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Oliver Linton
Department of Economics, The London School of Economics, Houghton Street, London WC2A
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Abstract

We investigate a new separable nonparametric model for time series, which includes many ARCH
models and AR models already discussed in the literature. We also propose a new estimation
procedure based on a localization of the econometric method of instrumental variables. Our method
has considerable computational advantages over the competing marginal integration or projection
method.
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1. INTRODUCTION

Stochastic volatility models are of considerable interest in empirical finance. There are many
types of parametric volatility model following the seminal work of Engle (1982); these models are
typically nonlinear, which poses difficulties both in computation and in deriving useful tools for
statistical inference. Parametric models are prone to misspecification, especially when there is no
theoretical reason to prefer one specification over another. Nonparametric models can provide greater
flexibility. However, the greater generality of these models comes at a cost - including a large
number of lags requires estimation of a high dimensional smooth, which is known to behave very
badly [Silverman (1986)]. The curse of dimensionality puts severe limits on the dynamic flexibility
of nonparametric models. Separable models offer an intermediate position between the complete
generality of nonparametric models, and the restrictiveness of parametric ones. These models have
been investigated in cross-sectional settings as well as time series ones.

In this paper, we investigate a generalized additive nonlinear ARCH model (GANARCH);

Yt =m (yt—la Yt—2, - - - 7yt—d) + vt/? (yt—la Yt—2, - - - 7yt—d) €ty (1-1-1)
d
m(yt—layt—% e 7yt—d) = I, <Cm + Z ma(yt—a)) ) (1-1-2)
a=1

d
v (yt—la Yt—2,- - - ayt—d) = F, (C'u + Z Ua(yt—a)> ) (1-1-3)

a=1

where m,, (+) and v, (-) are any smooth but unknown function, while F,, (-) and F, (-) are known
monotone transformations [whose inverses are Gy, () and G, (-), respectively].* The error process,
{e:}, is assumed to be a martingale difference with unit scale, i.e., E(g¢|F,_) =/ and E(e?|F_o0) =
oo, where J, is the o-algebra of events generated by {yk}fc:_oo. Under some weak assumptions, the
time series of nonlinear autoregressive models can be shown to be stationary and strongly mixing
with mixing coefficients decaying exponentially fast. Auestadt and Tjgstheim (1990) used a-mixing
or geometric ergodicity to identify the nonlinear time series model. Similar results were obtained
for the additive nonlinear ARCH process by Masry and Tjgstheim (1997), see also Cai and Masry
(2000). We follow the same argument as Masry and Tjgstheim (1997), and will assume all the
necessary conditions for stationarity and mixing property of the process {y;};_, in (1.1.1). The
standard identification for the components of the mean and variance is made by

E[my(yi—o)] =0 and FEvg (41-a)] =0 (1.1.4)

for all « = 1,...,d. The notable aspect of the model is additivity via known links for conditional
mean and volatility functions. As will be shown below, (1.1.1)-(1.1.3) includes a wide variety of time
series models in the literature.

In a much simpler univariate setup, Robinson (1983), Auestad and Tjgstheim (1990), and Hardle
and Vieu (1992) studied the kernel estimation of conditional mean function, m () in (1.1.1). The
so-called CHARN (Conditionally Heteroscedastic Autoregressive Nonlinear) is the same as (1.1.1)
except that m(-) and v(-) are univariate functions of y;_;. Masry and Tjgstheim (1995) and Hérdle
and Tsybakov (1997) applied the Nadaraya-Watson and local linear smoothing methods, respectively,
to jointly estimate v(-) together with m (-). Also, in a nonlinear VAR context, Hardle, Tsybakov

*The extension to allow the F' transformations to be of unknown functional form is considerably more complicated,
but see Horowitz (1999).
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and Yang (1996) dealt with the estimation of conditional mean in a multilagged extension similar
to (1.1.1). Unfortunately, however, introducing more lags in nonparametric time series models has
unpleasant consequences, more so than in the parametric approach. As is well known, smoothing
method in high dimensions suffers from a slower convergence rate - the “curse of dimensionality”.
Under twice differentiability of m (), the rate is n?/(4+4) which gets rapidly worse with dimension.
It remains also a problem to find a proper (geometric) tool for interpreting estimation results.

Additive structure has been proposed as a useful way to circumvent these problems in multivariate
smoothing. By assuming the target function to be a sum of functions of covariates, say,
M(Ys—1, Yt—2, - -+ »Yt—d) = Cm + 201 Mma(Yi_a), Wwe can effectively reduce the dimensionality of a
regression problem and improve the implementability of multivariate smoothing up to that of the one-
dimensional case. Stone (1985,1986) showed that it is possible to estimate mq(-) and m(-) with the
one-dimensional optimal rate of convergence - e.g., n?/® for twice differentiable functions - regardless
of d. The estimates are now easily illustrated and interpreted. For these reasons, since the eighties,
additive models have been fundamental to nonparametric regression among both econometricians
and statisticians. Regarding the estimation method for achieving the one-dimensional optimal rate,
the literature suggests two different approaches: backfitting and marginal integration. The former,
originally suggested by Breiman and Friedman (1985), Buja, Hastie and Tibshirani (1989), and
Hastie and Tibshirani (1987,1991) is to execute iterative calculations of one-dimensional smoothing,
until some convergence criterion is satisfied. Though appealing to our intuition, the statistical
properties of backfitting algorithm were not clearly understood until the very recent works by
Opsomer and Ruppert (1997) and Mammen, Linton, and Nielsen (1999). Both papers developed
specific backfitting procedures and addressed some statistical efficiency as well as the algorithmic
properties on the existence and uniqueness of their estimators. However, one disadvantage of these
procedures is the time consuming iterations required for implementation. The latter approach,
marginal integration (MI), is theoretically more manipulable and its statistical properties are easy
to derive, since it simply uses averaging of multivariate kernel estimates. Developed independently
by Newey (1994), Tjgstheim and Auestadt (1994a), and Linton and Nielsen (1995), its advantage
of theoretical convenience inspired the subsequent applications such as Linton, Wang, Chen, and
Héardle (1997) for transformation models and Linton, Nielsen, and van de Geer (1999) for hazard
models with censoring. In the time series models that are special cases of (1.1.1) and (1.1.2) with F,,,
being identity, Chen and Tsay (1993 a,b) and Masry and Tjgstheim (1997) applied backfitting and
MI, respectively, to estimate the conditional mean function. Mammen, Linton, and Nielsen (1999)
provided useful results for the same type of models, by improving the previous backfitting method
with some modification and successfully deriving the asymptotic properties under weak conditions.
The separability assumption was also used in volatility estimation by Yang, Hardle, and Nielsen
(1999), where the nonlinear ARCH model is of additive mean and multiplicative volatility in the
form of

d d 1/2
Yo =Cm+ Y Ma(Y-a) + (cv 11 Ua(yt—a)> £t (1.1.5)
a=1

a=1

To estimate (1.1.5), they relied on marginal integration with local linear fits as a pilot estimate, and
derived asymptotic properties.

This paper features two contributions to the additive literature. The first concerns theoretical
development of a new estimation tool called local instrumental variable method for additive
models. The novelty of the procedure lies in the simple definition of the estimator based on
univariate smoothing combined with new kernel weights. That is, adjusting kernel weights via
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conditional density of the covariate enables an univariate kernel smoother to estimate consistently
the corresponding additive component function. In many respects, the new estimator preserves the
good properties of univariate smoothers. The instrumental variable method is analytically tractable
for asymptotic theory and can be easily shown to attain the optimal one-dimensional rate as required.
Furthermore, it is computationally more efficient than the two existing methods (backfitting and MI),
in the sense that it reduces the computations up to a factor of n smoothings. The other contribution
relates to the general coverage of the model we work with. The model in (1.1.1) through (1.1.3)
extends ARCH models to a generalized additive framework where both the mean and variance
functions are additive after some known transformation [see Hastie and Tibshirani (1990)]. All
the time series models in our discussion above are regarded as a subclass of the data generating
process for {y;} in (1.1.1) through (1.1.3). For example, setting G,, to be an identity and G, a
logarithmic function reduces our model to (1.1.5). Similar efforts to apply transformation were made
in a parametric ARCH models. Nelson (1991) considered a model for the log of the conditional
variance - the Exponential (G)ARCH class, to embody the multiplicative effects of volatility. It
was also argued to use the Box-Cox transformation for volatility which is intermediate between
linear and logarithm. Since it is hard to tell a priori which structure of volatility is more realistic
and it should be determined by real data, our generalized additive model provides useful flexible
specifications for empirical works. Additionally, from the perspective of potential misspecfication
problems, the transformation used here alleviates the restriction imposed by additivity assumption,
which increases the approximating power of our model. Note that when the lagged variables in
(1.1.1) through (1.1.3) are replaced by different covariates and the observations are i.i.d., the model
becomes the cross sectional additive model studied by Linton and Hérdle (1996).

The rest of the paper is organized as follows. Section 2 describes the main estimation idea in a
simple setting. In section 3, we define the estimator for the full model. In section 4 we give our
main results including the asymptotic normality of our estimators. Section 5 discusses prediction.
Section 6 gives some Monte Carlo and some empirical applications. The proofs are contained in the
appendix.

2. NONPARAMETRIC INSTRUMENTAL VARIABLES: THE MAIN IDEA

This section explains the basic idea behind the instrumental variable method and defines the
estimation procedure. For ease of exposition, this will be carried out using an example of simple
additive models. We then extend the definition to the generalized additive ARCH case in (1.1.1)
through (1.1.3).

Consider a bivariate additive regression model for i.i.d. data,

y=my (X1) +mg (X2) +¢,

where FE(e|X) = 0 with X = (X1, X3), and the components satisfy the identification conditions
Em,(X,)] = 0, for o = 1,2 [the constant term is assumed to be zero, for simplicity]. Let p(-),
p1(-), and py (-) be the density functions of the covariates X, X;, and Xs, respectively. Letting
n = ms (X2) + €, we rewrite the model as

which is a classical example of “omitted variable” regression. That is, although (2.2.1) appears to
take the form of a univariate nonparametric regression model, smoothing y on X; will incur a bias
due to the omitted variable 7, because 7 contains Xy, which in general depends on X;. One solution
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to this is suggested by the classical econometric notion of instrumental variable. That is, we look for
an instrument W, usually just a function of X, such that

EW|X,)#0 ; EWnX,)=0 (2.2.2)
with probability one. If such a random variable exists, we can write
EWyl X, = x)
= ) 2.2.3
m (@) = B = ) (2.2.3)

This suggests that we estimate the function m; (-) by nonparametric smoothing of both Wy and
W on X;i. In parametric models the choice of instrument is usually not obvious and requires some
caution. However, our additive model has a natural class of instruments — any measurable function
of X, times p, (X3) /p (X) will do. In fact, we will take

_ P2 (Xa)
W(X) = (%) (2.2.4)
throughout. Note that
E(WylX:) IW(X)m(X)pI SO
EWIX) W) 2ELdX,
W(X)m(X)p(X)dXs
JW(X)p(X)dX,

which is to say that the marginal density p;(X;) cancels out. This is useful when we come to
construct estimators. This formula also shows what the instrumental variable estimator is estimating
when m is not additive. It is estimating just a ratio of weighted averages of the function. When
W(X) = ps(Xs) /p(X), the target is exactly the same as the target of the marginal integration
estimator.

Up to now, it was implicitly assumed that the distributions of the covariates are known a priori.
In practice, this is rarely true, and we have to rely on estimates of these quantities. Let p (-),p1 (+),
and P (-) be kernel estimates of the densities p(-),p; (-), and ps (+), respectively. Then, the feasible

procedure is defined with a replacement of instrumental variable, W = p, (X3) /P (X). Section 3
provides rigorous statistical treatment for feasible instrumental variable estimators based on local
linear estimation. See Kim, Linton, and Hengartner (1999), for a slightly different approach.

Note the contrast with the marginal integration or projection method. In this approach one defines
my by some unconditional expectation

my(z1) = E[m(z1, Xo)W(Xs)]
for some weighting function W that depends only on X5 and which satisfies

EW(X5)]=1 ; E[W(X3)m(X3)] = 0.

tIndeed, suppose we take
_ n(X1)p2 (Xo)

This satisfies E (W|X1) =1 and E(Wn|X1) = 0.
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Next, we come to the main advantage that the local instrumental variable method has. This is
in terms of the computational cost. The marginal integration method actually needs n? regression
smoothings evaluated at the pairs (Xy;, Xy;), for ¢, j = 1,... ,n, while the backfitting method requires
nr operations-where r is the number of iterations to achieve convergence. The instrumental variable
procedure, in contrast, takes at most 2n operations of kernel smoothings in a preliminary step for
estimating instrumental variable, and another n operations for regressions. Thus, it can be easily
combined with bootstrap method whose computational costs often becomes prohibitive in the case
of marginal integration.

Finally, we show how the instrumental variable approach can be applied to generalized additive
models. Let F' (-) be the inverse of a known link function G (-) and let m (X) = E(y|X). The model
is defined as

y=F(mi (X1) + mg (X2)) +e¢, (2.2.5)

or equivalently G (m (X)) = my (X1) + mg (X2). We maintain the same identification condition,
E[my(X,)] = 0. Unlike in the simple additive model, there is no direct way to relate Wy to
my (X1), here, but, nevertheless

EWG(m (X))|Xi]
X)) =
) =R

Since m (-) is unknown, we need consistent estimates of m (X) in a preliminary step.

3. INSTRUMENTAL VARIABLE PROCEDURE FOR GANARCH

We start with some simplifying notations that will be used repeatedly throughout the paper.
Let x; be the vector of d lagged variables until ¢ — 1, that is, =y = (Yr-1,-.-,¥Ytda), OF

concisely, Ty = (Y1-a, ¥y, ) Where y, = (Ys—1,--- ,Yt—a-1, Yt—at1s--- ,Yi—a). Defining my(y, )=
Egzlﬁéa mg(ye-p) and v (y, ) = Zgzlﬁéa vg(yt—p), we can reformulate (1.1.1) through (1.1.3) with
a focus on the ath components of mean and variance as
gy = m(z)+ 0" (@) e,
m(z)) = Fp, (cm + ma (Yt o) + mg(gt_a)) ,
v(@) = F (e +vayi o) +valy,_,))

To save space we will use the following abbreviations for functions to be estimated:

Ho (Y1-a) = [Ma (Yi-a),Va (yt—a)]T ) Hg(ﬂt_a) = [mg(gt_a)’ vg(ﬂt_a)]T )
c = [em, Cu]T, z = H (z1) = [Gin (m (21)) , Gy (v (xt))]T
Va(Va) = [Ma(¥a), Va(Wa)]" = ¢+ Ha(ya).

Note that the components [mq(-), v (+)]” are identified, up to constant, ¢, by ¢, (-), which will be our

major interest in estimation. Below, we examine some details in each relevant step for computing
the feasible nonparametric instrumental variable estimator of ¢, (-). The set of observations is given

by YV = {yt};il, where n' = n + d.
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3.1. Step I: Preliminary Estimation: z; = H (z;). Since z; is unknown, we start with computing

the pilot estimates of the regression surface by a local linear smoother. Let m(x) be the first
component of (a,b) that solves

nl

Igibn > Kp(z — ) {yp —a —b(z; — x)}°, (3.3.1)
T t=d+1

where Kj(x) = T¢,K(x;/h)/h? and K is a one-dimensional kernel function and h = h(n) is a

bandwidth sequence. In a similar way, we get the estimate of the volatility surface, ¥ (-), from (3.3.1)

by replacing y; with the squared residuals, €2 = (y; — m (z;))?. Then, transforming m and ¥ by the

known links will leads to consistent estimates of z;,

%= H (2) =[G (7 (2)) , Gy (3 ()]

3.2. Step II: Instrumental Variable Estimation of Additive Components. This step involves

the estimation of ¢, (+), which is equivalent to [mq (+),va (-)]", up to the constant c. Let p(-) and
Do (+) denote the density functions of the random variables (y;—a,y, ) and y,__, respectively. Define

the feasible instrument as
17 pg(gt,a)

ﬁ(yt—a’ gt_a) ’
where P, (-) and p(-) are computed using the kernel function L (-), e.g., p(z) = S5 [I&, Ly(2i —
z;)/n with L, (-) = L(-/g)/g. The instrumental variable local linear estimates $,(y,) are given as
(ai, ag)T through minimizing the localized squared errors elementwise

nl

min Y K (Yi-a — Ya) W, {Zjt —a; — b (Yo — ¥a)}, (3.3.2)

%455 12 g1

where Zj; is the j-th element of Z;. The closed form of the solution is
-1 ~
Palya)” =¢f (Y'KY ) YTKZ, (3.3.3)

where e; = (1,0)", Y_ = [, Y_], K = diag[Kn(yas1-a — Yo)Waits - - - Ka(Yo—a — ya) W], and Z
(Zasts -5 2)T, with o= (1,...,1)" and Y_ = (Yar1-a — Yas -+ - s Yn—a — Ya) T

4. MAIN RESULTS

Let .7-? be the g-algebra of events generated by {y,}° and a (k) the strong mixing coefficient of
{y:} which is defined by

a(k) = sup |P(ANB)— P (A)P(B).

! o0
AeF , BEF]

Throughout the paper, we assume
C1. {y};2, is stationary and strongly mixing with a mixing coefficient, a(k) = p#*, for some 3 > 0.
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C.1 is a standard mixing condition with a geometrically decreasing rate. However, the asymptotic
theory for the instrumental variable estimator is developed based on a milder condition on the mixing
coefficient - as was pointed out by Masry and Tjgstheim (1997), 22, k* {a(k)}' /" < o0, for some
v >2and 0 < a < (1-2/v). It is easy to verify that this condition holds under C.1. Some technical
conditions for regularity are stated.

C2. The additive component functions, m(-), and v,(-), for a = 1,... ,d, are continuous and twice
differentiable on their compact supports.

C.3 The link functions, G,, and G,, have bounded continuous second order derivatives over any
compact interval.

C4. The joint and marginal density functions, p(-), pa (+), and p,(:), fora =1,... ,d, are continuous,
twice differentiable with bounded (partial) derivatives, and bounded away from zero on the
compact support.

C5. The kernel functions, K (-)and L(-), are a real bounded nonnegative symmetric function on
compact support satisfying [ K (u)du = [L(u)du =1, fuK (u)du = [uL (u)du = 0. Also,
assume that the kernel functions are Lipschitz-continuous, |K(u) — K (v)| < Clu — v].

C6. (i) g — 0, ng? — oo, and (ii) h — 0, nh — oo. (iii) The bandwidth satisfies \/%a(t(n)) —
0,where {t(n)} be a sequence of positive integers, t(n) — oo such that t(n) = o(v/nh).

Conditions C.2 through C.5 are standard in kernel estimation. The continuity assumption in
C2 and C4, together with the compact support, implies that the functions are bounded. The
additional bandwidth condition in C.6(iii) is necessary to control the effects from the dependence
of mixing processes in showing the asymptotic normality of instrumental variable estimates.
The proof of consistency, however, does not require this condition for bandwidths. Define
D2f (z1,...,2q) = X, 0°f (z)) /02 and [VG,, (t),VG,({t)] = [dG, (t)/dt,dG, (t) /dt]. Let
(KxK);(u) = [ K(w)K (w+u)w'dw, a convolution of kernel functions, and p%, ; = [(K*K)o(u)u?du,
while ||K||3 denotes [ K?(u)du. The asymptotic properties of the feasible instrumental variable
estimates in (3.3.3) are summarized in the following theorem whose proof is in the Appendix. Let
k3(Yar 2a) = ElE}|zt = (Ya» 2a)], and k4(Ya, za) = E[(e? — 1) |z, = (Yas 2a)]- A ©® B denotes the
matrix Hadamard product.

Theorem 1. Assume that conditions C.1 through C.6 hold. Then,

Vih|Ba(Ya) — ¢alya) — Bal % N[0, % (ya)],

2

h
B.(ya) = EM%DQ%(%)

WD ule) + 1 D 00(20)] © [V ot 7)), TG0t 7))

2
g9° o / 2 Pal(Za) o

+ D*py(2,) — —=D ar 2a) | Ha(2a)d2qy,
2 :U’K [ p_( _) p(yaazg) p(y _)] _( _) o



* _ 2 pé(zﬂ) mi(zg) mg(zg)vg(zg)
Xn(ya) = ||K||2/p(ya,zg) [mg(zg)vg(zg) Ui(zg) dzq
o, [ Palza) VGm(m)?-v (VG - VGy) (ks - v3/?)
HI 100l | 5y l (VG VG 07 VGL) s 22 ] (e 22

REMARKS. 1. To estimate [ma(Ya),Va(Ya)]’, we can use the following recentered estimates,

Pa(Ya) — & where € =[G, &) = =[Sy, v E2)7 and & = y, — m (z). Since €= c+ O, (1/4/n), the
bias and variance of [M4(Ya), Ua(Ya)]? are the same as those of @, (y,). For y = (y1,...,ya), the
estimates for the conditional mean and volatility are defined by

[m(y), o(y)] = lFm[_ (d=1)Cn+ D Par(ya)l, Ful-(d=1)C+ ) @a2(ya)]] :

a=1 a=1

Let VF(y) = [VF.(m(y)), VE,(v(y))]*. Then, by Theorem 1 and the Delta method, their
asymptotic distribution satisfies

Vah [@(y) — m(y) — bu(y), 9(y) — v(y) — bu(y)]" 5 N [0,=*(y)],

where by (y), b,(y)]" = VF(y) ©3 6 Ba(ya), and X*(y) = [VF(y) VF () ][] (y1) +. . .+ 5 (ya)].
It is easy to see that @,(ya) and @s(yp) are asymptotically uncorrelated for any « and £, and the
asymptotic variance of their sum is also the sum of the variances of @, (y,) and @(ys).

2. The first term of the bias is of the standard form, depending only on the second derivatives as
in other local linear smoothing. The last term reflects the biases from using estimates for density
functions to construct the feasible instrumental variable, po(y, )/P(z:). When the instrument
consisting of known density functions, pa(y, _)/p (1), is used in (3.3.2), the asymptotic properties
of IV estimates are the same as those from Theorem 1 except that the new asymptotic bias now
includes only the first two terms of By, (y,)-

3. The convolution kernel (K %K) (-) is the legacy of double smoothing in the instrumental variable
estimation of ‘generalized’ additive models, since we smooth [Gp,(m (), G,(v (+))] with m (-) and
¥ (-) given by (multivariate) local linear fits. When G,,(-) is the identity, we can directly smooth y
instead of G,,,(m (x;)) to estimate the components of the conditional mean function. Then, as the
following theorem shows, the second term of the bias of B, does not arise, and the convolution kernel
in the variance is replaced by a usual kernel function.

Suppose that F,,(t) = F,(t) = ¢ in (1.1.2) and (1.1.3). The instrumental variable estimate of the
a-th component, [My(ya), Va(ya)], is now the solution to the adjusted-kernel least squares in (3.3.2)
with a modification that the (2x1) vector z; is replaced by [y;,£7]" with &; defined in step I of section
2.2. Theorem 2 shows the asymptotic normality of these instrumental variable estimates. The proof
is almost the same as that of Theorem 1 and is thus omitted.

Theorem 2. Under the same conditions as Theorem 1,

—~

i) Vnh[Ma(ya) — Ma(ya) — 0] 5 N[0, 07 (ya))],



where
h? g’ Pa(%a)
bm [e% = 5 2D2ma @ +_ 2 D2 o Ra _&DQ as Ra)|TNa\Ra dzon
Fe) = D ma(ve) + Gae [[D?Palea) = o0 B Dy, 20)ma(aa) e
p2(za)
o (Ya) = ||K 2 Lmi Za) + V(Yo 2a)|dza,
(o) = IKIB [ =2l (za) + (s 20)]dza
and ~ .
i1) Vnh[Va(Ya) — Va(Ya) — ba] = N[0, 05 (Ya)];
where
v h? 2 12 g 2 2 PalZa) o
ba(ya) = KMKD Va(Ya) + EUK /[D pg(zg) - mD p(yng)]vg(zg)dzga
Sam) = K13 [ L2202 ) 4 a0 s )l
e ) Pl ) ) T e 2R e 2l

Although the instrumental variable estimators achieve the one-dimensional optimal convergence
rate, there is room for improvement in terms of variance. For example, compared to the marginal
integration estimators of Linton and Héardle (1996) or Linton and Nielsen (1995), the asymptotic
variances of the instrumental variable estimates for m; (-) in Theorem 1 and 2 include an additional
factor of m3(-). This is because the instrumental variable approach treats n = my (Xy) +¢ in (2.2.1)
as if it were the error term of the regression equation for m;(-). Note that the asymptotic covariance
in Theorem 1 is the same as that in Yang, Hardle, and Nielsen (1999), where they only considered the
case with additive mean and multiplicative volatility functions. The issue of efficiency in estimating
an additive component was first addressed by Linton (1996) based on ‘oracle efficiency’ bounds of
infeasible estimators under the knowledge of other components. According to this, both instrumental
variable and marginal integration estimators are inefficient, but they can attain the efficiency bounds
through one simple additional step, following Linton (1996, 2000) and Kim, Linton, and Hengartner
(1999).

5. PREDICTION

Suppose that the time series {Y;},2, is a Markov process of order d. Given {Y;-}le, the best

(nonlinear) predictor of the future value, Y;,, for [ > 1is E [Y;4]Y;, ..., Yi_4s1]- In a linear model,
the [-step predictor is linear in the variables for any [ [although not in the parameters|, this structure
does not carry over to nonparametric models, since each [-step ahead conditional expectation, in
general, takes a different form of a function of lagged variables depending on [. In other words, the
nonlinear prediction surface of a given process varies with the number of steps ahead. This implies
that the estimated regression function in an autoregressive model, for example, is not able to give
information for prediction, except of the one-step ahead kind. Instead, we have to resmooth Y;,; on
the lagged variables at a given point of prediction.

The curse of dimensionality might again interfere with reliable prediction when the projection
subspace is of a multiple dimension. It is natural to retain additive restrictions for the purpose of
approximating the prediction function by a more estimable one. Compared to the prediction error
of O, (1) due to the disturbance term, such approximation error may not be so serious and is often
preferable on the grounds of the faster convergence rate. Thus, to predict Y;;, we will use an additive



approximation of E [Y;,|Y;, ..., Y;_q41], and the best nonlinear “additive” I-step ahead predictor of
Y., is defined by

d
Eap [Yeu|Yer - Yican] = a+ Y mh (Yii-a),

a=1

with an identification condition of E [mfl(Y}H,a)] =0, foralla=1,...,d,and l =1,2.... Now,
if we apply the instrumental variable method in section 3, the estimates of additive components are
given by

— -1 ~

Mlo(ya) =] (YTKY_) YTKZ,

where Y_ = [, Y_], K = diag[Kn(Yar1-a — Ya)Wast, - Kn(Yicgo1)—a — ya)Wi] , and Z =
Yasr, -, V)T, and Y. = (Va1 o — Ya - Yi—(—1)—a — Yo)T. The predicted value of Yy, is estimated
by

d ———
Yiq=—(d-1)g+ Z My (Yigi-a), (5.5.1)

a=1

where ¢ = 134 (L yiTh My, (Yis1_a)),with n; = ¢t — [ — (d — 1). The asymptotic properties of

ng
the predictor (5.5.1) are already shown in the theorems in the previous section. Although it is
a consistent estimate of F4p [Yi1|Y:, ..., Yi_ar1], some alternative way can reduce the prediction
error. Using the information contained in (Y4, 1,..., Y 4), Chen (1996) developed a multistage
smoother whose mean squared error is smaller than the direct predictor in (5.5.1). In what follows,
we integrate the method of multistage smoothers with the additivity-based prediction above. First,
observe that, by means of the property of a Markov process, we get, under additivity assumption,
EYiulYy - Y an) = EEVqYi 15 Y04 Y5 Y ai) Ve, Yiaqa]
= EEYulYii 155 Y a) Y- Yiay]

d
= F lcl + Z mfl(Y;tHfa) Y, ... aY;td+1] .

a=1

The inequality

d

var lcl + > my (Yep-o)|Ye, - - aYtd+1] <wvar [Yeu|Y, ..o, Yeaq1]
a=1

implies that it will be ideal to use the pairs [cl—i—zi:l mt,(Yiti-a) Yiy - - - ,Yk,dﬂ], k=

d,d + 1,...,n — [ + d, in estimating F (Y;|Y:, ... ,Yi—44+1), if we knew the true regression

function. Since the direct predictor is using {Y}Hl}z_:ld that equals the noisy representative

of {E(Yisi|Ys--.,Yieas1)}il, with an error of O, (1), we can still hope for improvement
in the efficiency of prediction through its consistent estimate, & + >%_, 7l (Ysii_o) Wwhich is
E (Yi41|Yk, - .. s Yi—a+1) plus an error of o, (1). Letting m(-) be the estimated regression surface

by instrumental variable method, our multistage smoother is defined as

d
Vi =—(d =1+ Y M (Yisi-a), (5.5.2)

a=1
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where Mt (Y;,1_,) has the same form as M (Yi11_a) except that Z = (Y4, ... ,Y;)T is now replaced
by [M(Yasio1, .- Y0), o i(Yic, ..., Yiea)], and & = 30, (£ 202 M3 (Vi)

6. EMPIRICAL EXAMPLES

A Monte Carlo simulation is carried out to investigate the finite sample properties of instrumental
variable estimates. The design in our experiment is Additive Nonlinear ARCH(2):

Ye = [0.2 4+ v1 (Y1) + v2(Ye—2)lers

vi(y) = 0.4[0.142¥;(=5y)]y?,
va(y) = 0.4[0.1 4 2@ x5 (=5y)]y?,

where Uy () and ®y(-) are the cdf of logistic distribution and standard normal, respectively, and &;
is i.i.d. with N(0,1). Fig.1(solid lines) depicts the asymmetric shape of the volatility component
functions defined by wv;(-) and we(-). For each realization of the ARCH process we apply the
instrumental variable procedure in (3.3.2) with Z;, = y? to estimate the volatility functions. The
sample size n = 500 and total number of repetitions is 1000. The quartic kernel is used for
both (3.3.2) and density estimates which constitute the instruments, W; ie., K(z) = L(z) =
(15/16)I(Jz| < 1)(1 — 2?). For the kernel weights of (3.3.2), we allow for different bandwidths
according to the rule of thumb (Hirdle, 1990), h = cpstd(y;)n"'/® by taking various bandwidth
constants, ¢y, where std(y;) is the standard deviation of y;. A similar rule determines the bandwidths
for marginal and joint density estimates but with a fixed bandwidth constant of 2.

***Table 1 here***

Table 1 compares the nonparametric instrumental variable to a parametric method based on
quadratic specification via the average and median of their MSE. For various bandwidth choices, the
mean squared error of the nonparametric estimator are much smaller than those of the parametric
approach. Noting that the median is far below the average due to a few worst cases, we also report
the mse of both estimates after removing 24 (2.4%) extreme values - see the last two columns. In
sum, our simulation shows that the new method performs well in finite sample cases, although we did
not, optimize the choice bandwidths. Fig. 1 gives the instrumental variable estimates (with ¢, = 4)
of volatility functions for four typical (consecutive) realizations of ARCH processes.

***Fig. 1 here***

We continue to illustrate our methodology in an empirical study for conditional heteroscedasticity
of stock returns. The data of our interest is the monthly return series (n = 744) of the S&P 500
index from the New York Stock Exchange during the period of 1926.01 - 1987.12. An AR-ARCH(2,2)
model is considered to characterize the stock returns, y;,

Yo = G+ 11 (Y1) + Mo (Yi2) + [co + 01 (91) + v (yi0)] 2 &1,

where ¢, is i.i.d. with mean zero and variance 62 = 1. This model is a special case of (1.1.1) -
(1.1.3) with F}, and F, being the identity. The instrumental variable procedure in Section 2.2. is
first applied to estimate the conditional mean and then the volatility function based on the squared

residuals. The quartic kernel is used with a bandwidth of & = 3std(y;)n~'/® for instrumental variable



estimators and g = 25td(yt)n_1/ (4+d) for the marginal and joint density estimates. Fig. 2 gives
the estimates for each component function of conditional mean and volatility with 95% pointwise
(asymptotic) confidence bands.

Rk Fig. 2 here **+*

As Fig. 2-1 shows, the confidence intervals of both m; (-) and my (-) include zero for most values
of lagged variables. This implies that the lagged effects on conditional mean are not significant,
partly supporting the efficient market hypothesis. However, the effect on the volatility does seem
to be significant-the negative values of volatility in Fig. 2-2 are due to recentering. It also strongly
suggests that the usual quadratic specification may lack empirical evidence. More importantly, Fig.
2-2 shows that the future risk is affected in a different way by lagged returns, reflecting the asymmetric
behavior of volatility with respect to the changes of past returns. Such asymmetry has been found
in other empirical studies on the “leverage effect” of stock returns, see Bollerslev, Engle, and Nelson
(1994).

APPENDIX A.

The proof of Theorem 1 consists of three steps. Without loss of generality we deal with the case o =
1; below we will use the subscript ‘2’, for expositional convenience, to denote the nuisance direction.
That is, p2(y,_,) = p(y,_,) in the case of density function. For component functions, ma(y, ,),

w(gk_l), and Hz(gk_l) will be used instead of ml(gk_l), Ul(ﬂk_1)’ and Hl(gk_l), respectively. We
start by decomposing the estimation errors, @1 (y1) — ¢1(¥1), into the main stochastic term and bias.

Use X, Y, to mean X,, =Y, {1+ 0, (1)} in the following. Let vec(X) denote the vectorization of
the elements of the matrix X along with columns.

Step I: Decompositions and Approximations

Since @1(y1) is a column vector, the vectorization of eq. (3.3.3) gives
P1(y) = [ ®e] (YTKYf)_l] (Iz ® YTK) vec (Z) )
A similar form is obtained for the true function, ¢ (y1),
[L®el (YTKY_)_I] (Iz ® YTK) vec (chlT(yl) + Y_chlT(yl)) :
by the identity,

p1(3) = vee(e! (YTKY_) " Y™K (v1) + Y-Vl (y2)]},

since
e (YIKY.) 'YTKi=1, ef (YTKY.) 'YTKY_ =0.

By defining D), = diag (1,h) and @, = D, "YTKY_D, ", the estimation errors are
Pilyr) = or(y) = [ ® €] Q'

where ~
7o = (I ® Dy "YTK) vec[Z — 19} (y1)~ Y-V (y1)).
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Observing
_ 1 Kﬁ\/k = Ye—1 — Y11
Tn = n Z n o We—1 — Y1) [Ze — 1(y1) — (o1 — y1) Ve (y1)] @ (1, —hn )
k=d+1

where K}?’“ (y) = K (y) Wy, it follows by adding and subtracting z = @1 (yp_1) + Hy(y, ) that

!

1 ~ N o
T o= — 3 K (Yro1 — y1) [3r — 2 + Ho (gk_l)] ® (1, M)T
" g=dr1 A
Ye-1—Y
—|- E K We1— 1) (o1 We1) —o1(y1) = (o1 — y1) Vor ()] @ (1, %)T
L]

Due to the boundedness condition in C.2, the Taylor expansion applied to [Gp, (M (x1)), Gu(V (zx))]
at [m (zx), v (zg)] yields the first term of 7,, as

Fu= 2 K e — ) [ ® (1, F )T,

where @y, = Z, + 2} + Ha(y, ),
Ze = AVGu (m(zi)) [ (2x) = m (z1)], VG (v (24)) [V (2x) — v (20)]}
7z = %{DQGm (m* (zx)) [ (2x) — m (xx)]?, D*Gy (v () [0 () — v ()]},

and m* (xy) [v* (zx)] is between m (z) [V (x)] and m (zx)[v(zy), respectively]. In a similar way, the
Taylor expansion of o1 (yx_1) at y; gives the second term of 7, as

!’

LY ID%n (1) @ (1, 2L TI(1 + 0, (1).

T, continues to be simplified by some further approximations. Define the marginal expectation of
estimated density functions, ps(-) and p(-) as follows

I_j(yk—lag,kQ) = /L 21— Yp—1)Lg(22 —gk72)p(z1,22)d21d22,
pQ(gk_Q) = /L yk: 2 pZ(ZQ)dZZ

In the first approximation, we replace the estimated instrument, W, by the ratio of the expectations of
the kernel density estimates, py(y, ,)/P(2x), and deal with the linear terms in the Taylor expansions.

That is, 7,, is approximated with an error of o, (1 /V nh) by tin + ton:

1 i pZ(yk_l) ~1 Yk—1 — Y11

t n = K Ye—1—W) — I b la 3

1 n k§|_1 h( k-1 1) p(fﬂk) k ( h ) ]
1 "’ ]_)Q(yk—l) Ye1— Y1

lon = — K (yr-1 — 1) —— - [Ha(y,_,) ® (1, ),
n S (xk) Zk—1 h



based on the following results:
. n p2(y i
(Z)% Ek:d+1 Ky (yk—l y1) ﬁ(k—l[vz (1, yklihyl)T] = 0p (ﬁ) ,
.. o pz(g ) Pa(y,_,) -
(1) & Tk Kn (k1 — 1) [255 — 25(;0 [[Ha(y, ) ® (1, 2=28)T] = o, (\/%) ’

p(zk)
U 0, ) By, e -
(i68) LS ir K (o — ) [Poti) Py (g gyt — (&)

To show (i), consider the first two elements of the term, for example, which are bounded
elementwise by

sgp i (x) — m (z1)] ¥

P2(yk 1)

2 Ye—1 — Y17
S DG O ) (1,2

11
——EK
2”k h(ylcl yl) A

= 0, (1/\/%)

The last equality is direct from the uniform convergence theorems in Masry (1992) that
sup m (z:) —m (x)] = O, (logn/\/ nhd) ) (AA)

and =3, Ky (yx—1 — 41) Y — 2L DGy (m () (1, 25)T = O, (1). The proof for (i) is given in

plak)
Lemma A.1. The negligibility of (ii) follows in a similar way from (4i), considering (). While
the asymptotic properties of sq, and ty, are relatively easy to derive, additional approximation
is necessary to make t;, more tractable. Note that the estimation errors of local linear fits,
m (zx) — m (z) of Z;, are decomposed into

_ZKh xl ) 1/2

@) v/*(z;) e, + the remaining bias

from the approximation results for local linear smoother in Jones, Davies and Park(1994).
A similar expression holds for volatility estimates, U (xy) — v (zg), with a stochastic term of

1 Ly Kh#)wk)“ (7)) (62 — 1). Define

Jk,n (xz)

1 K (ys—1 — 11 /h) K (21 — x1/h) pQ(yk 1)
D3 p(@) p(es)

and let J (z;) denote the marginal expectation of Jen W.r.t. zz. Then, the stochastic term of ¢y,
after rearranging its the double sums, is approximated by

ZJ z) [0 () e, v () (6] — 1))T @ I,

(diag(VGim, VG) @ (1, 20T,

since the approximation errors from J (X;) is negligible, i.e.,

S i = D (X 210 (X) (&~ 1)) @ BT = 0, (1/Vh),
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applying the same method as in Lemma A.1. A straightforward calculation gives

J (X))

12

%/K (uy — y1/h) K (ug — yi_1/h) / %K (y,_, - u/h) 2
[diag(V G (u), VGy(u) ® (1, %)T]dmdu1

pa(y, )
—0 X
p(zr)
. u
[dlag(VGm(ula Xl—l)’ VGV(lh, Xl_l)) ® (1’

12

%/K (w1 = y1/h) K (u1 — yi—1/h)

h Y1 )T]du1

pz(yl 1)

p(z)
@((K + K), (P2 (K « K), (U2

12

[d g(VG (ylazl_l)’VGV(YI:XI_l))

where
(K * K), (yl 1—y1> /w1 (w1) <w1+y . yl)dw.

Observe that (K * K), (u) in J(X;) is actually a convolution kernel and behaves just like a

one dimensional kernel function of y;_;. This means that the standard method (CLT, or LLN) for
univariate kernel estimates can be applied to show the asymptotics of

1 m(gl_l){ VGrm(y1,y, )0 (X)) & ]@[(K*K)O E%g ”

S ZL: p(w1) VGy(y1,y, ) (Xi) (€ — 1)) (K« K), (=5

If we define 3y, as the remaining bias term of ¢, the estimation errors of @;(y1) — ¢1(y1), consist of
two stochastic terms, [I, ® el Q'] (tln + t2n) and three bias terms, [I, ® el Q'] (Son + S1n + S2n) 5
where

~ 1 X pa(y,_,) Y1 — 1.

ton = — Ky (Y1 — 1) — - [Ho(y, ) © (L, ——=)7],
k%l p(Xk) Skl h

Son = th_th-

Step II: Computation of Variance and Bias

We strat with showing the order of the main stochastic term,

~ ~ 1
Uy = tin +ton = _Zé-ka
"%



where & = &y + S,

ik = _pQ(gk—l) — VGm(ylagk—l)vlﬂ (X;k) o ® % (K + K), (M{yl)
PWe—1,Y,_,) | | VGolyr,y,_)v (Xi) (€5 — 1)) 0

pa(y, ;) [ my (gkfl)

b = 2] K ()
PWr-1,9, 1) || v2 (Ek_l) LK (ykf’lz—yl) (ylflh—yl) :

by calculating its asymptotic variance. Dividing a normalized variance of ¢} into the sums of variances
and covariances gives

var (\/IEE;) = var <% ;&) = %zk:var (&) + gk + IZ Zcov (&, &)

b2

poar (8) + 5 |25 feov (e o),

where the last equality comes from the stationarity assumption.
We claim that

(a) hvar (&) — Z1(y1),
(b) Xk [1 - %] heov (€4, §asx) = o(1), and
(c) nhvar (f;‘l) — 21(y1),

where

D ( ) _ { p%(22) VGm(yl,Z2)2U(y1,22) (VGm : VGU)(K3'U3/2)(91,22) dz
I blyr,20) | (VG- VG) (55 - v2) (51, 22) VG, 22)2kalys, )02 (s, 22) |2
(K * K)ol[3 0
© 0 0 ]}
p5(22) T |K|[5 0
p(yl,zg)HQ (z0) Hy (22) dzo ® 0 [K?(u)uldu ]

PROOF OF (a) Noting FE (flk) =F (fzk) = 04><1 and F (flkfg;g) = 04><4,

hvar (&) = hE (511(55{) +hE (521(55() ;

by the stationarity assumption. Applying the integration with substitution of variable and Taylor
expansion, the expectation term is

pgm)[ VG (y1, 22) %0 (11, 22) (VG - VGy) (k3 - v32) (1, 22)

hE (€xsly) = { dz

p(y1, Z2) (VGm : VGU)(/‘Cs : U3/2) (yl, 22) VGv(yla 22)2/<a4(y1, z2)v2(yla 22)

[|(K * K)oll3 0
®l 0 0 b
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and
|1 K[ 0
0 [K?%(u)u’ldu

®

b () = [ L R el o)

p(y1,2) | ma (22) v2 (22) dzo v3 (22) dzs

where k3(y1, 22) = Eled|z, = (y1, 22)] and k4(y1, 22) = E[(e2 — 1)° |z, = (11, 22)].

PROOF OF (b). Since E (&kflTj) ljzk =FE (flkﬁgTj) lizk = 0, cov (€1, Ear14x) = cov (E2a41, E2dt14k)-
By setting c(n)h — 0, as n — 0o, we separate the covariance terms into two parts:

o(n) k o k
) [1 - ﬁ] heov (§aat1, Eodrik) + D [1 - H] heov (§2a+41, §2d114k) -
+1

k=1 k=c(n)

To show the negligibility of the first part of covariances, consider that the dominated convergence
theorem used after Taylor expansion and the integration with substitution of variables gives

10
00|

Therefore, it follows from the assumption on the boundedness condition in C.2 that

‘COV (52d+1, 52d+1+k)\

PYLY YY)
‘/ ’ (_d) ? (_d+k) p1|2(y1|yd)]71\2(y1|gd+k) (—d —d+’“)‘

(y17 de Y1, gd—kk)
vly Ipz(vly,,,)

cov (&aa+1, Laat14k)| < E‘HQ (Qd)‘E‘Hg (gd“ﬂ)‘/mi e

10
0 0
= A"

where ‘A < B’ mean a;; < b;;, for all element of matrices A and B. By the construction of ¢(n),

¢(n) k
> [1 — E] heov (§2a+1, E2d414k)

k=1
< 2¢(n) |heov (€2q41, E2qr14x)| < 2¢(n)h AT — 0, as n — oo.

(Y Ygpn

Next, we turn to the negligibility of the second part of the covariances,

nl

Z [1 - %1 heov (€adt1, adt14k) -

k=c(n)+1

Let &, be i-the element of &y, for i = 1,...,4. Using Davydov’s lemma (in Hall and Heyde 1980,
Theorem A.5), we obtain

1)):| 2/v
for some v > 2. The boundedness of E(vh |£3,]"), for example, is evident from the direct calculation

that
= 20 { [ ma (1) P (22) ] }
K (yk—;;yl) (yk—{yl)

plex) || v (u,)

max E (\/ﬁ

i=1,...,4

Eok

‘hcov (gdﬂ’%dﬂﬂ)‘ - ‘COV (\/Hgdﬂ’ \/Hg";d+1+k)‘ <8 [a(k)li/v] {

®

==
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v hv/2 (2
) Pi(Z2) e () dzy

hv—l p”_l(y1,Z2)

hv/? 1
ho—1 )= O(hv/Q—l )-

E ([Vhe,

= Of

Thus, the covariance is bounded by

1 2/v B
|hcov (Eaa41, E2at14x)| < C [W] [a(k)l z/v] .
This implies

!

" k
> [1 - —] heov (&2d41, §2a41+4x)
+1 n

k=c(n)
[e.e] 1 fe's) o
< 2 ) |heov (bt Sarii) | < C7 [W] > [a(l-c)1 2/]
k=c(n)+1 k=c(n)+1
[e’s) 1 s 0o . o
D Y | O RS B S ACR
k=c(n)+1 k=c(n)+1
if @ is such that
1

k> (c(n) +1)" 2 e(n)" = +=7,

for example,
c(n)*h "2 =1,

which implies

c(n) = o0
If we further restrict a such that
O<a<1—-—
v
then,
¢(n)?h*=?/* = 1 implies
c(n)*h' 2" = [e(n)h]* " c(n)® =1, foré > 0.
Thus,

c(n)h =0
as required. Therefore,

nl

k > /v
[1 — g] heov (oq41, Eoarirk) <C° > K [Oé(k)l 2/ ] — 0,
)+1

k=c(n k=c(n)+1

as n goes to oo.
The proof of (c) is immediate from (a) and (b).



19

Next, we consider the asymptotic bias. Using the standard result on kernel weighted sum of
stationary series, we first get,
2

son 2 (D1 (11) @ (1, 0)7),

since

I

L K e 1—y1><%> (D% () ® (1, 22— Y1)
— # [ K (o= ) B D%0() © (1, 22T () dz

[ Bn (e =y pa (z2) (2D () @ (1,22 Nz

_ /Kh (21 — 1) (2 - LD, () ® (1, 2 - YTz

= D) ® [ Kn =) (2 A Tda)
= [D*¢i(n1) ® (k. 0)]-

For the asymptotic bias of §i,, we again use the approximation results in Jones, Davies and
Park(1994). Then, the first component of $y,,, for example, is

12

_y12
1
h )(7

pa2(y,_ I)VG (m (@ k)){llZKh x — Z Vo — Vo) 8m(xk)},

1
— > Ky (Ys—1 — 1)
n ; p(.Tk;) 2 n p a=1 8yl%—a

and converges to

h2
5 [ P22 VGmm(un, 22)) e D (1) + i DPma(22)] s,

based on the argument for convolution kernel in the above. A convolution of symmetric
kernels is symmetric, so that [(Kx*K),(u)udu = 0, and [(K=x*K), (v)u*du =
[ JwK (w) K (w+ u) u?dwdu = 0. This implies that

i B [ Do IV G, 22)), VG0, 27 © e D1 (1) + 1 D)1} @ (1,007

Pay,_,) .

To calculate S5, we use the Taylor series expansion of

P(X)
l_ . ) — pz(gkl)ﬁ(Xk)] 1
D2\Y, 4 p(Xk) ]_7(Xk)
_ p2(y, )P(Xk)] 1 p(X%) — p(Xp)
[pQ(gk_l) R ]p(Xk) y [1 R e 0
_ pQ(Qk_l) _ pQ(Qk_l)p(Xk) +o, 1),

p(Xk) p* (X)



Thus,

12
\
&
—~
N

=
|
<
—
~—
—
3
\]

12
<
—
2
N

(22) Ha(22)d22 ® (1%, 0)"]

g’ p2(22) o 2 0¥
_5[/ , (yh z2)D p(yl, ZQ)HQ(ZQ)dZ2 ® (NK’ 0) ]

Finally, for the probability limit of [I, ® ef'Q;!], we note that @, = D;'YTKY_D;' =
[@niss 2(y1 )5 g0 With Gui = 2 50, KNV (Vi1 — g1) (2=52), for i = 0,1,2, and

~ 21— : i
Gni 2 /Kh (21 - ?/1) ( L A yl) D2 (22) dz = /K (Ul) Uldul /pz (22) dzy
= /K (Ul) Uidm = Qi
where go =1, ¢; = 0 and ¢ = p%.

Opi |° " Hx

Th n —
us, l 01

p 0
K|, and eI Q, ' — €T. Therefore,

Bi(y1) = [L®el @y (Son+ Sin + Son)
h2
= 3M%D2901(y1)

%/[#?(*KDQSQ(ZUI) + M%{D2€02(Z2)] O [VGr(m(y1, 22)), VGy (v (¥, 22))]Tp2(22)dZ2

. 2
9_2/D Hy(zn)dza — L [ 22072
+ 5 Hi P2 (22) Ha(22)d2s g MK P (Y1, 22)

+0, (hz) + 0, (92) .

D2p(y1, Zz)H2(22)dZ2

Step IIT: Asymptotic Normality of ¢



Applying the Cramer-Wold device, it is sufficient to show
1 D
Dp= =Y Vhé& = N (0,87,8),
Vi 5 (0.57%7)
for all 8 € R%, where Ek = BT¢,. We use the small block-large block argument-see Masry and

Tjgstheim (1997). Partition the set {d,d+1,...,n} into 2k + 1 subsets with large blocks of size
r = r, and small blocks of size s = s,, where

ol e
Tn + Sp

and [z] denotes the integer part of z. Define

j(r+s)+r—1 _ (G+1)(r+s)—1 B
o= Y VhE, wi= Y VhE, 0<ji<k-1,
t=j(r+s) t=j(r+s)+r
n
Sk = Z \/Eé-t,
t=k(r+s)

then,
1 k—1 k—1 1
D, = — n+> wit+g|=—(S +5"+5").
n \/ﬁ Jgo J J;O J \/ﬁ
Due to C.6., there exist a sequence a, — oo such that

QpSp = O (\/ nh) and a,\/n/ha(s,) — 0, as n — oo, (A.A2)

and define the large block size as

- lvnh] _ (A.A.3)
Qn
It is easy to show by (A.A.2) and (A.A.3) that as n — oo :
In o, %" 50, 2 0, (A.A.4)

n T'n Vnh

and

n
— n) — 0.
a(s)

We first show that S, and S]’ are asymptotically negligible. The same argument used in Step II
yields
_ s—1 k . -
var (wj)) = s X var (\/ﬂﬁt) +2s ) (1 — g> cov (\/}_15(1+1, \/H§d+1+k) (A.AB)
k=1,

= s S8 (1+0(1)),
which implies

gvar (wj) = O (ks) ~



from the condition (A.A.4). Next, consider

k—1 s
> cov (wi, wy) Z > Z cov (\/_SN 115 Vhéy, +k2),

i,j=0, 1,j=0,k1=1ko=1
i#] i#]

where N; = j(r+s) +r. Since |N; — N; + ki — ka| > r, for i # j, the covariance term is bounded by

2% i ‘cov (\/Hgkla\/ﬂgkz)

k1=1 ko=k1+r

< 2n i ‘COV (\/Bgd—l—la \/H§d+1+j)‘ =o(n)

j=r+1

The last equality also follows from Step II. Hence, ZE {(S}})?} — 0, as n — co. Repeating a similar
argument for S)', we get

%E {(Sx/)Z} < % [TL —k (r + S)] var (\/}_lgd-H)

n—k(r+s)
n—Fk(r+s ~ -
+2# > cov (\/H§d+1; \/H§d+1+j)
j=1

Tn + Sp

< S8 B+ 0(1)

— 0, as n — o0.

Now, it remains to show ﬁSZ = % Zif 0 17] ( ﬁTzlﬁ)
~ T+S8)+r—
Since 7; is a function of {ft, }t M which is F/ giff))Ioz CFO -measurable, the Volkonskii and

=j(r+s

Rozanov’s lemma in the appendix of Masry and Tmsthelm(1997) implies that, with 5, = s, —d + 1,

1 k—1 k—1
Elexp(i Z ;)] = I1 E (exp (itny)) |
j=0
< 6kaGu—d+1) = " aG) =~ La(E)~o(l)
< n _Tn+8na Sn _Tnoz Sp) ~o(l),

where the last two equalities follows from hold (A.A.4). Thus, the summands {n;} in S are
asymptotically independent. Since the similar operation to (A.A.5) yields

var (1) = 1. 518 (1 +0(1)),
and hence

1 = 11 n

var(—S!) = ~SB(n) = T ETSB(1+0 (1) = BT
\/_ ,] =0 n

Finally, due to the boundedness of density and kernel functions, the Lindeberg-Feller condition for

the asymptotic normality of S], holds,
k-1

%ZE [nf-l{\njl > WW}] =0,

=0



for every 6 > 0. This completes the proof of Step III.

From eTQ. ' 5 €T, the Slutzky Theorem implies vVnh[l, ® ef'Q, '] 2 N(0,%%), where

= [I, ® €711 1 ® e1]. In sum, Vnh(@1(y1) — @1(y1) — Ba) % N (0,53).

Y1)
pi(=) (K * K)ol[3 VG (Y1, 22)*0(y1, 22) (VG - VGy) (k5 - v3?) (41, 22) d
0”2 . . ..3/2 ; ) .,
(VG - VGy) (k3 - v3%)(y1,22)  VGy(y1, 22)*ka(y1, 22)0° (y1, 22)
2
pa(z
p(;fii)\lff 15Hz (22) Hy (2) dz.

Lemma A.1 Assume the conditions in C.1, C.4. through C.6. For a bounded function, F (), it
holds that

@ = 3 K s = 1) Gl )~ ol )F (00 = 0y 1),
0 = IS Kt — ) () — (o)) F ) = 0y (1)

PROOF. The proof of (b) is almost the same as (a). So, we only show (a). By adding and
subtracting Ly (yi—2|yk—2), the conditional expectation of L, @172 — Qka) given y, , in r1,, we get
Tin = gln + €2n7 where

§in = ni ’éé yk 1 yl) F( ) [Lg (glfz - gk72) o Zl‘k (yl_2|yk_2)]
Son = ni SN Ky (yk-1— v1) F (k) [Lug, (vi—2|yp—2) — P2 (Y, _,)]

Rewrite &, as

- Z Z Kn (yk—1 — y1) F (zx) [Zk+s|k (Yr+s—2|Yk—2) — ﬁa(gk,Q)]

2
"% s<k*(n)

1 - _
+5>0 Y Kn(uk 1 —v1) F (k) [Lrssie Ukrs 2l 2) — Doy, )],
k s>k*(n)

where £* (n) is increasing to infinity as n — oo. Let

B = E{K}, (Yyk—1 — 11) F (xx) [ZHS\/C (Ykts—2|Yk—2) — ?Q(Qk—z)]}a



which exists due to the boundedness of F'(zx). Then, for a large n, the first part of &, is
asymptotically equivalent to %k* (n) B. The second part of &, is bounded by

1 n
>S]1€ll() | \Pketslk(Yr+s—2|Yk—2) — P (Yk—2) |ﬁ > K (yr—1 — 1) | F (z) |
s>k*(n k

< Pk(n)op(l)-

Therefore, Vnh&y, < Op(Y2k* (n)) + O, (p7 ¥ ™V/nh) = 0,(1), for k (n) = logn, for example.
It remains to show &1, = 0, ( 1 ) Since E (&1,) = 0 from the law of iteration, we just compute

B(g) - %éZZZE{Kh Yeor — ) K (s — ) F ()

i#£]
F(x) [Lg (QH B gkﬂ) B Zl"“(gkﬂ)] [Lh (ijz - QH) Ljjily, 2)]}
(1) Consider the case k =i and [ # j.
XH:Z::ZE{Kﬁ (Yh—1 — y) F* (zx)
(2

Qk—z) - Zl\k(ﬂk—Q)] [LH (ﬂj—z - ﬂk—z) - Zj\k(gk—2)]}

[

’

since, by the law of iteration and the definition of Ljy(y, ,)
B, [Lg (gj_2 - gk;_Q) - fj\k(gk_2)]
= Epk [L ( — Y 2) Zﬂk(gk,g)] = By [Lg <gj72 - gk72)i| - Zj|k(gk,2) =0

(2) Consider the case | = j and k # 1.
1 n n n
22> E{Kh (ye—1 — y) K (yi-1 — ) F (i) F(2:) %
I

nt ki
[Lg @1—2 - Qk—z) - Z“’C(gk—z)] [Lg (Ql—z - Qi—2) - Zl\i(ﬁi—Q)]}

We only calculate

S S K (s — ) Ko (s — ) Ty (0~ 0, o) Lo (v — 3,,) Pl @)}
k£ ! (A.A.6)

since the rest of the triple sum consist of expectations of standard kernel estimates and are O (1/n).
Note that

By )Ly (ﬂl_z - Qk—2> Ly (%—2 - gi—2)
~ (L% L)g (gk_z - gi_z) D) (gk_g‘gk_Q’gi—Q) )



where (L L), (-) = (1/g) f L (u) L (u+ -/g) is a convolution kernel. Thus, (A.A.6) is

v ZiiE[Kh (Yk—1 —y) Kn (i1 —y) (L *x L), (ykf2 — gifz) X
k#i l

1
- oft)
n
(3) Consider the case with i =k, j =m

= Z#: ZE{K Ye 1 — ) F2(x) [Lg (Yi—2 — Yr—2) — Zz\k(yk_z)r

= 0 () = )

(4) Consider the case k # i, | # j.
n4ZZZZE{Kh Ye-1 = Y) Kn (yio1 — y) F' (z1) F ()
k#£l 1#£]

[Lg (%—2 - Qk—2) - Z”k(gk—Q)] [Lg (ﬂj_z - Qz‘—Q) LJIZ( Y;_ 2)]}
= 0,

for the same reason as in (1).

F(xk)F(xi)pu(k,i) (gk_g\gk_ygi_z)
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TABLE 1: MSE FROM NONPARAMETRIC IV ESTIMATION

Ave. MSE Med. MSE Ave. MSETE
Ch (1 Vg (1 Vg U1 )
0.5 1.0672 .0598 | .0196 0171 |.0497 .0524
.0343 .0322 |.0122 0116 | .0268 .0272
.0189 .0190 | .0085 0078 | .0156 .0163
.0146 .0165 | .0069 0071 |.0121 .0142
.0139 .0181 |.0069 0075 |.0110 .0158
.0166 .0233 | .0083 0091 | .0123 .0203
.0236 .0319 |.0103 0119 |.0161 .0272
.0348 .0439 | .0131 0147 |.0227 .0360
QF | .0524 .0687 |.0426 0507 |.0509 .0666

*Note: ¢y, is a bandwidth constant in h = ¢, xstnd.dev.(y;) xn~'/5. Ave. MSE and Med. MSE denote
the average and median of the mean squarred errors, respectively. Ave. MSE'® in the last two columns
means the average of MSE after removing 24 (less than 2.5%) worst extremes out of 1000. QF means the
case with parametric quadratic fits.
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