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Abstract

In the sequel of its seminal application in Davidson, Hendry, Srba and Yeo (1978) the single
equation error correction model has been widely used in empirical practice. Providing a
clear distinction between short- and long-run dynamics this model allows OLS-methods to
be as efficient as (multivariate) full information maximum likelihood methods under a few as-
sumptions on weak exogeneity and cointegration. We consider OLS-based tests on long-run
relationships, weak exogeneity and short-run dynamics. For the latter issues it is known that
common test-statistics are no longer pivotal if model errors exhibit conditional heteroskedas-
ticity. We show that the wild bootstrap provides convenient critical values for the considered
OLS-based statistics under both homoskedastic and conditionally heteroskedastic model er-
rors. The wild bootstrap is easy to implement and turns out to improve considerably the
empirical size of common test statistics compared to first order asymptotic approximations.
We prove further that the wild bootstrap retains its validity for inference within a system of
pooled equations exhibiting cross sectional correlation. Opposite to feasible GLS methods
our approach does not require any parametric specification of cross sectional correlation, and
copes with time varying patterns of contemporaneous error correlation.
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1. INTRODUCTION

A vast body of theoretical and empirical literature on cointegration has emerged since
its introduction in Granger (1981). The Engle-Granger representation theorem (Engle and
Granger 1987) provides a one-to-one relationship between the framework of cointegration and
the so-called error correction model (ECM) which itself has attracted an enormous interest at
least following the seminal investigation in Davidson, Hendry, Srba and Yeo (1978). Within
the vector ECM (VECM) transitory and long-run dynamics are separated, the latter of which
are often of interest from the viewpoint of economic theory. Boswijk (1995b) advocates the
conditional ECM, specifying the joint data generating process (DGP) of endogenous variables
conditional on a set of variables satisfying the assumption of weak exogeneity as defined in
Engle, Hendry and Richard (1983). The single equation version of this model (SECM)
allows asymptotically efficient estimation and inference if a set of assumptions concerning
in particular the dimension of the cointegrating space and exogeneity of the conditioning
variables can be made. Compared to a VECM a particular advantage of the SECM is that
efficient inference within the latter model is very close to common ordinary least squares
(OLS) procedures (see e.g. Boswijk 1993, Kremers, Ericsson and Dolado 1992).

In this paper we build upon the convenience and widespread use of the SECM. Firstly we
compare the performance of OLS-based inference by means of common first order asymp-
totic approximations on the one hand and employing a bootstrap procedure, namely the
wild bootstrap, on the other hand. Providing a comprehensive toolkit we consider tests on
equilibrium relationships, weak exogeneity and short-run dynamics. Throughout we allow
for time series processes which are generated from conditionally heteroskedastic error terms.
Secondly, we show that the recommended bootstrap scheme retains its validity if a set of
SECMs exhibiting cross sectional error correlation is pooled. Therefore, apart from the lit-
erature on cointegration two further areas of research connect directly to our contribution,
panel time series analysis and bootstrap methods.

Naturally, economic models become more reliable if the implied econometric hypotheses
are tested across a panel of economic entities rather than relying on results of single equation
analyses. Furthermore, a number of economic models directly claim identical equilibrium
relations to hold for different members of a panel. Convenient examples can be found, for

instance, in the exchange rate or growth and convergence literature (see e.g. Donaldson and
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Mehra 1983, Edison, Gagnon and Melick 1997, Froot and Rogoff 1995, Lothian 1997, Neusser
1991). From a statistician’s viewpoint an analysis of time series panel data promises a
power improvement of inference procedures due to increased samples sizes which are typically
implied by a consideration of pooled systems.

The growing econometric literature on the analysis of panels of nonstationary time series
already addresses the issue of testing for cointegration on the pooled level. Pedroni (1998)
advocates a residual based approach to test for cointegration, similar to the (two step)
Engle-Granger procedure. The two step procedure, however, fails to provide information
concerning the dimension of the cointegrating space, i.e. the joint cointegrating rank on the
pooled level. Groen and Kleibergen (1999) generalize Johansen’s (1991) maximum likelihood
(ML-) procedure to apply in pooled systems assuming a fixed cross section dimension. Once
a joint cointegrating rank is determined the latter approach also allows to infer against
homogeneity across different members of the panel.

As a further line of research related to our paper Li and Maddala (1997) survey differ-
ent methods of bootstrapping in systems of cointegrated time series variables. By means
of a Monte-Carlo investigation they show for particular resampling schemes that empirical
size properties of likelihood ratio (LR-) tests on long-run relationships (Johansen 1991) can
be substantially improved by bootstrap schemes. Similar results are provided in Herwartz
(1998) where the empirical performance of LR-type statistics in stationary time series models
is analyzed. Improving the small sample properties of common test procedures is particu-
larly relevant for the analysis of time series panels where typically a few observations are
available for each member of the panel. It is known that often OLS based test statistics
lose their pivotal property if the underlying model errors are heteroskedastic. In this case
the wild bootstrap provides a convenient means to mimic the distribution a particular test
statistic since its asymptotic distribution may be difficult or even impossible to approximate
analytically.

As mentioned we address different issues of inference which are essential for (pooled) SEC
modelling. Inference in SECM is assumed to be asymptotically equivalent to full informa-
tion ML-methods, i.e. we regard the involved variables to be cointegrated with cointegrating

rank 1 and assume further that all conditioning variables are weakly exogenous. We mainly



employ LR-type statistics to test restrictions on long-run parameters, to infer on weak exo-
geneity of conditioning variables, and to test on insignificance of parameters governing short-
run dynamics. Note that for the latter cases OLS-based test statistics are no longer pivotal
if model error terms are conditionally heteroskedastic. Compared to the WALD-statistic the
LR-test has the particular advantage that it can be easily pooled across equations in the
case of a finite cross section dimension. The asymptotic distribution of the pooled LR-test,
however, is hardly available in presence of cross sectional error correlation. We show that
the wild bootstrap is easily implemented to account for cross sectional correlation without
requiring any parametric (first step) estimate of its pattern. In addition, the method copes
with time dependence of contemporaneous correlation. Often used for pure regression mod-
els, a further advantage of the wild bootstrap in a (multivariate) time series framework is
that this procedure does not require to specify a DGP for the involved time series variables.

To shed light on the empirical properties of competing inference procedures we perform a
Monte Carlo investigation under homoskedastic and heteroskedastic error processes. Simu-
lating a very simple bivariate process it turns out that first order asymptotic approximations
might involve considerable size distortions which can be mitigated substantially or even over-
come by means of the wild bootstrap. Remarkable size improvements in small samples are
obtained from bootstrapping OLS-based statistics on the pooled level. If OLS-based sta-
tistics lose their pivotal property standard critical values are inappropriate involving size
distortions which do not vanish asymptotically. The wild bootstrap provides valid critical
values even in presence of heteroskedastic error terms.

The remainder of the paper is organized as follows: In the next Section we discuss in detail
the empirical model and the investigated OLS-based test statistics. The wild bootstrap pro-
cedure is discussed in Section 4. Section 5 provides a detailed simulation study. Concluding
remarks and suggestions for future work can be found in Section 6. Proofs of our results are

given in Section 7.

2. METHODOLOGY

2.1. The Model and Assumptions. We consider the single equation conditional ECM:

Ay =vi + (Y1 + Bz-1) + Az +uy, t=1,....7T, (2.1)
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where —2 < oy < 0.

For the marginal process we assume the following representation:
Azp = vy + p(yp—1 + B2—1) + v, t=1,...,T. (2.2)

The adopted single equation approach to estimate long-run equilibrium relations and
adjustment dynamics is equivalent to full information ML-estimation (Johansen 1991) and
thus asymptotically efficient if a set of assumptions can be made (see e.g. Johansen (1992),
and Banerjee, Dolado, Galbraith and Hendry (1993)). First, the involved variables y; and
z; are assumed to be integrated of order one. Second, there exists a linear combination of
the nonstationary processes providing stationary residuals, i.e. 3; and z; are cointegrated
with cointegrating rank 1. According to the Engle-Granger representation theorem this
assumption implies that at least one out of ; and «y must be nonzero. Third, z; is weakly
exogenous for the estimation of # and a;. Note that s = 0 is a necessary and sufficient
condition for weak exogeneity of z; (see Urbain 1992, Boswijk 1995b). Fourth, following
Phillips (1988) we assume that the error sequences u; and v, are serially uncorrelated having
a positive definite covariance matrix. We consider the bivariate case, involving a scalar
marginal process z;, just for convenience of notation. The asymptotic results provided below
still apply for higher dimensional marginal processes as long as the assumptions concerning
the cointegrating rank and weak exogeneity are met.

In order to obtain serially uncorrelated error processes u; and v; equations (2.1) and (2.2)
may be conveniently augmented with further (lagged) stationary explanatory variables. To
derive the asymptotic distributions of a few OLS-based test statistics (e.g. testing on weak
exogeneity of z;) it is necessary to impose a stronger assumption on the model errors u; and
v;. In this case both error processes are typically assumed to be homoskedastic. Throughout
we assume that necessary presample values are available. To have single equation OLS-
procedures applied to (2.1) asymptotically equivalent to an ML-analysis of the corresponding
VECM one always has to test for weak exogeneity of z; within the marginal model (2.2).

Apart from efficient estimation the assumptions provided above are also sufficient to per-
form asymptotically valid inference by means of common OLS-based procedures. For in-
stance, t—ratios and F'—type statistics on joint significance of selected parameters are widely

used. In particular, the ¢-ratios (tai) of the error correction coefficients &;, i = 1, 2, obtained
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from OLS-routines are asymptotically normally distributed if the cointegration assumption
holds. Therefore the normal distribution is often used to infer on weak exogeneity of z;
which implies that the error correction parameter in the marginal process is actually zero
(ap = 0). If the variables fail to be cointegrated then, however, ¢; = y;+ (3z; is nonstationary.
In this case the regression in (2.1) is “unbalanced” since a (lagged) nonstationary variable
is employed to describe the dynamics of a stationary series. Therefore a; should be zero if
y: and z; are not cointegrated. Thus, a test on significance of o is implicitly also a test of
the null hypothesis of cointegration. Under the alternative of no cointegration, however, 5
fails to be asymptotically normally distributed. For this case Kremers et al. (1992) show
that the distribution of ¢; is somewhere between the standard normal distribution and the
distribution of the Dickey-Fuller ¢-statistic. Boswijk (1995a) provides a WALD-test of the
null hypothesis Hy : a; = 0. Testing against the alternative of cointegration in the condi-
tional model (2.1) such a procedure fully exploits the assumed weak exogeneity of z;. Using
Monte Carlo techniques Boswijk and Franses (1992) show that this approach outperforms
competing cointegration tests in terms of size and power if the conditioning variables are

actually weakly exogenous.

2.2. The WALD-Test. Boswijk (1993) provides the WALD-statistic to test hypotheses
involving the long-run parameter 3, Hy : 8 = [, say. To provide a formal representation
of the WALD-statistic it is convenient to reformulate the conditional equation compactly as

follows:

In (23), X 1 =(y1 z1), wherey 1 = (yo,...,yr 1) and z 1 = (29,...,27 1), is com-

posed of vectors of lagged nonstationary explanatory variables. Accordingly W = (17 Az),
where Az = (Azy,...,Azr), contains all right-hand side variables in (2.1) which are ei-
ther stationary or deterministic. The parameter vectors in (2.3) are composed as follows:
0 = (a1, 108)", 9 = (v1,71)". The OLS-estimate of 7 = (¢',¢')’ is
-1
_ XX, XL W X' Ay . (2.4)
WX, WW W'Ay
5
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If the u; are homoskedastic, then a natural covariance estimator is given by

-1
. X X, X' W
S =52 . . 52 = @', (2.5)
WX, WW T'-K

where K is the number of explanatory variables employed in (2.1). A convenient expression

for the WALD-statistic is obtained after defining R = (8, — 1) as (see Boswijk 1993):
W = (RO)'[RE;R) H(R) = x*(1). (2.6)

Instead of taking critical values for W from its asymptotic x2-distribution it is often preferred
in investigating small samples to use the F/(1,7 — K)-distribution. In the following we refer

to this strategy as the WALD-test.

2.3. LR-type test statistics. Since the WALD-test fails to be invariant with respect to
reformulations of the null hypothesis one may regard a Gaussian LR-test as a promising al-
ternative device. A further advantage of the LR-test is that results from different equations
can often be pooled. Thus if one is interested in testing a particular hypothesis to hold in a
system of univariate regression models LR-inference provides an appealing means if there is
no cross sectional correlation. The purpose of the present study is at least twofold. Firstly,
we provide an alternative procedure to obtain critical values for the LR-statistic, namely
a bootstrap scheme. It will turn out that such an approach improves the small sample
properties of the LR-test considerably. Secondly, we show that the recommended bootstrap
scheme is convenient to estimate critical values for LR-type statistics even in the case of
pooled equations exhibiting cross sectional error correlation. Concerning the latter issue we
are interested in evaluating whether the good size properties of the bootstrap scheme in
single equations carry over to the case of pooled LR-statistics.

In order to provide a comprehensive toolkit for empirical practice we consider LR-type
statistics for three testing problems: First, we investigate hypothesis testing for long-run
parameters providing the LR-counterpart of the WALD-statistic in (2.6). Second, we ad-
dress the issue of inferring on weak exogeneity of z;, i.e. we discuss the LR-counterpart
of the standard t-ratio of ay in (2.2). Finally we investigate how LR-type inference may
be employed to test on insignificance of further parameters governing short-run dynamics.

Whereas the first two issues are of immediate interest for economists the latter two tests
6



support the econometrician in specifying empirical models as (2.1) or (2.2) generated by se-
rially uncorrelated error sequences. Throughout we are interested in proving the asymptotic
validity of the recommended bootstrap procedure. For this reason we provide a detailed

representation of the relevant LR-statistics.
Testing restrictions on long-run parameters. The ECM in (2.1) may be given compactly as:
Ay = X107 ) + u, (2.7)

where X} = (y—1 2z-1 1y Az), 0, = (a1, a18) and ¥ = (v1,71)". In the context of testing

the long-run parameter 3 we assume that ap = 0, that is, (2.2) degenerates to
AZt = I +Ut: t:1, ,T. (28)

A corresponding representation of the model is also available under particular null hy-
potheses. Consider first H(gl) : B = By. Defining deviations from the long-run equilibrium

under this hypothesis as ¢) = y; + B9z we have
Ay = X0, ) +u, (2.9)

where Xy = (¢°; 17 Az) and 6y = ;.
We denote by Agl) (i = 0,1) the Gaussian likelihoods in models (2.9) and (2.7), respec-

tively. The logarithmic likelihood ratio can be written as

(1) (1)
LRY = 2T1n % = Tln is‘()l) , (2.10)
Ag RSS;

where RSS(()I) and RSS?) are the residual sums of squares for the least squares estimates

based on X, and X, respectively. Using In(1 + z) = z + O(z?) for z > 0 we obtain that

LRY =T

O (1) (1 _ 0\ 2
RsS{” ~Rss{? T(RssO RSSl) (2.11)

RSS{Y Rss{”
One usually expects that the logarithmic likelihood ratio is asymptotically x?(k)-distributed,
with k£ denoting the number of excess parameters under the alternative model compared to
the model under the null hypothesis. In our case, the number of excess parameters is 1. We
will actually show that LR is asymptotically x2(1)-distributed.

In order to simplify the calculation of RSS&I) and RSS%I), we apply partial regression, that
is, we project both sides of (2.7) and (2.9) first onto (Im(W))+, where W = (17 Az), and
7



consider then least squares fits in these modified models. Defining the projection matrix

M = Iz — W(W'W)™'W' we obtain from the model (2.3) that
MAy=MX_10 + Mu. (2.12)

Accordingly, the residual sums of squares in (2.7) and (2.9) can be represented in terms of

the variables in (2.12) as
RSS{Y = (Ay)(r — X(X/X) ' X)Ay
= (Ay)'M(Ip — P)MAy, (2.13)
i =0,1, where Py = Projj,¢q_,3 and Py = Projyngy_, , 13-

In terms of the representation given in (2.12) the null hypothesis may be respecified for

the parameter vector 6 = (a1, a1 3)" as follows:
HY . Ro=0,

where R = (f; —1) is a 1 x 2 matrix containing [y, the value of the long-run parameter
supposed under the null hypothesis. After standard calculations we arrive at the following

representation (see e.g. Judge, Hill, Griffiths and Liitkepohl (1988)):

RSSSY — RssiY
= UMX_ (X' \MX_ ) 'R[R(X" MX_) 'R 'R(X' \MX_,) 'X' ,Mu. (2.14)
The T x T matrix given in (2.14) can be entirely specified in terms of the random variables

¢’_; and the nonstationary but weakly exogenous variables z; ;. Applying some algebra we

obtain the following representation:

(4%, M(%,)

ZaMzoy — ((¢21) Mz-1)2((¢2) M (%))~

We impose the following condition on the innovations:

0y 2
(z'_lMu _ ) M (qgl)’Mu>
RSS” — RSSY =

(A1) {(ut,vy)',t € Z} is a stationary sequence of serially uncorrelated random vectors satis-
fying Fu; = Evy = 0, 0 < 02 = Eu? < 00, 0 < 02 = Ev? < oo, and |Corr(uy, vy)| < 1.
Moreover, we assume that

(i) E|ut|*t® + Elwn]°t® < oo for some ¢ > 2 and ¢ > 0,
8



(i) ¥%°, a(n)'"%°¢ < oo, where {«(n)} are the coefficients of strong regularity (o-
mixing) defined as

a(n) = sup |P(FNG) — P(F)P(G)|.

F.G:Feo(Xt,Xt—1,... ), GEO( Xt 4n , Xt n415ee-)

We will see below that the limiting behavior of RSS(()I) - RSSP differs in the two cases
of v, = 0 and v, # 0. In the first case we have that z; = 2y + vy + - - - + vy, whereas we
have in the second case that z; = vyt + Op(T"/?). Owing to this, the limit distribution of
RSS(()I) — RSS%I) follows in the latter case from a central limit theorem, whereas we have to
employ empirical process theory in the former case. In the following we sketch the steps in
approximating the distribution of RSS(()I) — RSS%I) in the case v» = 0. Note that u; and v,
are not necessarily uncorrelated. Since M Az = 0 we can replace Mu in (2.15) by Mr, where
r=(ry,...,rr) and

Evtut
Ev?

Ty = U — (S (216)

Note that r; is chosen such that Ev;r, = 0, which will be important in the sequel. Let
02 = Er2. Moreover, we have T-'RSS{") -2 52

and (2.15) that

=, which implies in conjunction with (2.11)

( gl)’szl 2
(1)> (LM — () )
ZaMzy — ((¢21)' Mz1)*((¢%1)' M(¢21)) !
+ Op (T7'(RSS{” — RSS{Y)?) . (2.17)

1
LR(l) = <—2 + op
g,

T

On the basis of results of Phillips (1988) we can prove the following lemma, which will be
the key to deriving the limit distribution of LR,

Lemma 2.1. Suppose that Assumption (A1) is fulfilled. Then there exist on a sufficiently
rich probability space versions of the random wvariables vy, ... ,vp and ri,... ,ry, and inde-

pendent Wiener processes B, and B, such that

d ({%gm s €0, 1]},{%3@(3), s € [0, 1]}) 2500, (2.18)

fj 25 0, B,(1), (2.19)

9



and

1 T a.s 1
=Yt v S o0, /0 B,(s) dB,(s). (2.20)
t=1

The reason for introducing a new probability space is a purely technical one. According to
the construction described in the proof of Theorem IV.13 in Pollard (1984), it is enough that
the new probability space embeds a uniformly distributed random variable. For simplicity
of presentation, we assume here and in the following that the original probability space is
already rich enough so that a transition to another space is not necessary.

In (2.18), we use the so-called Skorohod metric d. It is defined on the space D|0, 1] of

right-continuous functions on [0, 1] which possess left limits as

d({z(s), s € [0,1]},{y(s), s €[0,1]})

= inf {s: I <e, sup |z(t) — y(A(t))] < 8}, (2.21)
e>0 t€[0,1]
where \ is any continuous mapping of [0, 1] onto itself with A(0) = 0 and A(1) =1 and
Alt) = A
I\l = sup lnM , t,s€0,1].
t#£s t—

Using these approximations we can derive the limit distribution of LR® in the case v, = 0,

whereas we get such a result for v # 0 by the central limit theorem.

Proposition 2.1. Suppose that Assumption (A1) is fulfilled and that ae = 0. Then, under
H"

’

Here the notation X, —%5 X means convergence in distribution of a sequence of random
variables {X,} to X. With a slight abuse of notation we will also write X, —% P if
{X,} converges in distribution to any random variable with distribution P. Convergence in
distribution is equivalent to weak convergence of the associated probability measures which

will be denoted by £(X,) = L(X).
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Testing on weak exogeneity. Now consider the problem of testing weak exogeneity of z; for
inference on  and «; in the conditional model (2.1). As mentioned, weak exogeneity holds
if the null hypothesis HéQ) : g = 0 is true. Thus, a natural procedure (see Johansen 1992)
to test on weak exogeneity is firstly to estimate equilibrium errors and secondly to infer
whether this series improves a regression model explaining Az;. Following Boswijk (1995b)
this procedure can be interpreted as a Lagrange Multiplier test.

Under H?, equation (2.2) reduces to

Az = 2050 + v, (222)

Zy = 17 and 6y = 5, while we get under Hf)

Az = 216, + v, (2.23)

where Z, = (y-1 z_1 1p) and 6 = (g a8 1»). We do not directly use the residual

sum of squares obtained from the least squares estimate in (2.23) to devise a test statistic.

~

Rather, we replace first the true long-run parameter 3 by the least squares estimate (3

corresponding to the model
Yy = Bz +c+e, t=1,...,T, (2.24)
which is known to be superefficient. To be precise, we have the following result which can be

found for normally distributed error terms u; and v, e.g. in Banerjee et al. (1993, Chapter 6).

Lemma 2.2. Suppose that Assumption (A1) is fulfilled and that e = 0. Moreover, we

assume that y; and z; are cointegrated with cointegrating rank 1.
(i) If v, =0, then
B—6=0pT"),
(i) if vo # 0, then

We consider instead of (2.23) the equation
AZ = 2151 —+ v, (225)

where Z; = (y_1 + Bz_l 1r) and 6; = (ap o).
11



Analogously to (2.10) and (2.11), the logarithmic likelihood ratio can be written as

2) 2)
LR® = 27TIn M = Tln RS5S¢~
A(Z) RSS?
@ (2) @ ) 2
pRSSY — RSsP? T(Rss0 Rssl> (2.26)

RSS( RSS?
Since HéQ) corresponds to the linear restriction Ré; = 0 with R = (1 0) we obtain that

RSS{?Y — RSSY = v'2,(2!2,)'R! [R(z;zl)—lR']‘lR(z;zl)—lz{v.
(2.27)

Proposition 2.2. Suppose that Assumption (A1) is fulfilled. Moreover, we assume that y;
and z; are cointegrated with cointegrating rank 1. Then, under HéQ),
i, Elg- )
LR®) F o7 X 2(1).

’U

Testing for significant short-run dynamics. Finally we consider to test on significance of
additional short run dynamics entering the conditional model in (2.1). Assume that we are
interested in testing whether or not lagged values of the dependent variables, Ay; ; say,
contribute to short-run dynamics. To be precise, we assume instead of (2.1) the following

empirical model:
Ay, = i+ aiq 1+ iz +RAy 1 +tuw, t=1,...,T.
This can be equivalently written in matrix form as
Ay = Wim + Womg + u, (2.28)

where W7 = (1 ¢_1), Wo = (Az Ay_;), and the parameter vectors m; = (1 )" and
mo = (71 72) are defined accordingly. Furthermore, it is assumed that the z; obey (2.2).
The null hypothesis Hé?’) : 72 = 0 may be specified as Rmy = 0, where R = (0 1).

Before we form the LR-test statistic, we substitute again the cointegration parameter (3

by the least squares estimator B from the regression model (2.24).
12



Let G-1 = (qo,--- ,qr-1)", where ¢ = y + Bz + (B — B)z. The residual sums of squares
which correspond to Hé?’) and Hf?’) are derived from the model equation (2.28) where ¢;_;
is replaced by ¢;_;. With W, = (17 G_1), we define the projection matrix M = Ip —

Wi (W!W1)~'W!. Applying results from partial regression we obtain under H that

RSSY — RSSY® = o/ MW, (Wi MW,)R[R(WLMW,) 'R R(W.MW,)~*WiMu

Ay_1) M(Az 2
) ((Ayo1)Mu — FEHE (A2) Mu) (2.29)

(Ay—)'M(Ay-1)" — ((Ay-1)'M(Az))*((Az)'M(Az))~"

As usual, we obtain that

(3) (3)
LR® = 92TIn % = Tln is‘(’?,)
Ag RSS;
3 (3) 3 3)\ 2
1 1

Proposition 2.3. Suppose that Assumption (A1) is fulfilled. Moreover, we assume that y;

and z; are cointegrated with cointegrating rank 1, and that oo = 0. Let Zg;/_l = MAy_,.
Then, under Hy,

e~ — 2
Eqi_1Ayi—
; E [(Aytl - 7tE;t2_lt 16]t1) Ut]

— 2
Eqi—1Ayi—1 2
E (Ayt—l T T Eg, 1) Ou

xX*(1).

A sufficient condition for an asymptotic y2-distribution of the LR-type test statistic is
that the innovations (u;, v;)" are i.i.d. If this assumption is violated, the LR-statistic loses its
pivotal property. In cases with conditional heteroskedasticity we experienced considerable

size distortions if critical values for the LR-statistic are taken from the x?(1)-distribution.
3. INFERENCE IN POOLED SYSTEMS OF EQUATIONS
Now suppose a set of empirical models as in (2.1) to be under study, for example
Ayn,t = Up1+ anl(yn,t—l + /ann,t—l) + ’YnlAzn,t + Un,t, t=1,... ,T, n=1,... ,N,
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where N denotes the number of equations in the system. Accordingly, the marginal processes

are assumed to obey the representation

Azpy = Ung + Qn2(Yng—1+ Bnzng—1) + Uy, t=1,..., 7, n=1,...,N.
(3.2)
We are interested in testing specific null hypotheses to hold simultaneously in the N equa-
tions. A natural generalization of the LR-tests defined in (2.11), (2.26), and (2.30) is given
by

) N A(i)
LR{y, = 273 In (—”1
n=1

Ang
. . . . 2
N RSS! — RSS{) N (RSS{) — RSSY]
- T w2l L 0| T b 2onl ) 3.3
nzz:l RSSY nzzl RSSY) (3:3)

where RSSSJ)- and Aff]) are the analogs of RSS;“ and Ag-i), respectively, in the nth model. This
likelihood ratio statistic is already considered in Liitkepohl (1991) in a related context. In
(3.1) and (3.2) it is implicitly assumed that T observations are available for each equation.
If this is not the case, then the above statistic can be easily modified.

Before we can derive the asymptotics for the test statistics LRS\)]], 1 =1,2,3, we have to

reformulate Assumption (Al) accordingly.

(A2) {(u14,v14y-.. ,ung, UNe), t € Z} is a stationary sequence of uncorrelated random vec-

tors satisfying Buny = Evyy = 0, 0 < o), := Eu, < 00, 0 < 0., := Er} , < 00, and

Evn,tun,t
2
E‘vn,t

|Corr (Upt, vne)| <1, forn=1,... ,N. With r,,; = up s —

Upt, We suppose that
Corr(vn ¢, 7m¢) = 0 for all n, m. Moreover, we assume that

(i) Elunq|t + Elv,1]"® < oo, for n=1,..., N and some ¢ > 2 and € > 0,

(ii) ¥, a(n)'"%°¢ < oo, where {a(n)} are the coefficients of strong regularity of the

process { (U1, V1, ... ,Ung UNt),E € L}

Proposition 3.1. Suppose that (A2) is fulfilled. Moreover we assume that y,; and z,, are
cointegrated with cointegrating rank 1 for alln =1,... ,N.
(i) Under Hél) and apy =0 for allmn=1,... N:
(ia) v, =0
Let (Biy, - -. , Bny) and (Biy, ... , Bny)' be independent N-dimensional Wiener pro-

cesses with covariances Cov((vyy, ... ,vne)") and Cov((rig, ... ,rny)'), respectively,
14



and let 02, = var(rn). Then

LR%) i) i LQ{IOI [an(t) - f()l an(s) dS] dBnr(t)}2

T [ [Bu(t) — Ji Buuls) ds] dt

(lb) 1%} 75 0

N
1
) 4 3 Lz
1

n= nr

where
(Zyy.o.. s ZN)" ~ N(O, Cov((r14y... ,7N2))
(ii) Under HS® :
N
LRY -4 3 72,
n=1
where

1 1

2 2 Y 2 2
v E(J1,t—101,u \/ EqN,t—lo-N,v

(iii) Under H(g?’) and apo =0 for alln=1,...  N:

(Zl, ey ZN)I ~ Dzag[ ]N(O, OOU((Ql,t—lvl,t; - an,t—lvN,t)l))-

N
LRY -5 3" 72,
n=1

where

1 1

2 2 Y 2 2
\/Ew1,t—1<71,u \/EwN,t—laN,u

Eqn,t—lAyn,t—1q P
P) —1-
Eqn,t—l e

(Zl,... ,ZN)I ~ Dzag[

]N((), COU((wl,t—th, e ,wN,t—luN,t)'))

and Wnp,t = Ayn,tfl -

In all cases, the limit distributions of the test statistics depend on a number of specific
properties of the time series. This clearly motivates the application of the bootstrap for

determining appropriate critical values.
15



4. THE WILD BOOTSTRAP

It follows from Propositions 2.1 to 2.3 that the LR-statistics are pivotal if {(uy, v;)'} forms
a sequence of independent random vectors. However, Propositions 2.2 and 2.3 show that, e.g.
in the presence of autoregressive conditionally heteroskedastic error sequences as introduced
by Engle (1982), the LR-statistics are not pivotal in general. Note that in this case the
random variables entering the factor to be multiplied with a x?(1) distribution fail to be
independent. Hence, taking the critical value from the x?(1)-distribution leads to a serious
size distortion, which does not even vanish as 7" — oo.

Since the asymptotic null distributions derived in Propositions 2.2 and 2.3 depend on
some nuisance parameters it is natural to apply an appropriate bootstrap method for the
determination of the critical value. Moreover, although this is not visible from our first-
order asymptotic results, we hope to get a better finite sample performance in comparison
to the approach based on the limit distribution. In a different but related context, Herwartz
(1998) obtained empirical results which showed the superiority of the bootstrap over standard
asymptotics.

In the present context, one motivation for using the bootstrap is that we have to account for
possible heteroskedasticity of the innovations which affects first-order asymptotic properties
of two of our test statistics. One important feature of all three test statistics is that they can
be approximated by squared sums of martingale differences. Therefore, the so-called wild or
external bootstrap seems to be a natural choice. It goes back to a proposal of Wu (1986)
and was recognized as a method fitting in the general concept of bootstrap by Beran and
Efron in the discussion of Wu’s paper. The validity of this particular resampling scheme has
already been investigated in many papers and for statistics of different types. For example,
Mammen (1993) showed its validity for F-type statistics in parametric regression models
with random explanatory variables. Neumann and Kreiss (1998) showed that the validity
of regression-type bootstrap procedures is often maintained for autoregressive models. The
basic reason why we can neglect the dependence structure with our bootstrap method is
that the random variables u; and r; are uncorrelated. The neglibility of the dependence is

quite obvious in the case of linear statistics, and can also be shown for quadratic forms.

16



4.1. Bootstrap inference in single equations. Since the reader may not be that familiar
with the wild bootstrap we describe this method in detail. We begin with that variant needed
for the first test.

According to (2.17), it is enough to resample the random variables ry,... ,ry. Since it
suffices to mimic the null distribution of LR™ in the case that the null hypothesis is actually

true, we define approximations to the r; as
(Fr,...,7r) = (Ir — X(X3X) " A5) Ay, (4.1)
where, as above, X = (17 ¢°; Az). Under H{" we obtain that
(Fi,...,7r) = (Ir — X (X)) X)u = (Ir — Xo(X5X)t&)r (4.2)

Then we define bootstrap versions of the r; with mean zero by matching their low order
moments to the corresponding powers of the 7;. In our context, it suffices to mimic the first

two moments of r; in an asymptotically unbiased manner which is achieved by setting
7": = T/t?t: (43)

where {7;} is a sequence of independent and identically distributed random variables with
zero mean and unit variance, also independent of the variables occurring in (2.1) and (2.2).
Quite often also the third moments are matched which actually leads to better rates of
convergence in the case of a studentized sample mean (see, e.g. Mammen 1992). Because
of the special structure of LR™ it is not necessary to generate bootstrap versions Ay; and
Az; of Ay, and Az, respectively.

According to (2.10), the wild bootstrap version of LR is then

(1)
LRW* = Tln % : (4.4)
RSS!}

where RSSEI)’* = (r*)(Ir— X;(X/X;) "' X;)r* and r* = (r},... ,7%)". The critical value for the
test statistic LR is now obtained as the corresponding quantile of LR(*. The following

lemma asserts that the bootstrap approximation is consistent.
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Proposition 4.1. Suppose that Assumption (A1) is fulfilled and that ae = 0. Then, under
HV

’

Sup {\P (LRV* < 2| &) — P (LRY < z)‘} L. o.

—00<2<00

Remark 1. At first sight, it seems to be advisable to define approximations to the innova-
tions in the full model since they may be otherwise far away from their true values under the
alternative. This can actually often lead to a bad power of a test since the critical value is
then often too large under the alternative. This problem does not emerge in our case since
LR(" is a function of a ratio of two quadratic forms in u. Hence, even a serious overestimate
of the variances of the u; does not matter much. Moreover, we experienced in our simulations
a considerably worse size of the test if the critical values were taken from a bootstrap version

LR™M* based on residuals of the full model.

In the cases of the other two tests we proceed similarly. The only difference is that for
the second test we have to imitate the v;. To this end, we approximate first the unobserved

innovations v; by least squares residuals in model (2.22), that is, we define
(01,...,070) = (Ir — 1p(1p10) 711 Az, (4.5)
Under HéQ), we have
(1, ...,07) = (Ir — T *17p1%)v. (4.6)
Then we generate bootstrap counterparts as
vy = My, (4.7)

where {n,} is chosen as above. Finally, we define LR®”* according to (2.26), where only the
v are replaced by their bootstrap versions v;. A critical value for the test is again obtained

as the corresponding quantile of LR®)*.
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Proposition 4.2. Suppose that Assumption (A1) is fulfilled. Then, under HéQ),

P

sup {‘P (LR@)’* <z| X) - P (LR(Q) < z)|} — 0.

—00<2<00

A bootstrap approximation to LR® is obtained by replacing the u; in (2.30) by the 7}
defined in (4.3).

Proposition 4.3. Suppose that Assumption (A1) is fulfilled and that ae = 0. Then, under
Y

sup {‘P (LR(?’)’* <z| X) - P (LR(?’) < z)‘} L5 0.

—00<z<00

Now it follows immediately from the Propositions 4.1 to 4.3 that the bootstrap-based tests

have asymptotically the prescribed size.

4.2. Bootstrap inference in pooled systems of equations. We assume now that a
system of time series {y,:} and {z,:}, n = 1,..., N, obeying (3.1) and (3.2) is observed.
First we consider a bootstrap procedure for LREJI\;]. We intend to apply again a simple wild
bootstrap procedure, that is, only the r,; (t =1,...,T, n=1,...,N) will be resampled.
In order to mimic the joint distribution of LREII]), .. ,LRS\;], we intend to generate bootstrap
vectors (r7,,...,7x,)" with a covariance structure similar to that of (r14,...,7n,)'. To this

end, we define in complete analogy to (4.1) first approximations to the 7, as
(Prts- - Pnr) = (Ir — Xno(XgXno) ™ Xlg) A, (4.8)
where X0 = (17 g5 ; Az,). Under H(gl) it holds

(Fas- s Fnr) = (I = Xno(XioXno) " Xsg) tn = (I — KXo (&g Xno) ™ Xig) T,

(4.9)
where u, = (Un1,...,Upr) and r, = (Tp1,...,7r). We take as a bootstrap version of
(rit, ... ,7ne) the quantity

(T;t’ - anv,t)l = (Pr -, Twg) (4.10)
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where {n;} is again a sequence of independent and identically distributed random variables
with zero mean and unit variance, also independent of the random variables occurring in
(3.1) and (3.2). The basic reason why this simple wild bootstrap works for vector-valued
random variables can be seen from the relation

T T T
ZCOV ) = TZ Z rery + op(1 —ZCOV rs) + op(1),

i (4.11)

that is, the arithmetic mean of the covariance matrices is asymptotically reflected by the
bootstrap. It is clear from (4.11) that this also applies in the case of time-varying covariances.

Now we obtain a bootstrap version of LRE}\;] as

N (RSSU)*
LRY* =TS In , 4.12
V] > (Rssm (4.12)

where RSS\)™ = (72 (Ip — X (X, X)) "L X277 and 77 = (5 15+ Thr)- The critical value
of the test statistic is given by the corresponding quantile of LRS\;]’*.

In sharp contrast to the case of a single system of equations, we will see that, in the case
of v, = 0, the distribution of LR * does not necessarily approximate the unconditional
distribution of LR[N] consistently. Nevertheless, we can show that the bootstrap guaran-
tees an error of the first kind tending to the prescribed value. The reason for this is that
some conditional distribution of an asymptotic approximation to LRE}\?] is mimicked by the
bootstrap. (We cannot show without further regularity conditions that this also applies to

the corresponding conditional distribution of LREI)] since weak convergence to a “regular”

(1)

random variable does not exclude that certain conditional distributions of LR behave
somehow irregularly; see also the proof of Theorem 4.1.)
For the second test, we generate bootstrap versions of the vectors (viy,...,vn,:) as
(R B A P v 1 (4.13)

where {n;} is again a sequence of i.i.d. random variables with zero mean and unit variance,
also independent of the random variables occurring in (3.1) and (3.2). Approximations vy, ;

to the v, are obtained as

Bns - Onr) = (Ir = 1o(1p1r) 15 Az, (4.14)
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A bootstrap version of LREZQV)] is now given as

73 h (RSS o ) (415)

n=1 RSS

where RSS™ = (v2) (It — Zni( 2, Zni) L 21005 Zno = 11y Znt = (Yn—1 + Bzn1 17) and
f is the least squares estimate according to (2.24).
Finally, for the third test, we can again use the r; , defined by (4.10). This leads to a

bootstrap counterpart of LRS;,)] given by

N [RSSW”
3),%
LR =T In ( , (4.16)

n=1 Rssnl

where RSSS;)’* = (r2)' (It = VoV, Vni) VL )rs with Voo = (17 gn,1 Az,) and V1 =
(1T qn,—1 Az, Ayn,_1)-
The following theorem asserts that the bootstrap-based tests have asymptotically the

prescribed size.

Theorem 4.1. Suppose that the conditions of Proposition 3.1 are fulfilled. Let ty ,; be the
(1 — a)-quantile of LRE]Z\),]* Then, under H (i =1,2,3):

P (LR > tha;) — o

5. SIMULATION STUDY

5.1. Monte Carlo Design.

Introductory remarks. All test procedures introduced above are justified by arguments from
asymptotic theory. Thus it might be interesting to characterize their performance in finite
samples and pooled systems of them. The following simulation study is mainly designed to
shed some light on the performance of our tests in small samples (7" = 25,50). In addition,
we compare two approaches to obtain critical values for a particular test statistic and try
to evaluate their effects on empirical size estimates. First, we obtain critical values from
a first order asymptotic approximation using the y2-distribution. Second, we use the wild
bootstrap to mimic the distribution of the employed test statistic under the null hypothesis.

Note that applying first order asymptotics may be invalid if the underlying error terms
21



are conditionally heteroskedastic (testing on weak exogeneity or on significance of short-run
dynamics). Therefore our study also supports the analyst in evaluating the actual significance
level of hypothesis tests if diagnostic checking of an empirical model yields a rejection of the
homoskedasticity assumption.

Within single equation models we investigate the empirical properties of LR-type tests for
restrictions on

(i) the long-run parameter in the conditional model (2.1) (HS" : 8 = f)

(ii) the error correction coefficient in the marginal model (2.2) (HS” : ap = 0)

(iii) short-run dynamics within the conditional model (2.28) (Hé?’) :y2 = 0)

For the first and third testing problem we also computed the WALD-statistic which is widely
used in empirical practice. Note that the second issue is of importance with respect to the
underlying economic model as well as the employed econometric specification. Inference
on long-run parameters in single equations depends crucially on the assumption of weak
exogeneity of conditioning variables or, put differently, on the acceptance of HSQ) tag = 0.
The LR-statistic employed to test the hypothesis of weak exogeneity may also be used to
infer against Hy : oy = 0 in the conditional model thus providing an implicit test of the
cointegration hypothesis. Rejection frequencies for the null hypothesis Hy : @y = 0 and,
similarly, power estimates for the third testing problem given above are not provided in the
following in order to economize on space.

Apart from an investigation of the empirical properties of competing inference procedures
in single equations the simulation study also addresses the issue of inference on the level of
pooled equations. Inference in pooled systems is discussed considering the first and second
testing problem listed above. As mentioned the LR-statistic is a convenient test statistic for
inference in systems of equations since the asymptotic x2-distribution can be pooled easily.
Note, however, that for a system of pooled equations a first order asymptotic approximation

is only available in absence of cross equation error correlation.

The simulated processes. To investigate the empirical properties of inference procedures in

single equations we simulated the following stochastic processes:

Y = QY1+ Goz + €, (5.1)

2 = 21+ €, (5.2)
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where ¢, = (e14,€2t)" ~ N(0,13), and I denotes the 2 x 2 identity matrix. Obviously z
is generated as a random walk without drift. Moreover, ¥, and z; are cointegrated with
cointegrating parameter 3 = ¢o/(¢1 —1). The DGP in (5.1) may also be respecified in terms

of an error correction equation like (2.1):
Ay, =vi + (Y1 + Bz 1) + Az + uy. (5.3)

Comparing the specifications in (5.1) and (5.3) we arrive at the following parameter restric-
tions relating the empirical and the true model: vy =0, a; = ¢1—1, 8 = ¢o/(d1—1), 71 = 2,
and u; = e1;. As given in (5.2) it is obvious that Az is not affected by violations of the
long-run equilibrium relation. The corresponding error correction parameter in the empir-
ical counterpart (2.2) is actually zero (ap = 0). Thus z; is weakly exogenous for inference
involving the parameters 3 or ;.

In order to characterize the DGP in (5.1) and (5.2) somewhat deeper it is convenient to
provide the corresponding bivariate model. We obtain the following representation which is

equivalent to (5.1) and (5.2):

-1
Yi 1 —¢ ¢ 0 Yt—1 €1¢

Zt 0 1 0 1 Zt—1 €9
where €, ~ N (0, %,), and

14+ ¢5 ¢
03 1

The two characteristic roots of the process are found to be py = 1 and ps = 1/¢;. The

de =

process always contains a unit root. The second root depends on the particular choice of ¢;.
If |¢1] > 1 the process is explosive since then ps is located within the complex unit circle.
Values of ¢; smaller than but close to 1 provide a process with the second root coming
close to the unit circle. Note that such a model generates only weak error correction effects
and its dynamics should be similar to those of a bivariate process specified only in terms
of stationary differences of y; and z;. Such a similarity may be even more important in the
case where only small samples of the investigated variables are available.

Empirical properties of inference procedures involving the long-run coefficient § are in-

vestigated for the particular null hypothesis Hél) : # = —1, which has become popular as
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the so-called homogeneity hypothesis. To allow for different roots of the true DGP we simu-
lated 11 alternative processes. The true error correction coefficient o varied between —0.01
and —0.99, indicating borderline cases of weak and strong error correcting dynamics. The

parameter ¢; = «; + 1 in (5.1) was correspondingly chosen as follows:
¢1 = 0.99, 0.97, 0.95, 0.90, 0.70, 0.50, 0.30, 0.10, 0.05, 0.03, 0.01.

Since f = ¢o/(¢1 — 1) size properties for testing the homogeneity assumption can be con-
veniently analyzed by choosing ¢ in (5.1) as ¢o = (1 — ¢1). To investigate empirical power
properties of testing against homogeneity we employ two classes of DGPs. First, we chose
¢o = 1.1(1 — ¢,) obtaining an implicit long-run parameter § = —1.1. Secondly and comple-
mentary to the sequence of underlying DGPs we used DGPs assuming ¢; = (1 + 1) = 0.5
to be given and varied the long-run parameter across the interval —0.9 > 3 > —1.1.

The DGPs detailed above are also used to test the null hypothesis HéQ) tag = 0 1in
the marginal equation corresponding to the conditional model given in (5.3). Finally the
processes given above are employed to infer against significance of parameters governing

short-run dynamics. For this purpose we employ the augmented ECM

Ay =1 +oq (Y1 + Bz1) + Az + Ay +u, (5.5)

and consider a test of the hypothesis H(g?’) : 72 = 0. Note that testing such a hypothesis is of

interest for the specification of short-run dynamics.

As pointed out above the LR-statistics designed to test on weak exogeneity and insignifi-
cance of short-run dynamics are no longer pivotal if the underlying error terms fail to be
homoskedastic. With respect to these two testing problems we are thus interested in charac-
terizing the dependence of empirical size estimates on the error distribution of the true model.
Note that in the presence of heteroskedastic error distributions only the wild bootstrap is

supposed to provide suitable critical values.

Heteroskedastic error distributions. Generating the time series processes given above we
distinguish two alternative error distributions. Alternatively to a Gaussian distribution with
zero mean and unit covariance matrix, €, ~ N(0, I;), we sample the bivariate error terms
from a multivariate GARCH-process,

&t = Z%/2£t7 5 ~ N(O: IZ)7
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in order to investigate to what extent our simulation results are affected in presence of
conditional heteroskedasticity. The particular multivariate GARCH-process employed for

the simulations can be given in the so-called BEKK-representation, i.e.
Et = C(I)C() + AIEtflé";flA + G,thlG. (56)

In (5.6) Cy is an upper triangular matrix determining deterministic variance components. A
and G are 2 X 2 parameter matrices generating clusters of volatility which may be regarded
as a stylized fact of time series observed e.g. on financial markets. For a discussion of the
multivariate GARCH-model and its BEKK-representation see e.g. Engle and Kroner (1995).

The particular parameterization used in the simulation study has been found in Herwartz
and Liitkepohl (2000) to describe volatility dynamics of a bivariate series of stock prices.

The parameter matrices are chosen as follows:

0.0021 0.0015 A 0.375 0.126 G 0.748 —0.172
0 0.0029 | —0.146 0.138 )’ 0.232  1.106

After the generation step both univariate error processes €1; and ey, are standardized to have
an unconditional variance of one in order to mitigate the impact of outstanding factors on

the comparison of our results.

Stmulating systems of pooled equations. As mentioned we also investigate the empirical per-
formance of competing inference procedures applied to a set of pooled single equations. For
simulation purposes we regard a system consisting of two single equation ECMs, i.e. N = 2.
In the following nonstationary variables are denoted as y, ¢, 2nt,n = 1,2. Parameters gov-
erning dynamics relevant for particular members of the panel ¢,;,n = 1,2, are accordingly
denoted with two indices, the first of which indicates the member of the panel. Stacking the
nonstationary variables in a 4 X 1 column vector y; = (y14, 211, Y21, 22¢)’ & joint DGP for these

variables, similar to (5.4), may be given as follows:

Ve=Tyi 1+ e, (5.7)
25



where

¢ P2 0 0 4+ 1 ¢ p 0
0 1 0 0 1 0 0
r= . and Y= b1z
0 0 ¢u o2 P 0 @3 +1 ¢
0 0 0 1 0 0 D22 1

The model in (5.7) is essentially a reduced form of the joint DGP of the involved time series
variables. The covariance matrix Y¢ is convenient to introduce cross sectional correlation, by
selecting p # 0. Introducing such correlation is sensible to shed light on the dependence of
LR-inference on cross equation dynamics. As outlined above first order asymptotic approxi-
mations of the distribution of the LR%}\),] statistics require innovations which are independent
across equations. Applying bootstrap schemes critical values of LRE]'\),] statistics can be esti-
mated even in the case of cross sectional correlation. For the simulation of pooled systems
we choose p = 0.5 throughout. The first bivariate process (yi¢, 21;)’ was generated using
parameter values ¢1; = ¢1o = 0.5. The remaining parameter values ¢,; and ¢, were varied

similarly as ¢; and ¢, for the bivariate processes described before.

Final remarks. Monte Carlo experiments are in most cases performed for small sample sizes
T =25 and T = 50. We generated each time series process ) = 2000 times. Empirical size
estimates (&) and the nominal size («) of test procedures are regarded to differ significantly at

the 5% level if the former fall into a critical region constructed around the latter. Formally

this region is identical to the complement of the interval (o £+ 1.96\/a(1 — «)/2000). To
evaluate critical values by means of the wild bootstrap we use R = 500 replications of each
generated time series. All tests are performed at alternative nominal levels o = 0.05 and
a = 0.10. Since the obtained results are analogous to interpret we provide only empirical
results for the 5% significance level. All computations were implemented in GAUSS 3.2.7

(Unix version).
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5.2. Monte Carlo Results.

Testing long-run relationships. Consider first the null hypothesis Hél) : = —1. In Figure 1
(left hand side panels) size estimates for the LR- and WALD-test (W) of this hypothesis are
displayed. For these statistics critical values are obtained from the x?(1)- and F (1,7 — K)-
distribution, respectively. In addition, rejection frequencies for the LR-statistic are given
for the case where critical values are generated by means of the wild bootstrap (LR*). To
facilitate the interpretation of the results all panels display an upper bound for statistical
equivalence of the empirical and the assumed nominal significance level.

A few results are immediately obtained: We observe considerable size distortions for all
test procedures if the underlying true error correction coefficient is small in absolute value.
For oy = —0.1 and T" = 50 we obtain rejection frequencies which are up to three times
larger than the nominal level of the tests. It should be noted that to obtain empirical
size estimates which are close to the nominal size for these processes (a; > —0.1) it is
necessary to have samples of 500 observations and even more. Detailed results on this
point are not provided here to economize on space. The largest violations of the nominal
level of the test procedures are displayed for the LR-statistic with critical values taken
from the x?(1)-distribution. Computing critical values by means of the wild bootstrap
improves the empirical performance of the LR-test considerably. For a few values of «; close
to -1 bootstrap inference obtains empirical size estimates which cannot be distinguished
statistically from the employed nominal level even for 7' = 25. For the smallest sample size
considered bootstrap inference is preferable even in comparison to the WALD-statistic. This
result underlines the convenience of the bootstrap method in small samples since the critical
values used for the WALD-statistic also depend on the sample size. Turning to larger sample
sizes bootstrap inference and the WALD-test perform similarly.

The right hand side panels of Figure 1 show size estimates for the homogeneity hypothesis
tested in systems of N = 2 pooled equations. Now we concentrate on inference by means
of the LR-statistic. We provide size estimates for LR and LR*. Since the variables in
the first data set are generated with a;; = —0.5 it is not surprising to find significant
violations of the nominal level for both test procedures and all generated processes in small
samples (T" = 25). Note that we already observed considerable size distortions for the

single equation methods applied to the process generated with ay = —0.5. Inference by
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means of the x?(2)-distribution is clearly inferior compared to bootstrap procedures. If the
underlying oy, parameter is sufficiently small, i.e. ag; < —0.7, the wild bootstrap provides
empirical size estimates which cannot be distinguished from their nominal counterparts.
As mentioned the x?(2)-distribution provides only valid critical values in absence of cross
sectional correlation. Therefore we conjecture that our resampling scheme becomes even
more fruitful in the presence of stronger contemporaneous correlation across equations. As a
final advantage of cross correlation consistent resampling note that the advocated procedure
does not require any first step estimation of the involved error covariance matrix. Note that
such a matrix is generally of dimension (N x N). Thus in empirical panel investigations
reliable covariance estimates neccessary for feasible GLS-methods may be hardly available.

Figure 2 displays single equation (N = 1) power estimates obtained for samples of size
T = 50. Comparing the power properties of the investigated testing procedures mirrors the
foregoing discussion of size estimates. Rejection frequencies of the homogeneity assumption
for processes with # = —1.1 are similar to the corresponding size estimates if the underlying
error correction coefficient is close to zero. The power curves displayed for given g = —1.1
show that the power of the competing procedures increases with —«; given that size dis-
tortions are not too severe (o < —0.3, say). For given oy = —0.5 we obtain a U-shaped
power curve centered at § = —1. It appears that the slope of this power curve is slightly
steeper for > —1 compared to 3 < —1. Throughout we observe that the LR*-test and
the WALD-statistic have less power compared to the LR-test employing x?(1)-critical val-
ues. This result can be directly related to the poor size properties of the latter procedure

discussed above.

Testing on weak exogeneity. Figures 3 provides size estimates obtained from inferring on
weak exogeneity by means of the LR- and LR*—statistics. The upper and middle panels are
analogous to Figure 1, i.e. inference exercises in single equations and pooled systems are
distinguished. Since for this testing problem the performance of standard test procedures
may suffer from heteroskedastic error distributions the lower panels of Figure 3 show rejection
frequencies obtained for the LR- and LR*-test applied to single equation models (N = 1)
in presence of conditionally heteroskedastic error distributions. To uncover the impact of
heteroskedasticity we distinguish sample sizes T = 50 (lower left hand side panel) and

T = 200 (lower right). Similar to the results discussed for the homogeneity hypothesis size
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distortions observed for the hypothesis HéQ) : ap = 0 are most severe for processes with small
error correcting dynamics. Generating critical values by means of a bootstrap procedure
improves the empirical size properties of the LR-test. It should be noted that the LR-statistic
employed here is not the standard test statistic to infer against weak exogeneity. Regarding
the standard t—ratio we would obtain results very close to the performance of the bootstrap
procedure in single equation models. Bootstrap inference turns out to be particularly helpful
if we are concerned with a pooled system of marginal processes. Considering e.g. the
case of pooling 2 sets of 7" = 50 observations we obtain that the application of first order
asymptotic approximations involves significant violations of the nominal size for all processes
with as; > —0.9. Using the wild bootstrap to provide critical values significant violations of
the nominal level are observed for a smaller set of time series processes ao; > —0.5. Note that
the simulated processes are free of contemporaneous correlation across marginal equations.
In the presence of underlying heteroskedastic error distributions we obtain a further strong
recommendation of bootstrap inference. In this case the first order asymptotic approximation
fails to provide valid critical values. Compared to the nominal level the hypothesis of weak
exogeneity is too often rejected and the observed size distortions do not vanish with increasing
sample size T. Comparing the lower panels of Figure 3 it is seen that computing critical
values by means of the wild bootstrap becomes more suitable with increasing sample sizes.
Even in smaller samples T' = 50 bootstrap inference shows empirical size estimates which

are sufficiently close to the nominal values for a few DGPs (a9 < —0.7).

Testing short-run dynamics. Finally we turn to hypothesis tests on parameters governing
short-run dynamics as e.g. Hé?’) : ¥ = 0 in the augmented regression model (5.5). In
the presence of homoskedastic error terms wild bootstrap inference is characterized by size
estimates which are close to the properties of the WALD-statistic. Taking critical values of
the LR-statistic from the y?(1)-distribution involves considerable size distortions in small
samples. To economize on space we refrain from showing detailed results on this point.
For the case of heteroskedastic error distributions Figure 4 provides size estimates for the
three tests which were already used to test the homogeneity hypothesis, namely LR, W,
and LR*. These results may be read analogously to those reported in Herwartz (1998)
for stationary time series processes. Due to heteroskedastic errors terms the WALD- and

LR-statistic are no longer pivotal. Ignoring this effect and still taking critical values from
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the F(1,T — k)- and x?(1)-distribution, respectively, involves considerable violations of the
nominal test level. Bootstrapping the LR-statistic we obtain empirical size estimates that
cannot be distinguished from their nominal counterparts in the majority of considered time
series processes. In addition, inference on short-run dynamics appears to be unaffected by

the error correction coefficient of the true DGP.

6. EMPIRICAL SCOPE OF BOOTSTRAPPING POOLED ECMSs - CONCLUSIONS AND

OUTLOOK

The empirical relevance of bootstrap inference as outlined above reflects directly the prac-
tical scope of its key ingredients, namely EC-modelling, panel time series regression and
resampling. Illuminating the importance of the ECM approach Hendry (1995) observes
that most UK macro econometric models are versions of the ECM. In comparison to an
asymptotically equivalent ML-analysis of a corresponding vector autoregressive model single
equations are more feasible since standard OLS-procedures apply. The literature on (non-
stationary) panel analysis is a further growing area of research as recently pointed out by
Phillips and Moon (1999). From an economic viewpoint panel cointegration models are a
natural framework to investigate issues like homogeneity or convergence within a set of eco-
nomic entities, the OECD countries or members of the European (Monetary) Union, say.
Since we assume N to be finite the advocated methodology will be typically interesting for
empirical investigations with small or moderate cross section dimension. To provide partic-
ular applications we think of testing the purchasing power parity as, for instance, in Edison
et al. (1997). Similarly, the implications of balanced growth theory (see e.g. Barro and
Sala-I-Martin 1995, Neusser 1991) can be tested by means of the recommended procedure.
Applying pooled ECMs the issue of convergence of per capita health care expenditure within
the OECD is addressed in Herwartz and Theilen (2000).

Concluding this paper we recommend to use the wild bootstrap to generate critical values
for OLS-based test statistics computed from single equation ECMs. Our discussion covers
a wide range of possible testing problems, we consider inference on long-run equilibrium
relations and weak exogeneity. Specification testing is also regarded. Bootstrap procedures

show superior size properties compared to first order asymptotic approximations even in
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single equations and under homoskedastic error distribution. On the pooled level wild boot-
strap inference provides a means to generate valid critical values for LR-type test statistics.
It can easily be modified to account for (time varying) contemporaneous correlation across
equations without requiring any first step estimates as e.g. GLS-methods. If the underlying
error terms are (conditionally) heteroskedastic, then first order asymptotic approximations
can hardly be derived if testing on weak exogeneity and specifying short-run dynamics is
considered. Using critical values from the y2-distribution involves size violations that do not
vanish with increasing sample size. The wild bootstrap still applies for this wider class of

error distributions without involving any inefficiency in the case of homoskedasticity.

7. APPENDIX: PROOFS

Proof of Lemma 2.1. Since v; and r; are uncorrelated components of serially uncorrelated
random vectors we obtain from equation (4) and Theorem 2.6(a) of Phillips (1988) that

there exist independent Wiener processes B, and B, such that

L [XT:] T seny L ovBys) ,se0,1]%. (7.1)

VT = T4 0, B,(s)
The symbol 4y signifies convergence in distribution while ‘=" denotes weak convergence
of the associated probability measures. The convergence in (7.1) takes place in D[0,1] x
DJ0,1] endowed with the metric d + d. A comprehensive description of these concepts is
given in Billingsley (1968) while Phillips and Durlauf (1986) provide a condensed summary.
According to Skorohod’s theorem (see, for example Theorem IV.13 in Pollard (1984)) we
can define on a sufficiently rich probability space versions of vy,... ,v7 and ry,... ,r7 and

independent Wiener processes B, and B, such that

d ({LT[XT:]W selo, 1]},{%31,(5), se o, 1]}) EENY (7.2)

and

d ({% isé]n, sel, 1]},{OTBT(3), seo, 1]}) wsy ) (7.3)

Assuming now (7.2) and (7.3) one can transfer successively the weak convergence results of

Lemmas 2.3 and 2.5, and of Theorem 2.6(a) of Phillips (1988) into corresponding almost
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sure convergence results. Hence, we obtain as a consequence of (7.2) and (7.3) that

1 d a.s 1
T S (vr+ v 2 01,0,/0 B,(s) dB,(s). (7.4)
t=1
Finally, since A(1) = 1 holds in (2.21) we obtain from (7.3) that (2.19) holds. O

Proof of Proposition 2.1. (i) Ezplicit form of z; and ¢, = y; + Bz

Before we analyze the terms occurring in (2.14), we derive explicit expressions for z; and

q; = Y¢ + Bz It holds that
z = vt + (v + -+ +v1) + 20 (7.5)

and

@ = Y+ Bz
= v + (B+m)r.
+u + (B+1)v

+ (1 + a1)gi—1
t—1

= ;)(1 + 1)1 + (B + 7)ve]

t—1

+ (1 + ) [us—s + (B + 71)vi—s]
s=0

-+ (1 -+ al)t(]()

(Bt
a1

t—1

+ Z(l + o) (s + (B + 71)Vs—s]

+ (14 o) {g + [+ (B+7)w]/a1}. (7.6)

(ii) Approzimation of terms involving q 1

Recall that W = (17 Az). We obtain that

T YAz P T v, T
W'W = — , (7.7)
( S Az Y (Az)? ) ( T (Vi+ 02T )
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which implies

Wy = (

p 1 vi+o?2 —u
— = :
GUT —U9 1

Let q—l = (qO’ s aZ]vT—l)la where

S(A%)? —Y Az )

t—1

@ = Y (1+0a1)[u—s + (Bo +71)vi-s]
s=0

+ (1 +a) {go + [ + (Bo +m)we]/en}
Then we have (recall that M = I, — W(W'W)~1IW")
MCIO—1 = Mq_..

Since
W'(7_1 _ 2 Gt
Y (vo 4+ vy)Gi—1

we obtain, in conjunction with (7.8), that

) = Op(T"7?)

5111W(WIW)71W16771 = Op(1).
Therefore, we obtain
(@)M¢®, = ¢ MG, = Eq ,§.+ O0p(T"?
T
= —— [ai + (Bo +’yl)202] + op(T).
g
Since W'r = Op(T*/?) we get

(@) Mu =@ Mr =¢.;r — G, WWW)"'W'r = OP(TI/Q).

33

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)



(iii) Approzimation of terms involving z_,

To approximate the terms involving z_;, we have to distinguish between the cases vy = 0

and v, # 0.
(iii.a) v, =0
We obtain immediately from (2.18) that
2z = o’T? /01 B,(t)*dt + op(T?)
as well as

r 1
Sz = 0,752 / B,(t)dt + op(T*?).
t=1 0
Using (7.8), ¥ Az, = Op(T"?), and ¥ Az;2; = Op(T) we obtain that
1 2
2 WW'W) Wy = 02T [ [ B.) dt] + op(T?),
0

which implies, in conjunction with (7.13), that

1 1 2
2 Mz, = 03T2/ [B,,(t) - / B,(s) ds] dt + op(T?).
0 0

Using
Zl_lq—l = OP(T)

and

A WW'W) WGy < \J2 W (WW)TW o JT W (WW)~ WG,

we have

2 M¢®, =2 Mg, = Op(T).

(7.13)

(7.14)

(7.15)

(7.16)

= Op(T)

(7.17)

By (7.8), (2.19), (7.14), and the facts that 3 Az, = Op(T/?) and ¥ Azz_1 = Op(T) we

obtain that

2 W (W'W) W —Zzt 17+ O TV?) = ava,T/ ) dt B, (

which implies, in conjunction with (2.20), that

LMy = 00T [ 1 (B, - | "B, (s) ds| dB,(1) + op(T).
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(iii.b) v # 0
(7.6) and (2.18) imply that

T
Zazo =Y (t—1) + 0p(T°) = 3T?/3 + op(T?). (7.19)
t=1
For the same reason we get

T T
Zzt_l = U9 Z(t — 1) + OP(TQ) = V2T2/2 + OP(T2).
t=1 t=1

Using this, (7.8), ¥ Az = Op(T"/?) and

T
Zzt_lAzt = VQZZt_l + thzt_l = v3T?/2 4 op(T?)

t=1
we obtain that

1 T4

dWWW) "W, = Tol 4 [(1/22 + 02y — 2wyvs + 1/3] + op(T?)
= ViT?/4 + op(T?). (7.20)
This implies
2 Mz_y = vV2T3/12 + op(T3). (7.21)
By
2 4G = Op(T?)
and

2 WWW) TWg, < \/ L W(WIW)TIW ! 1\/ ' W(WIW)TIWIG, = Op(T%?)
we obtain that
2 M, = 2 Mg, = Op(T??). (7.22)
Using 2’ ;1 = v 3 (t — 1)ry + Op(T) and
2 WWW) "Wr = z/ngrt + op(T%?)
we get

sz t—T/2)r, + op(T*?). (7.23)
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(iv) Limit distribution of LRW

In the case of v, = 0, we obtain by the approximations (2.17), (7.11), (7.12), and (7.16)
to (7.18) that

1 {0vo, T [[By(t) — [ Bu(s)ds] dB,(1)}”

LRY =
02 02T2 [[B,(t) — [ By(s)ds]” dt

+ op(1). (7.24)

According to Lemma 5.1 of Park and Phillips (1988), the right-hand side of (7.24) is asymp-
totically x?(1) distributed.

In the case of v, # 0, we obtain by the approximations (2.17), (7.11), (7.12), (7.21) to
(7.23), and the fact that >(¢t — T/2)? = T?3/12 + O(T?) by the CLT for a-mixing heteroge-
neously distributed random variables (see, e.g. Theorem 5.19 in White 1984) that

T 2

1 1
LR® = — -T/2 1
5 x*(1).
]
Proof of Lemma 2.2. We have
~ 1
_ 3 = - T .
p=p Ty 2 — (X 2)? (zt: tht:et %}%%)
We obtain from (7.6) that
t—1
€ = 2(1 + al)s[ut—s + (ﬁ + Vl)vt—s] + (1 + a’l)tqo- (725)
s=1

This implies that 3" e; = Op(T"/?), regardless of whether v, = 0 or vy # 0.
If v, = 0, then Y 2z, = Op(T%?), ¥ 2z, = Op(T), and

Ty - T ) ot [Bv(t) - [ By(s) dsr dt,

which implies that 3 — § = Op(T™1).
If 5 # 0, then Y 2z, = Op(T?), ¥ 26, = Op(T?/?), and

TY 7 - (3 zt)Q =3 (T2 = (X)) + op(T?) = ug% + op(TY),

which yields that 3 — 8 = Op(T~3/2). O
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Proof of Proposition 2.2. Since 2, = (q—1 + (3 — B)z-1 1r) we obtain

2z — ( q 191+ 2(/3 - B)g 21+ (B - 5)2ZI_1Z—1 2 q-1+ (ﬁ - B) X 21
1~1 —

2. Gi—1 + (E - B) X 21 T

7.26)

According to Lemma 2.2, we have in both of the cases v, = 0 and v, # 0 that (B—ﬂ) Yoz =

op(T"?) and (8 — 8)%2",z_1 = op(T), which implies that

1/Eq75271 0 )

T(2,2)" L
0 1

Furthermore, we have

, ( ¢+ (B— ) ) ( ¢ v+ op(T2) )
Zv = = .

2
(From (7.27) and (7.28) we obtain
RSS® = o'(Iy — 21(2/2)7'2))v = o>T + Op(1).

Finally, we obtain by a CLT for a-mixing random variables that

1 d E(Qt—lvt)2
LR(Q) R 2 + 1) &, A1) 2
TEg 07 110 +orll) Eq 07

v

Proof of Proposition 2.3. First of all, we have according to (7.27) that

o 10
TWiw,) "+ L ( ) .

0 1/EQt271
We define
Az = MAz = v
and
A?U/—l = MAy 1 = a1q3 + Mv-1 + u_1.
By

> Gy
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X" (1).

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)
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we obtain

(A2)M(Az) = (Az)M(Az) = (A2)'(Az) + Op(1)

= 02T + Op(T'?) (7.33)
and
(Az)'Mu = (Az)'u + Op(1) = Op(T*?). (7.34)
By
PG ( > Ry ) . ( Op(T?) )
> G-1Ay; TEq 1Ay, + op(T)
we get
(Ay_1)M(Az) = (Ay_y)M(Az) = Op(T"?) (7.35)
and
(Ay)Mu = (Ay)'u — (Ay_) W)~ Wiu
G
- (@/_1 . Eq%?ff‘lq_l) u. (7.36)

Finally, we have

(Ay 1) M(Ay 1)

= (Ay1)'(Ayq) — —; + op(T)
q_19-1
—_ N I —_ N
~ Eq 1Ay Ol Eq 1Ay
= Ay  — —F—q_ Ay | — —Z—q_ T). .
( Y1 Eq g1 Y_1 Ed, g1 | + op(T) (7.37)

Using the above approximations we obtain by a central limit theorem for a-mixing random

—~ - ! 2
[(Ayl - 7eq§;§?—1€]—1) u]
= 7
A N A
( Y1 — eqE;t Yi— 1q1> (Ay1 _ eqE;t Zit 1q1) 05
2
E [(Ayt L - th 1Ayt IQt 1) ]

2
E (Ayt—l - 7eq_le%_1%—1) 03

Eq_y

variables that

TS5

N

X*(1).
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Proof of Proposition 4.1. We have

T 0 0
XiXo= |0 TE@,)? 0 |+ 0p(T"?,
0 0 To?

which implies ||(XjX,) || = Op(T™'). Since

%

;P(\Q?_l\ >Vt) < Elg,” <
it follows from Borel-Cantelli that |¢? ,|/v/t — 0 almost surely, which in turn implies that
T2 max;<i<r |¢f_;| — 0, again with probability 1. Hence, we obtain max;<;<7 |¢)_;| =
op(T*/?), and analogously max;<;<7 |Az| = op(T*?). Moreover, since Xjr = Op(T*/?) we
obtain, in conjunction with (4.2) that

max |7y — r| = op(1). (7.38)

1<t<T
Using T-'RSS{"™ & 62 we obtain

T 1 2
(1), _ ! *
LR = RSSU 7 0 (2L M17)" + op(1)

2

ST

where
_ o1 — T Y 25
oy \/Zt (21 — T 1, 25m1)?

Wy

Since max{|w;r|} 5 0 we obtain, for arbitrary € > 0, that

€ P
E!T >——— |y = 0.
V(> gy )
Moreover, it follows from ¥, (wry)? = 1 that
T
ZE ‘wtrt'kaI \nt\ > ; X
= max{|wyr| }

T €
< Y |lwn’E <I (\m| > 7) U
t=1

max{|wr| }
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that is, the classical Lindeberg condition is fulfilled. Hence, we obtain by the Lindeberg-Feller

central limit theorem that

T
L (Z WiTMe
t=1

The assertion now follows from the continuous mapping theorem. O

X) = N(0,1) in probability.

Proof of Proposition 4.2. We have analogously to (7.38) that

&l%XTM — v| = op(1). (7.39)

Hence, we obtain
2

T
LR®* = <z wtvmt) + op(1),
t=1

where
g1

Oy V Es qul
The assertion follows from ¥, (wyv;)? 2> E(g—1v1)?/(02Eq?_,) and max{|w,v;|} < 0 by the
CLT. O

wy =

Proof of Proposition 4.3. Using again (7.38) we obtain

2

T
LR®* = (Zwtrtnt> + op(1),
t=1

where

—_

EQt—lA/_\yt_/—l
Ayt—l - 2

Eq_y
—_T N E A/_\_/ 2-
ds—12Ys—1
Oy Es (Ays—l - squ ls qs—1>
P

The assertion now follows from

wy =

P - 2
T » F [(Ayt—l - ELE;?A‘?#%—J Ut]
> (wr)? — — 5
t=1 E (Ayt1 - 7eq]§;??_1%1> o2
and max{|w;r:|} & 0 by the CLT. O

Proof of Theorem 4.1. We prove the assertion only for the most difficult case, the first test
with vy = 0.
First of all, we have a somehow untypical case in that the bootstrap distribution (i.e.,

the conditional distribution of LRE}\Q]’* given Xr = {v1,...,07,71,...,7r}, where 7, =
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(Vity--.,une) and 7 = (r14,...,7Nnt)") does not consistently approximate the uncondi-
tional distribution of LRE}V)]. Rather, it seems at first sight that the bootstrap merely ap-
proximates the conditional distribution of LRSV)] given V' = ((z, 1 MnMpm2m,—1))nm=1,..,N-
This is not exactly true; the weak convergence arguments employed below do not yield such
a result for L(LRE}@] | V). Rather, we actually show that LREJIJ]’* consistently approximates
the conditional distribution of an asymptotic approximation to LRE]IV)].
We use the following notation: U, = 2, M7y, Vi = 2, 1My Mz, 1, U = (Uy, ... ,Uy)',

and V' = ((z, 1 MnMm2m,—1))nm=1,..,n- According to the approximations (2.17), (7.11),

(7.12), and (7.16) to (7.18), we can write the test statistic as
LR, = g(U,V) + op(1), (7.40)

where g(z,y) = XN, 22 /(02,9 n) and 02, = var(r,;). Let (Biy, ... , Byy) and (By,, ... , By’
be independent N-dimensional Wiener processes with covariances Cov(v;) and Cov(7), re-

spectively. We define
U = [ [Bu®) = [ Buls)ds] aBuo),
Vi = [ [Bu®) = [ Buuls)ds| [Bu(t) = [ Buo(s)ds] at

U*® = (Ufo, . ,U]?/O)I, and V™ = ((Vno,om))n,m:L...,N-

Since Evy, e = 0, for m,n = 1,... , N, we obtain by Theorem 2.6 of Phillips (1988)
that

v\ , (Ux
— ) (7.41)
%4 %

Let t2°(v) be the (1 — a)-quantile of the conditional distribution L(g(U>®,V>®) | V™ = v).

Since g and t5°(+) are continuous functions we obtain from (7.40) and (7.41) by the continuous

mapping theorem (see e.g. Theorem III.6 in Pollard (1984)) that
1 o o0

12 (V) 12 (V) (42

Now we analyze the bootstrap statistic LRS\;}’*. With U = 2, | M,r; andU* = (U7, ... ,Uy),

we have that

LR()" = g(U*, V) + op(1). (7.43)
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We denote by ¥ the (1 — a)-quantile of £(g(U*,V) | Xr). Then (7.43) implies that
t =15 + op(1). (7.44)
We obtain by the multivariate central limit theorem for independent random variables that

c(vroe

Xr) => N(0,Cov(ry)) = £ ((V*=)"/*U®)  in probability.
This means that
gU V) = g (VA IU),Y)

= g(Vl/QZ, V) + op(1)

holds with Z ~ N(0, Cov(;)) and, hence, £(g(v'/2Z,v)) = L(g(U*,V*) | V* = v). Conse-
quently, we obtain that

th =12 + op(1). (7.45)
Now we conclude from (7.42), (7.44), and (7.45) that

) o (o0

o) (7.46)

Since P(g(U™®,V>®) = t,(V>)) = 0 we obtain by the continuous mapping theorem that

P (LR, > 1) — P(U™, V) > (V) = o
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Figure 1. Size estimates for Hél) : f = —1. Different scenarios are considered and
indicated in single panels. The nominal significance level is « = 0.05. A bound

(0.05 + 1.96\/1/200004(1 — «a)) indicates the critical region where the empirical size
differs from its nominal counterpart at the 5% level. LR and W are size estimates obtained
from x?(1)- and F(1,T — K)- critical values, respectively. LR* indicates size estimates
obtained from wild bootstrap inference.
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Figure 2. Power estimates of single equation inference on Hél) : f = —1. Different scenarios
are considered and indicated in single panels. The nominal significance level is « = 0.05. LR,
and W are empirical rejection frequencies obtained from x?(1)- and F(1,7 — K)- critical
values, respectively. LR* are power estimates for wild bootstrap inference.
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Figure 3. Size estimates for testing on weak exogeneity, i.e. Hé2) : g = 0. Different scenarios

are considered and indicated in single panels. The nominal significance level is @ = 0.05.
Depending on the simulation results bounds (0.05 + 1.96\/1/200004(1 — «)) indicate the
critical region where the empirical size differs from its nominal counterpart at the 5% level.
LR indicates size estimates obtained from x?(1)-critical values. LR* are size estimates for
wild bootstrap inference. a7
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Figure 4. Size estimates for Hé3) : 72 = 0 under heteroskedastic error terms. The nom-

inal significance level is @ = 0.05. Depending on the simulation results bounds (0.05 £+
1.96\/ 1/2000c(1 — «)) indicate the critical region where the empirical size differs from its
nominal counterpart at the 5% level. LR and W are size estimates obtained from x?(1)-

and F(1,T — K)- critical values, respectively. LR* are size estimates obtained from wild
bootstrap inference.
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