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ABSTRACT 
 

We propose in this article the use of a particular version of the tests of Robinson (1994) 
for testing seasonally fractionally integrated processes. The tests have standard null and 
local limit distributions and allow us to test unit and fractional seasonal roots even with 
different amplitudes at different frequencies. A Monte Carlo experiment is conducted to 
check the power of the tests against different types of fractional alternatives and, an 
empirical application, using quarterly data for the U.S. total expenditure of several 
monetary aggregates is also carried out at the end of the article. 
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1. Introduction 

Many macroeconomic time series contain important seasonal components and it is a 

common belief that modellers need to pay specific attention to the nature of seasonality 

rather than essentially to ignore it. As an alternative to the deterministic approaches based 

on seasonal dummies, stochastic models based on seasonal differencing have been 

proposed in recent years. These models implicitly assume that the seasonal component 

substantially drifts over time and thus, a process observed ‘s’  times per year would be 

transformed to its ‘s’ -period difference on the assumption that the process contains an 

integrated seasonal component. Thus, for quarterly data, s = 4, 

...,2,1,)1( 4 ==− tuxL tt    (1) 

where ‘xt’  is the time series we observe and ‘ut’  is an I(0) process, defined in this context 

as a covariance stationary process, with spectral density function that is positive and 

finite at any frequency. Note that the operator ‘ (1 – L4)’  can be factored as ‘ (1 – L) (1 + 

L) (1 + L2)’  and thus, xt in (1) contains four roots of modulus unity: one at zero 

frequency; one at two cycles per year, corresponding to frequency π; and two complex 

pairs at one cycle per year, corresponding to frequencies π/2 and 3π/2 (of a cycle 2π). 

A good deal of empirical work has followed this approach: Hylleberg et al. (1990) 

found evidence for seasonal unit roots in quarterly U.K. consumption and income, using a 

procedure that allows tests for unit roots at some seasonal frequencies, without 

maintaining their presence at all such frequencies. Further evidence in favour of seasonal 

unit roots was found in Otto and Wirjanto (1990) and Lee and Siklos (1991) for Canadian 

economic time series; in Hylleberg et al. (1993) for Japanese consumption and income; 

and also in Linden (1994) for the Finish economy. All these works are based on the 

Hylleberg et al.’s (1990) procedure. Other seasonal unit root tests are Ghysels et al. 

(1994), Canova and Hansen (1995), and more recently, Tam and Reimsel (1997), the 

latter proposing a test for a unit root in the seasonal MA operator. 
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However, seasonal unit roots are only an extremely specialized form for describing 

the nonstationary nature of seasonality. Consider, for instance, the process, 

...,2,1,)1( 4 ==− tuxL tt
d    (2) 

with d > 0 and I(0) ut. Clearly, xt has four roots of modulus unity, all with the same 

integration order d.  But  (2)  can also be extended to present different integration orders 

for each of the seasonal frequencies, for example, 

 ...,2,1,)1()1( 21 22 ==+− tuxLL tt
dd   (3) 

or more generally, 

...,2,1,)1()1()1( 321 2 ==++− tuxLLL tt
ddd ,  (4) 

for given real values d1, d2 and d3. Then, xt will be stationary if all integration orders are 

smaller than 0.5, and we say that xt has seasonal long memory at a given frequency if the 

integration order at that frequency is greater than zero. 

Few empirical applications have been carried out in relation to seasonal fractional 

models. The notion of fractional Gaussian noise with seasonality was initially suggested 

by Abrahams and Dempster (1979) and Jonas (1981), and extended in a Bayesian 

framework by Carlin et al. (1985) and Carlin and Dempster (1989). Porter-Hudak (1990) 

applied a seasonally fractionally integrated model to quarterly U.S. monetary aggregate 

with the conclusion that a fractional model could be more appropriate than standard 

ARIMAs. Advantages of seasonally fractionally integrated models for forecasting are 

illustrated in Ray (1993) and Sutcliffe (1994), and another recent empirical application 

can be found in Gil-Alana and Robinson (1998). 

In the following section we describe several versions of the tests of Robinson (1994) 

which permit us testing seasonally fractionally integrated processes like (2), (3) and (4). 

Section 3 contains a Monte Carlo experiment to check the power of the tests against 



 3

different fractional alternatives. The tests of Robinson (1994) are applied in Section 4 to 

several U.S. monetary aggregates, while Section 5 contains some concluding comments. 

 

2. The  tests of Robinson (1994) 

Robinson (1994) proposes LM tests for testing unit roots and other fractionally integrated 

hypotheses when the roots are located at any frequency on the interval [0, π]. He 

considers the model 

...,2,1,’ =+= txzy ttt β    (5) 

where yt is a raw time series; β is a (kx1) vector of unknown parameters;  zt is a (kx1) 

vector of deterministic regressors, and xt  in (5) satisfies 

...,2,1,);( == tuxL ttθρ    (6) 

where ρ(L;θ) is a prescribed function of L and the (px1) parameter vector θ, that will 

adopt different forms depending on the model tested. Thus, for example 

     θθρ +−= dLL )1();( 4     (7) 

when testing (2) for a given real value d;  Similarly, 

       2211 )1()1();( 22 θθθρ ++ +−= dd LLL    (8) 

when testing (3); or more generally, 

         332211 )1()1()1();( 2 θθθθρ +++ ++−= ddd LLLL   (9) 

in case of testing (4) for given real values d1, d2 and d3. Also, ut in (6) must be an I(0) 

process, with spectral density 

,);(
2

);(
2

πλπτλ
π

στλ ≤<−= gf  

where the positive scalar σ2 and the (qx1) vector τ are unknown, but g is of known form. 

Under the null hypothesis: 

,0: =θoH     (10) 
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the residuals in (5) and (6) are 

...,2,1,’ˆ)(ˆ =−= twyLu ttt βρ  
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 The test statistic, which is derived from the Lagrange Multiplier (LM) principle, is 
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I(λj) is the periodogram of tû  and ,)(minargˆ 2
* τστ τ T∈

= with T* as a suitable subset of 

the Rq Euclidean space. The sum on *  is over λj = 2πj/T, such that -π <  λj < π. λj ∉ (ρl - 

λ1, ρl + λ1), l = 1, 2, …, s such that ρl, l = 1, 2, …, s < ∞ are the distinct poles of ρ(L). 

Note that R̂  is a function of the hypothesized differenced series which has short memory 

under (10), and thus, we must specify the frequencies and integration orders of any 

seasonal roots. 

 Robinson (1994) established under regularity conditions that 

,,ˆ 2 ∞→→ TasR pd χ   (12) 
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and also that the tests are efficient in the Pitman sense, that, under local alternatives of 

form: Ha: θ = δT-1/2, R̂  has a )(2 νχ p  distribution, with a non-centrality parameter ν that 

cannot (when ut is Gaussian) be exceeded by that of any rival regular statistic. Thus, a 

test of (10) against the alternative, Ha: θ ≠ 0 will reject Ho if 2
,

ˆ
αχ pR > , where  

.)( 22 αχχ => pP  Ooms (1997) proposes Wald tests based on Robinson’s (1994) model in 

(5) and (6)  but they require efficient estimates of the fractional differencing parameters. 

He uses a modified periodogram regression  estimation procedure due to Hassler (1994). 

Also, Hosoya (1997) establishes the limit theory for long memory processes with the 

singularities not restricted at the zero frequency and proposes a set of quasi log-likelihood 

statistics to be applied in raw time seires. Unlike these methods, Robinson’s (1994) tests 

do not require estimation of the long memory parameters since the differenced series 

have short memory under the null. An empirical application of the tests of Robinson 

(1994) with ρ(L) = (1 – L)d, i.e., imposing the root exclusively at the zero frequency, (but 

not at the seasonal ones), can be found in Gil-Alana and Robinson (1997), and given the 

recent extensive theoretical literature based on seasonal fractional integration, a further 

study of Robinson’s (1994) tests in this context seems overdue. 

 

3.  A Monte Car lo exper iment  

We examine in this section the finite-sample behaviour of versions of the above tests by 

means of Monte Carlo simulations. In Robinson (1994) a finite-sample experiment was 

also conducted, looking at the rejection frequencies of the tests when the true model was 

a random walk, (i.e., (1 – L) xt = εt), and the alternatives were either fractional, (i.e., (1 – 

L)1 + θ  xt = εt), or autoregressive, (i.e., (1 – (1 + θL)) xt = εt), for different values of θ. A 

similar study was also carried out by Gil-Alana (1999) for monthly data. 
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 We investigate here the power of the tests of Robinson (1994) when the true 

model contains four unit roots, that is, (1) with white noise ut, and the alternatives are 

seasonally fractionally integrated, first, with the same integration order at all frequencies, 

i.e., (2), and then allowing different orders of integration at each of the seasonal 

frequencies, i.e., (3) and (4) for different real values d, d1, d2 and d3. 

 Across Tables 1-3 we look at the rejection frequencies of Robinson’s (1994) tests 

in (5) and (6) with β = 0 (i.e., yt = xt), the true model including (7) with d = 1 and θ = 0. 

The alternatives will be in all cases fractional, with ρ(L; θ) given by (7), (8) and (9) with 

d, d1, d2 and d3, equal to 1 and values of θ, θ1, θ2 and  θ3  equal to –1, -0.75, …, (0.25), 

…, 0.75 and 1. Thus, the rejection frequencies corresponding to θ = 0 will indicate the 

sizes of the tests. We generate Gaussian series generated by the routines GASDEV and 

RAN3 of Press, Flannery, Teukolsky and Vetterling (1986), with 10,000 replications of 

each case. The sample sizes are T = 120, 240 and 360 observations and in all cases the 

nominal size is 5%. 

 Each table shows in the upper part the rejection frequencies when ρ(L; θ) = (1 – 

L4)1+θ, that is, imposing the same integration order at each frequency. Then, we take ρ(L; 

θ) = (1 – L2)1+θ1 (1 + L2)1+θ2, i.e., allowing different orders of integration for the real and 

the complex roots, and finally, in the lower part of the tables, we take ρ(L; θ) = (1 – 

L)1+θ1 (1 + L)1+θ2(1 + L2)1+θ3, i.e., allowing different integration orders at each frequency. 

 Starting with ρ(L; θ) = (1 – L4)1+θ, we observe that the size of R̂  is too large in all 

cases though it approximates to the nominal value with T. Thus, it is 17.8% when T = 

120; it becomes 10.1% when T = 240, and reduces to 8.0% with T = 360. We also 

observe that the test statistic is slightly biased toward positive values of θ, obtaining 

higher rejection frequencies for θ > 0 than for θ < 0, and this is observed even when T = 
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360, (Table 3), though in this case, the rejection frequencies are relatively high even for θ 

= -1, (0.831).  

(Tables 1 – 3 about here) 

Taking ρ(L; θ) = (1 – L2)1+θ1 (1 + L2)1+θ2,  the sizes are now 6.9% with T = 120; 

6.2% with T = 240, and 5.3% with T = 360. The rejection frequencies are relatively high 

in all cases, though a bias in favour of positive values of θ1 and θ2 is again observed. We 

see that the lowest value (apart from that corresponding to the true model) is obtained in 

all cases when θ1 = θ2 = -0.25, in which case the rejection frequencies are 0.160 with T = 

120; 0.502 with T = 240 and 0.793 with T = 360. 

The rejection frequencies of the tests of Robinson (1994) with ρ(L; θ) = (1 – 

L)1+θ1 (1 + L)1+θ2(1 + L2)1+θ3 are given in the lower part of Tables 1 – 3. A bias also 

appears in these cases though it tends to disappear with T. Thus, for example, if θ1 = θ2 = 

θ3 = -0.50, the rejection frequency with T = 120 is 0.580, while the value corresponding 

to the alternative θ1 = θ2 = θ3 = 0.50 for the same T is 0.921. Moreover, increasing the 

sample size, these values are 0.905 and 1 with T = 240, and 0.971 and 1 with T = 360. 

Finally, imposing different θi’s, we also see that the rejection frequencies increase with T, 

obtaining values higher than 0.97 in all cases when T = 360. 

The same experiment was also conducted imposing the true model to be (2) with d 

= 0.50, 0.75, 1.25 and 1.50, obtaining results, in terms of size and power, similar to those 

reported across Tables 1 – 3. Therefore, we can conclude this section by saying that the 

different versions of the tests of Robinson (1994) analysed in this article seem to perform 

quite well when testing the null hypothesis of four seasonal unit or fractional roots. 

Clearly, when testing (10) against (7) the tests have greater power than when directed 

against (8) or (9), though the latter forms will have power against a wider range of 

alternatives. Finally, the performance of the tests was also evaluated against alternatives 
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of form: (1 - ρL4)xt = εt, with different values of ρ, comparing the results of Robinson’s 

(1994) tests with those based on standard seasonal unit root tests (i.e., Dickey, Hasza and 

Fuller, DHF, 1984). As we should expect, DHF (1984) perform better against these AR 

alternatives, but worse against the fractional alternatives entertained in this article. 

 

4. An empir ical application 

Robinson (1994) tests are applied in this section to several U.S. monetary aggregates. The 

series are the (seasonally unadjusted) total expenditure for M1, M2, M3 and L in the U.S. 

from 1960.1 to 1998.4 quarterly. Denoting any of the series yt, we employ throughout the 

null models 

...,2,1,21 =++= txty tt ββ    (13) 

          ...,2,1,)( == tuxL ttρ    (14) 

with ρ(L) = (1 – L4)d;  (1 – L2)d1 (1 + L2)d2;  and  (1 – L)d1 (1 + L)d2(1 + L2)d3, and d, d1, 

d2, d3 equal to 0, 0.25, …, (0.25),…, 1.75 and 2. We model the I(0) disturbances ut as 

white noise and treat separately the cases β1 = β2 = 0 a priori, (i.e., including no 

regressors in the undifferenced regression); β1 unknown and β2 = 0 a priori, (i.e., 

including an intercept); and β1 and β2 unknown, (i.e., with a linear time trend). However, 

since the results were very similar across all these cases, we only report here those 

corresponding to the case of β1 = β2 = 0 a priori, i.e., with yt = xt. (The results were either 

unaffected by the inclusion of seasonal dummy variables in the regression model (13)). 

 Table 4 shows the results of the statistic R̂  in (11), firstly with ρ(L) = (1 – L4)d, 

i.e., imposing the same integration order at each frequency. We see that the results are 

very similar for the different monetary aggregates, and the non-rejection values occur in 

all cases when d = 1, 1.25 and 1.50. We also observe that when d = 2, the null is less 

strongly rejected than for example when d = 0, but on the whole, these extreme values are 
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always rejected, suggesting that the optimal local power properties of Robinson’s (1994) 

tests may be supported by reasonable performance against non-local alternatives. The 

lowest statistics across the different values of d are obtained when d = 1.25 for M1, and 

when d = 1 for the remaining aggregates. 

(Table 4 about here) 

 In view of the similarities observed across the different monetary aggregates, we 

concentrate now ahead only on M2 as the series of interest, and look at R̂  in (11) with 

ρ(L) =  (1 – L2)d1 (1 + L2)d2  and  (1 – L)d1 (1 + L)d2(1 + L2)d3.  Allowing a different 

integration order at the real and at the complex roots, (i.e., with ρ(L) = (1 – L2)d1 (1 + 

L2)d2), we observe very few non-rejection values, all them occurring when d1 ranges 

between 1 and 2, and when d2 ranges between 0 and 0.75. Thus, we observe higher 

integration orders at the 0 and π frequencies than over the complex ones π/2 and 3π/2. In 

fact, Ho (10) is now decisively rejected when d1 = d2 = 1, 1.25 and 1.50, contradicting the 

results obtained just above, and the lowest statistic is obtained when d1 = 1.50 and d2 = 

0.25, suggesting the importance of the real roots over the complex ones. This 

contradictory results may be related with the different sizes and rejection frequencies 

observed in Table 1. If the true model were given by (1 – L4)xt = ut, performing the tests 

of Robinson (1994) with (3) and d1 = 1.50 and d2 = 0.25, we saw in Table 1 that the 

rejection frequency was exactly 1. On the contrary (and though it is not reported here), 

performing the opposite experiment, i.e., testing (2) with d = 1 when the true model is 

given by (1 – L2)1.50 (1 + L2)0.25xt = ut, the rejection frequency was 0.144, suggesting both 

experiments that a model with different orders of integration might be more appropriate 

for this series. Extending the model, and thus allowing a different integration order at 

each frequency, we only observe two non-rejection values, corresponding to d1 = 1 and d2 

= d3 = 0, (i.e., a random walk), and d1 = 1.50; d2 = 0.50 and d3 = 0.25. These two 

possibilities were not allowed with the previous specifications for ρ(L). The results here 
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emphasize once more the importance of the real roots, in particular, the one at the zero 

frequency. 

The non-rejection values obtained across Table 4 are all based on the asymptotic 

critical values given by the chi-squared distributions. However, since the sample size in 

this empirical application is not very large, we have also calculated the finite sample 

critical values of the tests by means of Monte Carlo simulations. The results for the three 

functional forms of ρ(L) with T = 120 are given in Table 5. We see that, in all cases, the 

critical values are slightly greater than those given by the chi-squared distributions. Thus, 

some of the values of R̂  in Table 4 where Ho (10) was not rejected when using the 

asymptotic critical values might now be rejected with the finite sample ones. 

(Table 5 about here) 

Table 6 is analogous to Table 1, showing the rejection frequencies of Robinson’s 

(1994) tests when T = 120, for the three functional forms of ρ(L), but using now the finite 

sample critical values obtained in Table 5. We see that taking ρ(L) = (1 – L4)1+θ, the size 

of the test reduces considerably (from 17.8% in Table 1 to 4.6% in Table 6). This small 

size is also associated with some inferior rejection frequencies compared with Table 1, 

being particularly worrisome the low value obtained with θ = -0.25 (0.077). Imposing 

ρ(L) =  (1 – L2)d1 (1 + L2)d2  and  (1 – L)d1 (1 + L)d2(1 + L2)d3, the sizes also reduce, 

getting closer to the nominal value of 5%, (4.8% and 4.9% respectively), but the rejection 

frequencies keep relatively high in practically all cases. 

(Table 6 about here) 

Looking again at the results in Table 4 we see that when using the finite sample 

critical values, the proportion of non-rejection values is higher. Thus, if ρ(L) = (1 – L4)d,  

Ho (10) is not rejected if d = 1, 1.25, 1.50 and 1.75 (and if d = 2 for M1). This is 

something to be expected in view of the lower rejection frequencies observed in Table 6. 
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If ρ(L) =  (1 – L2)d1 (1 + L2)d2, we observe just one extra non-rejection value 

corresponding to d1 = 1.75 and d2 = 0.75. Finally, if ρ(L) =  (1 – L)d1 (1 + L)d2(1 + L2)d3, 

the non-rejection values are exactly the same as when using the asymptotic critical 

values, i.e. d1 = 1; d2 = d3 = 0, and d1 = 1.50; d2 = 0.50; d3 = 0.25. Thus, we may conclude 

by saying that there is not a large difference in the results whether we use the asymptotic 

or the finite sample critical values. 

  The results reported in this article indicate that the orders of integration may differ 

across the frequencies in spite of the non-rejection values obtained when testing when the 

same integration order at each frequency is imposed. As a final remark, we are concerned 

with the possibility that the true model has a different integration order at each frequency, 

(as it may be the case in this empirical application), but we test imposing the same order 

of integration at all frequencies. We see, in the lower part of Table 4, that there are two 

non-rejected models for M2, one which is a random walk, i.e., 

...,2,1,)1( ==− tuxL tt    (15) 

and the other, 

...,2,1,)1()1()1( 25.0250.050.1 ==++− tuxLLL tt , (16) 

both with white noise ut. It was shown in Gil-Alana (1999) that if the true model is given 

by (15) and we apply Robinson’s (1994) tests with ρ(L) = (1 – L4), the rejection 

frequency with T = 120 was 0.074. Similarly, we have performed the same experiment 

with the true model given by (16), obtaining a rejection frequency of 0.099. These 

extremely low values may be the reason why Ho (10) is not rejected in some cases when 

testing with ρ(L) = (1 – L4)d in the upper part in Table 4. Extending the analysis, and 

testing (2) when the true model has different orders of integration at each frequency, the 

rejection frequencies were very low in all cases, suggesting the low power of the tests 

when we impose the same order of integration at all frequencies. 
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5. Concluding comments 

We have presented in this article different versions of the tests of Robinson (1994) for 

testing seasonally fractionally integrated processes. The tests have several distinguishing 

features which make them particularly useful in the applied work: they have standard null 

and local limit distributions, and this limit behaviour holds across the different 

hypothesized values of d; Also, they allow us to test different orders of integration at 

different frequencies and, unlike other procedures, do not require estimation of the 

fractional differencing parameters. 

A Monte Carlo experiment was conducted to check the power of the tests against 

different fractional alternatives. The results suggest that the tests of Robinson (1994) 

perform quite well for testing seasonal unit or fractional roots when the same order of 

integration is imposed at all frequencies. However, if the true model contains different 

integration orders for the different frequencies, the tests may have very low power, 

especially if the sample size is not very large.  

The tests were also applied to the total expenditure of several monetary aggregates 

of the U.S. with quarterly data, obtaining results which indicate the importance of the 

root at the zero frequency over the others. Thus, even if the tests cannot reject a null of 

four unit roots, the results may be hiding the importance of some of the roots over the 

others, in particular, the one corresponding to the zero frequency. 

The article can be extended in several directions. The Monte Carlo simulations 

can be extended to study the power of the tests when the disturbances are weakly 

parametrically autocorrelated, and this can also be done in the empirical application 

carried out in Section 4. Then, a model selection criterion should be established to 

determine which might be the correct model specification for these and other 

macroeconomic time series. 
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TABLE 1 

Rejection frequencies of R̂  in (11) against fractional alternatives. 
True model: (1 – L4) yt = εt, and  T = 120. 

θθρ +−= 14 )1();( LL  

θ -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
 0.604 0.566 0.447 0.153 0.178 0.763 0.989 1.000 1.000 

21 1212 )1()1();( θθθρ ++ +−= LLL  

θ1  /  θ2   -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
-1.00 0.790 0.959 0.841 0.833 0.881 0.915 0.939 0.954 0.963 
-0.75 0.973 0.695 0.803 0.811 0.921 0.962 0.981 0.988 0.993 
-0.50 1.000 0.981 0.493 0.648 0.913 0.979 0.995 0.998 0.999 
-0.25 1.000 1.000 0.974 0.160 0.709 0.969 0.996 0.999 0.999 
 0.00 1.000 1.000 0.999 0.951 0.069 0.795 0.988 0.998 0.999 
 0.25 1.000 1.000 1.000 0.999 0.909 0.402 0.845 0.993 0.999 
 0.50 1.000 1.000 1.000 1.000 0.999 0.890 0.888 0.877 0.995 
 0.75 1.000 1.000 1.000 1.000 1.000 0.998 0.898 0.992 0.899 
 1.00 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.909 0.999 

321 1211 )1()1()1();( θθθθρ +++ ++−= LLLL  

(θ1, θ2)   /  θ3   -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
(-1.00, -1.00) 0.848 0.930 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00, -0.50) 0.989 0.988 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  0.00) 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  0.50) 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  1.00) 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50, -1.00) 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50, -0.50) 1.000 0.962 0.580 0.834 0.998 1.000 1.000 1.000 1.000 
(-0.50,  0.00) 1.000 0.998 0.968 0.990 1.000 1.000 1.000 1.000 1.000 
(-0.50,  0.50) 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50,  1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,   0.00) 1.000 1.000 0.998 0.582 0.073 0.756 0.999 1.000 1.000 
(0.00,   0.50) 1.000 1.000 1.000 0.931 0.733 0.971 1.000 1.000 1.000 
(0.00,   1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,   0.00) 1.000 1.000 1.000 1.000 0.998 0.998 1.000 1.000 1.000 
(0.50,   0.50) 1.000 1.000 1.000 1.000 0.799 0.497 0.921 1.000 1.000 
(0.50,   1.00) 1.000 1.000 1.000 1.000 0.918 0.642 0.947 1.000 1.000 
(1.00,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   0.50) 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 
(1.00,   1.00) 1.000 1.000 1.000 1.000 1.000 0.985 0.983 1.000 1.000 

 
10,000 replications were used for each case. Sizes are in bold and the nominal size was 5%. 
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TABLE 2 

Rejection frequencies of R̂ in (11) against fractional alternatives. 
True model: (1 – L4) yt = εt, and  T = 240. 

θθρ +−= 14 )1();( LL  

θ -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
 0.750 0.781 0.814 0.554 0.101 0.958 1.000 1.000 1.000 

21 1212 )1()1();( θθθρ ++ +−= LLL  

θ1  /  θ2   -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
-1.00 0.910 0.993 0.922 0.950 0.969 0.982 0.989 0.993 0.995 
-0.75 0.998 0.891 0.919 0.972 0.992 0.998 0.999 0.999 0.999 
-0.50 1.000 1.000 0.846 0.961 0.998 1.000 1.000 1.000 1.000 
-0.25 1.000 1.000 0.999 0.502 0.990 0.999 1.000 1.000 1.000 
 0.00 1.000 1.000 1.000 0.999 0.062 0.995 1.000 1.000 1.000 
 0.25 1.000 1.000 1.000 1.000 0.999 0.762 0.997 1.000 1.000 
 0.50 1.000 1.000 1.000 1.000 1.000 0.997 0.999 0.998 1.000 
 0.75 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 0.997 
 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 

321 1211 )1()1()1();( θθθθρ +++ ++−= LLLL  

(θ1, θ2)   /  θ3   -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
(-1.00, -1.00) 0.963 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00, -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50, -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50, -0.50) 1.000 0.998 0.905 0.988 1.000 1.000 1.000 1.000 1.000 
(-0.50,  0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50,  0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50,  1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,   0.00) 1.000 1.000 1.000 0.926 0.066 0.972 1.000 1.000 1.000 
(0.00,   0.50) 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 
(0.00,   1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,   0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,   0.50) 1.000 1.000 1.000 1.000 1.000 0.965 1.000 1.000 1.000 
(0.50,   1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
10,000 replications were used for each case. Sizes are in bold and the nominal size was 5%. 
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TABLE 3 

Rejection frequencies of R̂  in (11) against fractional alternatives. 
True model: (1 – L4) yt = εt, and  T = 360. 

θθρ +−= 14 )1();( LL  

θ -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
 0.831 0.861 0.927 0.847 0.080 0.993 1.000 1.000 1.000 

21 1212 )1()1();( θθθρ ++ +−= LLL  

θ1  /  θ2   -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
-1.00 0.944 0.994 0.958 0.977 0.988 0.993 0.995 0.996 0.998 
-0.75 1.000 0.937 0.957 0.991 0.998 0.999 1.000 1.000 1.000 
-0.50 1.000 1.000 0.946 0.994 0.999 1.000 1.000 1.000 1.000 
-0.25 1.000 1.000 1.000 0.793 0.999 1.000 1.000 1.000 1.000 
 0.00 1.000 1.000 1.000 1.000 0.053 0.999 1.000 1.000 1.000 
 0.25 1.000 1.000 1.000 1.000 1.000 0.936 1.000 1.000 1.000 
 0.50 1.000 1.000 1.000 1.000 1.000 0.936 1.000 1.000 1.000 
 0.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

321 1211 )1()1()1();( θθθθρ +++ ++−= LLLL  

(θ1, θ2)   /  θ3   -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
(-1.00, -1.00) 0.979 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00, -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50, -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50, -0.50) 1.000 1.000 0.971 0.999 1.000 1.000 1.000 1.000 1.000 
(-0.50,  0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50,  0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50,  1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,   0.00) 1.000 1.000 1.000 0.996 0.056 1.000 1.000 1.000 1.000 
(0.00,   0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,   1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,   0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,   0.50) 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 
(0.50,   1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
10,000 replications were used for each case. Sizes are in bold and the nominal size was 5%. 
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TABLE 4 

Testing (10) in (6) with white noise ut 
dLL )1();( 4−=θρ  

Series  /  d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
M1 370.7 340.7 162.6 24.30 2.34’  .0009’  1.22’  4.06’  5.94’  
M2 368.5 270.1 76.81 7.54 0.09’  0.85’  2.89’  4.96’  6.72 
M3 369.9 265.4 71.54 6.36 0.03’  0.90’  2.78’  4.66’  6.27 
L 372.5 265.2 70.22 6.51 0.06’  0.81’  2.66’  4.54’  6.46 

SERIES:  M2                                                        
21 )1()1();( 22 dd LLL +−=θρ  

d1  /  d2   0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
0.00 652.2 656.8 657.8 657.0 655.5 653.7 651.8 649.9 648.1 
0.25 474.1 505.8 517.1 518.2 514.6 508.9 502.5 495.9 489.5 
0.50 130.2 17.84 202.4 209.3 207.1 200.7 192.9 184.9 177.3 
0.75 17.53 41.25 59.51 67.35 67.69 64.33 59.66 54.86 50.40 
1.00 1.40’  11.78 26.15 35.30 37.80 36.23 32.99 29.41 26.05 
1.25 0.71’  2.27’  12.51 22.95 28.01 28.28 26.12 23.17 20.22 
1.50 4.57’  0.01’  4.41’  14.51 22.24 24.92 24.16 21.89 19.26 
1.75 10.50 2.72’  0.33’  7.14’  16.58 22.19 23.46 22.25 20.09 
2.00 17.57 9.53 1.27’  1.50’  9.89 18.17 22.18 22.66 21.34 

 SERIES:  M2                                              
321 )1()1()1();( 2 ddd LLLL ++−=θρ  

  (d1, d2)  /  d3   0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
(0.00, 0.00) 1004.5 1012.9 1018.3 1022.0 1024.7 1026.7 1028.0 1028.8 1029.3 
(0.00, 0.50) 1013.4 1019.9 1023.9 1026.7 1028.6 1029.8 1030.7 1031.1 1031.3 
(0.00,  1.00) 1017.8 1023.1 1026.4 1028.2 1029.6 1030.4 1030.9 1031.0 1031.0 
(0.00,  1.50) 1020.6 1024.9 1027.3 1028.8 1029.7 1030.2 1030.4 1030.4 1030.2 
(0.00,  2.00) 1022.5 1025.9 1027.8 1028.9 1029.5 1029.8 1029.8 1029.6 1029.3 
(0.50, 0.00) 165.25 224.7 270.11 306.8 338.0 365.2 389.3 410.9 430.6 
(0.50, 0.50) 240.9 306.6 354.7 392.8 424.7 452.4 476.8 498.6 518.3 
(0.50,  1.00) 287.4 348.5 392.3 426.8 455.8 481.8 503.5 523.7 542.1 
(0.50,  1.50) 321.9 376.8 416.1 447.3 473.7 496.9 517.7 536.6 553.9 
(0.50,  2.00) 349.9 398.9 434.4 462.8 487.1 508.7 528.3 546.2 562.7 
(1.00,  0.00) 1.82’  9.43 19.48 27.02 32.49 36.70 40.10 42.92 45.32 
(1.00,  0.50) 11.93 25.24 41.65 55.52 67.13 77.24 86.29 94.52 102.0 
(1.00,   1.00) 23.08 43.94 64.56 81.40 95.45 107.7 118.7 128.7 138.0 
(1.00,   1.50) 34.06 58.86 80.11 96.78 110.4 122.3 133.0 142.7 151.8 
(1.00,   2.00) 45.09 71.09 91.48 107.1 119.8 130.8 140.8 150.0 158.6 
(1.50,  0.00) 13.05 22.02 37.02 49.67 59.49 67.35 73.84 79.35 84.13 
(1.50,  0.50) 13.44 6.36’  12.19 19.14 24.62 28.82 32.11 34.72 36.81 
(1.50,   1.00) 15.53 11.10 19.73 29.37 37.49 44.30 50.20 55.39 60.03 
(1.50,   1.50) 15.46 17.81 30.20 42.06 51.82 60.05 67.25 73.70 79.57 
(1.50,   2.00) 16.17 24.75 39.21 51.59 61.42 69.56 76.65 83.01 88.83 
(2.00,  0.00) 25.69 43.36 65.23 82.72 95.77 105.7 113.7 120.3 125.9 
(2.00,  0.50) 25.17 13.30 18.83 28.03 36.32 43.21 48.99 53.89 58.10 
(2.00,   1.00) 31.93 11.15 10.28 15.39 20.67 25.05 28.61 31.49 33.80 
(2.00,   1.50) 31.17 12.13 13.38 20.35 27.29 33.23 38.30 42.68 46.49 
(2.00,   2.00) 26.64 13.53 18.82 28.04 36.36 43.32 49.25 54.42 59.02 

 
In bold the non-rejection values of the null hypothesis (10) at the 95% significance level.   ‘ : Non-rejection 
values at the 95% significance level with the finite sample critical values obtained in Table 5 
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TABLE  5 

Critical values of Robinson’s (1994) tests in finite samples 

ρ(L)  /  Size 10% 5% 1% 0.1% 
dLL )1()( 4−=ρ  5.00 6.32 8.88 12.80 

21 )1()1()( 22 dd LLL +−=ρ  6.24 7.59 10.19 13.86 
321 )1()1()1()( 2 ddd LLLL ++−=ρ  7.08 8.60 12.02 16.97 

 
The sample size is T = 120 and 50,000 replications wre used in each case. 
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TABLE 6 

Rejection frequencies of R̂  in (11) against fractional alternatives based on the critical values 
obtained in Table 5.       True model: (1 – L4) yt = εt, and  T = 120.  

θθρ +−= 14 )1();( LL  

θ -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
 0505 0.468 0.332 0.077 0.046 0.442 0.915 0.994 0.999 

21 1212 )1()1();( θθθρ ++ +−= LLL  

θ1  /  θ2   -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
-1.00 0.736 0.947 0.794 0.785 0.843 0.888 0.919 0.939 0.950 
-0.75 0.960 0.627 0.754 0.764 0.888 0.949 0.973 0.984 0.989 
-0.50 1.000 0.970 0.412 0.571 0.886 0.969 0.991 0.997 0.998 
-0.25 1.000 1.000 0.960 0.107 0.642 0.956 0.993 0.998 0.999 
 0.00 1.000 1.000 0.999 0.922 0.048 0.725 0.980 0.997 0.999 
 0.25 1.000 1.000 1.000 0.999 0.857 0.204 0.763 0.985 0.999 
 0.50 1.000 1.000 1.000 1.000 0.997 0.814 0.717 0.778 0.987 
 0.75 1.000 1.000 1.000 1.000 1.000 0.996 0.812 0.961 0.784 
 1.00 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.822 0.995 

321 1211 )1()1()1();( θθθθρ +++ ++−= LLLL  

(θ1, θ2)   /  θ3   -1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 
(-1.00, -1.00) 0.829 0.923 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00, -0.50) 0.979 0.985 0.998 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  0.00) 0.987 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  0.50) 0.985 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-1.00,  1.00) 0.981 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50, -1.00) 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50, -0.50) 1.000 0.959 0.533 0.815 0.998 1.000 1.000 1.000 1.000 
(-0.50,  0.00) 1.000 0.994 0.945 0.985 1.000 1.000 1.000 1.000 1.000 
(-0.50,  0.50) 1.000 0.994 0.996 1.000 1.000 1.000 1.000 1.000 1.000 
(-0.50,  1.00) 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.00,   0.00) 1.000 1.000 0.997 0.541 0.049 0.687 0.999 1.000 1.000 
(0.00,   0.50) 1.000 1.000 1.000 0.881 0.636 0.961 1.000 1.000 1.000 
(0.00,   1.00) 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 
(0.50,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(0.50,   0.00) 1.000 1.000 1.000 1.000 0.992 0.997 1.000 1.000 1.000 
(0.50,   0.50) 1.000 1.000 1.000 1.000 0.700 0.355 0.872 0.998 1.000 
(0.50,   1.00) 1.000 1.000 1.000 1.000 0.817 0.452 0.904 0.997 1.000 
(1.00,  -1.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,  -0.50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   0.00) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
(1.00,   0.50) 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 
(1.00,   1.00) 1.000 1.000 1.000 1.000 0.999 0.937 0.939 0.998 1.000 

 
10,000 replications were used for each case. Sizes are in bold and the nominal size was 5%. 
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