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Multiple Time Series Analysis
Alexander Benkwitz

This chapter demonstrates how to use XploRe for specifying, estimating, and
interpreting vector autoregressive (VAR) models. VAR modeling belongs
to multiple time series analysis. It is one approach in econometrics to
describe a system of more than one equation and was introduced by Sims
(1980). The classical multi equation modeling (e.g. Dhrymes 1978) is not
considered here.

Using the XploRe quantlib multi we will build a model for aggregate money
demand. The first section shows how to prepare data and how to start the
interactive menu part of the quantlib. The second section explains what could
be done in a preliminary analysis. The specification, estimation, and valida-
tion of a full VAR model is carried out in the third section. Finally, model
interpretation is left for the last section.

For a detailed monograph on multiple time series analysis see Liitkepohl (1993).
The quantlib multi is based on a software of Haase, Liitkepohl, Claessen,
Moryson, and Schneider (1992).

1 Getting Started

The quantlib multi is an interactive tool for specifying and analyzing multiple
time series models. In the next sections we will try to build a small German
money demand model. Qur approach is to specify a model in full VAR form.
This can be justified as a first step since the full VAR is a quite general model.
It is also chosen here for exposition purpose.

Such a model should obviously include the money demand itself and some
of its determinants. Money demand is set equal to the money circulating in
the economy (henceforth referred as M). Two determinants are included: the
transaction volume of the economy which is given by the gross national product



(GNP, henceforth referred as Y') and the costs of holding money which is given
by an interest rate (henceforth referred as I). From economic theory we know
that Y has a positive whereas I has a negative effect on M. We might want
to find out whether these theoretical considerations are supported by some
observed data and whether a full VAR model is a satisfactory description of
the relation between the variables involved.

But before starting the analysis we need to prepare the data and start the
quantlet domulti.

1.1 Data Preparation

The time series need to be provided as a numeric 7' x K data matrix x, where T’
is the length of the time series, and K its dimension. The first K -dimensional
vector of observations is in the first row of x, the second vector of observations
is in the second row of x, and so forth. The data matrix must not contain
verbal information. Additional data information (variable names, observation
period) are given directly to domulti.

This chapter will use the dataset mts which contains three time series:

e German real money—M1 (M),

e German real gross national product (Y), and

e German interest rate (I).
The sample begins in 1960, 1-st quarter and ends 1989, 4-th quarter. It contains
120 quarterly observations. M and Y are seasonally adjusted and in prices of

1985. It is stated in Billion of German Marks. All data is taken from the
OECD.

1.2 Starting multi

The quantlet domulti takes up to five inputs: The data matrix z, the main
period of the first observation (1960), the sub period of the first observation
(1), the periodicity (4), and the variable names (M, Y, and I).

Call domulti by



library("multi")
x=read("mts.dat")
domulti(x,1960,1,4,"M"["Y"|"I")

Q mts01.xpl

The main menu

Main Menu: Multiple Time Seres A...

Multiple Time Seres Graphic
Tranzformations and prefiminary analysis
Model type

Model specification and estimation
Output filename

Cuit ik

Pleaze select dezsired items and press OF.

will appear which means that we have entered the menu driven part of the
multi quantlib. We can start the analysis now.

2 Preliminary Analysis

This section should generally answer the question what model type corresponds
best to the given data. Since the task is to fit a full VAR model the consid-
eration is restricted to the question whether the given data set fits well in a
full VAR framework. For this we note that the inference we want to make in
Sections 3 and 4 requires data generated by a stable process. Stability implies
mean and variance stationarity of the data. These features will be of interest
in the following preliminary analysis.



2.1 Plotting the Data

It is good practice to start time series investigation by just visual inspection of
the data graphs. We can view all time series in one chart or separate charts.
Since we deal with multiple time series analysis we choose option one. This
gives the following picture:
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Sample period 1960 (1) -- 1989 (4), 120 observations

In order to display the interest series (I) together with the other two series in
one panel we changed its scaling by factor 10. It seems that M and Y may be
subject to linear trend and/or exponential growth. It is clear from this graph
that M and Y have no stationary mean.



2.2 Data Transformation

It is common to handle linear trend by differencing the data. Exponential
growth can be transformed by applying the natural logarithm. Exactly these
two transformations are supported. If both transformations are chosen the
logarithmic transformation is automatically performed first.

Further transformations may be performed with XploRe before the data matrix
z is given to domulti.

Here we choose both transformations for the series M and Y. Since we deal
with seasonally adjusted data we use the default differencing lag of 1.

Select time sernies Preanalysis: M |

b Erciude

Y Matural lagarithrn

| 1. Differenices

Back Graphic

ACF

PACF

Periodogram

Spectral density estimation
Back

Pleaze select desired items and prezs OF Pleaze select dezired items and press OF

After performing the transformations with the two menus above we plot the
transformed time series which gives the following graphics:
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Sample period 1960 (2) -- 1989 (4), 119 observations

Note that our sample size reduced to 119 observations after differencing once.
In the last picture the interest rate series is scaled by factor 10~2.

Now it is reasonable to assume mean and variance stationarity of the M and
Y series. However, at the beginning of both series we still observe a period of
high fluctuations compared with the end. We might keep this feature in mind
for later steps of the analysis.



3 Specifying a VAR Model

The starting point in the Sims methodology (Sims 1980) is the formulation of
an unrestricted VAR model. We will specify a VAR model of order p (VAR(p))
in the following general form:

ye=v+Ay 1+ ...+ Apyr_p + ur, t=1,...,T, (1)
where
o y; = (yi¢,..-,yKe) T is the K-dimensional vector of the time series at
time ¢,
o v=(v1,...,vk)T is a vector of ones (intercept),
o u; = (u1¢, ... ,urt)? is a K-dimensional disturbance vector with covari-

ance matrix ¥,

e A; is the parameter matrix of y;—;, i =1,...,p.

To analyze a model in the form (1) we need to set the model type to Full VAR
after selecting Model type in the Main Menu:

Main Menu: Multiple Time Seres A... Select model type

Multiple Time Series Graphic Full AR
Tranzformations and prefiminary analysis Subset VAR
Model type Feduced Rank WAR
Model specification and estimation Cointegration
Output filename
Cuit ik
Pleaze zelect desired items and press OF, Pleaze zelect desired items and press OF,

In our model y,; is specified with y; = (A(In M), A(InY),I)]. The variable
order in the vector y; is given by the data matrix x. The next steps include



finding a suitable model order p and estimating the model parameter matrices
v, Aq,...,A,. Having done this we should conduct a residual analysis to check
the whiteness assumption. If the residual analysis is satisfactory we can use
the model for interpretation and forecasting.

3.1 Process Order

We can use economic theory or information contained in the data for specifying
the model order p. Since we have no a priori knowledge from theory we use
statistical tools for choosing an appropriate p. The quantlib multi provides the
FPE, AIC, HQ and SC criteria (see 7, Chapter 4). They all compare different
VAR(p) models with p = 0,..., pmax Wwith respect to some objective function.
The order p which optimizes the function is the recommended order.

Before we apply the order selection criteria we must set the highest possible
order pmax- This can be difficult: In order to avoid an optimum at the edge and
to restrict the parameter space not too much pp,.x should be reasonable large.
On the other hand pmax must not be too large since we need at least pmax + 1
presample values which reduces the sample size T and results in unprecise
estimates or worst in a model that cannot be estimated. Since we deal with
quarterly data we should consider at least the periodicity as a possible process
order. Moving a bit “away” from the periodicity we set pmax = 7-

In the Main Menu we select Model specification and estimation and prepare the
subsequent call to the model selection criteria:

Main Menu: Multiple Time Series A...

Multiple Time Series Graphic
Tranzformations and preliminary analysis

Modd oot ReadValve |
Model specification and estimation HeadlValue

Output filename
Quit mulk Order

Mean adjusted [No=0, Yes=1]

Beginning of sample

11

End of sample

—
=
=

Pleasze select desired items and press OK

For that we must divide the data set in a presample and sample period. We
can ignore the input fields Order and Mean adjusted (set to 0). The presample



period must contain at least pmax Observations. Since we have differenced the
data once one more observation is "lost’. Therefore the Beginning of sample is
set t0 pmax + 2 = 9. If the sample is not split appropriately an error message
appears in the output window which indicates the problem.

Press OK to enter the menu of VAR estimation results (main results menu)
and select VAR order criteria. Here we are asked to input pmax:

Menu: Results of Full VAR estimati...

WaR arder criteria

Coefficients [standard errors)
Coefficients [t-ratios)
Covariance Matrix of Residuals
Residual Analyzis

Test for structural break,
Structural Analyziz

Farecasting

(it ta main menu

Pleaze select dezsired items and press OF.

Read ¥alue

Max order?

The results of the order selection criteria will be presented in a separate window.
The optimum for every criterion is found at the minimum value:

O der I n( FPE) Al C
0 -15. 3010 -15. 3546
1 -17.5302 -17.5839
2 -17. 6266 -17. 6806
3 -17. 6536 -17.7086
4 -17.9254 -17.9821
5 -17. 8242 -17. 8836
6 -17.7468 -17. 8103
7 -17. 6602 -17.7293

HQ SC
-15. 3546 -15. 3546
-17. 4952 -17. 3654
-17.5033 -17. 2437
-17. 4427 -17.0532
-17.6276 -17.1083
-17. 4405 -16.7914
-17.2785 -16. 4996
-17.1089 -16. 2002

The optimum values are FPE(4) =

—17.9254, AIC(4) = —17.9821, HQ(4) =
—17.6276, and SC(1) = —17.3654. The recommendation of the SC-criterion is



quite different from the others. Such a result is not uncommon. For a detailed
discussion about the properties of the criteria see Liitkepohl (1993, Chapter 4).

We start our analysis with p = 4 but should keep in mind the other possible
process order. Thus we start with a VAR(4) which is the most general model
supported by the data. This also includes a VAR(1) by setting Ay = Az =
Ag=0.

3.2 Model Estimation

In order to estimate a VAR(4) we need to go back to the Main Menu and select
Model specification and estimation again. However, this time we set the Order
to 4 for estimating a VAR(4) model:

Main Menu: Multiple Time Series A...

Multiple Time Series Graphic
Transformations and preliminary analpsiz
M adel type [full]

Model specification and estimation
Output filename

Gluit muli

Fleaze zelect desired items and press OK

Read Value

Order
Mean adjusted [Mo=0, Yes=1]

Beginning of sample

il

End of sample

Press OK to enter the results main menu. The VAR(4) is estimated by mul-
tivariate least squares. Next we view the estimates 7, Aq,..., A4 and their
t-values:

10



Intercept (t-ratios in parentheses)

0.03 ( 1.86)

0.02 ( 2.24)

0.36 ( 0.93)

Al
-0.28 (-3.05) 0.15 ( 1.00) -0.02 (-4.04)
-0.06 (-1.00) -0.28 (-2.98) 0.00 ( 0.50)
1.91 ( 0.82) 0.93 ( 0.24) 1.09 (11.04)
A2

0.03 ( 0.27) -0.35 (-2.32) 0.01 ( 1.83)
0.02 ( 0.41) -0.09 (-0.94) 0.00 (-0.90)
-0.05 (-0.02) 4.11 ( 1.06) -0.11 (-0.72)
A3
-0.14 (-1.60) 0.03 ( 0.18)  0.00 (-0.30)
0.14 ( 2.52) -0.06 (-0.61) 0.00 (-0.85)
1.88 ( 0.85) 0.87 ( 0.23) 0.07 ( 0.49)
A4

0.44 ( 5.09) -0.02 (-0.16) 0.01 ( 1.31)
0.19 ( 3.41) 0.22 ( 2.47) 0.00 ( 1.05)
2.23 ( 1.00) 1.32 ( 0.37) -0.13 (-1.17)

It can be seen that not all elements of the parameter matrices are significant
different from zero. Especially in A, and As we observe only one significant
value. This could be the starting point for choosing a subset VAR where single
elements of A; are restricted to zero.

Selecting Covariance matrix of residuals from the main results menu displays the

estimated residual covariance and correlation matrices.
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Covariance Matrix of Residuals
Det erm nant = 1. 16E-08

3.56e-04  2.00e-05 -8.31e-04
2.00e-05 1.42e-04 5.57e-04
-8.31e-04 5.57e-04 2.37e-01

Correlation Matrix of Residuals

1.000 0.089 -0.090

0. 089 1.000 0.096
-0.090 0.096 1. 000

The correlation matrix tells us something about the contemporaneous correla-
tion structure in the residual vector u;. We note here that there is no correlation
in us. At a later point we will come back to the implications of this feature.

3.3 Model Validation

In Subsection 3.2 we have estimated a VAR(4)-model. Since we did not know
the “correct” order we used statistical tools to find a reasonable one. Some es-
timation results were presented. Partly they are based on properties of the esti-
mator (limiting normal distribution) which assume certain conditions. Whether
these conditions hold is checked in this subsection. One can think of a residual
analysis, tests for nonnormality and tests for structural change. Here we will
consider the residual analysis and a test for nonnormality in more detail.

Checking the whiteness of the residuals is a prerequisite for drawing valid con-
clusions from the t¢-values presented above. If we want to compute reliable
forecast intervals we need to check the normality of the residuals in addition.

From the main results menu we select Residual Analysis which enables us to go
through the three steps of residual analysis in multi:

12



Menu: Rezultz of Full VAR estimati... Menu: Rezidual Analysis of Full ¥.__ |

WaR arder criteria

Coefficients [standard errors)
Coefficients [t-ratios)
Covariance Matrix of Residuals
Residual Analyzis

Test for structural break,
Structural Analyziz

Farecasting

(it ta main menu

Pleaze select dezsired items and press OF.

Individual Residual Series Analpsis
Multivaniate Portmanteau statistic
builtivariate normality tests

Back

Pleaze select desired items and prezs OF.

Individual residual analysis

First we have to select one equation. Then we have the chance to do some
transformations to the estimated residuals u;;. We selected here Residuals
which leaves i;; untransformed.

Select desired transformation

Select ime senes |
hd

v
|
Back

Pleaze select dezired items and preszs OF.

Residuals

Abzolute reziduals
Squared residuals
Back

Pleaze select desired items and prezs OF.

13

From the following menu we present here the Plot of residuals. We do this for
all equations.



Plot of residuals

ACF of residuals

PACF of residualz
Penodogram of residuals
Spectral denzity estimation
Back to results menu

Pleaze select dezired items and preszs OF.

In the residual plots the unit of measurement is one standard deviation. In
other words, the residuals are normalized to have unit variance. Thus, if many
residuals exceed 2 in absolute value this may be evidence for nonnormality or
nonlinear features that are not adequately captured by the model. Furthermore
we might look for distinct patterns in the residual plots that rule out whiteness.

M: Plot of residuals

L L

T T T T T T
1960 1965 1970 1975 1980 1985
X
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Y: Plot of residuals
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X
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Multivariate portmanteau statistic

Checking the white noise assumption for the residuals is a central issue. Many
inferential procedures rely on this assumption.

The menu point Multivariate Portmanteau statistic provides two tools. Here we
look at the residual vector u; at time points ¢t and ¢ —i. For these we compute
the i-th autocorrelation matrix R,,(i). White noise means zero autocorrelation
for all # > 1. Before checking the autocorrelation functions and carrying out
an overall test we are asked to input a maximum lag h we want to check
autocorrelation for:

Read ¥alue

Up to which lag should be tested?

For the overall test to work the maximum lag of the autocorrelations to be
included must exceed the order of the process as otherwise negative degrees of
freedom of the approximating x? distribution will result. If a lag h less than
or equal to the VAR order is specified a warning is given and the statistic is
computed for the smallest feasible lag. Generally, the x? approximation to the
true distribution of the modified portmanteau statistic may be inappropriate
for small lags h. At the same time we must make sure that h < T for obvious
reasons.

Here we have chosen h = 20. The resulting plots of the autocorrelation
functions appear. The autocorrelation plots come along with approximate
+2/ \/(T) confidence bounds. These plots do not exhibit significant autocorre-
lations. Especially the p;,¢ with ¢ < p are much smaller than the approximate
confidence bound which is a good result since the exact confidence bound for
smaller autocorrelation lag can be much smaller than the approximate.

16
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A test for the overall significance of the residual autocorrelations up to lag h
appears in a second display. It is the result of the test

The value of the modified portmanteau statistic P, (see Liitkepohl 1993, Chap-

HO : Rh = (Ru(l), ..

ter 4) is shown:

s Ru(h)) =0
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Lag order h
Model order p

statistic P

Mul tivariate Portmanteau statistic

20
4

Degrees of freedom din'2(h-p) 144

145.74

chi 2(P, df) 0. 5562

Reject e.g. if chi2(P,df) > 0.95

As expected we cannot reject Hy at a 95% significance level. This result is in
line with the shown residual autocorrelation functions above. The residuals of
our model do not exhibit autocorrelation.

Multivariate normality test

Multivariate Normality test displays the x2-statistics associated with the skew-
ness and kurtosis of the residuals which may be used for tests of nonnormality.

X df Chi 2(df, x)
Skewness: 4.69 3 0.80
Kurtosis: 1.43 3 0.30
Skewness and Kurtosis: 6.12 6 0.59

x: Value of Statistic
df : degrees of freedom
Chi 2(df, x): Chi-square cdf

Reject normality e.g. if Chi2(df,x) > 0.95!

The result shows that normality of the residuals is not rejected on grounds of
the test of kurtosis and the joint test of skewness and kurtosis. The implication
is that the confidence intervals computed for the forecasts are reliable.

18



4 Structural Analysis

The interpretation of VAR models based on parameter matrices Ai,..., A, is
clearly restricted. Therefore concepts and tools were developed to interpret
VAR models easily. The most important are the causality concepts, forecast
error variance decomposition and the impulse response analysis. In this section
we will deal with the impulse response analysis.

4.1 Impulse Response Analysis

The impulse response analysis quantifies the reaction of every single variable in
the model on an exogenous shock to the model. Two special cases of shocks can
be identified: The single equation shock and the joint equation shock where the
shock mirrors the residual covariance structure. In the first case we investigate
forecast error impulse responses, in the latter orthogonalized impulse responses.
The reaction is measured for every variable a certain time after shocking the
system. The impulse response analysis is therefore a tool for inspecting the
inter-relation of the model variables.

We enter the impulse response analysis directly when selecting the menu point
Structural Analysis in the main results menu:

Menu: Results of Full YAR estimati... Impulse Response Analysis |

WaR order criteria Graphic
Coefficients [gtandard erors) Select impulze rezponse function
Coefficients [t-ratioz) Select confidence interyal
Covariance Matrix of Residuals Set nominal coverage
Rezidual Analyziz Compute boatstrap confidence intervals
Test for stuctural break, Select impulse variable
Structural Analysis Select response vanable
Forecasting Set maximum lead
Cluit ko main menu Set zzaling
Exit impulze responze analysis

Pleaze select desired itemz and press OF, Pleasze select desired itemsz and press OF,

Now we have to decide about the time horizon. Here we have chosen 12 periods

19



which is a time span of three years in our model. Next we select forecast error
impulse response and orthogonalized impulse response functions in turn,

Select impulse response function[s]

Faorecast enar impulze responze
Qrthogonalized impulze responze
Accumnulated impulse rezponze [FE]

Read Value

Set maximum lead Pleaze select desired items and press DK

which gives the following pictures. On the left side we see the forecast error
impulse responses, on the right side the orthogonalized impulse responses:

TmpUrSe TmpUrSe

Response of Response of

HEE]
A
HEE]
SR =
=

Not surprisingly there is no big difference between the two pictures. This was
expected since looking at the residual correlation structure in Subsection 3.2
we do not see any strong correlation between the residuals of the equations.

When interpreting these charts we have to keep in mind that M and Y enter the
model as A(ln M) and A(InY’). In the first row of charts we see the response

20



of money growth rate to a unit impulse in money growth rate, GNP growth
rate, and interest, respectively. The second and third row of charts show the
response pattern of GNP growth rate and interest.

The charts in the last row/last column are the reaction patterns we expected.
They show the negative relation of interest and money/GNP. However, all
money/GNP charts do not show a definite pattern. We could assume that
after the initial impulse the true impulse responses are zero. A measure for
checking the accuracy of the estimated impulse responses is desirable. It is
provided in Subsection 4.2.

In our model it might be particularly interesting to analyze accumulated im-
pulse responses. Accumulated impulse responses at time horizon A are obtained
by summing up all impulse responses from 0 to h. Selecting this type of impulse
responses function gives the following picture:

TMpUISE
M Y
Response of \/\/\/\/\/\/
M
o 5 0 o 5 0
Y /\/\/——
o 5 0 o 5 0

It shows that in the long run the total impulse response from money to money
and from GNP to GNP is slightly below one and the cross total impulse re-

21



sponses are close to zero. The negative effect of GNP on money seems not very
plausible. We therefore need some measure for checking the accuracy of the
estimated impulse responses.

4.2 Confidence Intervals for Impulse Responses

The impulse response plots in Subsection 4.1 are based on the model estimates
in Subsection 3.2 and therefore also estimates. In order to make inference
on statistical grounds we need some measures for the reliability of these esti-
mates. multi provides confidence intervals. There are the asymptotic normal
distribution confidence interval (Liitkepohl 1993, Chapter 3), and two types of
bootstrap confidence intervals (e.g. Benkwitz, Liitkepohl, and Wolters 2000):

Select confidence interval(s]

Marmal distribution
Hall percentile bootstrap
Efron percentile bootstrap

Fleaze zelect desired itemz and press OK

Read Value

Set number of bootstrap drawings

Let ¢ be an arbitrary impulse response, quST its estimate based on a sample
size T, and ¢AS} a bootstrapped impulse response. The bootstrap confidence
intervals are based on the statistics q@} (Efron percentile) and qB*T — qBT (Hall
Percentile). A precise description of these confidence intervals can be found in
Efron and Tibshirani (1993) and Hall (1992). In order to compute bootstrap

22



confidence intervals we have to set the number of bootstrap drawings. Here we
have set this number to 1,000 drawings.

Confidence intervals based on the asymptotic normal distribution are known
to fail even asymptotically in some cases (Liitkepohl 1993). Furthermore their
small sample properties might be bad (Kilian 1998). The first problem can-
not be solved by the bootstrap confidence intervals implemented in multi
(Benkwitz, Liitkepohl, and Neumann 2000). However, the second might be
tackled by the bootstrap.

Here we have decided to compute confidence intervals based on a nominal
coverage of 95%.

TmpUrSe TMpUrSET

M Y 1 M Y

Response of
Response of

The left picture shows the 95% Hall percentile confidence intervals for the fore-
cast error impulse responses. The right picture shows the 95% Hall percentile
confidence intervals for the accumulated impulse responses. Note that the con-
fidence intervals are computed in a pointwise manner. We are now able to
determine which impulse response is significant. It turns out that the response
of interest to an impulse in money growth rate and GNP growth rate (left
picture) is insignificant. Furthermore, our hypothesis about the zero impulse
responses seems to be validated.

To sum up we find many insignificant and very little significant impulse re-
sponses. This might be due to preliminary data transformation and/or model
choice. One might attempt to build a subset or cointegration model. These
models possibly better fit the data which results in better interpretation.
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