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Long-Memory Analysis

Gilles Teyssiere

Long-memory in economics and finance is an important research topic as several
economic variables exhibit the main characteristics of long-memory processes,
i.e., a significant dependence between very distant observations and a pole in
the neighborhood of the zero frequency of their spectrum. In particular, returns
on financial assets are uncorrelated, while the series of absolute and squared
returns display long-memory.

Long-memory in finance is still an empirical research topic. A structural mi-
croeconomic model based on interacting agents generating long-memory prop-
erties has been proposed by Kirman and Teyssiere (1998). Statistical tools for
measuring long-memory which only depend on weak assumptions on the data
generating process are emerging in the research literature. This chapter focuses
on new results on semiparametric tests and estimators.

All quantlets for long-memory analysis are contained in the quantlib times and
become available after entering the instruction

library("times")

1 Introduction

Q.
I

gph(y)
estimates the degree of long-memory of a time series by using a

log-periodogram regression

b
1]

kpss(y)
calculates the KPSS statistics for 1(0) against long-memory al-
ternatives




q = lo(y{, m})
calculates the Lo Statistics for long-range dependence

t = lobrob(y{, bdvec})
provides a semiparametric test for I(0) of a time series

q = neweywest(y{, m})
calculates the Newey and West heteroskedastic and autocorrela-
tion consistent estimator of the variance

d = roblm(x{, q, bdvec})
semiparametric average periodogram estimator of the degree of
long-memory of a time series

d = robwhittle(x{, bdvec})
semiparametric Gaussian estimator of the degree of long-memory
of a time series, based on the Whittle estimator

k = rvim(x{, m})
calculates the rescaled variance test for I(0) against long-memory
alternatives

A stationary stochastic process {Y;} is called a long-memory process if there
exist a real number H and a finite constant C such that the autocorrelation
function p(7) has the following rate of decay:

p(k) ~Cr*1 2 as 7 — . (1)

The parameter H, called the Hurst exponent, represents the long-memory
property of the time series. A long-memory time series is also said fraction-
ally integrated, where the fractional degree of integration d is related to the
parameter H by the equality d = H — 1/2. If H € (1/2,1), i.e., d € (0,1/2),
the series is said to have long-memory. If H > 1, i.e., d > 1/2, the series
is nonstationary. If H € (0,1/2), i.e.,, d € (—1/2,0), the series is called
antipersistent.

Equivalently, a long-memory process can be characterized by the behaviour of
its spectrum f(A;), estimated at the harmonic frequencies A\; = 27j/T, with
j=1,...,[T/2], near the zero frequency:

- N —2d
A}gr(lﬁ ) =CX; (2)



where C' is a strictly positive constant. Excellent and exhaustive surveys on
long-memory are given in Beran (1994), Robinson (1994a) and Robinson and
Henry (1998).

A long-memory process with degree of long-memory d is said to be integrated of
order d and is denoted by I(d). The class of long-memory processes generalises
the class of integrated processes with integer degree of integration.

2 Model Indepependent Tests for [(0) against
I(d)

A stochastic process is I(d) if it needs to be differentiated d times in order
to become I(0). We shall test for I(0) against fractional alternatives by using
more formal definitions.

In a first approach, we define a stochastic process {Y;} as I(0) if the normalized
partial sums follow a particular distribution. We only require is the existence
of a consistent estimator of the variance for normalizing the partial sums. The
tests presented here make use of the Newey and West (1987) heteroskedastic
and autocorrelation consistent (HAC) estimator of the variance, defined as

q .
~ ~ ] N
@ =n+2Y (1- 11 ) 3 <. 3)
=1

where 4 is the variance of the process, and the sequence {4; };1-:1 denotes the
autocovariances of the process up to the order q. This spectral based HAC
variance estimator depends on the user chosen truncation lag q. Andrews
(1991) has proposed a selection rule for the order q.

The quantlet neweywest computes the Newey and West (1987) estimator of
the variance of a unidimensional process. Its syntax is:

sigma = neweywest(y{, q})

where the input parameters are:

the series of observations



optional parameter, which can be either a vector of truncation lags or a
single scalar

The HAC estimator is calculated for all the orders included in the parameter
q. If no optional parameter is provided, the HAC estimator is evaluated for
the default orders q = 5, 10, 25, 50. The estimated HAC variances are stored
in the vector q.

In the following example the HAC variance of the first 2000 observations of the
20 minutes spaced sample of Deutschmark-Dollar FX is computed.

library("times")

y = read("dmusb58.dat")
y = y[1:2000]

q = 5/10/25150

sigma = neweywest(y,q)
q~“sigma

@glongmem01.xpl

As an output we get

Contents of _tmp

[1,] 5 0.0047841
[2,] 10 0.008743
[3,] 25 0.020468
[4,] 50 0.039466

2.1 Robust Rescaled Range Statistic

The first test for long-memory was devised by the hydrologist Hurst (1951) for
the design of an optimal reservoir for the Nile river, of which flow regimes were
persistent. Although Mandelbrot (1975) gave a formal justification for the use
of this test, Lo (1991) demonstrated that this statistic was not robust to short
range dependence, and proposed the following one:

k k

1 rsna Z(X] _XT) — lg}clgTZ(XJ — YT) (4)
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which consists of replacing the variance by the HAC variance estimator in the
denominator of the statistic. If ¢ = 0, Lo’s statistic reduces to Hurst’s R/S
statistic. Unlike spectral analysis which detects periodic cycles in a series,
the R/S analysis has been advocated by Mandelbrot for detecting nonperiodic
cycles. Under the null hypothesis of no long-memory, the statistic T*%Qn
converges to a distribution equal to the range of a Brownian bridge on the unit
interval:

where W0(t) is a Brownian bridge defined as W°(t) = W (t) — tW (1), W(t)
being the standard Brownian motion. The distribution function is given in
Siddiqui (1976), and is tabulated in Lo (1991).

This statistic is extremely sensitive to the order of truncation ¢ but there is no
statistical criteria for choosing ¢ in the framework of this statistic. Andrews
(1991) rule gives mixed results. If g is too small, this estimator does not account
for the autocorrelation of the process, while if ¢ is too large, it accounts for any
form of autocorrelation and the power of this test tends to its size. Given that
the power of a useful test should be greater than its size, this statistic is not
very helpful. For that reason, Teverovsky, Tagqu and Willinger (1999) suggest
to use this statistic with other tests.

Since there is no data driven guidance for the choice of this parameter, we
consider the default values for ¢ = 5, 10, 25, 50. XploRe users have the option
to provide their own vector of truncation lags.

Let’s consider again the series of absolute returns on the 20 minutes spaced
Deutschmark-Dollar FX rates.

library("times")

y = read("dmus58.dat")

ar = abs(tdiff(y[1:2000]))
lostat = lo(ar)

lostat

longmem02.xpl

Given that we do not provide a vector of truncation lags, Lo’s statistic is
computed for the default truncation lags. The results are displayed in the form
of a table: the first column contains the truncation orders, the second columns
contains the computed statistic. If the computed statistic is outside the 95%
confidence interval for no long-memory, a star * is displayed after that statistic.



Contents of lostat

[1,] " Order Statistic"

[2’] M n
[3’] nn

(4,1 " 5 2.0012 ="
[5,1 " 10 1.8741 *"
[6,] " 25 1.7490 "
[7,1 " 50 1.6839 "

This result illustrates the issue of the choice of the bandwidth parameter q.
For q = 5 and 10, we reject the null hypothesis of no long-memory. However,
when q = 25 or 50, this null hypothesis is accepted, as the power of this test is
too low for these levels of truncation orders.

2.2 The KPSS Statistic

Equivalently, we can test for I(0) against fractional alternatives by using the
KPSS test Kwiatkowski, Phillips, Schmidt and Shin (1992), as Lee and Schmidt
(1996) have shown that this test has a power equivalent to Lo’s statistic against
long-memory processes. The two KPSS statistics, denoted by 7; and 7, are
respectively based on the residuals of two regression models: on an intercept
and a trend ¢, and on a constant . If we denote by S; the partial sums
S = 2521 é;, where é; are the residuals of these regressions, the KPSS statistic
is defined by:

T
n=T72) 5//67(q) (5)
t=1

where 62(g) is the HAC estimator of the variance of the residuals defined in
equation (3). The statistic n, tests for stationarity against a long-memory
alternative, while the statistic n; tests for trend-stationarity against a long-
memory alternative.

The quantlet kpss computes both statistics. The default bandwidths, denoted
by Lo, Ly and Lqs are the one given in Kwiatkowski, Phillips, Schmidt and
Shin (1992). We evaluate both tests on the series of absolute returns ar as
follows:



library("times")

y = read("dmusb58.dat")

ar = abs(tdiff(y[1:2000]))
kpsstest = kpss(ar)
kpsstest

@glongmemOS.xpl

The quantlet kpss returns the results in the form of a table. The first column
contains the truncation order, the second column contains the type of the test:
const means the test for stationary sequence, while trend means the test for
trend stationarity. The third column contains the computed statistic. If this
statistic exceeds the 95% critical value, a * symbol is displayed. The last
column contains this critical value.

Thus, XploRe returns the following table:

Contents of kpsstest

[1,1 " Order Test Statistic Crit. Value "
[2’] - "
[3’] nn
[4,] "1LO = 0 const 1.8259 *  0.4630"
[6,] " L4 = 8 const 1.2637 * 0.4630"
[6,] " L12= 25 const 1.0483 x* 0.4630"
[7,] "LO= 0 trend 0.0882 0.1460"
[8,] "L4 = 8 trend 0.0641 0.1460"
0

[9,]1 " L12= 25  trend .0577 0.1460"

2.3 The Rescaled Variance V/S Statistic

Giraitis, Kokoszka and Leipus (1998) have proposed a centering of the KPSS
statistic based on the partial sum of the deviations from the mean. They called
it a rescaled variance test V/S as its expression given by

2 2
T k T

1 — 1 k _
T752(g) YD -Ya) -7 DD -Yr) (6)

k=1 \j=1 k=1 j=1

v/S =



can equivalently be rewritten as

V(Si,...,S7)
~2

VIS=TT )

; (7)

where Sp = Ele(Y] —Y,) are the partial sums of the observations. The
V/S statistic is the sample variance of the series of partial sums {S;}/—,. The
limiting distribution of this statistic is a Brownian bridge of which the distribu-
tion is linked to the Kolmogorov statistic. This statistic has uniformly higher
power than the KPSS, and is less sensitive than the Lo statistic to the choice
of the order q. For 2 < ¢ < 10, the V/S statistic can appropriately detect
the presence of long-memory in the levels series, although, like most tests and
estimators, this test may wrongly detect the presence of long-memory in series
with shifts in the levels. Giraitis, Kokoszka and Leipus (1998) have shown that
this statistic can be used for the detection of long-memory in the volatility for
the class of ARCH(co) processes.

We evaluate the V/S statistic with the quantlet rvlm which has the following
syntax:

vstest = rvlm(ary{, q})
where

ary
is the series

is a vector of truncation lags. If this optional argument is not provided,
then the default vector of truncation lags is used, with q = 0, 8, 25.

This quantlet returns the results in the form of a table: the first column con-
tains the order of truncation ¢, the second column contains the estimated V/S
statistic. If this statistic is outside the 95% confidence interval for no long-
memory, a star x symbol is displayed. The fourth column displays the 95%
critical value. Thus the instruction



library("times")

y = read("dmusb58.dat")

ar = abs(tdiff(y[1:2000]))
vstest = rvlm(ar)

vstest

@glongmem04.xpl

returns

Contents of vstest

[1,1 Order Statistic Crit. Value "
[2’] N n
[3’] nn

[4,1 " 0 0.3305 *  0.1869"

[5,1 " 8 0.2287 *  0.1869"

[6,1 " 25 0.1897 *  0.1869"

2.4 Nonparametric Test for 1(0)

Lobato and Robinson (1998) nonparametric test for I(0) against I(d) is also
based on the approximation (2) of the spectrum of a long-memory process. In
the univariate case, the t statistic is equal to:

m

A A . A - . 1=, .
t=m'2C,/Cy with Cp=m™! Z VfI()\j) and v; =In(j) — p gln(z),
(8)

where I(\) = (22T)" | Y[_, ye™|? is the periodogram estimated for a de-
generate band of Fourier frequencies A; = 275 /T,j = 1,... ,m < [T'/2], where
m is a bandwidth parameter. Under the null hypothesis of a I(0) time series,
the ¢ statistic is asymptotically normally distributed. This two sided test is of
interest as it allows to discriminate between d > 0 and d < 0: if the ¢ statistic is
in the lower fractile of the standardized normal distribution, the series exhibits
long-memory whilst if the series is in the upper fractile of that distribution, the
series is antipersistent.

j=1



The quantlet lobrob evaluates the Lobato-Robinson test. Its syntax is as
follows:

1 = lobrob(ary{, m})
where

ary
is the series,

is the vector of bandwidth parameters. If this optional argument is miss-
ing, the default bandwidth suggested by Lobato and Robinson is used.

The results are displayed in the form of a table: the first column contains the
value of the bandwidth parameter while the second column displays the corre-
sponding statistic. In the following example, the Lobato-Robinson statistic is
evaluated by using this default bandwidth:

library("times")

y = read("dmus58.dat")

ar = abs(tdiff(y[1:2000]))
1 = lobrob(ar)

1

@glongmemOS.xpl
which yields

Contents of 1
[1,] "Bandwidth Statistic "

[3’] nn
(4,1 " 334 -4.4571"

In the next case, we provide a vector of bandwidths m, and evalutate this
statistic for all the elements of m. The sequence of instructions:

library("times")
y = read("dmusb58.dat")

10



ar = abs(tdiff(y[1:2000]))
m = #(100,150,200)
1 = lobrob(ar,m)

[a-)

@glongmemOG.xpl

returns the following table:

Contents of 1

[1,] "Bandwidth Statistic "
[2’] N "
[3’] nn

[4,1 " 100 -1.7989"
[6,1] " 150 -2.9072"
[6,] " 200 -3.3308"

3 Semiparametric Estimators in the Spectral
Domain

These estimators are based on the behaviour of the spectrum of a long-memory
time series near the zero frequency, and are estimated in the frequency band
(0, m], where m is a bandwidth parameter less than or equal to [n/2], where
[] denotes the integer part operator. The idea is that the range of frequencies
between zero and m captures the long term component, whilst the remainder of
the frequencies capture the local variations which could be linear or nonlinear.
These estimators are denoted semiparametric in the sense that they depend on
a bandwidth parameter m.

3.1 Log-periodogram Regression

Under the assumption of normality, Geweke, and Porter-Hudak (1983) assumed
that the spectrum f(\) near the zero frequency can be approximated by

FV) = C{(4sin*(X;/2)} 71 (9)

11



and then propose to estimate the long-memory parameter d with the following
spectral regression:

log{I(\;)} = c — dlog{4sin®(\;/2)} +¢; (10)

where n is the sample size. We consider for this estimator only harmonic
frequencies A, with j € (I,m], where [ is a trimming parameter discarding the
lowest frequencies and m is a bandwidth parameter.

library("times")
y = read("dmusb58.dat")
ar = abs(tdiff(y[1:2000]))
d = gph(ar)
d
longmem07.xpl

We obtain the following output:
Contents of d

[1,] 0.088369

3.1.1 Average periodogram estimator

The Robinson (1994b) averaged periodogram estimator is defined by:

1 I (F@n)/FOwm))
d= 2 21In(q) ’ (11)

where F'()) is the average periodogram

X o [nA/27]
() ="— Z 1) (12)

By construction, the estimated parameter dis<1 /2, i.e., is in the stationarity
range. This estimator has the following asymptotic distribution if d < 1/4

vm(d—d) ~N (0, g—z) (13)

We evaluate the degree of long-memory with this estimator as follows:

12



library("times")
y = read("dmusb58.dat")
ar = abs(tdiff(y[1:2000]))
d = roblm(ar)
d
@glongmem08.xpl

We obtain the following output:

Contents of d

(1,1 " d Bandwidth q "
[2’] M n
[3’] nn

[4,1 " 0.0927 500 0.5"
[5,1 " 0.1019 250 0.5"
6,1 " 0.1199 125 0.5"

3.2 Semiparametric Gaussian Estimator

The Robinson (1995a) semiparametric estimator, suggested by Kiinsch (1987),
is based on the approximation (2) of the spectrum of a long-memory process
in the Whittle approximate maximum likelihood estimator. An estimator of
the fractional degree of integration d is obtained by solving the minimization
problem:

A g : RS —2d I(A)

{C.d} = argmin L(C,d) = - JZ_; {m (CA7) + o) (14)
where I(A;) is evaluated for a range of harmonic frequencies A\; = 27j/n,
j=1,...,m < [n/2] bounded by the bandwidth parameter m, which increases
with the sample size n but more slowly: the bandwidth m must satisfy

1
~+ 250 as n— oo (15)
m n
If m = n/2, this estimator is a Gaussian estimator for the parametric model
f(A) = CA~29. After eliminating C, the estimator d is equal to:

. _ 1S I0) )\ 2d
d:argmdm In R; )\j_zd - E;ln()\j) . (16)
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Although this Gaussian estimator has no closed form, it is more efficient than
the averaged periodogram estimator since

1

vm(d—d) ~N (o, Z) . (17)

Furthermore, Velasco (1998) has considered the nonstationary case, i.e., where
d > 0.5, and has shown that, with tapered data, this estimator is consistent for
d € (-1/2,1) and asymptotically normal for d € (—1/2,3/4), i.e., the statistical
properties are robust to nonstationary but nonexplosive alternatives.

The quantlet robwhittle computes this local Whittle estimator. Its syntax is:
d = robwhittle(ary{, m})
where

ary
is the series

is a vector of bandwidth parameters. If this optional argument is not
provided, the default bandwith vector m = [T'/4], [T'/8], [T'/16], where T
denotes the sample size.

The results are displayed in the form of a table, the first column contains
the value of the bandwidth parameter, while the second column contains the
estimated value of d.

The instructions

library("times")

y = read("dmusb8.dat")

ar = abs(tdiff(y[1:2000]))
d = robwhittle(ar)

d

@ longmem09.xpl
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yield the following table

Contents of d

[1,1 " d Bandwidth"

[2 ’] " n

[3 , ] nn

[4,1] " 0.0948 500"

[5,1 " 0.1078 250"

6,1 " 0.1188 125"
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