue equivalence can fail even if n á 3. In a k-price auction with

k > 1, every coalition that includes n−k+2 bidders drives the price down to

zero, and therefore a bidder with valuation equal to zero can force a positive

expected payoff by bidding aggressively enough, as demonstrated before for

n = 2, k = 2. If corruption succeeds to lower the price all the way down to

zero, the seller loses an extra chunk of revenue equal to nu∗(0). Therefore,

we conclude that the second-price auction is superior to third- and higher-

price auctions on the ground that smaller coalitions suffice to bring the price

down to zero in the higher-price auctions.

The argument does, however, not apply to the comparison of the first- and

second-price auction. Both auction forms require all n bidders to participate

in the corrupt coalition for revenue equivalence to fail. The second-price

auction, however, has an advantage over the first-price auction because it

rules out corrupt coalitions with only two members (the winner and the auc-

tioneer), to which the first-price auction is susceptible. We conclude that,

if corruption is an issue and an open-bid auction is not feasible, the seller

should choose a second-price sealed-bid auction.
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6. corruption-proof contracts

Corruption necessarily involves the auctioneer who acts as an agent on be-

half of the seller. In principle, the seller could avoid corruption by running

the auction himself or by setting up appropriate monitors. However, this

solution is often not feasible because the seller is not qualified for the task,

because ownership is diversified, or because the seller himself is an agent

for some other party, as in the case of the public sector. Yet, even in these

cases the seller can fight corruption by awarding the auctioneer an appro-

priate incentive contract. We now explain some properties of such incentive

schemes, using the example of a sealed-bid first-price auction.

Proposition 6 (corruption-proof incentive contract) Consider a sealed-

bid first-price auction. The seller can rule out corruption with a costless incen-

tive contract (s, s0) that offers the auctioneer a share s á 1− δ
δ∗ of the profit

in exchange for a flat fee s0.

Proof: The auctioneer’s compensation equals sb1 − s0. Set s0 := s ∫ 1
0 B1(x)

dF1(x), so that the contract is costless if β1 = B1.

The total surplus of the corrupt coalition equals the expected reduction of

the price paid to the seller, minus the expected penalty, minus the reduction

of the auctioneer’s compensation received from the seller,

S(b1, b2) := (1− δ)(b1 − b2)− δ(p0 + p1)− s(b1 − b2)

= (1− δ− s)(b1 − b2)− δ(p0 + p1).

We want to find conditions that guarantee that this surplus is not positive.

S reaches a maximum at b1 = β1(1) and b2 = β1(0). Therefore, S(β(v1),

β(v2)) à 0 for all v1, v2 if and only if

s á s∗ := 1− δ(β1(1)− β1(0)+ p0 + p1)
β1(1)− β1(0)

.
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If s á s∗ the game collapses to the standard first-price auction without cor-

ruption. Thus, β1 = B1, and s∗ simplifies to

s∗ = 1− δ(B1(1)+ p0 + p1)
B1(1)

= 1− δ
δ∗
,

as certified. �

If δ < δ∗ then, by Corollary 3, there is a positive probability that corruption

will occur in equilibrium. But the seller may only have limited influence on the

detection probability and penalties because they are controlled by the legal

system. However, the seller can compensate the deficiency of the legal system

by offering the auctioneer an incentive compatible compensation scheme.

For instance, if the detection probability falls twenty percent short of the

smallest level that rules out corruption, i.e. δ = 0.8δ∗, it suffices to offer

the auctioneer a twenty percent profit share, s∗ = 0.2. With this contract,

S is non-positive and corruption is prevented at zero cost, and the expected

revenues are the same as in the standard first-price auction. We mention

that a similar condition for a corruption-proof compensation scheme can be

developed for second- and higher-price auctions.

Incidentally, linear sharing rules are commonly applied by major auction

houses. For example, Sotheby’s takes a profit share of 12% to 37%.5 Whether

this is meant to be a simple markup or an anti-corruption measure is open to

debate. In any case, such contracts reduce or even eliminate the incentives

to engage in the kind of corruption that we analyzed in the present paper.

5For live auctions at Sotheby’s salesrooms the buyer pays a commission of 10% to 20%
of the hammer price. For internet-auctions at sothebys.com the fee is 10% (called “buyer’s
premium”). In addition, buyers and sellers pay a commission between 2% and 20% of the
hammer prices of all purchases and sales within a calendar year (except sales by Sotheby’s
associates done over the internet). The seller also pays all agreed upon expenses (ship-
ping, insurance, taxes). The total fees (for non-associates), net of expenses, are therefore
10% to 20% buyer’s commission or premium, plus two times an amount between 2% and
20% of the hammer price. Thus, the fees collected by the auctioneer are between 14%
and 60% of the hammer price, or between 12.3% and 37.5% of the totally paid price (ham-
mer plus fees, net of expenses); see http://auction.sothebys.com/conditions.html,
section “Certain Conditions Relating to Buyers,” item 2 “Buyer’s Premium and Pay-
ment,” and http://auction.sothebys.com/auctionslive/sell.html, section “Stan-
dard Commission,” and personal communication with Sotheby’s customer assistance.
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7. conclusions

Our model establishes corruption as an equilibrium phenomenon of sealed-

bid auctions, if the seller delegates the actual conduct of the auction to an

auctioneer-agent. The model therefore explains the empirical fact that cor-

ruption does happen in public submissions and the like.

The model also shows that bidders do not benefit from corruption in terms of

equilibrium expected payoffs. The prospect of participating in a profitable

corruption scheme induces them to raise their bids to such an extent that

bidders’ entire surplus is competed away. Only the auctioneer-agent benefits

from it. This is a consequence of the revenue equivalence principle. The

entire cost of corruption, i.e. the excess profit of the auctioneer as well as

the expected value of punishment, is borne by the seller. Thus, the seller has

a strong interest to design and apply anti-corruption measures.

Such measures are available. All that is required is an appropriate incen-

tive contract between the seller and the auctioneer. We show that such an

incentive contract takes a simple form. It is just an ordinary linear profit

sharing contract, which, incidentally, is the standard form of contract used

by major auction houses, such as Sotheby’s. For this reason we conclude that

similar agreements should be used by government agencies for their public

submissions.
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