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Cointegrating Smooth Transition Regressions
With Applications to the Asian Currency

Crisis∗

Pentti Saikkonen�and In Choi�
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Abstract

This paper studies the smooth transition regression model where regressors
are I(1) and errors are I(0). The regressors and errors are assumed to be depen-
dent both serially and contemporaneously. Using the triangular array asymp-
totics, the nonlinear least squares estimator is shown to be consistent and its
asymptotic distribution is derived. It is found that the asymptotic distribution
involves a bias under the regressor-error dependence, which implies that the non-
linear least squares estimator is inefficient and unsuitable for use in hypothesis
testing. Thus, this paper proposes a Gauss-Newton type estimator which uses
the NLLS estimator as an initial estimator and is based on regressions augmented
by leads-and-lags. Using leads-and-lags enables the Gauss-Newton estimator to
eliminate the bias and have a mixture normal distribution in the limit, which
makes it efficient and suitable for use in hypothesis testing. Simulation results
indicate that the results obtained from the triangular array asymptotics provide
reasonable approximations for the Þnite sample properties of the estimators and
t-tests when sample sizes are moderately large. The cointegrating smooth tran-
sition regression model is applied to the Korean and Indonesian data from the
Asian currency crisis of 1997. SigniÞcant nonlinear effects of interest rate on
spot exchange rate are found to be present in the Korean data, which partially
supports the interest Laffer curve hypothesis. But overall the effects of interest
rate on spot exchange rate are shown to be quite negligible in both the nations.
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1 Introduction

It is often perceived that economic agents may show different behavior depending on
which regions some economic variables belong in, though it seems hard to Þnd explicit
economic theory supporting such behavior. For example, investors and households
may make different decisions regarding their investments and savings, respectively,
when interest rates are rising rapidly than when they are stable. Another possible
example is that employees under recession may behave differently than under boom.
Econometricians and statisticians have developed several methods to study such be-
havior empirically which include, among others, switching regression (cf. Goldfeld
and Quandt, 1973), threshold autoregression (cf. Tong, 1983) and smooth transition
regression (cf. Granger and Teräsvirta, 1993).

In this paper, we focus on the smooth transition regression (STR) model. As
argued in Granger and Teräsvirta (1993), the STR model is useful in explaining the
aggregate-level economy because the economy is likely to show smooth transition if
each economic agent switches sharply at different times. Asymptotic theory for the
STR model involving only stationary variables can be inferred from standard theory
in nonlinear econometrics (e.g., Newey and McFadden, 1994; Pötscher and Prucha,
1997).

However, asymptotic theory for the STR model with unit root nonstationary vari-
ables has not been developed yet. Recent methods by Park and Phillips (1999, 2000)
provide a general framework to study nonstationary and nonlinear time series, but
these methods do not seem to be applicable to the STR model. Thus, this paper stud-
ies asymptotic theory of the nonlinear least squares (NLLS) estimator for the STR
model with I(1) regressors and I(0) errors. This model will be called the cointegrat-
ing STR model in this paper. As in most cointegration models, the regressors and
errors are assumed to be dependent both serially and contemporaneously. Because
using the usual asymptotic scheme of sending sample sizes to inÞnity does not seem
to work for the cointegrating STR model, we will use the triangular array asymptot-
ics. The triangular array asymptotics has been used, among others, in Andrews and
McDermott (1995) for nonlinear econometric models with deterministically trending
variables and Park and Phillips (2000) for nonstationary and nonlinear regressions.

The asymptotic distribution of the NLLS estimator for the cointegrating STR
model involves a bias under the regressor-error dependence, which implies that the
NLLS estimator is inefficient and unsuitable for use in hypothesis testing. There-
fore, we propose a Gauss-Newton type estimator which uses the NLLS estimator as
an initial estimator and is based on nonlinear regressions augmented by leads-and-
lags. Linear cointegrating regressions augmented by leads-and-lags are studied in
Saikkonen (1991), Phillips and Loretan (1991) and Stock and Watson (1993). The
Gauss-Newton estimator eliminates the bias and has a mixture normal distribution
in the limit, which implies that it is efficient and that standard hypothesis tests can
be performed by using the estimator.

Because the triangular array asymptotic methods have not often been used in
econometrics, one may rightfully question the Þnite sample properties of the tests
and estimators using the methods. Therefore, we report some simulation results,
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which indicate that the results obtained from the triangular array asymptotics provide
reasonable approximations for the Þnite sample properties of the estimators and tests
when sample sizes are moderately large.

The cointegrating STR regression model is applied to the Korean and Indonesian
data from the Asian currency crisis of 1997. SigniÞcant nonlinear effects of interest
rate on spot exchange rate are found to be present in the Korean data. This re-
sult partially supports the interest Laffer curve hypothesis which states that higher
interest rates may depreciate a currency when interest rates are too high because ex-
cessively high interest rates may increase the default risk by increasing the borrowing
cost of corporations, by depressing the economy and by weakening the banking sys-
tem of an economy (cf. Goldfajn and Baig, 1998). But overall the effects of interest
rate on spot rate are shown to be quite negligible in both the nations. Considering
the ineffectiveness of high interest rates in stabilizing exchange rates and the high
economic cost associated with keeping high interest rates, the appropriateness of tight
monetary policy during the Asian currency crisis should come into question.

The STR model has been used for some economic applications. The applica-
tions are Teräsvirta and Anderson (1992) for modelling business cycle asymmetries;
Granger, Teräsvirta and Anderson (1993) for forecasting GNP; and Sarno (1999)
and Lütkepohl, Teräsvirta and Wolters (1999) for money demand function. Besides
these, Luukkonen, Saikkonen and Teräsvirta (1988) consider testing linearity against
the smooth transition autoregression model.

The rest of the paper is organized as follows. Section 2 introduces the model and
basic assumptions. Section 3 studies asymptotic properties of the NLLS and Gauss-
Newton efficient estimators. Section 4 reports some simulation results. Section 5
applies the STR model to the data from the Asian currency crisis. Section 6 contains
further remarks. Appendices include auxiliary results and the proofs of theorems.

A few words on our notation: all limits are taken as T →∞. Weak convergence
is denoted as ⇒ . For square matrices the inequality A > B (A ≥ B) means that
the difference A − B is positive deÞnite (semideÞnite). For an arbitrary matrix A,
kAk = [tr(A0A)]1/2 .

2 The Model and Assumptions

Consider the cointegrating smooth transition regression

yt = µ+ νg ((xt − c1), ..., (xt − cl); γ) +
pX
j=1

αjxjt +

pX
j=1

δjxjtg ((xt − c1), ..., (xt − cl), γ) + ut

= µ+ νg (xt; θ) +

pX
j=1

αjxjt +

pX
j=1

δjxjtg (xt, θ) + ut, t = 1, 2, . . . , (1)

where xjt is the j−th component of the I(1) vector xt (p × 1), ut is a zero-mean
stationary error term, θ = [c01, ..., c0l, γ

0]0 and g (xt; θ) is a smooth real-valued transition
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function of the process xt and the parameter vector θ.1 Moreover, µ, ν, αj , and δj
are scalar parameters.

The STR model (1) has been used to describe economic relations which change
smoothly depending on the location of some economic variables. In model (1), the
relationship between xt and yt may change depending on where xt is located relative
to parameters c1, ..., cl. Parameter γ in model (1) determines the smoothness of tran-
sition in the economic relations. The reader is referred to Granger and Teräsvirta
(1993) for more discussions on the STR model, although these authors do not explic-
itly consider the case of I (1) processes.

We discuss some examples of model (1) by using the following simpliÞed version
of model (1) where nonlinearity appears only in the Þrst regressor.

yt = µ+α1x1t+δ1x1tg ((x1t − c1) , ..., (x1t − cl) ; γ)+
pX
j=2

αjxjt+ut, t = 1, 2, . . . (2)

Example 1:

g ((x1t − c1) , ..., (x1t − cl) ; γ) = 1

1 + e−γ(x1t−c) . (3)

Here the transition function is a logistic function which makes regression coefficient
for x1t vary smoothly between α1 and α1 + δ1. When the value of the regressor x1t
is sufficiently far below the value of the parameter c the regression coefficient takes a
value close to α1; and when the value of the regressor x1t increases and exceeds the
value of the parameter c the value of the regression coefficient changes and approaches
α1 + δ1.

Example 2:

g ((x1t − c1) , ..., (x1t − cl) ; γ) = 1

1 + e−γ(x1t−c1)(x1t−c2)
, c1 < c2. (4)

This transition function can be used when one wants to allow for the possibility that
the regression coefficient changes twice. When | x1t | is large, the function takes a
value close to 1 so that the coefficient for x1t approaches α1 + δ1. But when x1t is
approximately in between c1 and c2, the function takes a value close to zero which
makes the coefficient for x1t approach α1. Instead of function (4), one may also use
a linear combination of two logistic functions.

When γ →∞, functions (3) and (4) approach the indicator functions 1{x1t ≥ c}
and 1{x1t ≥ c1 or x1t ≤ c2}, respectively, and model (2) becomes close to a threshold
regression model. Then the change in the regression coefficient of x1t is abrupt and
not gradual as assumed in (2). Our results do not apply to threshold models because
the transition function is not allowed to be discontinuous. Otherwise our treatment
is fairly general, and applies to any sufficiently well behaved transition function.

1Although model (1) assumes that all the regressors have a nonlinear effect on the regressand, our
theoretical results can readily be modiÞed to the case where the nonlinearity only appears in some
of the regressors. In addition, our set-up does not allow for the possibility that different transition
functions are used for different regressors. But it would not be difficult to extend our results to that
case as well. To simplify exposition, we have preferred to work with a single transition function.
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We shall now discuss assumptions required for model (1). As already mentioned,
we assume

Assumption 1
xt = xt−1 + vt, t = 1, 2, . . . , (5)

where vt is a zero-mean stationary process and the initial value x0 may be any random
variable with the property E kx0k2 <∞.

Moreover, it will be convenient to assume that the (p+ 1)−dimensional process
wt = [ut v

0
t]
0 satisÞes the following assumption employed by Hansen (1992) in a

somewhat weaker form.

Assumption 2 For some r > 4, wt = [ut v
0
t]
0 is a stationary, zero-mean, strong

mixing sequence with mixing coefficients of size −4r/ (r − 4) and E kwtkr <∞.
Assumption 2 is fairly general and covers a variety of weakly dependent processes.

It also permits the cointegrated system deÞned by (1) and (5) to have nonlinear short-
run dynamics which is convenient because our cointegrating regression is nonlinear.

Choosing the real number p in Corollary 14.3 of Davidson (1994) as 2r/ (r + 2) ,
we Þnd that Assumption 2 implies that the serial covariances of the process wt at
lag |j| are of size −2. Thus, we have the summability condition

∞X
j=−∞

|j|°°Ewtw0t+j°° <∞. (6)

This implies that the process wt has a continuous spectral density matrix fww (λ)
which we assume to satisfy

Assumption 3 The spectral density matrix fww (λ) is bounded away from zero or
that

fww (λ) ≥ εIn, ε > 0. (7)

Assumption 3 specialized to the case λ = 0 implies that the components of the
I (1) process xt are not cointegrated. In addition, it is required for the estimation
theory of Section 2 that (7) also holds for other values of λ. Conformably to the
partition of the process wt, we write fww (λ) = [fab (λ)] where a, b ∈ {u, v}.

Assumption 2 also implies the multivariate invariance principle

T−1/2
[Ts]X
j=1

wj ⇒ B (s) , 0 ≤ s ≤ 1, (8)

where B (s) is a Brownian motion with covariance matrix Ω = 2πf (0) (see Hansen,
1992, the proof of Theorem 3.1). We partition B (s) =

£
Bu (s) Bv (s)

0¤0 and
Ω =

·
ω2u ωuv
ωvu Ωvv

¸
conformably with the partition of the process wt.

As for the transition function g (x; θ), we assume
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Assumption 4 (i) The parameter space Θ of θ is a compact subset of an Euclidean
space.

(ii) g (x; θ) is three times continuously differentiable on Rp ×Θ∗ where Θ∗ is an
open set containing Θ.

This assumption may not be the weakest possible, but it is satisÞed by the most
commonly used transition functions and simpliÞes exposition. Thus, we shall not try
to weaken it. The compactness of the parameter space Θ is a standard assumption
in nonlinear regression, but no such assumption is needed for other parameters.

3 Estimation Procedures

The cointegrating regression (1) assumes serial and contemporaneous correlation be-
tween the I (1) regressor xt and the error term ut. Adverse consequences of this on
linear least squares estimation are well known and various modiÞcations have there-
fore been devised. In this paper, we extend the leads-and-lags procedure of Saikkonen
(1991) to the STR model discussed in the previous section. Because there are some
theoretical difficulties with a direct extension of this procedure, we will Þrst con-
sider the NLLS estimation which can be utilized to develop a Gauss-Newton type
leads-and-lags estimation.

3.1 Triangular array asymptotics

Before embarking on the subject of NLLS estimation, we will explain the motivation
for the employed asymptotic methods in this subsection. Park and Phillips (2000)
show that two types of asymptotics can be considered in nonlinear regressions with
I(1) regressors. One is the usual asymptotics, and the other is the so-called triangular
array asymptotics in which the actual sample size is Þxed at T0, say, and the model
is imbedded in a sequence of models depending on a sample size T which tends to
inÞnity. The imbedding is obtained by replacing the I (1) regressor by (T0/T )

1/2 xt.
This makes the regressand dependent on T and, when T = T0, the original model is
obtained. Thus, if T0 is large, the triangular array asymptotics can be expected to
give reasonable approximations for Þnite sample distributions of estimators and test
statistics. The triangular array asymptotics is also used in Andrews and McDermott
(1995) for nonlinear econometric models with deterministically trending variables.
Related references can also be found in Andrews and McDermott.

We will use the triangular array asymptotics for our cointegrating model, because
we expect it to provide quite reasonable approximations for estimators and test sta-
tistics and because some parameters cannot be identiÞed when the usual asymptotics
is used. The identiÞcation issue can be explained intuitively by using a special case
of model (1) � the model in Example 1. When the model in Example 1 is applied, a
typical situation is that the observations can be divided into three groups with each
group containing a reasonably large proportion of the data. In the Þrst and third
group the values of the regression coefficient for x1t are essentially α1 and α1 + δ1,
respectively, whereas the second group contains part of the sample where the value
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of the regression coefficient changes between these two values. Since x1t is an I (1)
process, the use of conventional asymptotics means that the variation of x1t increases
so that the proportion of observations in the Þrst and third groups increases and
that in the second group decreases. Eventually the proportion of observations in the
second group becomes negligible. This suggests that these parameters are unidentiÞ-
able in the limit, because only observations in the second group provide information
about the parameters γ and c. This can also be seen by noting that, for T large,

g (γ (x1t − c)) = g
³
T 1/2γ

³
T−1/2x1t − T−1/2c

´´
≈ 1{T−1/2x1t ≥ 0}.

Thus, asymptotically the parameters γ and c vanish from the model and become
unidentiÞable. This discussion implies that the use of conventional asymptotics leads
to a situation which is very different from what happens in the sample where a
reasonably large proportion of observations belongs to the second group.

However, the triangular array asymptotics takes the second group and, therefore,
the parameters γ and c into account. Recall that g (·; θ) is the logistic function. Basing
the asymptotic analysis on g

³
γ
³
(T0/T )

1/2 x1t − c
´´
= g

³
T−1/2γ

³
T
1/2
0 x1t − T 1/2c

´´
instead of g (γ (x1t − c)) means that the slope of the logistic function is assumed to
decrease so that the proportion of observations in the three groups remains essentially
the same even though the variation of x1t increases. In this respect the situation for
the triangular array asymptotics remains the same as for the sample. It also makes
sense that parameter c has to be of order O

¡
T 1/2

¢
, because, due to the increasing

variation of x1t, a nonzero value of c could otherwise be indistinguishable form zero.
Finally, note that when g

³
γ
³
(T0/T )

1/2 x1t − c
´´

is used in asymptotic analysis the
process x1t is standardized in such a way that it remains bounded in probability. In
this context a possible interpretation is that when T tends to inÞnity observations
of the standardized version of the series x1t are obtained denser and denser within
its observed range in the sample; and thereby the proportion of observations in each
of the three groups remains essentially the same which makes information about
parameters γ and c retained even asymptotically.

Although the above discussion gives a reasonable motivation for using the trian-
gular array asymptotics, it would be imprudent to claim that the triangular array
asymptotics would always work well. For instance, we already noticed that problems
may occur if the value of the parameter γ in model (2) with speciÞcation (3) is large
so that the model is close to a threshold model.

3.2 NLLS estimation

This subsection considers the triangular array asymptotics of the NLLS estimator for
model (1). In order to use the triangular array asymptotics, we imbed model (1) in
a sequence of models

ytT = f (xtT ; θ)
0 φ+ ut, t = 1, . . . , T, (9)
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where xtT = (T0/T )
1/2 xt

2, f (xtT ; θ) = [1 g (xtT ; θ) x0tT g (xtT ; θ)x
0
tT ]

0 and φ =£
µ ν α0 δ0

¤0 with α = [α1 · · · αp]0 and δ = [δ1 · · · δp]0 .
In what follows we set ϑ =

£
θ0 φ0

¤0 and let ϑ0 = £θ00 φ00¤0 stand for the true value
of ϑ. The NLLS estimator of parameter ϑ0 is obtained by minimizing the function

QT (ϑ) =
TX
t=1

¡
ytT − f (xtT ; θ)0 φ

¢2
(10)

with respect to ϑ.
The assumptions made so far do not ensure that a minimum of function (10)

exists, even asymptotically. To be able to introduce further assumptions, we Þrst use

the multivariate invariance principle (8) to conclude that xtT ⇒ T
1/2
0 Bv (s)

def
= B0v (s)

as T →∞. This fact and a standard application of the continuous mapping theorem
show that, for every θ ∈ Θ,

T−1
TX
t=1

f (xtT ; θ) f (xtT ; θ)
0 ⇒

Z 1

0
f
¡
B0v (s) ; θ

¢
f
¡
B0v (s) ; θ

¢0
ds.

An assumption which together with our previous assumptions ensures that the func-
tion QT (ϑ) has a minimum for T large enough is:

Assumption 5 For some ε > 0,

inf
θ∈Θ

λmin

µZ 1

0
f
¡
B0v (s) ; θ

¢
f
¡
B0v (s) ; θ

¢0
ds

¶
≥ ε > 0 (a.s.) (11)

where λmin (·) signiÞes the smallest eigenvalue of a square matrix.

Assumption 5 guarantees that, with probability approaching one, a minimum
of the function QT (ϑ) exists as shown in Appendices.3 Since we are interested in
asymptotic results, we may as usual assume that a minimum exists for all values of

T and is attained at �ϑT =
h
�θ
0
T
�φ
0
T

i0
.

In addition to Assumption 5, the following assumption is needed for the consis-
tency of the least squares estimator �ϑT .

Assumption 6 For some s ∈ [0, 1] and all (θ,φ) 6= (θ0,φ0) ,

f
¡
B0v (s) ; θ

¢0
φ 6= f

¡
B0v (s) ; θ0

¢0
φ0 (a.s.). (12)

This is an identiÞcation condition which ensures that the parameters θ and φ
can be separated in the product f (xtT ; θ)

0 φ. Taken together, Assumptions 5 and 6
ensure the identiÞability of the parameter vector ϑ.

2 In practice we always choose T = T0, so that the transformation is not required. The transfor-
mation is made only to facilitate the development of asymptotic analysis.

3See Lemma 5 and the proof of Theorem 1.
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It might be convenient to be able to formulate deterministic identiÞcation con-
ditions which do not depend on the sample paths of the Brownian motion B0v (s) .
However, in general, it seems difficult to remove the Brownian motion B0v (s) from
conditions (11) and (12).4 Nevertheless, conditions (11) and (12) appear fairly easy
to use. For instance, it can be checked by the conditions that model (2) with speci-
Þcation (3) is identiÞed when δ1 6= 0 and γ > 0.

It may also be argued that it makes sense to use identiÞcation conditions which
depend on the sample paths of the Brownian motion B0v (s) when the triangular
array asymptotics is used. Indeed, in applications of model (2) with speciÞcation
(3), one can typically divide the observations into three groups in such a way that
a fair amount of observations belongs to each group and, when the triangular array
asymptotics is used, this state of affairs prevails even asymptotically. Thus, since
xtT ⇒ B0v (s) , the triangular array asymptotics in a sense conditions on such sample
paths of B0v (s) for which the shape of the function g

¡
γ
¡
B0v (s)− c

¢¢
is similar to what

is observed in the sample. Due to this �conditioning�, it seems quite reasonable to use
identiÞcation conditions which depend on the sample paths of the Brownian motion
B0v (s) and ensure identiÞability when the speciÞed nonlinearity is related to the
sample paths of B0v (s) in the same way as to the observed realizations of xtT within
the sample. This means, for instance, that in the case of model (2) with speciÞcation
(3) we are not interested in identiÞcation in cases where sample paths of B0v (s) are
such that the function g

¡
γ
¡
B0v (s)− c

¢¢
is effectively constant and identiÞability is

very weak although it is still achieved when δ1 6= 0 and γ > 0. This point could
be made even stronger by replacing the logistic function by a piecewise continuous
analog so that for some realizations of B0v (s) the function g

¡
γ
¡
B0v (s)− c

¢¢
would

actually be constant and identiÞability would fail. Clearly, such cases would be of no
interest if g (γ (xtT − c)) is highly nonlinear within the sample.

The following theorem shows the existence and consistency of the least squares
estimator �ϑT .

Theorem 1 Suppose that Assumptions 1-6 hold. Then, a NLLS estimator �ϑT exists
with probability approaching one and is consistent.

Theorem 1 shows the existence and consistency of the least squares estimator
�ϑT when the triangular array asymptotics is used. The following theorem shows the
limiting distribution of the estimator �ϑT . For this theorem we need an additional
assumption

Assumption 7 Z 1

0
K
¡
B0v (s)

¢
K
¡
B0v (s)

¢0
ds > 0 (a.s.) (13)

where

K (x) =

· ¡
ν0 + δ

0
0x
¢
∂g (x; θ0) /∂θ

f (x; θ0)

¸
.

4When xt is a scalar process, it is possible to formulate an identiÞcation condition by using the
regression function with a deterministic argument (see Park and Phillips, 2000, Theorem 4.6).
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Theorem 2 Suppose that Assumptions 1-7 hold and that θ0 is an interior point of
Θ. Then,

T 1/2
³
�ϑT − ϑ0

´
⇒
µZ 1

0
K
¡
B0v (s)

¢
K
¡
B0v (s)

¢0
ds

¶−1
×
µZ 1

0
K
¡
B0v (s)

¢
dBu (s) +

Z 1

0
K1
¡
B0v (s)

¢
dsκvu

¶
where K1 (x) = ∂K (x) /∂x0 and κvu =

P∞
j=0Ev0uj .

The limiting distribution given in Theorem 2 depends on nuisance parameters
in a complicated way which renders the NLLS estimator inefficient and, in general,
makes it unsuitable for hypothesis testing. This difficulty is removed in a special
case where the processes vt and ut are totally uncorrelated, because then the limiting
distribution becomes mixed normal as can be easily checked.

In its general form, Theorem 2 shows that the NLLS estimator is consistent of
order Op

¡
T−1/2

¢
. This will be used to obtain an efficient two-step estimator based

on the leads-and-lags modiÞcation. The reason why the order of consistency differs
from Op

¡
T−1

¢
obtained in previous linear cases is that we employ the triangular

array asymptotics in which the regressand is made bounded.

3.3 Efficient estimation

This subsection considers efficient estimation of model (1) by using a leads-and-lags
regression. As in Saikkonen (1991), we can express the error term ut as

ut =
∞X

j=−∞
π0jvt−j + et (14)

where et is a zero-mean stationary process such that Eetv0t−j = 0 for all j = 0,±1, . . . ,
and ∞X

j=−∞
(1 + |j|) kπjk <∞. (15)

That this summability condition holds follows from condition (6) and Theorem 3.8.3
in Brillinger (1975). Expressions for the spectral density function and long-run
variance of the process et can be obtained from the well-known formulas fee (λ) =
fuu (λ)− fuv (λ) f−1vv (λ) fvu (λ) and ω2e = ω2u − ωuvΩ−1vv ωvu, respectively.

Using equations (5) and (14), we can write the cointegrating regression (1) as

yt = µ+νg (xt; θ)+α
0xt+ δ0xtg (xt; θ)+

KX
j=−K

π0j∆xt−j+eKt, t = K+1, . . . , T −K,

(16)
where ∆ signiÞes the difference operator and

eKt = et +
X
|j|>K

π0jvt−j .
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In order to eliminate errors caused by truncating the inÞnite sum in (14) we have to
consider asymptotics in which the integer K tends to inÞnity with T. The condition
K = o

¡
T 3
¢
used in the linear case by Saikkonen (1991) can also be used here.

Since we continue with the same triangular array asymptotics as in the previous
subsection, we imbed model (16) in a sequence of models

ytT = f (xtT ; θ)
0 φ+ V 0t π + eKt, t = K + 1, . . . , T −K, (17)

where Vt =
£
∆x0t−K . . . ∆x0t+K

¤0 and π = £π0−K . . . π0K
¤0
. Combining the regressors

as q (xtT ; θ) =
£
f (xtT ; θ)

0 V 0t
¤0
we can write this model more compactly as

ytT = q (xtT ; θ)
0 β + eKt, t = K + 1, . . . , T −K, (18)

where β =
£
φ0 π0

¤0
.

Instead of proper nonlinear least squares estimators of the parameters in (18)
we shall consider two-step estimators based on the NLLS estimator of the previous
section. These estimators are deÞned by"

�ϑ
(1)
T

�π
(1)
T

#
=

·
�ϑT
0

¸
+

Ã
T−KX
t=K+1

�ptT �p
0
tT

!−1 T−KX
t=K+1

�p0tT eutT (19)

where eutT = ytT − f ³xtT ; �θT´0 �φT and �ptT = h �K (xtT )0 V 0t i0 with
�K (xtT ) =

 ³�νT + �δ0TxtT´∂g ³xtT ; �θT´ /∂θ
f
³
xtT ; �θT

´  .
The latter term on the right hand side of (19) is obviously the least squares estimator
obtained from a regression of eutT on �ptT . This estimator will be called the Gauss-
Newton estimator.

To see the motivation of the Gauss-Newton estimator, subtract f(xtT ; �θT )0�φT from
both sides of (17) and apply the mean value approximation f(xtT ; θ)0φ−f(xtT ; �θT )0�φT ≈
�K (xtT )

0 (ϑ−�ϑT ) to the right hand side. Thus, after linearization, we get the auxiliary
regression model eutT = �K (xtT )

0 (ϑ− �ϑT ) + V 0t π + error
which in conjunction with standard least squares theory gives estimator (19).

The following theorem describes asymptotic properties of the estimators �ϑ
(1)
T and

�π
(1)
T . The limiting distribution of the estimator

�ϑ
(1)

T requires a standardization by the
square root of T − 2K, the effective number of observations in the regression of eutT
on �ptT . For convenience, we denote N = T − 2K.

Theorem 3 Suppose that the assumptions of Theorem 2 hold and that K → ∞ in
such a way that K3/T → 0 and T 1/2

P
|j|>K kπjk→ 0. Then,

11



(i)

N1/2
³
�ϑ
(1)
T − ϑ0

´
⇒
µZ 1

0
K
¡
B0v (s)

¢
K
¡
B0v (s)

¢0
ds

¶−1 Z 1

0
K
¡
B0v (s)

¢
dBe (s)

where Be (s) is a Brownian motion which is independent of Bv (s) and has variance
ω2e.

(ii) k�πT − π0k = Op
¡
K1/2/N1/2

¢
.

The independence of the Brownian motions Be (s) and Bv (s) implies that the
limiting distribution in Theorem 3 is mixed normal. Furthermore, we can conclude

from Saikkonen (1991) that the Gauss-Newton estimator �ϑ
(1)
T is asymptotically more

efficient than the least squares estimator �ϑT in general. In the same way as in Saikko-
nen (1991), we have also here been forced to supplement the previously mentioned
condition K = o

¡
T 3
¢
by an additional condition which implies that the integer K

may not increase too slowly.
Theorem 3 indicates that we can estimate ω2e consistently (see, for example, An-

drews, 1991) by using the residuals from the regression model (16) with estimator
(19). Thus, conventional tests like Wald and t-tests can be constructed in a straight-
forward manner and shown to have standard distributions in the limit.

4 Simulation

Implications of the theoretical results in Section 3 can be summarized as: (i) The
NLLS and Gauss-Newton estimators are consistent. (ii) In large samples, the Gauss-
Newton estimator eliminates the bias of the NLLS estimator and is more efficient
than the NLLS estimator. (iii) The t-test based on the Gauss-Newton estimator
follows a standard normal distribution in the limit. Because these results are based
on the triangular array asymptotics where the sample size of the embedding model
goes to inÞnity, it may not seem quite obvious whether these results hold when the
sample size T0 is large. Therefore, this section examines the aforementioned results
by using simulation.

Data were generated by

yt = µ+ αxt + δxt
1

1 + exp(−(xt − c)) + ut, t = 1, ..., T0

µ = α = δ = 1; c = 5;xt = xt−1 + vt;µ
ut
vt

¶
= εt +Bεt−1;B =

·
ω ω
0 ω

¸
;ω = .2, .5, .8;

εt ∼ iidN

µ
0,

·
1 σ12
σ12 1

¸¶
;σ12 = .5. (20)

Larger ω implies that the regressors and errors are more correlated both serially and
contemporaneously.
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Unreported simulation results indicate that it is difficult to estimate parameter γ
accurately by the NLLS method unless either sample sizes are very large or parameter
c is located close to the median of {xt}; and that other parameter estimates are quite
adversely affected by poor estimates of γ. Since the purpose of this section is to
check the implications of the triangular array asymptotics, we do not want that our
simulation results are affected by outliers produced by poor estimates of parameter
γ. Therefore, we assume that the value of the transition parameter γ is known to
be 1. Also, {xt} were generated such that c is located in between the 15th and
85th percentiles of {xt}. The purpose of this scheme is the same as that of Þxing
the value of γ. When c is near endpoints of the sample, extremely poor estimates
of parameter c are sometimes produced which affects other parameter estimates to
the extent that evaluating their Þnite sample performance at different sample sizes
becomes meaningless.

The estimators considered are the NLLS, one-step Gauss-Newton and two-step
Gauss-Newton estimators.5 The values of the leads-and-lags parameter for the Gauss-
Newton estimators were set at K = 1, 2, 3. Table 1 reports the empirical biases
and root mean squares errors (RMSEs) of the estimators at sample sizes 150 and
300.6 The numbers of replications at T0 = 150 and T0 = 300 were 5,000 and 3,000,
respectively. As for the method of minimization, the Polak-Ribiere conjugate gradient
method7was used. The results in Table 1 can be summarized as follows.

� As sample size T0 grows, the RMSEs of all the estimators decrease, which may
be interpreted as evidence for consistency.

� The Gauss-Newton estimators reduce the magnitudes of bias and RMSE sub-
stantially in relation to the NLLS estimator as predicted by Theorem 3.

� As the regressors and errors are more correlated both serially and contem-
poraneously, the two-step Gauss-Newton estimator tends to improve the one-step
Gauss-Newton estimator in terms of RMSE. But the two-step Gauss-Newton estima-
tor is sometimes more biased than the one-step Gauss-Newton estimator, though the
degree of the biases for both the estimators is quite mild.

� The choice of the parameter K does not seem to affect the results signiÞcantly.
� The nonlinear parameter c is subject to higher RMSE than other linear para-

meters, which may reßect the computational difficulties associated with estimating
the nonlinear parameter.

Table 2 reports empirical sizes of the t-ratios using the Gauss-Newton estimators
under the null hypotheses α = 1, δ = 1 and c = 5. Nominal sizes were chosen to be
5% and 10%, and the same experimental format as for Table 1 was used. The results
in Table 2 can be summarized as follows.

� The t-ratios reject more often than they should in part (1). But increasing the
5The one-step Gauss-Newton and two-step Gauss-Newton estimators use the NLLS and one-step

Gauss-Newton estimators as initial estimators, respectively.
6We do not report the results for the estimators of µ, because these are not the main concern in

most applications.
7 It was found that quasi-Newton methods tend to give more outliers. The maximum number of

iterations for optimization was set at 100,000.

13



sample size T0 to 300 improves the performance of the t-ratios.8

�When there are less serial and contemporaneous correlations between the regres-
sors and errors at T0 = 300, empirical sizes get closer to the corresponding nominal
sizes. But this is not noticeable at T0 = 150.

� The one-step and two-step Gauss-Newton estimators show similar performance.
� Choosing K = 1 and K = 2 at T0 = 150 and T0 = 300, respectively, tends to

provide the best results.
In sum, the simulation results in Tables 1 and 2 seem to conÞrm that the results

from the triangular array asymptotics in Section 2 can provide reasonable approxi-
mations for the Þnite sample properties of the estimators and tests when the sample
size is moderately large.

5 Applications to the Asian Currency Crisis

One of the substantial controversies regarding the Asian currency crisis of 1997 has
been whether tight monetary policy was effective in stabilizing foreign exchange rates
during and in the aftermath of the crisis.9 In fact, tight monetary policy constituted
an essential part of the IMF rescue package for Asian countries, because it has con-
ventionally been believed that higher interest rates reduce capital outßows by raising
the cost of currency speculation and induce capital inßows by making domestic assets
more attractive in the short run; and that they improve current account balance by
reducing domestic absorption in the long-run.

However, as discussed in Goldfajn and Baig (1998), higher interest rates may de-
preciate a currency when interest rates are too high because excessively high interest
rates may increase the default risk by increasing the borrowing cost of corporations,
by depressing the economy and by weakening the banking system of an economy.10

This hypothesis may be called the �interest Laffer curve� hypothesis because the ef-
fects of interest rates on spot exchange rates are hypothesized to depend on the levels
of the interest rates. This section employs the model and asymptotic theory devel-
oped in previous sections to study the interest Laffer curve hypothesis and reports
the magnitudes of interest elasticity of spot rate for Korea and Indonesia during the
Asian currency crisis.

The uncovered interest rate parity relation predicts that log spot rate is related
to the difference of domestic and foreign interest rates and log expected future spot
rate.11 Though the relation predicted by the interest rate parity condition is strictly

8 Increasing the sample size to 500 further improves the empirical size of the t-ratio, though the
results are not reported here.

9See Goldfajn and Baig (1998), Kaminsky and Schmukler (1998), Ghosh and Phillips (1998),
Kraay (1998), Dekle, Hsiao and Wang (1999), Park, Wang and Chung (1999) and Choi and Park
(2000) for empirical results regarding this issue.
10 In addition, Feldstein (1998), Furman and Stiglitz (1998) and Radelet and Sachs (1998a,b),

among others, argue that tight monetary policy in Asia was either ineffective in stabilizing exchange
rates or that it may have even exacerbated the situation.
11The uncovered interest rate parity relation is written as 1 + it = (1 + i∗t )

Se
t+1

St
, where it and i∗t

denote the domestic and the foreign interest rates at date t, respectively; and St and Set+1 denote the
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linear, it indicates that the difference of the domestic and foreign interest rates and
the log expected future spot rate may be considered as major variables explaining
the spot rate. This consideration leads us to employ the difference of the domestic
and foreign interest rates and the log expected future spot rate as regressors in our
nonlinear regression. But because the expected future spot rate is not observable,
forward exchange rate can be used as its substitute. More speciÞcally, the STR model
we use in this section is

yt = µ+ α1x1t + α2x2t + δx2t
1

1 + e−γ(x2t−c) + ut, (21)

where yt and x1t are the spot and forward rates, respectively and x2t is the difference
between the domestic and foreign interest rates (i.e., it−i∗t ). Because we are interested
only in the nonlinear relation between the spot rate and the interest rate differential,
the transition function includes only the interest rate differential. Equation (21)
signiÞes that the relation between the spot rate and the interest rate differential
changes when the latter is well above the level c unless γ is zero. Thus, the model
is appropriate for studying the relation between the spot rate and the interest rate
differential which may change depending on the level of the interest rate differential.

The spot exchange rate data which we use are daily nominal exchange rates of
Korea and Indonesia vis-a-vis the U.S. dollar. For forward exchange rates, one-month
maturity data are used. For Korea, we use the forward exchange rate from the NDF
market.12 For Indonesia, we use data from their onshore forward exchange markets.13

For domestic interest rates, we use the overnight call rates of each country. Since the
overnight call rates are the main monetary policy instruments of each country, they
seem to best reßect monetary policy stances of each country and could be regarded as
exogenous policy variables. The U.S. federal funds rate is used as the foreign interest
rate.

The whole sample covers the 19 month periods 4/1/1997 - 10/30/1998 for Korea
and 1/3/1997 - 1/24/1998 for Indonesia. The sample period for each country begins
at about six to seven months before the eruption of its own currency crisis. The
sample sizes for Korea and Indonesia are 343 and 406, respectively.

The results of the two-step Gauss-Newton estimation of model (21) are reported

spot exchange rate at date t and the expected future spot exchange rate at date t+ 1, respectively.
Taking logs of both sides of the interest parity relation yields ln(St) = ln(1+i∗t )−ln(1+it)+ln(Set+1) ≈
i∗t − it + ln(Set+1).
12The NDFs are non-deliverable forwards traded in the offshore market. Unlike the onshore forward

exchange rates which has been inßuenced by direct regulation and heavy intervention of the Korean
government, we believe that the NDF rates better reßect expectations of market participants.
13Since Indonesia had already liberalized domestic foreign exchange markets, the Indonesian rupiah

were not traded in the NDF market.
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in Table 3.14 Instead of estimating parameter γ, we used γ = 0.1, 0.2, ..., 3.515 and
reported the results which yielded the least sum of squared errors for the two-step
Gauss-Newton estimator. This is because unreported simulation results indicate that
the NLLS estimator of parameter γ is subject to high errors, which also affect the
Gauss-Newton estimators adversely. The results for Korea show that all the regressors
are signiÞcant and that signiÞcant nonlinear effects of the interest differential are
present.16 The location parameter c is estimated to lie in between 14.6 and 15.0
depending on the choice of the leads-and-lags parameter K. Though only the results
for γ = 0.6 are reported here, we note that choosing other values of γ greater than
0.6 does not bring any qualitatively different results. For Indonesia, nonlinear effects
of the interest differentials seem to be mild, though coefficients for the forward rate
and the interest differentials are signiÞcant. The estimates of the location parameter
c are similar in magnitudes to those for Korea, though Indonesia experienced much
higher interest rates than Korea during the period of currency crisis.17 As in the case
of Korea, the estimation and test results are robust to other choices of γ.

The results in Table 3 indicate that the future rates are quite important in ex-
plaining the spot rates given the magnitudes of the coefficient estimates. But the
coefficient estimates for the terms involving the interest differentials are close to zero
whether they are statistically signiÞcant or not. To visualize the nonlinear effects of
the interest differentials, we draw the interest differential elasticity of spot rate in
Figures 1 and 2 by assuming that the estimation results in Table 3 (with K = 2)
represent the true relation.18

Figures 1 and 2 show that when the interest differentials take values lower than
approximately 12% and 14% for Korea and Indonesia, respectively, the conventional
wisdom that increasing interest rate help stabilizing spot rate seems to be supported.
But when the interest differentials take higher values up to approximately 20% and

14Elliot, Rothenberg and Stock�s (1996) Dickey-Fuller-GLSµ test and Choi�s (1994) LM test were
applied to the spot and forward rates and the interest differentials for both Korea and Indonesia.
The results support the presence of a unit root at conventional levels, and hence the theoretical
results in previous sections are relevant here. Prior to estimating the STR model, it is proper to
perform linearity tests. But the linearity tests for models with I(1) variables are not yet available,
so we bypass the stage of hypothesis testing.
15We tried these values, because the NLLS estimates of γ without leads-and-lags take small values.
16These results are based on the assumptions that the error terms in equation (21) is I(0) and

that regressors are not cointegrated. Formal tests for cointegration for the STR model are not yet
available. But Þtting the AR(1) regression for the residuals from equation (21) using the values of γ
in Table 3 and the two-step Gauss-Newton estimator, we obtained AR(1) coefficient estimates 0.53
and 0.33; and corresponding t-ratios -10.9 and -14.3 for Korea and Indonesia, respectively (for all
the values of K in Table 3). These results were also found to be robust to other values of γ. Thus,
it seems unlikely that the residuals are I(1). In addition, we tested for cointegration between the
future rates and interest differentials, but found no evidence of cointegration.
17 Indonesia�s maximum call rate during the sample period was 91.5%, and the average 29.4%. But

the maximum and average for Korea were 35% and 15.6%, respectively.
18 Ignoring the error term in equation (21) and assuming that the parameter estimates are the true

parameter values, the elasticity was calculated by using the formula ∂yt
1

x2t
∂x2t

= ∂yt
∂ ln(x2t) . Here the

partial derivative is multiplied by x2t, because log was taken for the spot rate but not for the interest
differential.
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18% for Korea and Indonesia, respectively, the elasticities become positive which
implies that increasing interest rate has negative effects on stabilizing spot rate.
When the interest differentials are above 20% and 18% for Korea and Indonesia,
respectively, the elasticities become negative again.

Figures 1 and 2 partially support the interest Laffer curve hypothesis. But they
also indicate that tight monetary policy is effective, though very weakly, when interest
rates are very high. Notwithstanding this remark, we conclude from the magnitudes
of the elasticities shown in Figures 1 and 2 that the effects of interest rate on spot
rate are negligible in either direction.19 For example, when the interest differential
is 25% for Korea, the elasticity is only -.012. This implies that rasing the interest
differential from 25% to 27.5% (i.e., 10% increase) has the effects of appreciating
the Korean currency only by .12%. Considering the fact that the currency was
depreciated approximately by 30% on the average during the sampling period, such
meager effect is certainly unsatisfactory to the Korean economy. This is more so
when one considers the negative effects of the interest raise of such magnitude on the
corporations and banking system of the economy.

6 Further Remarks

We have analyzed and applied the cointegrated STR model in this paper. However,
there are a couple of topics which deserve our attention but were not studied in
this paper. First, methods for testing linearity in the presence of I(1) variables are
not yet available but useful for empirical analyses. Because nonlinear models are
ßexible, they may give a good in-sample Þt even when the true model is linear. Thus,
testing linearity prior to nonlinear model Þtting is important. Second, testing for
cointegration for the STR model should precede estimation, but relevant methods
are not yet available. We hope that these topics can be studied in the future by the
authors and other researchers.

19Choi and Park (2000) also report that interest differential did not cause spot rate both in the
short and long runs during the Asian currency crisis.
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Table 1: Biases and Root Mean Squared Errors

Notes: (i) GN1 and GN2 denote the one-step and two-step Gauss-Newton estimators, respectively.

(ii) The numbers of replications at T0=150 and T0=300 were 5,000 and 3,000, respectively.

(iii) Parameter ω signiÞes the degree of serial and contemporaneous correlation in the regressors

and errors. Larger ω implies that the regressors and errors are more correlated both serially and

contemporaneously. Parameter K denotes the numbers of leads and lags.

(1) T0 = 150

Estimator α δ c
Bias RMSE Bias RMSE Bias RMSE

NLLS .048 .122 -.026 .113 .029 .421
GN1 (K=1) -.008 .103 .007 .098 -.009 .339
GN1 (K=2) -.005 .106 .005 .100 -.007 .344

ω = 0.2 GN1 (K=3) -.005 .109 .005 .103 -.007 .349
GN2 (K=1) -.010 .103 .010 .098 -.010 .330
GN2 (K=2) -.007 .106 .008 .100 -.008 .335
GN2 (K=3) -.007 .110 .008 .103 -.007 .341
NLLS .060 .143 -.033 .136 .008 .598

GN1 (K=1) -.010 .115 .007 .113 -.005 .463
GN1 (K=2) .002 .121 .001 .119 .001 .469

ω = 0.5 GN1 (K=3) -.003 .127 .003 .125 -.000 .474
GN2 (K=1) -.015 .112 .012 .111 -.012 .451
GN2 (K=2) -.003 .114 .006 .113 -.006 .456
GN2 (K=3) -.008 .118 .008 .115 -.007 .462
NLLS .068 .159 -.036 .153 -.048 .871

GN1 (K=1) -.012 .121 .007 .123 -.033 .644
GN1 (K=2) .005 .132 -.002 .133 -.025 .657

ω = 0.8 GN1 (K=3) -.006 .138 .003 .139 -.029 .663
GN2 (K=1) -.019 .119 .014 .121 -.044 .600
GN2 (K=2) -.001 .121 .005 .123 -.034 .618
GN2 (K=3) -.013 .124 .011 .126 -.042 .620
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(2) T0 = 300

Estimator α δ c
Bias RMSE Bias RMSE Bias RMSE

NLLS .030 .067 -.017 .064 -.004 .336
GN1 (K=1) -.003 .053 .003 .054 -.009 .264
GN1 (K=2) -.001 .053 .001 .054 -.008 .266

ω = 0.2 GN1 (K=3) -.001 .054 .002 .055 -.008 .267
GN2 (K=1) -.003 .053 .003 .054 -.009 .251
GN2 (K=2) -.002 .053 .002 .054 -.009 .253
GN2 (K=3) -.002 .054 .002 .055 -.008 .254
NLLS .033 .078 -.019 .078 -.036 .486

GN1 (K=1) -.006 .058 .004 .061 -.012 .366
GN1 (K=2) .000 .058 .001 .061 -.013 .370

ω = 0.5 GN1 (K=3) -.003 .058 .002 .061 -.012 .371
GN2 (K=1) -.007 .059 .005 .061 -.014 .345
GN2 (K=2) -.001 .058 .002 .061 -.015 .352
GN2 (K=3) -.004 .059 .003 .062 -.015 .351
NLLS .038 .078 -.021 .078 -.046 .636

GN1 (K=1) -.006 .056 .003 .060 -.006 .464
GN1 (K=2) .003 .056 -.002 .060 -.003 .468

ω = 0.8 GN1 (K=3) -.003 .056 .001 .061 -.004 .469
GN2 (K=1) -.007 .056 .005 .060 -.014 .432
GN2 (K=2) .002 .055 -.000 .059 -.009 .436
GN2 (K=3) -.004 .056 .003 .060 -.011 .438
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Table 2: Empirical Sizes of the T-ratios

Notes: (i) The same experimental format as for Table 1 was used.

(ii) The long-run variance was estimated by using Andrews� (1991) methods with an AR(4) approx-

imation for the preÞlter.

(1) T0 = 150

Estimator α δ c
5% 10% 5% 10% 5% 10%

GN1 (K=1) .089 .152 .084 .143 .075 .129
GN1 (K=2) .090 .156 .085 .148 .080 .132

ω = 0.2 GN1 (K=3) .096 .161 .090 .159 .084 .139
GN2 (K=1) .087 .148 .082 .142 .077 .135
GN2 (K=2) .089 .153 .086 .148 .083 .139
GN2 (K=3) .097 .157 .090 .157 .085 .143
GN1 (K=1) .086 .147 .093 .151 .077 .134
GN1 (K=2) .089 .152 .096 .154 .078 .134

ω = 0.5 GN1 (K=3) .094 .155 .100 .157 .081 .134
GN2 (K=1) .082 .143 .088 .149 .079 .141
GN2 (K=2) .088 .148 .092 .148 .082 .141
GN2 (K=3) .091 .154 .096 .154 .085 .146
GN1 (K=1) .089 .155 .089 .149 .085 .138
GN1 (K=2) .095 .152 .093 .149 .087 .142

ω = 0.8 GN1 (K=3) .098 .161 .096 .158 .090 .140
GN2 (K=1) .088 .154 .084 .150 .089 .141
GN2 (K=2) .090 .149 .091 .147 .086 .142
GN2 (K=3) .095 .159 .094 .155 .091 .145
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(2) T0 = 300

Estimator α δ c
5% 10% 5% 10% 5% 10%

GN1 (K=1) .069 .128 .065 .123 .064 .111
GN1 (K=2) .068 .132 .067 .126 .064 .117

ω = 0.2 GN1 (K=3) .069 .131 .066 .127 .064 .117
GN2 (K=1) .067 .129 .065 .119 .068 .117
GN2 (K=2) .065 .130 .066 .123 .068 .118
GN2 (K=3) .066 .133 .065 .124 .067 .121
GN1 (K=1) .078 .137 .075 .126 .061 .118
GN1 (K=2) .076 .132 .073 .127 .068 .114

ω = 0.5 GN1 (K=3) .077 .132 .073 .132 .067 .122
GN2 (K=1) .081 .137 .078 .127 .064 .119
GN2 (K=2) .077 .131 .073 .124 .068 .121
GN2 (K=3) .078 .133 .075 .131 .069 .122
GN1 (K=1) .079 .138 .070 .124 .063 .121
GN1 (K=2) .072 .130 .067 .122 .060 .118

ω = 0.8 GN1 (K=3) .075 .136 .069 .124 .060 .121
GN2 (K=1) .081 .142 .067 .128 .065 .120
GN2 (K=2) .072 .129 .065 .123 .064 .120
GN2 (K=3) .075 .134 .068 .127 .067 .125

Table 3: Two-Step Gauss-Newton Estimation Results

Notes: (i) Daily data covering the periods 4/1/1997 - 10/30/1998 and 1/3/1997-7/24/1998 were used

for Korea and Indonesia, respectively.

(ii) Parameter K denotes the numbers of leads and lags.

(iii) The numbers in parentheses denote t-ratios.

(iv) (∗): signiÞcant at the 5% level; (∗∗): signiÞcant at the 1% level.

(1) Korea (T0 = 343)

α1 α2 δ c

K = 1 .9762 (56.2∗∗) -.0045 (-2.48∗∗) .0039 (2.54∗∗) 15.0
γ = .6 K = 2 .9737 (55.2∗∗) -.0045 (-2.44∗∗) .0040 (2.56∗∗) 14.8

K = 3 .9722 (57.4∗∗) -.0045 (-2.52∗∗) .0041 (2.68∗∗) 14.6

(2) Indonesia (T0 = 406)

α1 α2 δ c

K = 1 1.007 (299∗∗) -.0016 (-2.72∗∗) .0008 (1.48) 14.8
γ = .5 K = 2 1.007 (300∗∗) -.0016 (-2.80∗∗) .0008 (1.51) 15.0

K = 3 1.008 (296∗∗) -.0016 (-2.85∗∗) .0008 (1.55) 15.2
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Figure 2: Interest Elasticity of Spot Rate (Indonesia)
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7 Appendix I: Auxiliary Lemmas

We shall Þrst prove some auxiliary results which may also have applications elsewhere.
Recall the notation N = T − 2K and note that a (possibly) matrix-valued function
h (x) deÞned on Rd is said to be locally bounded if kh (x)k is bounded on compact
subsets of Rd.

Lemma 1 Let h (x) be a locally bounded, vector-valued function deÞned on Rd (d <∞)
and let {²t,F²t } be a square integrable martingale difference sequence such that suptE k²tk2 <
∞. Let ζ(1)tT (d× 1) and ζ(2)tT (t = 1, . . . , T ) be random vectors deÞned on the same

probability space as ²t. Assume that max1≤t≤T
°°°ζ(1)tT °°° = Op (1) and supt,T E °°°ζ(2)tT °°° <

∞. Then,
(i) max

1≤t≤T

°°°h(ζ(1)tT )°°° = Op (1)
(ii) N−3/2

KX
j=−K

T−KX
t=K+1

°°°h(ζ(1)tT )°°°°°°ζ(2)t+j,T°°° = Op ³K/N1/2
´

and

(iii)
KX
j=1

°°°°°N−1
T−KX
t=K+1

h(ζ
(1)
tT )²

0
t+j

°°°°° = Op ³K/N1/2
´

when ζ(1)tT is measurable with respect to the σ−algebra F ²t . The third result also holds
with ζ(1)tT replaced by ζ(1)t+j−1,T .

Proof To prove the Þrst assertion, let ε > 0 and use the assumptionmax1≤t≤T
°°°ζ(1)tT °°° =

Op (1) to choose m > 0 such that P
n
max1≤t≤T

°°°ζ(1)tT °°° > mo < ε for all T large.

Next, use the assumption that h (x) is locally bounded to conclude that Hm =
supkxk≤m kh (x)k is Þnite. Then, the desired result follows because for all T large

P

½
max
1≤t≤T

°°°h(ζ(1)tT )°°° > Hm¾ ≤ P ½ max1≤t≤T

°°°ζ(1)tT °°° > m¾ < ε.
The second result is an immediate consequence of the Þrst result and the moment

condition imposed on ζ(2)tT . To prove the third assertion, Þrst note that an application
of the triangular inequality yields

KX
j=1

°°°°°N−1
T−KX
t=K+1

h(ζ
(1)
tT )²

0
t+j

°°°°°
≤

KX
j=1

°°°°°N−1
T−KX
t=K+1

1
n°°°ζ(1)tT °°° ≤ moh(ζ(1)tT )²0t+j

°°°°°
+

KX
j=1

°°°°°N−1
T−KX
t=K+1

1
n°°°ζ(1)tT °°° > moh(ζ(1)tT )²0t+j

°°°°°
def
= A1T +A2T .
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Now, let ε > 0 and deÞne m and Hm in the same way as in the proof of (i). Then,
for every M > 0 and T large

P
n³
N1/2/K

´
|A2T | > M/2

o
≤ P

½
max
1≤t≤T

°°°ζ(1)tT °°° > m¾ < ε.
As for A1T , use the assumptions that {²t,F ²t } is a square integrable martingale dif-
ference sequence and that ζ(1)tT is measurable with respect to the σ−algebra F²t to
obtain

E |A1T | ≤
KX
j=1

E °°°°°N−1
T−KX
t=K+1

1
n°°°ζ(1)tT °°° ≤ moh(ζ(1)tT )²0t+j

°°°°°
2
1/2

=
KX
j=1

Ã
N−2

T−KX
t=K+1

E
³

1
n°°°ζ(1)tT °°° ≤moh(ζ(1)tT )0h(ζ(1)tT )²0t+j²t+j´

!1/2

≤ Hm

KX
j=1

Ã
N−2

T−KX
t=K+1

E
¡
²0t+j²t+j

¢!1/2
≤ CHmK/N

1/2, C <∞.

Hence, P
©¡
N1/2/K

¢ |A1T | > M/2ª ≤ 2CHm/M by Markov�s inequality and we can
conclude that for every M and T large

P
n³
N1/2/K

´
|A1T +A2T | > M

o
≤ P

n³
N1/2/K

´
|A1T | > M/2

o
+P

n³
N1/2/K

´
|A2T | > M/2

o
< 2CHm/M + ε.

For M > 2CHm/ε the last expression is smaller than 2ε, which proves the stated
result. A similar proof shows the Þnal assertion. ¥

Note that the Þrst two results of Lemma 1 obviously hold when h (x) and ζ(2)t+j,T
are matrix-valued and that the third result improves Lemma A.4(c) of Park and
Phillips (2000) by relaxing the exponentially boundedness assumption used therein
to local boundedness.

The Þrst two results of Lemma 1 can be applied with the process

zt = zt−1 +wt, t = 1, 2, . . . (A.1)

where wt is as in Assumption 2 and z0 may be any random vector such that E kz0k2 <
∞. In this case ζ(1)tT = ztT = T−1/2zt and max1≤t≤T kztTk = Op (1) is an immediate
consequence of the invariance principle (8). This deÞnition of ztT will be assumed in
subsequent lemmas. The proofs of these lemmas make use of the fact that, due to
Assumption 2, we can write

wt = ηt −∆ξt (A.2)
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where

ηt =
∞X
j=0

(Etwt+j −Et−1wt+j) and ξt =
∞X
j=1

Etwt+j

with Et the conditional expectation operator with respect to the σ−algebra Ft =
σ (ws, s ≤ t) (cf. Hansen, 1992). Since {ηt,Ft} is a stationary martingale difference
sequence equation (A.2) is analogous to the so-called Beveridge-Nelson decomposi-
tion which has been used extensively in asymptotic analysis of linear processes (see
e.g. Phillips and Solo, 1992). Therefore, we shall refer to equation (A.2) as the
Beveridge-Nelson decomposition also in the present context. In our applications of
the third result of Lemma 1 the martingale difference sequence ²t will be ηt. For
these applications, as well as other subsequent derivations, it is worth noting that
the (stationary) processes ηt and ξt have Þnite moments of order 4 (see the proof of
Theorem 3.1 of Hansen (1992)).

Lemma 2 Let h (x; θ) be a (possibly) vector valued continuously differentiable func-
tion deÞned on Rp+1×Θ∗ where Θ∗ is an open set in an Euclidean space. Let Θ ⊂ Θ∗
be a compact set containing the point θ0 in its interior and assume that K2/T −→ 0.
Then,

(i)
KX

j=−K

°°°°°N−1
T−KX
t=K+1

h (ztT ; θ)w
0
t+j

°°°°° = Op ³K/N1/2
´
for every Þxed θ ∈ Θ

and

(ii)
KX

j=−K

°°°°°N−1
T−KX
t=K+1

h(ztT ; úθT )w
0
t+j

°°°°° = Op (K)°°° úθT − θ0°°°+Op ³K/N1/2
´

where úθT is a random vector such that úθT = θ0 + op (1) .

Proof We shall Þrst prove the latter assertion and then note how the Þrst one can
be obtained from the employed arguments. Without loss of generality, assume that
h (x; θ) is real-valued and use the Beveridge-Nelson decomposition (A.2) in conjunc-
tion with the triangular inequality to obtain

KX
j=−K

°°°°°N−1
T−KX
t=K+1

h(ztT ; úθT )w
0
t+j

°°°°° ≤
KX

j=−K

°°°°°N−1
T−KX
t=K+1

h(ztT ; úθT )η
0
t+j

°°°°°
+

KX
j=−K

°°°°°N−1
T−KX
t=K+1

h(ztT ; úθT )∆ξ
0
t+j

°°°°°
def
= A3T ( úθT ) +A4T ( úθT ).

First, consider A4T ( úθT ) and use partial summation to obtain

N−1
T−KX
t=K+1

h(ztT ; úθT )∆ξ
0
t+j = N−1h(zT−K,T ; úθT )ξ0T−K+j −N−1h(zK,T ; úθT )ξ0K+j
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−N−1
T−KX
t=K+1

h
h(ztT ; úθT )− h(zt−1,T ; úθT )

i
ξ0t−1+j .

Hence, using the triangular inequality we Þnd that¯̄̄
A4T ( úθT )

¯̄̄
≤ N−1 sup

θ∈Θ
kh (zT−K,T ; θ)k

KX
j=−K

°°ξT−K+j°°
+N−1 sup

θ∈Θ
kh (zK,T ; θ)k

KX
j=−K

°°ξK+j°°
+ sup
θ∈Θ

KX
j=−K

°°°°°N−1
T−KX
t=K+1

[h (ztT ; θ)− h (zt−1,T ; θ)] ξ0t−1+j
°°°°° .

Since supθ∈Θ kh (x; θ)k is locally bounded, the Þrst two terms on the right hand side
are easily seen to be of order Op (K/N). For the third term we can use a standard
mean value expansion to get

h (ztT ; θ)− h (zt−1,T ; θ) = T−1/2H1 (z̄t−1,T ; θ)wt
where H1 (x; θ) = ∂h (x; θ) /∂x0 and kz̄t−1,T − ztTk ≤ kzt−1,T − ztTk = T−1/2 kwtk .
Thus, we can write¯̄̄
A4T ( úθT )

¯̄̄
≤ sup

θ∈Θ

KX
j=−K

°°°°°N−3/2
T−KX
t=K+1

H1 (z̄t−1,T ; θ)wtξ0t−1+j

°°°°°+Op (K/N)
≤ N−3/2

KX
j=−K

T−KX
t=K+1

sup
θ∈Θ

kH1 (z̄t−1,T ; θ)k
°°wtξ0t−1+j°°+Op (K/N) .

= Op

³
K/N1/2

´
. (A.3)

Here the latter inequality is justiÞed by the triangular inequality whereas the equality
follows from Lemma 1(ii) because supθ∈Θ kH1 (x; θ)k is locally bounded,max1≤t≤T kz̄t−1,Tk =
Op (1) , and E

°°wtξ0t−1+j°° is a Þnite constant. For later purposes we note that above
we actually showed that A4T (θ) = Op

¡
K/N1/2

¢
holds uniformly in θ ∈ Θ.

Next, consider A3T ( úθT ). Since θ0 is an interior point of Θ and úθT = θ0 + op (1),
we can use the mean value expansion

h(ztT ; úθT ) = h (ztT ; θ0) +H2
¡
ztT ; θ̄T

¢
( úθT − θ0)

where H2 (x; θ) = ∂h (x; θ) /∂θ0 and
°°θ̄T − θ0°° ≤ °°° úθT − θ0°°° . Thus, using the trian-

gular inequality one obtains¯̄̄
A3T ( úθT )

¯̄̄
≤

KX
j=−K

°°°°°N−1
T−KX
t=K+1

h (ztT ; θ0) η
0
t+j

°°°°°
+

KX
j=−K

°°°°°N−1
T−KX
t=K+1

H2
¡
ztT ; θ̄T

¢
( úθT − θ0)η0t+j

°°°°° .
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The Þrst term on the right hand side is A3T (θ0), and the second term can be bounded
by

N−1
KX

j=−K

T−KX
t=K+1

sup
θ∈Θ

kH2 (ztT ; θ)k
°°° úθT − θ0°°°°°ηt+j°° = Op (K)°°° úθT − θ0°°° .

Here the equality is again obtained from Lemma 1(ii) because supθ∈Θ kH2 (x; θ)k
is locally bounded, max1≤t≤T kztTk = Op (1) , and E

°°ηt+j°° is constant. Thus, to
complete the proof, we have to show that A3T (θ0) = Op

¡
K/N1/2

¢
.

By the deÞnition of A3T (θ0),

A3T (θ0) =
KX
j=1

°°°°°N−1
T−KX
t=K+1

h (ztT ; θ0) η
0
t+j

°°°°°+
KX
j=0

°°°°°N−1
T−KX
t=K+1

h (ztT ; θ0) η
0
t−j

°°°°°
def
= A31T (θ0) +A32T (θ0) .

Lemma 1(iii) implies that A31T (θ0) = Op
¡
K/N1/2

¢
, so we need to show that the

same holds true for A32T (θ0) . To this end, use the Beveridge-Nelson decomposition
(A.2) and the deÞnition of ztT to give

ztT = stT − T−1/2ξt + T−1/2 (ξ0 − z0)

where stT = T−1/2
Pt
j=1 ηj . Thus, a mean value expansion yields

h (ztT ; θ) = h (st−j−1,T ; θ) + T−1/2H1 (s̄t−j−1,T ; θ) rtj

where rtj =
Pj
i=0 ηt−j+i − ξt + ξ0 + z0 and ks̄t−j−1,T − ztTk ≤ kst−j−1,T − ztTk =

T−1/2 krtjk . This identity and the triangular inequality imply

|A32T (θ0)| ≤
KX
j=0

°°°°°N−1
T−KX
t=K+1

h (st−j−1,T ; θ0) η0t−j

°°°°°
+

KX
j=0

°°°°°N−3/2
T−KX
t=K+1

H1 (s̄t−j−1,T ; θ0) rtjη0t−j

°°°°°
=

KX
j=0

°°°°°N−3/2
T−KX
t=K+1

H1 (s̄t−j−1,T ; θ0) rtjη0t−j

°°°°°+Op(K/N1/2).

Here the equality is obtained from Lemma 1(iii) which obviously applies despite the
differences in subscripts. To analyze the Þrst term in the last expression, it suffices
to replace rjt in turn by each of the four components in its deÞnition. Thus, consider
the quantity

KX
j=0

°°°°°N−3/2
T−KX
t=K+1

H1 (s̄t−j−1,T ; θ0)
jX
i=0

ηt−j+iη
0
t−j

°°°°°
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≤
KX
j=0

°°°°°N−3/2
T−KX
t=K+1

H1 (s̄t−j−1,T ; θ0) ηt−jη
0
t−j

°°°°°
+

KX
j=1

°°°°°N−3/2
T−KX
t=K+1

H1 (s̄t−j−1,T ; θ0)
jX
i=1

ηt−j+iη
0
t−j

°°°°° .
Arguments similar to those used for A4T ( úθT ) in (A.3) show that the Þrst term on the
right hand side is of order Op

¡
K/N1/2

¢
. These arguments also apply when the last

three terms in the deÞnition of rtj are considered. Thus, to complete the proof we
only need to show that the latter term in the last expression is of order Op

¡
K/N1/2

¢
.

Using the triangular inequality, one obtains
KX
j=1

°°°°°N−3/2
T−KX
t=K+1

H1 (s̄t−j−1,T ; θ0)
jX
i=1

ηt−j+iη
0
t−j

°°°°°
≤

KX
j=1

jX
i=1

°°°°°N−3/2
T−KX
t=K+1

H1 (s̄t−j−1,T ; θ0) ηt−j+iη
0
t−j

°°°°° . (A.4)

To show that the last quantity is of order Op
¡
K/N1/2

¢
, we can make use of a

similar truncation argument as in the proof of Lemma 1(iii) and replace the function
H1 (x; θ0) by 1 {kxk ≤ m}H1 (x; θ0) with an appropriately chosen real number m.
Thus, since H1 (x; θ0) is locally bounded 1 {kxk ≤m}H1 (x; θ0) is bounded and we
can proceed by assuming that the function H1 (x; θ0) itself is bounded. Assuming
this shows that for i ≥ 1

E

°°°°°N−3/2
T−KX
t=K+1

H1 (s̄t−j−1,T ; θ0) ηt−j+iη
0
t−j

°°°°°
≤

E °°°°°N−3/2
T−KX
t=K+1

H1 (s̄t−j−1,T ; θ0) ηt−j+iη
0
t−j

°°°°°
2
1/2

= O
¡
N−1¢

where the equality follows because the terms in the preceding sum are uncorre-
lated with bounded second moments. Thus, the right hand side of (A.4) is of order
Op
¡
K2/N

¢
, which proves the desired result and completes the proof of the second

assertion.
To prove the Þrst assertion, notice that we need to show that A3T (θ) and A4T (θ)

are of order Op
¡
K/N1/2

¢
for every Þxed θ. For A4T (θ) we showed that this holds

even uniformly in θ. As for A3T (θ) , it suffices to consider A31T (θ) and A32T (θ)
separately. In the above proof we showed that A31T (θ0) and A32T (θ0) are of order
Op
¡
K/N1/2

¢
and an inspection of the proof reveals that θ0 can be replaced with any

θ ∈ Θ without changing the result. This completes the proof of Lemma 2. ¥
It would be useful to be able to show that the pointwise result of Lemma 2(i) also

holds uniformly in θ but we have been unable to obtain this extension. The following
result is not difficult to obtain, however.
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Lemma 3 Suppose the assumptions of Lemma 2 hold and let RT = [R−KT · · · RKT ]
be a (possibly) stochastic matrix with p+1 rows and such that, for some Þnite constant
c, kRTk ≤ c (a.s.). Then,

sup
θ∈Θ

°°°°°°
KX

j=−K
N−1

T−KX
t=K+1

h (ztT ; θ)w
0
t+jRjT

°°°°°° = op (1) .
Proof Without loss of generality assume that c = 1 and that h (x; θ) is real valued
and RjT is a vector. Since kRjTk ≤ 1 for all j, we have for every Þxed θ ∈ Θ°°°°°°

KX
j=−K

N−1
T−KX
t=K+1

h (ztT ; θ)w
0
t+jRjT

°°°°°° ≤
KX

j=−K

°°°°°N−1
T−KX
t=K+1

h (ztT ; θ)w
0
t+jRjT

°°°°°
≤

KX
j=−K

°°°°°N−1
T−KX
t=K+1

h (ztT ; θ)w
0
t+j

°°°°°
= op (1)

where the equality is due to Lemma 2(i). Thus, the problem is to strengthen this
pointwise convergence in probability to uniform convergence in probability. Since
Θ is a compact set it suffices to show that the quantity whose norm is taken is
stochastically equicontinuous (see e.g. Davidson, 1994, p. 337). To this end, let θ1
and θ2 be arbitrary points of Θ and consider the quantity°°°°°°

KX
j=−K

N−1
T−KX
t=K+1

h (ztT ; θ1)w
0
t+jRjT −

KX
j=−K

N−1
T−KX
t=K+1

h (ztT ; θ2)w
0
t+jRjT

°°°°°°
=

°°°°°°N−1
T−KX
t=K+1

[h (ztT ; θ1)− h (ztT ; θ2)]
KX

j=−K
w0t+jRjT

°°°°°° (A.5)

≤
Ã
N−1

T−KX
t=K+1

kh (ztT ; θ1)− h (ztT ; θ2)k2
!1/2N−1

T−KX
t=K+1

°°°°°°
KX

j=−K
w0t+jRjT

°°°°°°
21/2

where the inequality follows from the Cauchy-Schwarz inequality. For the difference
in the last expression we can use the mean value expansion

h (ztT ; θ1)− h (ztT ; θ2) = H2
¡
ztT ; θ̄

¢
(θ1 − θ2)

where H2 (x; θ) = ∂h (x; θ) /∂θ0 and
°°θ̄ − θ1°° ≤ kθ1 − θ2k. Thus,Ã

N−1
T−KX
t=K+1

kh (ztT ; θ1)− h (ztT ; θ2)k2
!1/2

≤ kθ1 − θ2k
Ã
N−1

T−KX
t=K+1

sup
θ∈Θ

kH2 (ztT ; θ)k2
!1/2

= kθ1 − θ2kOp (1)
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where the equality is justiÞed by Lemma 1(i) because supθ∈Θ kH2 (x; θ)k2 is locally
bounded and max1≤t≤T kztTk = Op (1) . Hence, the desired stochastic equicontinuity
follows in a straightforward manner from (A.5) if we show that the latter factor in
the last expression therein is of order Op (1) . To see this, deÞne the matrix

ΓT =

"
N−1

T−KX
t=K+1

wt+iw
0
t+j

#
, i, j = −K, . . . ,K,

and let λmax (·) denote the largest eigenvalue of the indicated matrix. With these
deÞnitions we haveN−1

T−KX
t=K+1

°°°°°°
KX

j=−K
w0t+jRjT

°°°°°°
21/2 =

¡
tr
¡
R0TΓTRT

¢¢1/2
≤ ¡

λmax (ΓT ) tr
¡
R0TRT

¢¢1/2
≤ λ1/2max (ΓT )

= Op (1) .

Here the last relation is a straightforward consequence of the fact that the spectral
density matrix of the process wt is bounded and the preceding one follows from the
assumption kRTk ≤ 1 (a.s.). Thus, the proof is complete. ¥

The results of Lemmas 2 and 3 also hold with a Þxed value of K. In that case RjT
in Lemma 3 may be replaced by an identity matrix, as can easily be checked from
the given proofs.

In the following lemma we use the notation C (Θ)a×b to signify the space of all
continuous functions from the compact set Θ to Ra×b endowed with the uniform
metric. In Ra×b the usual Euclidean metric is assumed.

Lemma 4 Let H (x, θ) (a× b) be a matrix valued continuous function deÞned on
Rp+1 ×Θ. Then, if K/T → 0

N−1
T−KX
t=K+1

H (ztT ; θ)⇒
Z 1

0
H (B (s) ; θ)ds

where the convergence holds in the function space C (Θ)a×b .

Proof Since ztT ⇒ B(s) by (8) the proof can be obtained in the same way as the
Þrst result in Theorem 3.1 of Park and Phillips (2000). ¥

Lemma 4 can be used to prove the following.

Lemma 5 Let f (x; θ) , θ ∈ Θ, and xtT be as in Subsection 3.2. Then there exists an
ε > 0 such that with probability approaching one

inf
θ∈Θ

λmin

Ã
N−1

T−KX
t=K+1

f (xtT ; θ) f (xtT ; θ)
0
!
≥ ε.
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Proof The stated result follows from condition (11), Lemma 4, and the continuity
of eigenvalues and the inÞmum function. ¥
Lemma 6 Let h (x) be a vector valued twice continuously differentiable function de-
Þned on Rp+1. Then,

T−1/2
TX
t=1

h (ztT )w
0
t ⇒

Z 1

0
h (B (s))dB (s)0 +

Z 1

0
H1 (B (s)) dsΛ

where H1 (x) = ∂h (x) /∂x0 and Λ =
P∞
j=0Ew0w

0
j . Moreover, this weak convergence

holds jointly with that in (8).

Proof Using the Beveridge-Nelson decomposition (A.2), one obtains

T−1/2
TX
t=1

h (ztT )w
0
t = T

−1/2
TX
t=1

h (ztT ) η
0
t − T−1/2

TX
t=1

h (ztT )∆ξ
0
t. (A.6)

First, consider the latter term on the right hand side. By partial summation,

−T−1/2
TX
t=1

h (ztT )∆ξ
0
t = −T−1/2h (zTT ) ξ0T + T−1/2h (z0T ) ξ00

+T−1/2
TX
t=1

[h (ztT )− h (zt−1,T )] ξ0t−1

= T−1/2
TX
t=1

[h (ztT )− h (zt−1,T )] ξ0t−1 + op (1)

where the latter equality is an immediate consequence of the assumptions. Thus, a
standard mean value expansion and the fact ∆ztT = T−1/2wt yield

−T−1/2
TX
t=1

h (ztT )∆ξ
0
t = T

−1
TX
t=1

H1 (z̄t−1,T )wtξ0t−1 + op (1)

where the notation is as before so that H1 (z̄t−1,T ) signiÞes a matrix whose each row is
evaluated at a possibly different intermediate point in the line segment between ztT
and zt−1,T . Since the function H1 (x) is continuously differentiable by assumption,
we have kH1 (z̄t−1,T )−H1 (ztT )k ≤ T−1/2H̄T kwtk where H̄T is determined by the
second partial derivatives of the function h (x) and, as a straightforward consequence
of Lemma 1(i), H̄T = Op (1) . Hence, since E kwtk

°°wtξ0t−1°° is a Þnite constant, we
can write

−T−1/2
TX
t=1

h (ztT )∆ξ
0
t = T−1

TX
t=1

H1 (ztT )wtξ
0
t−1 + op (1)

= T−1
TX
t=1

H1 (ztT )wtξ
0
t + T

−1
TX
t=1

H1 (ztT )wtw
0
t

−T−1
TX
t=1

H1 (ztT )wtη
0
t + op (1)
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where the latter equality follows from the Beveridge-Nelson decomposition (A.2).
Theorems 3.2 and 3.3 of Hansen (1992) imply that replacing wtξ0t in the Þrst term
of the last expression by its expectation causes an error of order op (1) . To see that
a similar replacement can be done in the second term of the last expression, observe
that, by Assumption 2 and the mixing inequality in Davidson (1994, p. 211), wtw0t−
Ewtw

0
t is a stationary L1−mixingale. Hence, the desired result follows from Theorem

3.3 of Hansen (1992). As a whole we can thus conclude that

−T−1/2
TX
t=1

h (ztT )∆ξ
0
t = T

−1
TX
t=1

H1 (ztT )Λ− T−1
TX
t=1

H1 (ztT )wtη
0
t + op (1) (A.7)

where the result Ewtξ0t +Ewtw0t = Λ is a simple consequence of the deÞnition of the
matrix Λ and the process ξt (cf. Hansen, 1992, the proof of Theorem 4.1).

Now consider the Þrst term on the right hand side of (A.6) and use the same
mean value expansion as above to write

T−1/2
TX
t=1

h (ztT ) η
0
t = T

−1/2
TX
t=1

h (zt−1,T ) η0t + T
−1

TX
t=1

H1 (z̄t−1,T )wtη0t. (A.8)

In the same way as above, we can also here replace H1 (z̄t−1,T ) by H1 (ztT ) and
combine equations (A.7) and (A.8) with (A.6). This gives

T−1/2
TX
t=1

h (ztT )w
0
t = T

−1/2
TX
t=1

h (zt−1,T ) η0t + T
−1

TX
t=1

H1 (ztT )Λ+ op (1) .

To complete the proof, notice that ηt is a stationary square integrable martingale
difference sequence and that an invariance principle holds jointly for the processes zt
and

Pt
j=1 ηj (see Hansen, 1992, the proof of Theorem 3.1). Hence, the stated result

is obtained from Theorem 2.1 of Hansen (1992). ¥

8 Appendix II: Proofs of Main Results

Proof of Theorem 1: We shall Þrst demonstrate the existence of the estimators
�θT and �φT . For any Þxed value of θ, the least squares estimator of φ, denoted by
�φT (θ) , exists and is unique with probability approaching one. This is an immediate
consequence of the deÞnition of the estimator �φT (θ) and Lemma 5. Thus, we have

QT (θ,φ) ≥ QT (θ, �φT (θ)) ≥ inf
θ∈Θ

QT (θ, �φT (θ)).

It is straightforward to check that, when the estimator �φT (θ) exists and is unique,
QT (θ, �φT (θ)) is a continuous function of θ so that, by the assumed compactness of
the parameter space Θ, there exists �θT such that QT (�θT , �φT (�θT )) equals the above
inÞmum. Thus, �θT and �φT = �φT (�θT ) are the desired least squares estimators.
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The next step is to show that �φT is bounded in probability. To this end, notice
that

�φT =

Ã
T−1

TX
t=1

f(xtT ; �θT )f(xtT ; �θT )
0
!−1

×T−1
TX
t=1

f(xtT ; �θT )
£
ut + f (xtT ; θ0)

0 φ0
¤
.

Lemma 5 implies that the largest eigenvalue of the inverse on the right hand side is
of order Op (1) . Thus, we have to show that the latter factor on the right hand side is
of order Op (1) . To see this, note that the assumptions imply that supθ∈Θ kf (x; θ)k
is locally bounded. Therefore, by Lemma 1(i) we have max1≤t≤T

°°°f(xtT ; �θT )°°° ≤
max1≤t≤T supθ∈Θ kf (xtT ; θ)k = Op (1) and similarly with �θT replaced by θ0. Hence,
it follows that �φT = Op (1). Moreover, since �θT = Op (1) holds trivially by the
compactness of the parameter space Θ, we have �ϑT = Op (1) which means that the
sequence of estimators �ϑT is tight.

To prove the consistency of the estimators �θT and �φT , use the deÞnitions to write

0 ≥ T−1QT (�θT , �φT )− T−1QT (θ0,φ0)

= T−1
TX
t=1

h
f(xtT ; �θT )

0�φT − f (xtT ; θ0)0 φ0
i2

−2T−1
TX
t=1

h
f(xtT ; �θT )

0�φT − f (xtT ; θ0)0 φ0
i
ut

= T−1
TX
t=1

h
f(xtT ; �θT )

0�φT − f (xtT ; θ0)0 φ0
i2
+ op (1) .

Since �φT = Op (1) the latter equality follows from Lemma 3 withK = 0. Now suppose
that �ϑT

p→ ϑ0 does not hold. Then, by the tightness of the sequence �ϑT , we can Þnd
a subsequence �ϑTj which converges weakly to ϑ∗ =

£
θ0∗ φ

0
∗
¤0
, say, and ϑ∗ 6= ϑ0 with a

positive probability (see Billingsley, 1968, Theorem 6.1). Thus, we can conclude that

0 ≥ T−1QTj (�θTj , �φTj)− T−1QTj (θ0,φ0)

⇒
Z 1

0

h
f
¡
B0v (s) ; θ∗

¢0
φ∗ − f

¡
B0v (s) ; θ0

¢0
φ0

i2
ds

where the weak convergence is justiÞed by Lemma 4 and Lemma A.2 of Saikkonen
(2000). (The latter lemma requires that the relevant quantities converge jointly
which can be guaranteed by redeÞning the subsequence if necessary.) When ϑ∗ 6= ϑ0
it follows from condition (12) that the difference in the weak limit above is nonzero
for some value of s and, by continuity, in an open interval. Thus, the last expression
is positive with a positive probability. This gives a contradiction so that we must
have ϑ∗ = ϑ0. This completes the proof. ¥
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Proof of Theorem 2: For simplicity, denote h (xtT ;ϑ) = f (xtT ; θ)
0 φ so that

QT (ϑ) =
PT
t=1 [ytT − h (xtT ;ϑ)]2 . Since θ0 is assumed to be an interior point of Θ,

the consistency of the estimator �ϑT justiÞes the mean value expansion

∂QT (ϑ0) /∂ϑ = −
¡
∂2QT

¡
ϑ̄T
¢
/∂ϑ∂ϑ0

¢
(�ϑT − ϑ0) (A.9)

where the notation is as before so that ∂2QT
¡
ϑ̄T
¢
/∂ϑ∂ϑ0 signiÞes a matrix whose

each row is evaluated at a possibly different intermediate point in the line segment
between �ϑT and ϑ0. The partial derivatives can be expressed as

∂QT (ϑ) /∂ϑ = −2
TX
t=1

(∂h (xtT ;ϑ) /∂ϑ) [ytT − h (xtT ;ϑ)]

and

∂2QT (ϑ) /∂ϑ∂ϑ
0 = 2

TX
t=1

(∂h (xtT ;ϑ) /∂ϑ)
¡
∂h (ϑ) /∂ϑ0

¢
−2

TX
t=1

¡
∂2h (xtT ;ϑ) /∂ϑ∂ϑ

0¢ [ytT − h (xtT ;ϑ)] .
Next, note that

T−1
TX
t=1

¡
∂2h

¡
xtT ; ϑ̄T

¢
/∂ϑ∂ϑ0

¢ £
ytT − h

¡
xtT ; ϑ̄T

¢¤
= T−1

TX
t=1

¡
∂2h

¡
xtT ; ϑ̄T

¢
/∂ϑ∂ϑ0

¢
ut

−T−1
TX
t=1

¡
∂2h

¡
xtT ; ϑ̄T

¢
/∂ϑ∂ϑ0

¢ £
h
¡
xtT ; ϑ̄T

¢− h (xtT ;ϑ0)¤ .
Since the function f (x; θ) is three times continuously differentiable by assumption, it
follows from the consistency of the estimator �ϑT and Lemma 2(ii) with K Þxed that
the Þrst term on the right hand side is of order op (1) . It can be seen that the same
is true for the second term by taking a mean value expansion of the difference in the
brackets and using the local boundedness of the resulting summands in conjunction
with Lemma 1(i) and the consistency of the estimator �ϑT . Thus, we can write

T−1∂2QT
¡
ϑ̄T
¢
/∂ϑ∂ϑ0 = 2T−1

TX
t=1

¡
∂h
¡
xtT ; ϑ̄T

¢
/∂ϑ

¢ ¡
∂h
¡
ϑ̄T
¢
/∂ϑ0

¢
+ op (1)

⇒ 2

Z 1

0
K
¡
B0v (s)

¢
K
¡
B0v (s)

¢0
ds. (A.10)

Here the weak convergence can be justiÞed by using the consistency of the estimator
�ϑT , Lemma 4, and Lemma A.2 of Saikkonen (2000). The expression of the limit
follows from the deÞnitions.
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To complete the proof, use Lemma 6 and the deÞnitions to conclude that

T−1/2∂QT (ϑ0) /∂ϑ = −2T−1/2
TX
t=1

(∂h (xtT ;ϑ0) /∂ϑ)ut (A.11)

⇒ −2
µZ 1

0
K
¡
B0v (s)

¢
dBu (s) +

Z 1

0
K1
¡
B0v (s)

¢
dsκvu

¶
where the weak convergence holds jointly with that in (A.10). Thus, since the weak
limit in (A.10) is positive deÞnite (a.s.) by assumption the result of the theorem is
an immediate consequence of (A.9)-(A.11) and the continuous mapping theorem. ¥

Proof of Theorem 3: Denote again f (xtT ; θ)φ = h (xtT ;ϑ) and conclude from
the deÞnitions thateutT = ut −

h
h(xtT ; �ϑT )− h (xtT ;ϑ0)

i
= V 0t π0 + eKt −H2

¡
xtT ; ϑ̄T

¢
(�ϑT − ϑ0)

where H2 (xtT ;ϑ) = ∂h (x;ϑ) /∂ϑ0 and
°°ϑ̄T − ϑ0°° ≤ °°°�ϑT − ϑ0°°° . For simplicity, de-

note

�MT = N
−1

T−KX
t=K+1

�ptT �p
0
tT .

Then,"
�ϑ
(1)

T − ϑ0
�π
(1)
T − π0

#
=

·
�ϑT − ϑ0
−π0

¸
+ �M−1

T N−1
T−KX
t=K+1

�ptT V
0
t π0 + �M−1

T N−1
T−KX
t=k+1

�ptT eKt

− �M−1
T N−1

T−KX
t=K+1

�ptT H2
¡
xtT ; ϑ̄T

¢
(�ϑT − ϑ0)

= �M−1
T N−1

T−KX
t=K+1

�ptT eKt (A.12)

− �M−1
T N−1

T−KX
t=K+1

�ptT

h
H2
¡
xtT ; ϑ̄T

¢−H2(xtT ; �ϑT )i (�ϑT − ϑ0).
The latter equality is obtained by replacing H2

¡
xtT ; ϑ̄T

¢
in the second expression by

H2(xtT ; �ϑT ) = �K (xtT ) and observing that �ptT =
h
�K (xtT )

0 V 0t
i0
.We shall show next

that °°°°°N−1
T−KX
t=K+1

�ptT
h
H2
¡
xtT ; ϑ̄T

¢−H2(xtT ; �ϑT )i
°°°°° = Op ³K/N1/2

´
. (A.13)

To this end, notice that, since the function H2 (x; θ) is continuously differentiable by
assumption, a mean value expansion and an application of Lemma 1(i) show that

max
K+1≤t≤T−K

°°°H2 ¡xtT ; ϑ̄T ¢−H2(xtT ; �ϑT )°°° = Op (1)°°°ϑ̄T − �ϑT°°° = Op ³T−1/2´
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where the latter equality is due to the T 1/2−consistency of the estimator �ϑT ob-
tained from Theorem 2. Thus, since �K (xtT ) = H2(xtT ; �ϑT ), the local boundedness

of supθ∈Θ kH2 (x;ϑ)k and Lemma 1(i) similarly yield maxK+1≤t≤T−K
°°° �K (xtT )°°° =

Op (1). Hence, (A.13) holds with �ptT replaced by �K (xtT ) and we need to show that
it also holds with �ptT replaced by Vt. This can be seen by observing that°°°°°N−1

T−KX
t=K+1

Vt
h
H2
¡
xtT ; ϑ̄T

¢−H2(xtT ; �ϑT )i
°°°°°
2

=
KX

j=−K

°°°°°N−1
T−KX
t=K+1

vt+j

h
H2
¡
xtT ; ϑ̄T

¢−H2(xtT ; �ϑT )i
°°°°°
2

≤
 KX
j=−K

°°°°°N−1
T−KX
t=K+1

vt+j
h
H2
¡
xtT ; ϑ̄T

¢−H2(xtT ; �ϑT )i
°°°°°
2

= Op
¡
K2/N

¢
where the last relation follows from Lemma 2(ii) and the T 1/2−consistency of the
estimator �ϑT . Thus, we have established (A.13).

The next step is to observe that°°° �M−1
T − M̄−1

T

°°°
1
= Op

³
K/N1/2

´
(A.14)

where, denoting λmax(A) as the largest eigenvalue of matrixA, kAk1 = (λmax(A0A))1/2
and

M̄T = diag

"
N−1

T−KX
t=K+1

�K (xtT ) �K (xtT )
0 N−1

T−KX
t=K+1

VtV
0
t

#
.

To see this, Þrst note that°°°°°N−1
T−KX
t=K+1

�K (xtT )V
0
t

°°°°°
2

=
KX

j=−K

°°°°°N−1
T−KX
t=K+1

H2(xtT ; �ϑT )v
0
t+j

°°°°°
2

≤
 KX
j=−K

°°°°°N−1
T−KX
t=K+1

H2(xtT ; �ϑT )v
0
t+j

°°°°°
2

= Op
¡
K2/N

¢
again by Lemma 2(ii) and the T 1/2−consistency of the estimator �ϑT . This and

the well-known fact k·k1 ≤ k·k imply that
°°° �MT − M̄T

°°°
1
= Op

¡
K/N1/2

¢
, and we

need to show that a similar result holds for the corresponding inverses. By Lemma
A.2 of Saikkonen and Lütkepohl (1996), this holds true if

°°M̄−1
T

°°
1
= Op (1) or

if
°°°³N−1PT−K

t=K+1
�K (xtT ) �K (xtT )

0
´°°°−1

1
= Op (1) and

°°°°³N−1PT−K
t=K+1 VtV

0
t

´−1°°°°
1

=
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Op (1) . The former requirement can be obtained from condition (13), the consistency
of the estimator �ϑT , Lemma 5, and Lemma A2 of Saikkonen (2000) whereas the lat-
ter can be deduced from Lemmas A2-A4 of Saikkonen (1991). Since the assumptions
used in Saikkonen (1991) were slightly different from the present ones we note that
these lemmas, as well as Lemmas A5 and A6 of that paper, can also be proved under
the present assumptions. For Lemmas A3 and A5 the previous proofs apply whereas
Lemma A2 and, consequently, Lemmas A4 and A6 can be proved by using Lemma
A.5(i) of this paper and the fact that, for some Þnite constant C independent of
j = −K, . . . ,K,

E

°°°°°N−1
T−KX
t=K+1

¡
vtv

0
t+j −Evtv0t+j

¢°°°°° ≤ N−1C.

This follows from Assumption 2 and Lemma 6.19 of White (1984). For later purposes

we also note that the above discussion implies that
°°° �M−1

T

°°°
1
= Op (1) .

Next, note thatN−1/2PT−K
t=K+1

�K (xtT ) eKt = Op (1) and
°°°N−1/2PT−K

t=K+1 VteKt

°°° =
Op
¡
K1/2

¢
. The former result will become evident below while the latter is obtained

from Lemmas A5 and A6 of Saikkonen (1991). Since
°°° �M−1

T

°°°
1
= Op (1) we can use

(A.13), (A.14), and the T 1/2−consistency of the estimator �ϑT to conclude from (A.12)
that "

�ϑ
(1)
T − ϑ0
�π
(1)
T − π0

#
= M̄−1

T N−1
T−KX
t=K+1

�ptT eKt +Op
³
K3/2/N

´
.

Since K3/2/N1/2 → 0 by assumption this implies that

N1/2(�ϑ
(1)
T −ϑ0) =

Ã
N−1

T−KX
t=K+1

�K (xtT ) �K (xtT )
0
!−1

N−1/2
T−KX
t=K+1

�K (xtT ) eKt+ op (1)

(A.15)
and °°°�π(1)T − π0

°°° =

°°°°°°
Ã
N−1

T−KX
t=K+1

VtV
0
t

!−1
N−1

T−KX
t=K+1

VteKt

°°°°°°+Op
³
K3/2/N

´
= Op

³
(K/N)1/2

´
.

Here the last equality follows from results obtained in the Appendix of Saikkonen

(1991) and already used above. To show that the limiting distribution of �ϑ
(1)
T is as

stated in the theorem and thereby to complete the proof, Þrst note that the arguments
used for (A.10) in the proof of Theorem 2 show that the inverse on the right hand side
of (A.15) converges weakly to the inverse in the theorem. Thus, we need to consider

N−1/2
T−KX
t=K+1

�K (xtT ) eKt = N−1/2
T−KX
t=K+1

�K (xtT ) et + op (1)
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= N−1/2
T−KX
t=K+1

H (xtT ;ϑ0) et + op (1) (A.16)

where the equalities can be justiÞed as follows. First, recall that

eKt = et +
X
|j|>K

π0jvt−j
def
= et + aKt

and note that E kaKtk2 = op
¡
T−1

¢
for all t, as shown in the proof of Lemma A5 of

Saikkonen (1991). Thus, the Þrst equality in (A.16) follows becausemaxK+1≤t≤T−K
°°° �K (xtT )°°° =

Op (1) , as already noticed. To justify the second equality, recall that �K (xtT ) =
H2(xtT ; �ϑT ), take a mean value expansion of H2(xtT ; �ϑT ) about ϑ0, and use the
T 1/2−consistency of the estimator �ϑT in conjunction with Lemma 3 with K = 0.

To complete the proof we have to show that the Þrst term in the last expression of
(A.16) converges weakly to the stochastic integral in the theorem and that this holds
jointly with the weak convergence of the inverse on the right hand side of (A.15). If the
process [v0t e0t]

0 fulÞlled the conditions of Assumption 2 this would follow from Lemma
A.9 but, since the process et is not guaranteed to be strong mixing, this reasoning does
not apply directly. However, using L to denote the usual lag operator we may write
et = a (L)

0wt where a (L)0 =
P∞
j=−∞ a

0
jL
j =

£
1 − π (L)0¤ and π (L) =P∞

j=−∞ πjL
j .

In view of the summability condition (15) and Lemma A.9 we can use Theorem 4.2 of
Saikkonen (1993) and obtain the needed weak convergence results. The assumptions
required to apply this theorem are straightforward consequences of Assumption 2
which, in addition to the summability condition (6) and the invariance principle (8),
also implies that the Þrst and second sample moments of wt are consistent estimators
of their theoretical counterparts. This completes the proof. ¥
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