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Abstract. This paper describes a financial market modelling
framework that exploits the notion of a deflator . The denomina-
tions of the deflator measured in units of primary assets form a
minimal set of basic financial quantities that completely specify
the overall market dynamics, where deflated asset prices appear
as martingales. A specific form for the risk premia is obtained
as a natural consequence of the approach. Contingent claim
prices are computed under the real world measure both in the
case of complete and incomplete markets avoiding the use of an
equivalent risk neutral measure transformation.
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1 Introduction

There exists a rich literature on asset price modelling and no-arbitrage pricing.
For a recent account, see, for instance, Karatzas & Shreve (1998). The standard
Black-Scholes model, see Black & Scholes (1973), has several deficiencies, for
instance, it does not model stochastic volatility or stochastic interest rates. An
improved financial market model should certainly be arbitrage free but in addition
should correct for some of the deficiencies in the Black-Scholes model. It should
preferably involve only a minimal set of factors that are able to reflect major
stylised empirical facts and permit the efficient calibration and computation of
key financial quantities. Furthermore, it should exploit natural symmetries in the
exchange prices of assets.

This paper establishes a financial market modelling framework that can be con-
veniently used to construct models that fulfill the above requirements. It relies on
the characterisation of a market deflator in the denominations of primary assets.
A deflator used as numeraire makes deflated primary assets to local martingales.
As a consequence the form of the risk premia for primary asset prices is obtained.
The paper also shows that one cannot freely choose the appreciation rates of asset
prices under the real world measure. It derives in a simple manner in the deflated
world the well-known results on local-risk minimisation in incomplete markets,
as described in Féllmer & Sondermann (1986), Féllmer & Schweizer (1991) and
Hofmann, Platen & Schweizer (1992).

Essentially, the paper suggests the modelling of a financial market by specifica-
tion of the denominations of the deflator in units of primary assets. This avoids
the use of an equivalent risk neutral measure and establishes a symmetry for the
structure of all deflated savings accounts of primary assets. The exchange prices
for primary assets are then formed by ratios of the corresponding denominations
of the deflator. This approach is in line with the view expressed by Biihlmann,
Delbaen, Embrechts & Shiryaev (1998) who in a discrete time setting underline
the importance of the deflator in financial modelling. We refer also to Duffie
(1996) for the use of a deflator in a continuous time setting. Assuming positive
nominal interest rates, Rogers (1997) proposed a potential approach to the mod-
elling of the term structure of interest rates and exchange rates that models the
state price density which is equivalent to the inverse of the deflator.

For pricing and hedging of contingent claims in an incomplete market our ap-
proach will lead us to the minimisation of the quadratic variation and thus the
risk intensity of the corresponding profit and loss process. Finally, we will show
that uniqueness of contingent claim prices in a Markovian multi-factor model
requires deflated asset prices to be martingales and not only local martingales.

The paper introduces in Section 2 primary assets and the deflator. Section 3
suggests a multi-factor model for which in Section 4 examples are given and in
Section 5 contingent claim prices are derived. Section 6 specifies complete and



incomplete financial market models as sets of contingent claims in a multi-factor
model.

2 Deflator and Risk Premia

To obtain a useful financial market model it is important to formulate a small
set, of essential working principles. This guarantees the model to be in itself
consistent, see Platen (1999a). In the following we will construct a financial
market model on the basis of three such assumptions which we will introduce in
this section.

Let us consider primary assets that are assets which are income or loss producing
such as shares with dividend payments or currencies with interest payments. The
first assumption is verbally expressed as follows.

(i) In a financial market model each primary asset has its own time value.

This means, the time value of the domestic currency shall be expressed via the
corresponding savings account process B® = {B°(t), t € [0,T]}, where

dB°(t) = B°(t) f°(t) dt (2.1)

for t € [0,T], T € (0,00), with initial value B°(0) = 1. The savings account
accrues continuously the interest f° which specifies the income rate from hold-
ing the domestic currency. Similarly, the time value of the jth primary asset,
j € {0,...,d}, which can be, for instance, a share or a currency, is analogously
characterised by the jth savings account process B = {B’(t), t € [0,T]}, where

dB(t) = BI(t) fi(t) dt (2.2)

for t € [0,T], with B7(0) = 1. Here f7 is the jth income rate which can be, for
instance, a dividend rate or domestic or foreign interest rate. In the case of shares,
B’ is a share savings account with all dividends reinvested. The jth savings
account measures accumulated income or loss generated by the jth asset in units
of the jth asset, j € {0,...,d}. Note, the above savings accounts are modelled
as bounded variation processes since accumulated income does not fluctuate as
strongly as a market index, exchange rate or asset price.

We model uncertainty in our financial market by an m-dimensional standard
Wiener process W = {W(t) = (W(t),...,W™(t))", t € [0,T]}, m > d, defined
on a filtered probability space (€2, Ar, A, P). Here the filtration A = (A)sefo,m
is assumed to be right-continuous and complete, fulfilling the usual conditions,
where Ay is the trivial o-algebra, see Karatzas & Shreve (1988). As usual, the
increments W (¢t + h) — W (t) are assumed to be independent of A; for ¢ € [0,T]
and h > 0.



To formulate the following second assumption we note that a deflator is a strictly
positive A-adapted stochastic process that when used as numeraire makes the
resulting deflated price processes to (A, P)-local martingales.

(ii) In a financial market model there exists a deflator.

In a standard risk neutral setting it has been shown that the deflator is the
optimal growth portfolio, see Karatzas & Shreve (1998). The deflator is thus a
specific index. In this sense deflating of primary asset prices can be interpreted
as index benchmarking which is a fundamental concept in portfolio optimisation.
For j € {0,...,d} let us denote by D/ = {D(t), t € [0, T]} the jth denomination
of the defiator, which is the number of units of the jth asset that must be paid
for the deflator.

The i, jth exchange price X% (t) at time ¢, that is the price for one unit of the
jth primary asset expressed in units of the ith primary asset, is obviously given
by the ratio _

iy — D)

XY(t) = 5; 0 (2.3)
for t € [0,7] and 4,5 € {0,...,d}. Thus an exchange price is the ratio of two
corresponding denominations of the deflator. Obviously, X%/ (¢) is the price at
time ¢ for one unit of the jth asset when measured in units of the domestic
currency. If the jth asset is another currency, then X%7(¢) is the corresponding
exchange rate. X%/ (¢) could also denote, for instance, a dividend adjusted share
price or a commodity spot price at time .

By assumption (ii), the jth deflated savings account process Si = {Sj(t), t €
[0,T]} with

y Bi(t

sy = 20

Di(t)

for ¢ € [0,7] and j € {0,...,d} must form an (A, P)-local martingale. To be
more specific we assume that S7 follows the stochastic differential equation (SDE)

(2.4)

d
dSi(t) = S(t) Y ok (t) dWH(2) (2.5)
k=1
for t € [0,T] with initial value
Ny 1
‘7 =
S7(0) Di(0) > 0, (2.6)

j € {0,...,d}. Here the j, kth volatility process o’* = {o%*(t),t € [0,T]} is
assumed to be predictable, see Protter (1990), with

/0 (S7(s) 07*(5))? ds < o0 (2.7)
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a.s. for j € {0,...,d} and k € {1,...,d}. Furthermore, we assume that the jth
income rate f7 is a predictable process with

/0 F9(s)] ds < oo, 28)

a.s. for j € {0,...,d}. Note, the deflated savings account market has a symmetric
structure. This fundamental observation has important consequences as we will
see below.

From (2.4), (2.2) and (2.5) it follows by the It6 formula, see Protter (1990), that
the jth denomination of the deflator satisfies the SDE

dD’(t) = Di(t [( -I—ZJJ’ )dt—ZoJ’ dwk] (2.9)

for t € [0,T] and j € {0,...,d}. Note, D? is fully characterised by the corre-
sponding income rate and volatilities. By application of the It6 formula to (2.3)
and (2.9) we can now derive for the i, jth exchange price the SDE

dxX™(t) = X“(t)[(f"(t)—fj(t)) dt

+ ) (07K () — o (1) {—o" ()dt—i—dW’“(t)}] (2.10)

for ¢ € [0, T] with initial value X%/ (0) = Df ) and i,j € {0,...,d}.

For investment purposes savings accounts of primary assets are important. The
Jth savings account price S¥I(t) at time ¢ when measured in units of the ith asset
is given by the product

SHI(t) = XM (t) Bi(t) (2.11)

and it follows by the Ité formula according to (2.10) and (2.2) that

dSHi(t) = S (¢ dt—i—z (o7 (t) — o™* (1)) {—0™*(¢) dt + dW*(2)}
(2.12)
for t € [0,7T] with S%/(0) = gj(g and i,j € {0,...,d}. Note, the symmetry of

the market, when expressed in deﬂated savings accounts leads to the specific
structure of the exchange prices in (2.10) and the savings account prices in(2.12).

There has been a long standing debate between theorists and practitioners how
risk premia for asset prices should be modelled. This is referred to as the so-
called risk premium puzzle. In our framework we can directly read off from the
SDE (2.12) the 4, jth risk premium

S¥

PP () =) [(6™(1)* — o™ (1) o™ (1)] (2.13)



for t € [0,T] and 4,5 € {1,...,d}. For i = 0 this is the risk premium for the
denomination of the jth savings account in domestic currency. In Rogers (1997)
such risk premia have been discussed for currency markets. We have derived
in this paper risk premia for the savings accounts of a wide range of primary
assets including stocks, currencies, commodities, etc. We underline, under the
assumptions (i) and (ii) it turns out that there is a definitive form for the risk
premia. This fact is typically ignored in the standard literature. It clearly restricts
the possible structure of a financial market model and is of particular interest in
portfolio optimisation and value at risk analysis that both must be performed
under the real world measure.

If we set in equation (2.12) ¢ = 0, then this SDE describes the real world dynamics,
for instance, of a dividend paying share price or interest paying foreign or domestic
savings account expressed in units of the domestic currency. Note, if the different
denominations of the deflator are almost independent, then the risk premium is
close to the square of the volatility of the corresponding denomination of the
deflator. However, in the case when the different denominations of the deflator
are highly correlated, then the risk premia are small.

It will follow from our approach that a different risk premium as given in (2.13)
provides an arbitrage opportunity in a financial market model. This leads us to
the verbal formulation of our third assumption.

(iii) Price processes in a financial market model must not allow arbitrage.

In particular, to exclude obvious arbitrage opportunities we assume first that
price processes must be unique. A second more subtle but rather standard no-
arbitrage property will be discussed at the end of Section 5. It says that there
should not exist a self-financing deflated portfolio with nonnegative deflated gains
process that with strictly positive probability turns out to be strictly positive.
This means one should not be able to create wealth out of nothing with strictly
positive probability.

To construct arbitrage free, sufficiently flexible and computationally tractable
financial market models that fulfill the above three working assumptions we in-
troduce in the following section a multi-factor model.

3 Multi-Factor Model

We consider the Markovian factors Z°, ..., Z™ which are assumed to be continu-
ous, adapted diffusion processes that are given by a system of SDEs of the form

dZ8(t) = of(t, Z°(t), ..., Z™(t)) dt + Em:ﬁ“(t, Z0(t), ..., Z"t)) dWk(t) (3.1)



for t € [0,T] with given initial value Z*(0) € (ag, by), —00 < ay < by < o0,
£e€{0,...,n}. Let ' = (ag, by) X ... X (an, b,) denote the set on which the factor
process Z = {Z(t) = (Z°(t),...,Z"(t))", t € [0,T]} resides. Furthermore, we
introduce the stopping time 7 as the first time ¢ when Z(t) leaves the set I' or
the time ¢ reaches 7', that is

r=inf{t € [0,T]: (¢, Z(t)) €[0,T) x I'}. (3.2)

We assume that the functions o and B%* are such that a strong unique solution
of (3.1) exists up until the stopping time 7 and that this solution never hits the
boundary of I', that is

P(r=T)=1. (3.3)

For computational tractability it is convenient to use diffusion processes with
explicitly known transition densities. However, other choices are also possible
and more general factors that reside on more complicated domains could, in
principle, be used.

In a multi-factor model for each j € {0,...,d} the jth denomination D’ of the
deflator, see (2.9), is assumed to be a function FV : [0,T] x I' — (0, 00) which is
differentiable with respect to time ¢ € [0, 7] and twice differentiable with respect
to the factors (Z°,...,2") € I'. Furthermore, the model must be such that the
assumptions (i) - (iii) are satisfied. A rich set of continuous financial market
models can be generated by such a multi-factor model.

To derive the income rates and volatilities that follow in a multi-factor model
from the assumptions (i) - (iii) we introduce for a sufficiently smooth function
h:[0,T] x ' = R the operators

Oh(t, 2°,..., 2"

L°nt,2°...,2") =
(7 7 Y ) at

“ S Oh(t,Z°,...,Z")
+Za£(t,ZO,...,Z) 57
=0

1 - - 0,k 0 n\ qr.k 0 n
+5 SN Btk Z0,. L Zm R 20, 27

Lr=0 k=1
O?*h(t, Z°, ..., Z")
' PV (3-4)
and .
& Oh(t,Z2°,..., 2"
LEnt, Z2° ... 2" = bkt 70 .z o i
( b) b b ) ZXZ;B ( b b b ) aZe (3 5)

for (¢,2°...,Z") € [0,T) x " and k € {1,...,m}. By application of the Ito



formula we then obtain from (3.1) with (3.4) and (3.5) the equation

Di(t) = Fi(t,Z2°),...,Z2"(t))

_ Dj(())+/OtLOFj(s,ZO(s),...,Z"(s))ds

mo o
+> / LF Fi(s,70(s), ..., Z™(s)) dW*(s) (3.6)

k=1"0
for ¢ € [0,T], j € {0,...,d}. By comparison of (3.6) with (2.9) it follows the
7, kth volatility of the deflated savings account S? for k € {1,...,d} in the form

LEFi(t, Z°(t),..., Z™(¢))
Fi(t, Z0(t), ..., Z"(t))

okit) = —

= = BYE(t,Z), ..., Z"(t)) O (2, Zoa(;)g -, 27(1)) (3.7)

and for k € {d + 1,...,m} with ¢7%(t) = 0. Furthermore, we obtain the jth
income rate

d

k=1

for j € {0,...,d}. This means, by choosing the factors Z°,... Z" and the
functions F°, ..., F'? that determine the different denominations of the deflator we
specify all income rates and volatilities. That is, we fully characterise a financial
market model on the basis of a set of factor processes and functions. We thus
have now a rich framework that allows us to search for a suitable multi-factor
model that with a minimal number of factors reflects established empirical facts.
The second example that we will describe in the following section generates with
such a minimal number of factors a realistic behaviour of stochastic volatilities
together with important stylised facts.

4 Two Examples

For illustration, we will now consider two examples of multi-factor models that
allow us to discuss typical features of the above framework. In the first example we
assume that the different denominations of the deflator are geometric Brownian
motions. This leads us to a standard Black-Scholes model (BSM).

Example 1: BSM
In this case we set

Di(t) = Fi(t,Z°(t),..., Z%¢t)) = D?(0) exp(Z’(t)) (4.1)
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for t € [0,T]. Here we keep the volatilities 0%, see (3.7), and the income rates
17, see (3.8), constant for k € {1,...,d} and j € {0,...,d}, and set m = n = d.
According to (2.9) and by application of the It6 formula we note that we have to
choose

dZ7(t) =

R j k2 ’ ik 11k
F+3 > (o7F) ] dt — Y " o?* AWk (t) (4.2)
k=1 k=1

for t € [0,T] with Z7(0) = 0 and j € {0,...,d}. Here we have a; = —oc, b; = 00
and the relations (3.3), (2.7) and (2.8) are fulfilled. The jth savings account at
time ¢, when expressed in units of the domestic currency, satisfies according to
(2.12) the SDE

dS%I(t) = SY(t) | f0dt+ > (07 — ") {0 dt + Wk (t)} (4.3)

fort € [0,7] and j € {0, ...,d}. This BSM when expressed in domestic currency
yields constant risk premia of the form, see (2.13),

d
— Z [(O_O,Ic)Q - O_O,k Gj’k] (4'4)
k=1
for j € {0,...,d}. When a BSM with constant volatilities is not specified with
the above risk premia, then there exist primary assets with deflated savings ac-
count price processes that are not driftless. In such a case it will follow from
our approach that arbitrage opportunities arise. This fact does not seem to be
acknowledged in the standard literature, where real world appreciation rates for
stock prices under a BSM are often freely chosen.

The BSM does not reflect a number of important stylised empirical facts on
asset prices. For instance, in practice volatilities appear to be stochastic and
log-returns are leptokurtic. To overcome some of these and other deficiencies the
minimal market model (MMM) has been proposed in Platen (1999b, 2000).Here
the different denominations of the deflator are essentially constructed by functions
of square root processes. This leads us to a second example for a multi-factor
model which is a standard version of the MMM.

Example 2: MMM

Let us specify the factors Z°,...,Z% as square root processes that are given by
the SDE
L d
dZ4(t) =7 > (" ZE ) dt — \/ZHt) Y AP awr()  (4.5)
k=1 k=1

for t € [0,7] with initial value Z%(0) > 0 and ¢ € {0,...,d}. Here we set
m = n = d and assume that the scaling parameters v** and dimension v > 2+4gq
are given constants. According to Revuz & Yor (1999), a square root process with

9



dimension v > 2 has a strong unique solution, stays always positive and does not
explode. Thus we have ay = 0 and by = oo for £ € {0,...,n} and P(r=T) = 1.
The deflator in the denomination of the /th primary asset has the form

D(t) = FU(t, 2°(t), ..., Z%(t)) = (Z°(1))" exp(nt) & (4.6)

fort € [0,T] and £ € {0, ...,d}. The exponent ¢ > 0, average growth rate n and
initial parameter & > 0 are assumed to be given constants. By application of
(3.7) we obtain from (4.6) the j, kth volatility

ok
oty = L2 (4.7)

VZ4(1)

for k € {1,...,d} and from (3.8) the ¢th income rate

> () {Zgl(t) (v—2(q+1)) - 1/} (4.8)

k=1

for t € [0,7] and ¢ € {0,...,d}.

Fi)y=n+

=~

For comparison with the typically studied risk neutral setting let us consider the
denomination D° of the deflator in the domestic currency when discounted by
the domestic savings account B°. It satisfies according to (2.9), (4.7) and (4.6)

the SDE
D(t)  D'(t) = g o,
¢ (BO(t)) ~ B(1) ; 20 WD) (4.9)
with

AW (t) = dW*(t) — j%(t) dt

fort € [0,7] and k € {1,...,d}. Thus we have from (4.5) with (4.10) the SDE

(4.10)

dZ(t) = Y (1*F)? (”‘T‘lq - %Zo(t)) dt —/Z00) YA dWE(t)  (4.11)

k=1

for t € [0,7]. If we would now interpret W', ..., W% as independent standard
Wiener processes under a probability measure P, then Z° given in (4.1) would
represent under this measure a square root process of dimension v — 4¢q. For a
dimension v — 4¢ < 2 the square root process Z° would reach under P the level
zero with strictly positive probability. On the other hand for v > 2 the process
Z° given by (4.5) is not absorbed at zero under P w.p.1. Thus for v — 4q < 2
the probability measures P and P would not be equivalent for the given MMM
and an equivalent risk neutral measure in the standard form, see Karatzas &
Shreve (1998), does not exist. However, for v — 4¢g > 2 it can be shown that the
measures P and P are equivalent and the deflated savings accounts in the MMM
are (A, P)-martingales, see Heath & Platen (2000).

10



This example demonstrates that one cannot simply construct a multi-factor model
under the real world probability measure and then hope that there exists some
equivalent risk-neutral measure. To avoid such complications we do not involve
an equivalent risk neutral measure in our approach and have assumed so far only
that deflated savings accounts are local martingales. However, below we will learn
that the required uniqueness of prices will force deflated savings account prices
and other prices to become martingales. Thus we demand in the MMM for the
dimension v the lower bound 2 + 4gq.

5 Hedging European Contingent Claims

A practicable financial market model must generate an appropriate price system
for a set of reasonable payoff structures. We will now identify in a multi-factor
model the prices and hedging strategies for a nonnegative, deflated European
payoff H = H(T,Z°(T), ...,Z"(T)) € [0,00) that matures at a deterministic
time T € (0,7]. To achieve this we assume that there exists a function u :
[0,7] x I' = [0, 00) such that

H = u(T, 2°(T), ..., 2"(T)) (5.1)

and u(t, Z°,. .., Z") is differentiable with respect to time ¢ and twice differentiable
with respect to the factors Z°,...,Z" in [0,T) x I'. We interpret the function
u as a candidate for a deflated pricing function for the European payoftf H. By
hedging arguments we will specify the appropriate form of this function.

In the above framework let a hedger form a portfolio of primary assets with the
goal to hedge the payoff H that matures at T. Suppose that the hedger follows
a strategy 6 = {6(t) = (6°(¢),...,6%¢))", t € [0,T]}, where §%(t) denotes the
number of units of the jth primary asset held at time ¢t € [0,T], j € {0,...,d}.
For such a strategy the associated deflated portfolio value at time ¢ is given by
the sum

87 (t) S9(t) (5.2)

M-

Vi(t) =

J=0

for ¢ € [0,T]. To hedge the European payoff H using the candidate deflated
pricing function u we consider a strategy d with 6° satisfying the relation

§O@t) = S0 (u(t, Z°t),...,2"t)) — Z(Sj(t) S‘j(t)) (5.3)

for t € [0, T]. Thus the associated deflated porttolio process Vi equals the process
u={u(t,Z°t),..., Z"(t)), t € [0,T]}, that is

Vs(t) = u(t, Z°(t), ..., Z"(t)) (5.4)

11



for t € [0, T]. The associated deflated gains are then given in the form
d t
Gty = 3 / 59(s) d3 (s)
j=0""0
d

= Z/O D 5 (s) 0™ (s) §(s) AW (s) (5.5)

for t € [0, T), see (2.5).

Let us introduce the associated deflated profit and loss (P&L) process Cs =
{Cs(t), t € [0,T]} with

Cs(t) = Vs(t) — Gs(t) — V3(0) (5.6)

for t € [0,T]. Note, at time ¢ = 0 the P&L process is zero. We remark that
(Cs “”ng ((f))) Do) corresponds to the discounted cost introduced in Follmer & Son-
dermann (1986). Then it follows from (5.6), (5.4), (5.1), (5.5) and the It6 formula

that

N ~

Cs(t) = ult,Z°%),...,2")) — Gs(t) — u(0, 2°(0), . .., Z™(0))

= /0 Lu(s, Z°(s), ..., 2"(s)) ds

d

+ ;/0 (Lk u(s, 2°(s), ..., Z2"(s)) — Z(;J’(s) ok (s) gj(8)> AW (s)

§=0

S /0 LFuls, 2°(s), ..., Z7(s)) dW*(s) (5.7)

k=d-+1
for ¢ € [0, T], where L° and L* are defined in (3.4) and (3.5).

To hedge the European payoff H that matures at time 7 let us now bring the
deflated P&L process é& as close as possible to zero. One possible mathematical
formulation of this objective, that is relatively technical, has been given in Follmer
& Sondermann (1986), known as local-risk minimisation. We suggest a more
intuitive and rather simple formulation that we call risk intensity minimisation.
It simply requires the first and second term for the deflated P&L process in (5.7)
to vanish. The first term in (5.7) vanishes according to (5.1) and (5.7) if the
function v is such that it solves the partial differential equation (PDE)

Lou(t, 2°,...,2™) =0 (5.8)
for (¢, 29 ...,Z") € (0,T) x I" with terminal condition

W(T,2° ..., 72" = H(T,2°,...,2") (5.9)
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for (Z°,...,7Z™) € . To fulfill also our assumption (iii) we must assume that the
PDE (5.8) - (5.9) has a unique solution. This identifies a unique deflated pricing
function v for H.

To make the second term in (5.7) to zero we consider for the deflated P&L process
Cy its quadratic variation process (Cs) = {(é&>t = fot es(s)ds, t € [O,T]}, with
risk intensity

es(t) = Z(Lku(t,ZO(t),...,Z”(t))—Z&j(t)oj”“(t)gj(t))

d
k=1 §=0
2

+ 3 (LFult, 2°t), ..., 2(t)))

k=d+1

(5.10)

at time ¢ € [0,T]. A perfect hedge would be equivalent to zero risk intensity. It
is clear that we do not have any freedom to minimise the second sum of squares
in (5.10). However, by an appropriate choice of § we can make the first sum in
(5.10), that is the second term in (5.7), to zero. This means we have to solve the
system of equations

LFu(t, Z°(t),..., Z"(t)) = Z 8 (t) o7 (t) §7(t) (5.11)
for all k € {1,...,d} and ¢ € [0,T). With the notation
()= LFu(t, Z°t), ..., Z2"(t)) —u(t, Z°@), ..., Z"(t)) o™F(t) (5.12)
and
EI(t) = S7(t) (0™ () — o™*(1)) (5.13)
for j,k € {1,...,d} we introduce the vectors
() = (6'(1),...,8%)T, (5.14)
ct) = (ct),...,c% )" (5.15)
and the diffusion coefficient matrix
b(t) = [b* ()]} -1 (5.16)

of the primary assets when denominated in the domestic currency. Thus the
linear system of equations (5.11) can be written in the form

c(t) = b(t) & (t) (5.17)

for all ¢ € [0,7). To obtain a unique solution of (5.17) we assume from now on
that the diffusion coefficient matrix b(¢) is nonsingular for each ¢ € [0,7]. Thus
we obtain

§*(t) = b1 (t) c(t) (5.18)



for t € [0,T). The vector §*(t) determines according to (5.14) the hedge ratios
§1(t),...,d%t) and by (5.3) also §°(¢). The corresponding hedging strategy ¢ =
(6°(¢),...,0%¢))" generates then according to (5.7) at time ¢ the deflated P&L

Gty =3 /0 Lru(s, 2%(s), ..., Z7(s)) dWk(s) (5.19)

k=d+1

for t € [0,7]. Note from (2.5) that the primary assets S°, ..., 5% which are for
us the only available instruments for hedging, are driven by the Wiener processes
W1, ..., W¢9. Since we have no tradeable instruments to hedge against the uncer-
tainty generated by the Wiener processes W41, ... W™ the risk intensity (5.10)
is minimised.

Note, the above results are obtained by allowing deflated price processes to be
local martingales and no equivalent risk neutral measure was involved. We call
the obtained strategy ¢ the risk intensity minimising strategy. Under suitable
assumptions this strategy can be shown to coincide with the local-risk minimising
strategy obtained in Follmer & Sondermann (1986), Follmer & Schweizer (1991)
and Hofmann, Platen & Schweizer (1992).

Note, in the case m = d the deflated P&L process is according to (5.19) zero and
the corresponding risk intensity minimising strategy 0 is self-financing that is

Gs(t) = Vs(t) — V5(0) (5-20)
for all ¢ € [0,7].

We will now show under mild assumptions that the uniqueness of the solution
of the PDE (5.8) - (5.9) forces us to allow only martingales and exclude strict
local martingales as deflated asset price processes in a financial market model.
We assume that the transition density p(t,z;s,y) for the factor process Z exists
with

P(Z(s)e A|Z(t)=x) = /Ap(t,x; s,y) dy (5.21)

for A € T, fulfilling for fixed (s,y) € [0,7] x I' the PDE
Lp(t,x;5,y) =0 (5.22)
for (t,z) € (0,s) x I with terminal condition

1 forx=y

0 otherwise ’ (5.23)

p(s,7;8,y) = {

where L° is defined in (3.4). Then under mild integrability assumptions on the
payoff function H, which have simply to secure the finiteness of the terms in-
volved, the function % : [0,7] x I' — [0, c0) with

a(t, 2°,..., 2" :/H(T, WOy Pt (20, 2Ty dy (5.24)
T
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satisfies the PDE

Lut,2°...,72") :/H(T,yo,...,y”)Lop(t,(ZO,...,Z");T,y)dy:0
r

(5.25)
for (¢, 2% ...,Z™) € (0,T) x I" with terminal condition

a(T,2°...,2"Y=H(T,Z2°...,Z2" (5.26)

for (Z°,...,Z") € T'. Note, the operator L° does not refer to the variables T
and y on the right hand side of (5.25). The PDE (5.25) - (5.26) is identical
to the PDE (5.8) - (5.9) which we already assumed to have a unique solution
u. Therefore, the functions v and @ must be identical. Due to (5.24) and the
Markov property of Z we have then the conditional expectation

u(t, Z°(t),...,Z2"t)) = E (H(T,2°(T),...,Z"(T)) | A) (5.27)

for t € [0, T] and the process u = {u(t, Z°(t),..., Z"(t)), t € [0,T]} is an (A, P)-
martingale. Consequently, with the choice H(T, Z%(T),...,Z™(T)) = S/(T) the
deflated savings account process S/ must form, according to (5.27), an (A, P)-
martingale and thus cannot be a strict local martingale. This is an important
consequence of assumption (iii). It underlines also the fundamental role of mar-
tingales in financial modelling and questions the use of local martingales in asset
price modelling.

Let us now restrict for a given multi-factor model our attention to those European
payoffs for which the above analysis is valid and call these payoffs Furopean
contingent claims. We then say, a financial market model is formed by the set
of European contingent claim price processes on the given multi-factor model.
Thus we exclude asset price dynamics and payoffs for which any of the above
assumptions or arguments do not hold.

We finally show that such a financial market model fulfills also the second no-
arbitrage property that we formulated in the context of assumption (iii). More
precisely, it follows by the above established martingale property of deflated gains,
see (5.5) and (5.27), with a standard martingale argument, see, e.g. Karatzas &
Shreve (1998), that there does not exist a self-financing strategy J and a nonneg-
ative associated deflated gains process G5 that with strictly positive probability
turns out to be strictly positive at time T because

E (GJ(T)) —F (G}(T) |A0) = G4(0) = 0.

This is a strong version of the standard no-arbitrage property that excludes the
possibility to create wealth from nothing, see, e.g. Karatzas & Shreve (1998).

15



6 Complete and Incomplete Market Models

We call the above defined financial market model a complete market model, when
all European contingent claims can be hedged by a risk intensity minimising
and self-financing strategy with zero deflated P&L process. Otherwise we call
it an incomplete market model. Summarising the previous results we can then
formulate the following theorem.

Theorem 6.1  In the above financial market model, with b(t) nonsingular for
all t € [0,T], the risk intensity minimising strategy 6 for a European contingent
claim H that matures at time T € (0,T] is given by (5.18) and (5.3). The
corresponding deflated pricing function u solves the PDE (5. 8) with terminal
condition (5.9) and the conditional expectation process V = {Vs(t), t € [0,T]}
with X

Vs(t) = u(t, Z°(t),..., Z2"(t)) = E(H | A) (6.1)

for t € [0, T) forms an (A, P)-martingale. For m = d the financial market model
18 complete.

Most important is the property of the above financial market model that for a
given European contingent claim H with maturity T € (0, 7] the corresponding
deflated price process u = {u(t, Z°(t),..., Z"(t)), t € [0,T]}, see (6.1), forms an
(A, P)-martingale. This was not clear when we started our analysis allowing also
strict local martingales as deflated price processes. The fundamental martingale
property provides access to the computation of deflated European contingent
claim prices as conditional expectations under the real world measure. The BSM
and the MMM give examples for models with known transition densities for the
factors that result in almost explicit expressions for standard contingent claim
prices, see Heath & Platen (2000).

Let us now also characterise the deflator as a portfolio of primary assets in the
above financial market model. We have simply to recognise the fact that the
deflated deflator is the constant u(t, Z°(t),..., Z"(t)) = 1 and the corresponding
hedge ratios follow from (5.18) and (5.3) with the specification v = 1 and thus
c*(t) = —o%*(t). Therefore the number of units of primary assets in the portfolio
that represents the deflator is known and depends only on the volatilities of the
deflated primary assets.

In the standard literature one typically uses an equivalent risk neutral measure for
contingent claim pricing, see Karatzas & Shreve (1998). The deflated domestic
savings account process S° is in the above financial market model an (A, P)-

martingale and the Radon-Nikodym derivative process A = {A(t) = 50((0)) t e

[0,7} is then also an (.A P)-martingale. A characterises an equivalent risk neu-

tral martingale measure P by the relation 42 42 = A(T). Thus by Bayes’s rule we ob-
tain from deflated contingent claim prices the well-known risk neutral contingent
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claim prices for complete and incomplete markets as given in Karatzas & Shreve
(1998), Follmer & Sondermann (1986), Follmer & Schweizer (1991) and Hof-
mann, Platen & Schweizer (1992). To illustrate the risk neutral valuation let us
consider for a European contingent claim H, that matures at time T € [0, 7] the
random variable h = h(T,Z°(T),...,Z™(T)) = DY(T) H(T, Z°(T), ..., Z™(T))
as the corresponding payoff that is denominated in the domestic currency. Then
we have from (6.1)

. h
Vs(t) = u(t, 2°(t),..., Z2"(t)) = B | ==
) = ult. 220, 200 = F (s | A
for t € [0,T]. Thus in the denomination of the domestic currency the price for
the payoft h at time ¢ must be

Vet = 00T =5 (5 gyt 4) = & (e | 4).

where E can be shown to represent the expectation under the minimal equivalent
martingale measure P, see Hofmann, Platen & Schweizer (1992).

Finally, let us discuss the case m > d, where not all driving Wiener processes
appear in the noise terms of the primary assets. For instance, some Wiener pro-
cesses might only generate uncertainty related to interest and income rates. Such
an incomplete model can be often completed by forming, for instance, portfolios
or buckets of zero coupon bonds. These buckets are then income producing and
can be again interpreted as primary assets. Taking such constructions of primary
assets into account one can fully concentrate on the modelling of complete mar-
kets. One type of incompleteness can then be constructed from such a complete
market by simply restricting the permitted trading strategies allowing, for in-
stance, trading only in specific assets or piecewise constant allocation strategies.
An important type of incompleteness arises when the hedging strategies can be
only based on incomplete information that is by allowing for the pricing and hedg-
ing of contingent claims only a subfiltration of A. The above framework allows a
systematic study of such types of incompleteness, however this goes beyond the
scope of this paper and will be considered elsewhere.

Conclusion

The different denominations of a deflator have been shown to be sufficient to
characterise a financial market model. As a consequence risk premia for primary
asset prices have been identified. A financial market modelling framework has
been suggested that avoids equivalent measure transformations and leads nat-
urally to martingales as deflated price processes. The presented risk intensity
minimising approach is consistent with the local-risk minimisation framework
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and can be naturally extended in various ways, for instance, to cover asset price
dynamics with jumps, general contingent claim classes and different types of in-
completeness.
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