
Proietti, Tommaso

Working Paper

Leave-k-out diagnostics in state space models

SFB 373 Discussion Paper, No. 2000,74

Provided in Cooperation with:
Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Proietti, Tommaso (2000) : Leave-k-out diagnostics in state space models, SFB
373 Discussion Paper, No. 2000,74, Humboldt University of Berlin, Interdisciplinary Research Project
373: Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10048008

This Version is available at:
https://hdl.handle.net/10419/62248

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10048008%0A
https://hdl.handle.net/10419/62248
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Leave-k-out Diagnostics in State Space Models

Tommaso Proietti∗

Dipartimento di Scienze Statistiche

Università di Udine
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Abstract

The paper derives an algorithm for computing leave-k-out diag-

nostics for the detection of patches of outliers for stationary and non-

stationary state space models with regression effects. The algorithm

is based on a reverse run of the Kalman filter on the smoothing errors

and is both efficient and easy to implement. An illustration concerning

the US index of industrial production for Textiles proves the effective-

ness of multiple deletion diagnostics in unmasking clusters of outlying

observations.
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1. Introduction

Diagnostics arising from the deletion of one or more observations are a

well established tool in regression analysis for detecting outliers and influen-

tial observations (see for instance Cook and Weisberg, 1982, and Atkinson,

1985). The case for multiple deletion is that diagnostics built leaving out

one observation at a time are unable to detect groups of outlying points. In

a time series setting the case for implementing them is even stronger due to

the natural ordering of the observations.

Leave-k-out diagnostics for ARIMA models have been proposed by Bruce

and Martin (1989). In this paper it is assumed that the data generating

process is a possibly nonstationary linear state space form. In this framework,

De Jong (1988) and Kohn and Ansley (1989) showed that single deletion or

cross-validatory residuals can be obtained by a run of a smoothing filter,

supplementing the usual Kalman filter (KF). The paper is concerned with

efficient calculation of leave-k-out diagnostics: this requires the inversion of

the covariance matrix of the smoothing errors which may be rather large;

perhaps more importantly, the off-diagonal elements are not delivered by the

smoothing filter and need to be computed off-line.

The algorithm proposed in the paper consists of a set of backwards recur-

sions run on the smoothing errors which parallel the KF computations and di-

agonalise their covariance matrix, yielding a set of uncorrelated transformed

smoothing errors. When initial diffuse and regression effects are presents the

filter is augmented by additional recursions paralleling the augmented KF

(De Jong, 1991); further recursions are needed to keep track of the changes

in the estimate of the initial and regression effects induced by the sequential

deletion of observations. The output of the filter thus allows to compute
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measures of multiple influence on the inferences about initial and regression

effects. A remarkable feature of the algorithm is that once leave-k-out di-

agnostics are computed, leave-r-out diagnostics for r < k are immediately

available, so it has to be run only for the maximum k desired. Throughout

the paper it is assumed that the hyperparameters are known; in practice,

they will have to be estimated before the diagnostics can be computed; thus,

the considerations reported in Haslett and Hayes (1998, sec. 4.2) apply.

The paper is structured as follows. Section 2 reviews basic algorithms for

stationary state space models, such as the Kalman filter and smoothing filter,

and discusses the various types of residuals available for diagnostic checking.

Leave-k-out diagnostics are dealt with in section 3 in which the main com-

putational algorithm is introduced. We then turn to state space models

with diffuse initial conditions and regression effects (section 4 illustrates the

augmented Kalman filter and smoother) and in section 5 we present the nec-

essary extensions of the algorithm to the framework considered. Section 6

provides an illustration with respect to the US index of industrial production

for Textiles, and section 7 concludes.

2. Residual based Diagnostics for Standard State Space
Models

Let yt denote a vector time series with N elements; the state space model

is
yt = Ztαt + Gtεt, t = 1, 2, . . . , T,

αt+1 = T tαt + H tεt,
(1)

with α1 ∼ N(a1, σ2P 1) and εt ∼ NID(0, σ2I). The system matrices, Zt, Gt,

T t, H t, are functionally related to a vector of hyperparameters, θ. When a1
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and P 1 are known and finite (as when the system matrices are time-invariant

and yt is stationary) we shall refer to (1) as a standard state space model.

The Kalman filter (KF) is a well-known recursive algorithm for computing

the minimum mean square estimator of αt and its mean square error (MSE)

matrix conditional on Y t−1 = {y1, y2, . . . ,yt−1}. Defining

at = E(αt|Y t−1), MSE(at) = σ2P t = E[(αt − at)(αt − at)′|Y t−1],

the filter consists of the following recursions (Anderson and Moore, 1979, sec.

5.4):

νt = yt −Ztat, F t = ZtP tZ ′
t + GtG′

t

qt = qt−1 + ν ′tF
−1
t νt, Kt = (T tP tZ ′

t + H tG′
t)F

−1
t

at+1 = T tat + Ktνt, P t+1 = T tP tT ′
t + H tH ′

t −KtF tK ′
t

(2)

with q0 = 0; νt = yt−E(yt|Y t−1) are the filter innovations or one-step-ahead

prediction errors, with MSE matrix σ2F t. The log-likelihood for the model

is, apart from a constant term,

L(θ) = −1
2

[

NT ln σ2 +
T

∑

t=1
ln |F t|+ σ−2qT

]

,

where qT =
∑T

t=1 ν ′tF
−1
t νt, and the maximum likelihood estimate of σ2 is

σ̂2 = qT /NT .

Diagnostic checking is usually carried out using the standardised innova-

tions F−1/2
t νt ∼ NID(0, σ2I), which play a role in detecting various types of

misspecifications, such as serial correlation, heteroscedasticity, nonnormality

and structural change (CUSUM).

Other sets of residuals are built upon the output of the smoothing filter

(De Jong, 1988, 1989, Kohn and Ansley, 1989):

ut = F−1
t νt −K ′

trt, M t = F−1
t + K ′

tN tKt,

rt−1 = Z ′
tF

−1
t νt + L′

trt, N t−1 = Z ′
tF

−1
t Zt + L′

tN tLt,
(3)

4



Lt = T t −KtZt, started with rT = 0 and NT = 0; ut is sometimes termed

a smoothing error (Harvey et al., 1998).

Auxiliary residuals (Koopman, 1993) are the smoothed estimators of dis-

turbances associated with the unobserved components and are based on the

disturbance smoother E(εt|YT ) = G′
tut + H ′

trt. Once they are standardised

by their unconditional standard deviation, they provide test statistics for

outliers and structural change in the state components (Harvey and Koop-

man, 1992, De Jong and Penzer, 1998). Unlike the standardised innovations,

the auxiliary residuals are serially correlated; Harvey and Koopman (1992)

derive their autocorrelation structure and show how they can be employed to

form appropriate tests of normality. When the measurement and the tran-

sition equation disturbances are uncorrelated, i.e. GtH ′
t = 0, the irregular

auxiliary residual

yt −ZtE(αt|Y T ) = GtE(εt|Y T ) = GtG′
tut,

standardised by the estimated unconditional covariance matrix, σ̂2(GtG′
tM tGtG′

t),

corresponds to what is known in the regression literature as an internally stu-

dentised residuals (Kohn and Ansley, 1989).

The residual arising from deletion of the observation at time t = i (pre-

diction or deletion residual) is (De Jong, 1988, Kohn and Ansley, 1989):

yi − E(yi|y1, . . . ,yi−1, yi+1, . . . ,yT ) = M−1
i ui

with unconditional covariance σ2M−1
i . The estimate of σ2 with yi deleted is

σ̂2
(i) =

qT − u′iM
−1
i ui

N(T − 1)

and is related to σ̂2 by N(T − 1)σ̂2
(i) = NTσ̂2 − u′iM

−1
i ui, which mirrors

analogous computations carried out in the linear regression case (Cook and

Weisberg, 1982, p. 20, Atkinson, 1985, p. 21). The vector of cross-validatory
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or externally studentised residuals at time i can then be defined, and under

normality the quadratic form τ̂(i) = σ̂−2
(i) u

′
iM

−1
i ui is F-distributed with 1 and

N(T − 1) degrees of freedom and can be used to test if the i-th observation

is outlying. This result stems from the independence of u′iM
−1
i ui from σ̂2

(i).

3. Leave-k-out Diagnostics for Standard State Space Mod-
els

We now address the issue of leaving out k consecutive observations: the

virtues of this strategy for detecting patches of outliers in the ARIMA frame-

work have been advocated by Bruce and Martin (1989). Assuming that obser-

vations yi−k+1, . . . ,yi are deleted and denoting y(I) the stack of the deleted

observations, Kohn and Ansley (1989) showed that the vector of deletion

residuals is

y(I) − E(y(I)|y1, . . . ,yi−k,yi+1, . . . ,yT ) = M−1
(I)u(I) (4)

The matrix M (I) has dimension Nk × Nk, with diagonal blocks M t, t =

i − k + 1, . . . , i and off-diagonal blocks M ts = σ−2Cov(ut, us); also, u(I) =

[u′i−k+1, . . . ,u
′
i]
′. The deletion residuals have unconditional covariance ma-

trix σ2M−1
(I).

The statistic

τ̂(I) =
u′(I)M

−1
(I)u(I)

kσ̂2
(I)

, (5)

with

σ̂2
(I) =

qT − u′(I)M
−1
(I)u(I)

N(T − k)
,

provides a test that the observations are jointly outlying. Under normality

the exact distribution of τ̂(I) is F(k, N(T − k)).
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As far as the computation of τ̂(I) is concerned, note that the off-diagonal

blocks of M (I) are not produced automatically by the KF and the smoothing

filter for the complete observations, although explicit formulae are given in

De Jong (1989) and Kohn and Ansley (1989). Furthermore, for multivariate

state space model and/or large k, direct inversion of the matrix M (I) may

not be computationally attractive.

The alternative strategy proposed here is to consider a transformation of

the smoothing errors, u(I), which diagonalises the matrix in question. This

is achieved by running backwards the Kalman filter on the pseudo-model

made up of the measurement equation ut = F−1
t νt − K ′

trt and transition

equation rt−1 = Z ′
tF

−1
t νt +L′

trt , where F−1/2
t νt act as disturbances, ut are

the observations and rt the states.

This amounts to running the filter

u∗t = ut + K ′
tr
∗
t , M ∗

t = F−1
t + K ′

tN
∗
t Kt,

q∗t−1 = q∗t + u∗′t M ∗−1
t u∗t , K∗

t = (Z ′
tF

−1
t −L′

tN
∗
t Kt)M ∗−1

t ,

r∗t−1 = L′
tr
∗
t + K∗

t u
∗
t , N ∗

t−1 = Z ′
tF

−1
t Zt + L′

tN
∗
t Lt −K∗

t M
∗
t K

∗′
t ,

(6)

for t = i, i − 1, . . . , i − k + 1. The filter is initialised by the unconditional

mean and covariance matrix of ri, that is r∗i = 0 and N ∗
i = N i, and by

q∗i = 0.

The filter (6) performs the Choleski block triangular factorisation M (I) =

C−1M ∗
(I)C−1′, where M ∗

(I) = diag(M ∗
i−k+1, . . . , M

∗
i ) and C is an upper tri-

angular matrix with identity blocks on the main diagonal, so that |C| = 1,

and u∗(I) = [u∗′i−k+1, . . . ,u
∗′
i ]′ = Cu(I). This allows us to write

τ̂(I) =
q∗i−k+1

qT − q∗i−k+1

N(T − k)
k

. (7)

The output of the filter is the set of uncorrelated quantities u∗t with uncon-
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ditional covariance σ2M ∗
t , such that:

M ∗−1
i−j u∗i−j = yi−j −E(yi−j|y1, . . . ,yi−j−1, yi+1, . . . ,yT ), j = 0, 1, . . . , k− 1.

Therefore, once this filter is run for the maximum k desired, leave-r-out

diagnostics for r < k are immediately available. Note that, when applied for

i = T , it produces M ∗−1
t u∗t = νt, (T − k + 1) ≤ t ≤ T .

4. Nonstationary State Space Models with Regression Ef-
fects

When regression effects and nonstationary state components are present,

the general state space form for the complete observations is formulated as

follows:

yt = Ztαt + X tδ + Gtεt, t = 1, 2, . . . , T,

αt+1 = T tαt + W tδ + H tεt,
(8)

with α1 = W 0γ + H0ε0. The matrices X t and W t contain the regression

effects and have column dimension k. The vector β = [γ ′, δ′]′ is assumed

diffuse, i.e. β ∼ N(0, κI), κ → ∞, and of dimension d + k, where d is

the number of nonstationary components of αt; W 0 is a selection matrix

associating γ to the nonstationary components in the state vector.

The statistical treatment of model (8) entails augmenting the KF (2) by

the following recursions (De Jong, 1991):

V t = [0,X t]−ZtAt, At+1 = T tAt − [0,W t] + KtV t,

St = St−1 + V ′
tF

−1
t V t, st = st−1 + V ′

tF
−1
t νt,

(9)

with starting conditions: A1 = [W 0,0], S0 = 0 and s0 = 0, where the

column dimension of V t and At is d + k. This amounts to running the
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KF on the d columns of zeros and on X t and accumulating V ′
tF

−1
t V t and

V ′
tF

−1
t νt.

De Jong (1991) shows that as κ →∞ the limiting expression for E(β|Y T )

and MSE(β|Y T ) are respectively S−1
T sT , and σ2S−1

T , and that it is possible

to define a proper likelihood, taking the form:

L∞(θ) = −1
2

[

NT ∗ ln σ2 +
T

∑

t=1
ln |F t|+ ln |ST |+ σ−2(qT − s′T S−1

T sT )
]

,

with T ∗ = T − d − k. The maximum likelihood estimate of σ2 is σ̂2 =

(qT − s′T S−1
T sT )/NT ∗. The notation L∞(θ) stresses that this is a diffuse

log-likelihood, based on a rank T ∗ transformation of the observations with

unit Jacobian, which makes the data invariant to β.

Diagnostic checking can be performed on the generalised recursive resid-

uals, ν̂t = νt − V tS−1
t−1st−1, which are uncorrelated with covariance matrix

σ2F̂ t = σ2(F t + V tS−1
t−1V

′
t). The auxiliary and the deletion residuals un-

der diffuse effects are defined in terms of the output of the smoother (3)

augmented by the recursions:

U t = F−1
t V t −K ′

tRt, Rt−1 = Z ′
tF

−1
t V t + L′

tRt,

with RT = 0.

As far the residual arising when the i-th observation is deleted, De Jong

(1988) shows that

yi − E(yi|y1, . . . ,yi−1, yi+1, . . . ,yT ) = M̂
−1
i ûi

where ûi = ui −U iβ̂ and M̂ i = M i −U iS−1
T U ′

i. The estimate of σ2 with

yi deleted is σ̂2
(i) = (qT − s′T S−1

T sT − ûiM̂
−1
i ûi)/(N(T ∗ − k)).

Interest lies also in assessing how influential is yi for inferences on β.

Denoting β̂(i) the estimate of β arising when yi is dropped, and elaborating
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results from De Jong and Penzer (1998), the change in the estimate of the

initial and regression effects is

β̂ − β̂(i) = S−1
T U ′

iM̂
−1
i ûi

and

σ−2[MSE(β̂)−MSE(β̂(i))] = −S−1
T U ′

iM̂
−1
i U iS−1

T

These results can be used to compute influence measures such as the stan-

dard and the modified Cook’s Distance (Cook and Weisberg, 1982, Atkinson,

1985).

5. Leave-k-out Diagnostics for Nonstationary Models

Let us define

û(I) = u(I) −U (I)β̂, M̂ (I) = M (I) −U (I)S−1
T U ′

(I),

where û(I) = [û′i−k+1, . . . , û
′
i]
′ and U (I) = [U ′

i−k+1, . . . ,U
′
i]
′; the matrix M̂ (I)

has diagonal blocks M̂ t, t = i− k + 1, . . . , i, and off-diagonal blocks M̂ ts =

M ts −U tS−1
T U ′

s.

The vector of deletion residuals can be written

y(I) − E(y(I)|y1, . . . ,yi−k,yi+1, . . . ,yT ) = M̂
−1
(I)û(I)

with unconditional covariance matrix σ2M̂
−1
(I). The statistic

τ̂(I) =
û′(I)M̂

−1
(I)û(I)

kσ̂2
(I)

(10)

with

σ̂2
(I) =

qT − s′T S−1
T sT − û′(I)M̂

−1
(I)û(I)

N(T ∗ − k)
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provides a test that y(I) is a multiple outlier; its reference distribution is

F(k,N(T ∗ − k)).

The change in the estimate of the initial and regression effects when the

set (I) is deleted

β̂ − β̂(I) = S−1
T U ′

(I)M̂
−1
(I)û(I) (11)

and MSE(β̂)−MSE(β̂(I)) = −S−1
T U ′

(I)M̂
−1
(I)U (I)S−1

T .

All quantities that are relevant for computation of leave-k-out diagnostics

are made available by the filter (6), augmented by the recursions

U ∗
t = U t + K ′

tR
∗
t , R∗

t−1 = L′
tR

∗
t + K∗

t U
∗
t ,

û∗t = u∗t −U ∗
t b
∗
t , M̂

∗
t = M ∗

t −U ∗
t B

∗
t U

∗′
t

K̃t = B∗
t U

∗′
t M̂

∗−1
t ,

b∗t−1 = b∗t − K̃tû∗t , B∗
t−1 = B∗

t + K̃tM̂
∗
t K̃

′
t

(12)

for t = i, i−1, . . . , i−k+1, and initial values b∗i = β̂,B∗
i = S−1

T and R∗
i = 0.

These computations parallel the augmented KF (9) and the formulae for the

generalised recursive residuals. The quantities b∗t and B∗
t keep track of the

changes in the estimate of β and its MSE matrix arising from sequential dele-

tion of observations, as will be shown below. The augmented filter delivers

the set of uncorrelated quantities û∗t with unconditional covariance σ2M̂
∗
t ,

such that:

M̂
∗−1
i−j û∗i−j = yi−j −E(yi−j|y1, . . . ,yi−j−1, yi+1, . . . , yT ), j = 0, 1, . . . , k− 1.

Thus, once this filter is run for the maximum k desired, leave-r-out di-

agnostics for r < k are immediately available. Also, when applied for

i = T , it produces M̂
∗−1
t û∗t = ν̂t, i.e. the generalised recursive residuals

for (T − k + 1) ≤ t ≤ T .

Theorem. The output of the augmented filter consisting of equations (6) and
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(12), û∗t and M̂
∗
t , is used to compute

û′(I)M̂
−1
(I)û(I) =

i
∑

t=i−k+1

û∗
′

t M̂
∗−1
t û∗t .

Moreover,

b∗i−k = β̂(I), B∗
i−k = σ−2MSE(β̂(I)).

Proof. Define B∗
(I) = diag(B∗

i−k+1, . . . ,B
∗
i ), U∗

(I) = diag(U ∗
i−k+1, . . . , U

∗
i ),

M̂
∗
(I) = diag(M̂

∗
i−k+1, . . . ,M̂

∗
i ), û∗(I) = [û∗

′

i−k+1, . . . , û
∗′
i ]′, b∗(I) = [b∗

′

i−k+1, . . . , b
∗′
i ]′,

D =





























0 I 0 · · · 0

0 0 I · · · 0
...

...
... . . . ...

0 0 0 · · · I

0 0 0 · · · 0





























, K̃ =





























0 K̃i−k+2 0 · · · 0

0 0 K̃i−k+3 · · · 0
...

...
... . . . ...

0 0 0 · · · K̃i

0 0 0 · · · 0





























.

Then, K̃ = DB∗
(I)U∗′

(I)M̂
∗−1
(I) , and letting K̃ = (I −D)−1K̃,

b∗(I) = (ik ⊗ β̂)− K̃û∗(I),

where ik is a k × 1 vector of unit elements. Now, recalling that u∗(I) =

Cu(I), U ∗
(I) = [U ∗′

i−k+1, . . . , U
∗′
i ]′ = CU (I), where the last statement follows

from the fact that the same filter is applied to U t, and replacing for (ik⊗ β̂)

into û(I) = C−1[u∗(I) − U∗
(I)(ik ⊗ β̂)], we obtain

û(I) = C−1[I − U∗
(I)K̃]û∗(I).

In matrix notation, the recursions for B∗
t can be written

B∗
(I) −DB∗

(I)D′ = EkS−1
T E ′k + K̃M̂

∗
(I)K̃

′
,

with E ′k = [0, · · · ,0, I], so that premultiplying for (I −D)−1 and postmulti-

plying for (I −D)−1′ and rearranging, we get

B∗
(I) + (I −D)−1DB∗

(I) + B∗
(I)D′(I −D)−1′ = (iki′k ⊗ S−1

T ) + K̃M̂
∗
(I)K̃

′
.
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This result is used to provide an alternative expression for M̂ (I):

M̂ (I) = M (I) −U (I)S−1
T U ′

(I)

= C−1[M ∗
(I) − U∗

(I)(iki′k ⊗ S−1
T )U∗′

(I)]C−1′

= C−1[M ∗
(I) − U∗

(I)B
∗
(I)U∗′

(I) − U∗
(I)(I −D)−1DB∗

(I)U∗′
(I)−

U∗
(I)B

∗
(I)D′(I −D)−1′U∗′

(I) + U∗
(I)K̃M̂

∗
(I)K̃

′U∗′
(I)]C−1′

= C−1[I − U∗
(I)K̃]M̂

∗
(I)[I − U∗

(I)K̃]′C−1′

where the last expression is derived writing M ∗
(I)−U∗

(I)B
∗
(I)U∗′

(I) = M̂
∗
(I) and

(I −D)−1DB∗
(I)U∗′

(I) = (I −D)−1K̃M̂
∗
(I) = K̃M̂

∗
(I).

Hence, û′(I)M̂
−1
(I)û(I) = û∗

′

(I)M̂
∗−1
(I) û∗(I).

Let now E ′1 = [I,0, . . . ,0]. At the end of a run of the filter b∗i−k is

generated; this can be written:

b∗i−k = E ′1b∗(I) − K̃i−k+1û∗i−k+1

= E ′1b∗(I) −B∗
i−k+1U

∗
i−k+1M̂

∗−1
i−k+1û

∗
i−k+1

= β̂ − E ′1
[

K̃ + B∗
(I)U

∗
(I)M̂

∗−1
(I)

]

û∗(I)

= β̂ − E ′1
[

(I −D)−1DB∗
(I) + B∗

(I)

]

(I − U∗′
(I)K̃

′
)U∗′

(I)C
′−1M̂

−1
(I)û(I)

= β̂ − E ′1
[

(I −D)−1DB∗
(I) + B∗

(I) − K̃M̂
∗
(I)K̃

′ −B∗
(I)U

∗′
(I)K̃

′] U∗′
(I)C

′−1M̂
−1
(I)û(I)

= β̂ − E ′1
[

B∗
(I)D

′(I −D′)−1 − (iki′k ⊗ S−1
T )−B∗

(I)U
∗′
(I)K̃

′] U∗′
(I)C

′−1M̂
−1
(I)û(I)

= β̂ + S−1
T U ′

(I)M̂
−1
(I)û(I)

as E ′1B∗
(I)D′(I −D′)−1 = 0 and E ′1B∗

(I)U∗′
(I)K̃

′
= 0. Comparing with (11)

gives b∗i−k = β̂(I). Finally,

B∗
i−k = E ′1B∗

(I)E1 + K̃i−k+1M̂
∗
i−k+1K̃

′
i−k+1

= E ′1
[

B∗
(I) + B∗

(I)U
∗′
(I)M̂

∗−1
(I) U∗

(I)B
∗
(I)

]

E1

= S−1
T + E ′1B∗

(I)(I − U∗′
(I)K̃

′
)U∗′

(I)C
′−1M̂

−1
(I)C−1U∗

(I)(I − K̃U∗
(I))B

∗
(I)E1

gives, after some simple algebra, Bi−k = S−1
T + S−1

T U ′
(I)M̂

−1
(I)U (I)S−1

T .
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6. Illustration of Leave-k-out Diagnostics for Nonstation-
ary Models

We illustrate the use of leave-k-out diagnostic with reference to the loga-

rithm of the US index of industrial production for the Textile sector. This is

a quarterly series available for the period 1947.1-1996.4, that has been con-

sidered in Proietti (1999). The series, displayed in the first panel of figure

1, can be adequately described by a linear stochastic trend plus trigono-

metric stochastic seasonality and a nonlinear cyclical component, where the

nonlinearity arises as a consequence of the type of asymmetry that has been

labelled steepness by Sichel (1993): this occurs when troughs are deeper than

peaks so that the cyclical dynamics of the series in the vicinity of a trough

are, loosely speaking, ”faster” and characterised by higher amplitude. In

Proietti (1998) a structural model with smooth transition in the damping

factor and the frequency of the cycle is fitted, where the transition variable

is a filtered estimate of the cycle and the transition mechanism is exponential

(see Teräsvirta, 1998).

In this section we fit a linear structural time series model and we demon-

strate that leave-k-out diagnostics are useful in detecting patches of obser-

vations that are not adequately fitted by the linear model itself. The model

we entertain is (8) with system matrices: Zt = [1, 0, 1, 0, 1, 1, 0], Gt = 0,

T t = diag(T µ,T γ,T ψ), where

T µ =







1 1

0 1





 , T γ =













0 1 0

−1 0 0

0 0 −1













, T ψ = ρ







cosλ sin λ

− sinλ cosλ





 ,
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H t = diag(ση, σζ , σω, σω, σω, σκ, σκ), and

H0 =







0

σψI2





 , W 0 =







I5

0





 , X t = 0,W t = 0, t > 0,

with σ2
κ = σ2

ψ(1−ρ2). The model represents the stochastic process underlying

the series as the sum of a trend component, with transition matrix T µ (σ2
η

and σ2
ζ are respectively the variance of the level disturbance and the slope

disturbance); a seasonal component, which is the sum of the third and the

fifth state components, with transition matrix T γ and common disturbance

variance σ2
ω; a cyclical component, which is modelled by the last two state

components, with transition matrix T ψ and common disturbance variance

σ2
κ; ρ is interpreted as the damping factor, assumed to lie in (0,1), λ ∈ (0, π)

as the frequency of the cycle, and σ2
ψ = σ2

κ/(1 − ρ2) is the variance of the

cycle. Hence there are five nonstationary state components in the model.

Parameter estimation was carried out by maximising the diffuse likelihood

and concentrating σ2
ψ out of the likelihood function. The resulting parameter

estimates are σ̂2
η = .0001019, σ̂2

ζ = .0000009, σ̂2
ω = .0000033, ρ̂ = .8622,

λ̂ = .4966, corresponding to a period of three years, σ̂2
κ = .0006697, and

σ̂2
κ = .0026098. The evidence for misspecification of the linear model is

provided by a the presence of residual kurtosis which makes the Bowman &

Shenton normality test highly significant.

A reasonable question is whether this evidence is attributable to the pres-

ence of patches of observations that are not adequately fitted by the linear

model. In particular we suspect that violation of linearity arises as a conse-

quence of steepness in the vicinity of cyclical troughs. From the inspection

of the plot of the series the observations going from 1974.2 to 1975.3 are an

obvious candidate.

For the purpose at hand we compute the statistic (10), where the di-
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mension of the set of deleted observations (I) ranges from one to five. The

reference distribution is F(k, T ∗ − k), with T ∗ = 195.

When k=1 the statistic is a test for the presence of an additive outlier

at time i; these ”leave-1-out” statistics are displayed in the second panel of

figure 1, with the dotted observations representing values significant at the

5% level. It should be noticed that a few isolated points are significant at

the beginning of the sample period (1948.2, 1949.1, 1949.2, 1951.2); as a

matter of fact, the dynamics at the beginning of the series are somewhat

different from the rest of the series. However, the most noticeable fact is

that only 1975.1 is flagged as highly outlying; some masking is likely to have

taken place, as we suspect that nearby observations should also be outlying;

the effect of these is overwhelmed by the effect of the observation 1975.1

and the question is whether joint deletion of consecutive observations can

bring to the surface the masked outliers. If this were the case, the strategy

of sequentially adding interventions on the basis of leave-1-out diagnostics

would not lead very far and would require several iteration to accommodate

all outlying effects.

The following panels in figure 1 present leave-k-out diagnostics, for k

between 2 and 5. The timing of this diagnostics is such that τ(I), built on

deletion of observations (i − k + 1, . . . , i), is referred to the midpoint of the

deletion interval when k is odd, that is i− (k − 1)/2, and to i− [(k − 1)/2]

when k is even, where [x] denotes the largest integer less than or equal to

x. When two consecutive observations are deleted (panel 3) a patch of four

consecutive significant values emerges at the beginning of the series and two

consecutive outliers are spotted in 1975: hence, when 1975.1 and 1975.2 are

jointly deleted, 1975.2 emerges as outlying. Leave-3-out diagnostic flag four

consecutive outliers in the ranging from 1974.4 to 1975.3 and when we move
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to leave-4-out diagnostics, the third quarter of 1974 enters the set.

It must be recognised that in interpreting these plots a balance has to

made between unmasking and the smearing the effect of outliers on adjacent

points: for instance as far as leave-5-out diagostics are concerned, it is likely

that some smearing has taken place at the beginning of the series (especially

in the period 1948-1951); however, the five consecutive outliers, 1974.3-1975.3

are clearly unmasked.

7. Conclusions

The paper has proposed an efficient algorithm based on the Kalman filter

run on the auxiliary residuals for computing leave-k-out diagnostics in state

space models. The algorithm, in the most general case, that is when diffuse

initial and regression effects are present, receives as an input the smoothing

errors and their covariance matrix resulting from the augmented smoothing

filter and returns a set of whitened errors that are used for computations

of the relevant diagnostics. Moreover, the output of the filter enables the

assessment of multiple influence on the estimate of the initial and regression

effects. The algorithm is also easy to implement, as its recursions mirror

the augmented Kalman filter, and it has to be run only for the maximum k

required (leave-r-out diagnostics are immediately available).
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Figure 1: US. Industrial Production Index, Textile, 1947.1-1996.4. Leave-k-
out diagnostics. The first panel is a plot of the logarithms of the original
series. The subsequent panels display the leave-k-out statistic τ̂(I), for k
ranging from 1 to 5.
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