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Abstract. A particular version of the tests of Robinson (1994) for testing stochastic 

cycles in macroeconomic time series is proposed in this article. The tests have a standard 

limit distribution and are easy to implement in raw time series. A Monte Carlo 

experiment is conducted, studying the size and the power of the tests against different 

alternatives, and the results are compared with those based on other tests. An empirical 

application using historical U.S. annual data is also carried out at the end of the article. 
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1. INTRODUCTION 

Deterministic cycles seem to be inappropriate for modelling most macroeconomic time 

series. Stochastic cycles were proposed by Harvey (1985) amongst others, and they were 

generalized to allow for long memory by Gray et al. (1989, 1994). In particular, they 

considered processes like 

...,2,1,)21( 2 ==+− tuxLL tt
dµ   (1) 

where d can be any real number and ut is an I(0) process, defined in this context as a 

covariance stationary process with spectral density function which is bounded and  

bounded away from zero at any frequency.  Clearly, when d = 0, xt = ut, and we say then 

that xt is �weakly autocorrelated�, as opposed to d > 0 when the process is said to be 

�strongly autocorrelated� or also called �strongly dependent� because of the strong 

association between observations widely separated in time. Gray el al. (1989) showed 

that xt in (1) is stationary if µ  < 1 and d < 0.50 or if µ  = 1 and d < 0.25. They also 

showed that the polynomial in (1) can be expressed in terms of the Gegenbauer 

polynomial Cj,d (µ) such that for all d ≠ 0 
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and a truncation will be required below (2) to make (1) operational. Thus, the process in 

(1) becomes 
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and when d = 1, we have 
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      ...,2,1,2 21 =+−= −− tuxxx tttt µ   (4) 

which is a cyclic I(1) process with the periodicity determined by µ. Tests of (4) based on 

autoregressive (AR) alternatives were proposed amongst others by Ahtola and Tiao 

(1987). 

In this article we propose the use of the fractional structure (1) for testing 

cyclical unit root models like (4), using a particular version of the tests of Robinson 

(1994). These tests are explained in Section 2. Section 3 contains a Monte Carlo 

experiment, studying the size and the power of the tests in finite sample, and the results 

are compared with those based on Ahtola and Tiao�s (1987) procedure. Section 4 applies 

the tests of Robinson (1994) to several macroeconomic time series while Section 5 

contains some concluding remarks. 

 

2. TESTING CYCLES WITH THE ROBINSON�S (1994) TESTS 

Robinson (1994) proposes tests for unit roots and other forms of nonstationary 

hypotheses. He considers the regression model 

....,2,1,' =+= txzy ttt β     (5) 

where yt is the time series we observe, β is a (kx1) vector of unknown parameters and zt 

is a (kx1) vector of exogenous regressors. The regression errors xt are such that 

...,2,1,);( == tuxL ttθρ     (6) 

with xj = 0 for j ≤ 0; ut is a (possible weakly autocorrelated) I(0) process and ρ is a 

prescribed function of L and of the (px1) parameter vector θ, especifically, 

 ∏
=

+++ +−+−=
p

j

d
r

dd jjLLwLLL
3

2 ,)cos21()1()1();( 2211 θθθθρ  

for given values of d1, d2, �, dp, and wr.  He proposes a Lagrange multiplier (LM) test 

for testing the null 
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Ho:  θ  =  0,     (7) 

in (5) and (6).  Thus, under (7), we can consider a wide range of possibilities to be tested 

in (6), for example: 

a) I(1) processes: if ρ(L; θ) = (1 � L)1 + θ, 

b) I(d) processes: if ρ(L; θ) = (1 � L)d + θ, 

c) Quarterly I(1): if ρ(L; θ) = (1 � L4)1 + θ, 

d) Cyclic I(1): if ρ(L; θ) = (1 � 2 µL + L2)1 + θ, and so on. 

Specifically, the test statistic proposed by Robinson (1994) is given by 
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g(λ j; τ) is the function appearing in the spectral density of ut: f(λ j; τ) =  (σ2/2π) g(λ j; τ), 

evaluated at τ�  = arg min  σ2(τ), and Iû (λ j) is the periodogram of ût defined as: 
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where ρ(L) = ρ(L; θ = 0) and the summation on * in the above expressions are over λ ∈  

M where M = {λ: -π < λ < π, λ ∉  (ρl - λ1, ρl +λ1), l=1,2,�s}, such that ρl, l = 1,2,�s < 

∞ are the distinct poles of ψ(λ) on (-π, π]. 

Robinson (1994) showed that under very general conditions, 

,,� 2 ∞→Χ→ TasR p     (9) 

and the same limit distribution holds whether or not deterministic regressors are 

included in (5). Furthermore, he shows that the above tests are efficient in the Pitman 

sense, that against local alternatives of form: Ha: θ = δ T-1/2, for δ ≠ 0, the limit 

distribution is 2
pχ (υ) with a non-centrality parameter, υ, which is optimal under 

Gaussianity of ut. In this article we are concerned with the presence of unit root cycles in 

macroeconomic time series. Therefore, we can particularize the above tests to the case 

where d3 = 1 and dj = 0 for all j ≠3. Then, 

θθρ ++−= 12 )cos21();( LLwL r               (10) 

and substituting (10) in (6), we obtain, under the null hypothesis (7), the cyclic I(1) 

model (4) with µ = wr. In this context  

( )rjj wcoscos2log)( −= λλψ  

and p = 1. Thus, a one-sided test of (7) against the alternatives: 

Ha:  θ  >  0,               (11) 

will be given by the rule: 

�Reject Ho if r�  >  zα�, 

where the probability that a standard normal variate exceeds zα is α. Conversely, a test 

of (7) against alternatives: 

Ha:  θ  <  0,                        (12) 

will be given by the rule: 
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�Reject Ho if r�   <  - zα�. 

The tests of Robinson (1994) were applied to an extended version of the Nelson 

and Plosser�s (1982) dataset in Gil-Alana and Robinson (1997), testing the presence of 

unit roots and other long memory processes when the singularity at the spectrum 

occurred at the zero frequency. Other versions of Robinson�s (1994) tests, involving 

quarterly and monthly data, were respectively studied in Gil-Alana and Robinson (1998) 

and Gil-Alana (1999). However, testing cyclical unit root models with the tests of 

Robinson (1994) still remained without examination; one by-product of this work is its 

emergence as an alternative way of testing stochastic cycles in raw time series. 

 

3. A MONTE CARLO SIMULATION STUDY 

This section examines the finite-sample behaviour of versions of the above tests by 

means of Monte Carlo simulations, studying the size and the power of the tests when 

directed against fractionally and non-fractionally alternatives. In Robinson (1994), a 

finite-sample experiment was also performed. In that paper, he looked at the rejection 

frequencies when the model was a pure random walk (i.e., (1 � L) xt = εt), and the 

alternatives were either fractional (i.e., (1 � L)1+θ xt = εt), or autoregressive (i.e., (1 � 

(1+θ)L) xt = εt), for different values of θ. 

In this section we investigate the power of Robinson�s (1994) tests when the true 

model is a cyclic I(1) process of form as in (4) and the alternatives are firstly  

tt uxLL =+− +θµ 12 )21(  

for different values of θ. That is, the alternatives have the roots at the same frequencies 

as in the true model and thus, the number of periods per cycle remains the same under 

both the null and the alternative hypotheses. However, we will also examine cases where 

the number of periods per cycle changes under the alternative hypothesis. These results 
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will be then compared with those obtained using the Ahtola and Tiao�s (1987) 

procedure. Their tests are based on autoregressive alternatives of form: 

,2211 tttt uxxx ++= −− φφ              (13) 

which, under the null Ho: φ 1  < 2  and  φ2 = -1, becomes the cyclic I(1) model (4). 

In Tables 1 � 5 we look at the rejection frequencies of Robinson�s (1994) tests 

when the null model consists of (5) � (7) and (10) with β = 0 a priori (i.e., yt = xt), and 

wr = 2πr/T, with r = T/2, T/4, T/8, T/10 and T/20, i.e., we look at unit root cycles 

occurring each 2, 4, 8, 10 and 20 periods. The alternatives will be fractional with θ = -1; 

-0.8; -0.6; �.(0.2) �0,6; 0.8; 1 when T = 40 and non-fractional with θ = -1; 0; 1 when 

T > 40, and r = T/2; T/4; T/8; T/10 and T/20 in all cases. Thus, the rejection frequencies 

corresponding to θ = 0 when the same r is taken under the null and the alternative 

hypothesis will indicate the sizes of the tests. In these cases we calculated both the one 

and the two sided test statistics. We generate Gaussian series generated by the routines 

GASDEV and RAN3  of Press, Flannery, Teukolsky and Vetterling (1986), with 10,000 

replications of each case. The sample sizes were initially T = 40, 80, 120 and 160. 

However, given the similarities in the last three cases, we only report in the tables the 

results for T = 40 and 160. In all cases the nominal size is 5%. 

In Table 1 the true model is given by  

(1 � 2 cos wr L + L2)1 + θ xt  = εt,             (14) 

with r = T/2; θ = 0 and white noise εt, i.e., we have a unit root cycle occurring each two 

periods. If the alternatives are also modelled with r = T/2, we look at the rejection 

frequencies for both the one and the two sided test statistics, (i.e., r�  and R�  in (8)). 

Looking at the one-sided tests, the sizes of r� are too large for θ < 0 but too small for θ > 

0, however, they improve considerably as we increase the number of observations. The 
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size of R�  is also too large when T = 40, but it approximates to the nominal value with T. 

Looking at the rejection frequencies when r = T/2, a bias in favour of negative values of 

θ appears when the fractional alternatives are entertained, and taking r = T/4, T/8, T/10 

and T/20, all the rejection frequencies become 1, even if the number of observations is 

relatively small (e.g., T = 40). 

(Tables 1 and 2 about here) 

 Table 2 reports rejection frequencies when the true model is given by (14) with r 

= T/4 and θ = 0, i.e., we have cycles occurring every four periods. As in Table 1, the 

sizes of the one-sided tests are too large for positive θ but too small for negative values 

of θ, and the size of R�  is too large in all cases, though again improving considerably as 

we increase the number of observations. A bias in favour of negative values of θ also 

appears in this table and it is observed even when the alternatives are θ = ±1. If r ≠ T/4, 

the rejection frequencies are relatively high in all cases except for r = T/8 and θ > 0, 

where the values never exceed 0.500 with T = 40. Increasing the number of 

observations, the rejection frequencies also increase, and some of the pathological cases 

observed above,   (r = T/8; θ = 1) improve considerably (0.999 when T = 160). 

 In Table 3 the true model consists of (14) with r = T/8 and θ = 0. Once more, the 

sizes for the one-sided tests are asymmetric, implying a bias toward negative values of 

θ. The size of R�  is 11.9% when T = 40, and 7.4% when T = 160, and higher rejection 

frequencies are observed when θ = -1 than when θ = 1. When T = 40 and r ≠ T/8, the 

results are quite good for alternatives with r = T/2 and T/4, however, if they include a 

higher number of periods per cycle, (i.e., with r = T/10 or T/20), the results are relatively 

poor when θ is close to zero. Increasing the sample size, the rejection frequencies appear 

fairly reasonable in all cases. 
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(Tables 3 � 5 about here) 

 Table 4 reports rejection frequencies when the true model is a cyclic I(1) process 

with cycles occurring each 10 periods, (i.e., (14) with r = T/10 and θ = 0). As in all the 

previous tables, a bias appears in r�  and R� , with higher values when θ < 0. The worst 

results are again obtained when the alternatives contain more periods per cycle than 

those observed from the true model,  (i.e., when r = T/20), especially when the number 

of observations is small. We see in this table that if the alternatives are such that r = T/20 

and θ = 0, the rejection frequency is 0.437 though it becomes 0.984 when T = 160. 

Finally Table 5 reports the results when the true model contains 20 periods per cycle. 

The sizes of r�  are again biased and the size of R�  is too large in all cases, though 

improving with T. The rejection frequencies are relatively high in all cases, especially 

when the alternatives are such that r = T/2 and T/4. 

 Table 6 reports results of the same experiment as in Tables 1 � 5, but using the 

Ahtola and Tiao�s (1987) procedure. Their test is based on the least squares estimator of 

the second AR parameter in (13), the test statistic being ),1�( 2 +φT  whose distribution is 

tabulated. It is shown in the paper that the asymptotic distribution of )1�( 2 +φT does not 

depend on φ1 and the frequencies and thus, asymptotic inference about the existence of 

complex roots in the unit circle can be based on the single distribution of ).1�( 2 +φT  This 

makes a different with respect to Robinson�s (1994) tests, where the periodicity µ must 

be given for testing of a unit root cycle. Thus, instead of presenting the results below 

each of the previous tables, we have created a new one (Table 6), whose structure is 

exactly the same as Tables 1 � 5, i.e, showing the rejection frequencies of the test 

statistic when the null model is given by (14) with r = T/2, T/4, T/8, T/10 and T/20, and 

T = 40 and 160 with a nominal size of 5%. 
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(Table 6 about here) 

 Starting with T = 40, we see that the size is 10.3% if r = T/2, and it ranges 

around 5.5% for the remaining values of r. Thus, it is closer to the nominal size than the 

tests of Robinson (1994). These small sizes are also associated with some inferior 

rejection frequencies in many cases, especially when the alternatives are close to the 

null. This is not surprising if we take into account the efficiency property of Robinson�s 

(1994) tests against local alternatives. We see, for example, that if θ = -0.2, the rejection 

frequency in Ahtola and Tiao�s (1987) tests is 0.679 when r = T/2, and it never exceeds 

0.300 for the remaining values of r. Similarly, if θ = 0.2, the rejection probability with r 

= T/2 is 0.516, and it is smaller than 0.250 in all the other cases. This is in sharp contrast 

with the results in Tables 1 � 5, where the rejection frequencies of Robinson�s (1994) 

tests for the same two alternatives are in practically all cases higher than 0.300. On the 

other hand, if we concentrate on departures far away from the null, (i.e., θ = ±1), the 

rejection frequencies in Ahtola and Tiao (1987) are higher in some cases than in 

Robinson (1994), though increasing the sample size, (T = 160), the latter outperforms 

the results in Ahtola and Tiao (1987) when θ = 1. 

 As a conclusion, the tests of Robinson (1994) seem to perform quite well when 

testing the null of cyclic I(1) models. When the sample size is small (eg., T = 40), the 

sizes of r�  are too large for θ < 0 but too small for θ > 0, and the size of R�  is too large in 

all cases. However, as we increase the number of observations, the sizes improve 

considerably, approximating to the nominal value. The rejection frequencies are 

relatively high, especially when the alternatives are such that the number of periods per 

cycle is smaller than that observed from the true model. This suggests that when testing 

unit root cycles with the tests of Robinson (1994), a plausible strategy might be to start 

by testing models containing a large number of periods per cycle and then, testing in a 
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decreasing way. Comparing the tests of Robinson (1994) with Ahtola and Tiao (1987), 

the latter seems to be better in term of size, though the rejection frequencies are higher 

in Robinson (1994) against these fractional alternatives. The following section contains 

an empirical application based on the tests of Robinson (1994) for testing unit root 

cycles in macroeconomic time series. 

 

4. AN EMPIRICAL APPLICATION 

The extended version of the annual data set of fourteen U.S. macroeconomic variables 

analysed by Nelson and Plosser (1982) ends in 1988; as with their data, the starting date 

is 1860 for consumer price index and industrial production; 1869 for velocity; 1871 for 

stock prices; 1889 for GNP deflator and money stock; 1890 for employment and 

unemployment rate; 1900 for bond yield, real wages and wages; and 1909 for nominal 

and real GNP and GNP per capita. As in Nelson and Plosser (1982), all the series except 

the bond yield are transformed to natural logarithms.  

Denoting any of the series yt, we employ throughout the model (5); (6) and (10) 

with zt = (1, t)�, t ≥ 1,  zt = (0, 0)� otherwise, so 

    ...,2,1,21 =++= txty tt ββ                     (15) 

     ....,2,1,/2,)cos21( 12 ===+− + tTrwuxLLw rttr πθ ,   (16) 

testing the null (7) for values of r = T, T/2, T/3, � , T/10, T/20, T/30 and T/40, i.e., 

allowing unit root cycles occurring at 1, 2, 3, �, 10, 20, 30 and 40 periods respectively. 

We treat separately the cases β1 = β2 = 0 a priori, β1 unknown and β2 = 0 a priori, and 

(β1, β2) unknown and model the I(0) disturbances to be both white noise and to have 

parametric autocorrelation. 

 We begin with the assumption that ut in (16) is white noise. The test statistic 

reported in Table 7 (and also in Table 8) is the two-sided one given by R�  in (8). A 
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notable feature of Table 7a, in which β1 =  β2 = 0 a priori, is the fact that we cannot 

reject the unit root null in any of the series when the cycles occur every 6 periods. 

Similarly, if r = T/7 (i.e., 7 periods per cycle), the null is only rejected for velocity. Also, 

in nine series we observe non-rejection values if r = T/5, while unemployment is the 

only one in which the null is not rejected when r = T/3 and T/4. Tables 7b and 7c give 

results, respectively, with β2 = 0 a priori, (i.e., no time trend in the undifferenced 

regression), and both β1 and β2 unrestricted, still with white noise ut. In both tables the 

results are very similar and while there are sometimes large differences in the values of 

R�  across the number of periods per cycle, the conclusions suggested by both seem very 

similar, with the non-rejection values occurring practically always at the same 

series/periods per cycle combination. Imposing r = T/6, the unit root null cannot be 

rejected in any series except unemployment in Table 7b, and unemployment and 

velocity in Table 7c. Similarly, imposing r = T/7, the null is rejected for unemployment, 

velocity and stock prices, in Table 7b, and for these three series along with industrial 

production and bond yield in Table 7c. The shortest periods per cycle where the unit root 

null hypothesis cannot be rejected appear for unemployment, with the non-rejection 

values occurring when r = T/3, T/4 and T/5. We also observe across this table that unit 

root cycles occurring at periods smaller than three or greater than seven are always 

decisively rejected, suggesting that the efficiency property of Robinson�s (1994) tests 

may hold not only against local alternatives but also when the alternatives include 

different numbers of periods per cycle. 

(Tables 7 and 8 about here) 

 Table 8 reports the same statistic as in Table 7 but imposing an autoregressive 

(AR) structure on the disturbances ut. Table 8a corresponds to AR(1) ut, while Tables 8b 

and 8c refer respectively to AR(2) and AR(3) ut. Higher order autoregressions were also 
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performed obtaining similar results. Starting with Tables 8a and 8b, we see that the 

results are very similar. In fact, the non-rejection values occur at exactly the same 

series/periods per cycle combination in all except one single case, which corresponds to 

velocity. For this series, we see in Table 8a that if r = T/5 and T/6, the unit root null is 

not rejected while in Table 8b only the latter case results in rejection. Apart from this 

series, and also unemployment, (where the null hypothesis is always rejected), for the 

remaining series the unit root null cannot be rejected when r = T/6. If r = T/5 or T/7, the 

null is also non-rejected for industrial production, money stock, bond yield and stock 

prices, the latter two series allowing r = T/8 as well. Table 8c gives similar results 

though the proportion of non-rejection values is slightly smaller. On the whole, we 

observe twelve series where the unit root null hypothesis cannot be rejected when r = 

T/6, the only exceptional series being again unemployment, where the null is always 

rejected, and velocity, where r = T/6 is rejected but r = T/5 is not. We also observe that 

imposing an AR(3) process for ut all the non-rejection values form a proper subset of 

those in Tables 8a and 8b. Moreover, in all except two series, only a single value of R�  is 

not rejected across the different r�s. Thus, the unit root null hypothesis is not rejected 

when r = T/6 for real, nominal and real per capita GNP, industrial production, 

employment, GNP deflator, CPI, wages, real wages and money stock, and when r = T/5 

for velocity. Finally, we observe several non-rejections for the bond yield, occurring at r 

= T/4, T/5, T/6 and T/7, and for stock prices at r = T/5 and T/6. 

 We can summarize the results obtained in this section by saying that unit root 

cycles are practically never rejected for the extended version of the Nelson and Plosser�s 

(1982) series, with cycles occurring approximately every 6 periods. These results are 

obtained whether or not we include an intercept or an intercept and a linear trend in the 

regression model, and independently of the way of modelling the I(0) disturbances ut, as 
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white noise or autoregressions. Attempting to summarize the conclusions for individual 

series, we are left with the impression that the cycles occur every 3, 4 or 5 periods for 

unemployment; every 5 or 6 periods for the bond yield; 6 or 7 for industrial production 

and money stock; while for the remaining series, they occur almost exactly every 6 

periods. 

 

5. CONCLUDING REMARKS 

A particular version of the tests of Robinson (1994) for testing stochastic unit root cycles 

in raw time series has been proposed in this article. The tests are nested in fractional 

alternatives of the form advocated by Gray et. al. (1989, 1994) and have standard null 

and local limit distribution. A finite sample experiment, based on Monte Carlo 

simulations was also computed and the results indicate that the tests perform relatively 

well for testing cyclic I(1) processes when the number of periods per cycle under the 

alternative is smaller than or equal to the number of periods per cycle under the null. 

However, if they are greater, the tests have relatively low power, especially if the 

number of observations is small. Thus, a plausible strategy when using these tests might 

be to test initially for a wide number of periods per cycle, and then testing the number of 

them in a decreasing way. Comparing these tests with those based on AR alternatives 

(Ahtola and Tiao, 1987), the results indicate that the latter has better size, though the 

rejection frequencies are higher in Robinson (1994), especially if the alternatives are 

close to the null. 

 The tests were also applied to an extended version of the Nelson and Plosser�s 

(1982) dataset, and the results suggest that a cyclic I(1) model with approximately six 

periods per cycle seems to be a plausible way of modelling all these series, the only 
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exceptions being unemployment and velocity, where the cycles seem to occur at a fewer 

number of periods. 

The frequency domain version of the test statistic used in this article seems to be 

unpopular amongst econometricians. There also exist time domain versions (cf. 

Robinson, 1991). However, our preference here for the frequency domain set-up of 

Robinson (1994) is motivated by the somewhat greater elegance of formulae it affords, 

especially when the disturbances are autocorrelated. In addition, the fact that the article 

stresses the presence of cycles in macroeconomic time series makes the use of the 

frequency domain even more relevant. 

 Several other lines of research are under way which should prove relevant to the 

analysis of these and other macroeconomic data. Thus, for example, testing the order of 

integration of the series for any real value of d must be of interest if we want to 

determine the degree of dependence between the cycles. There also exist multivariate 

versions of the tests of Robinson (1994), (cf. Gil-Alana, 1997), and work is also 

proceeding on programming these multivariate tests in the context of fractional cycles. 
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TABLE 1* 

Rejection frequencies of the tests of Robinson (1994) 

True model: (1 � 2 cos wr L + L2)1+θ xt = εt, with r  = T/2  and  θ = 0 T = 40 
Values of θ 

r Stat. -1 -0.8 -0.6 -0.4 -0.2 0 0 0.2 0.4 0.6 0.8 1 
T/2 r�  1.000 1.000 1.000 .997 .858 0.133 0.021 .566 .787 .809 .892 .961 

T/2 R�  1.000 1.000 .999 .998 .718 0.074 .496 .730 .742 .831 .926 

T/4 R�  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T/8 R�  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T/10 R�  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T/20 R�  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T = 160 True model: (1 � 2cos wr L + L2)1+θ xt = εt,  with r  = T/2  and  θ = 0 

r Statistic θ = -1 θ = 0 θ = 0 θ = 1 
T/2 r�  1.000 0.084 0.033 1.000 
T/2 R�  1.000 0.053 1.000 
T/4 R�  1.000 1.000 1.000 
T/8 R�  1.000 1.000 1.000 
T/10 R�  1.000 1.000 1.000 
T/20 R�  1.000 1.000 1.000 

*: 10,000 replications were used for each case. Sizes are in bold and the nominal size was 5%. r�  and R�  are 
Robinson�s (1994) test statistics in (8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 18

 

TABLE 2* 

Rejection frequencies of the tests of Robinson (1994)  

True model: (1 � 2 cos wr L + L2)1+θ xt = εt, with r  = T/4  and  θ = 0 T = 40 
Values of θ 

r Stat. -1 -0.8 -0.6 -0.4 -0.2 0 0 0.2 0.4 0.6 0.8 1 
T/4 r�  1.000 .473 .443 .388 .128 0.322 0.004 .123 .376 .501 .452 .560 

T/4 R�  .999 .369 .337 .243 .107 0.200 .085 .290 .403 .458 .465 

T/2 R�  .999 .999 .998 .997 .996 .993 .989 .985 .973 .940 .813 

T/8 R�  .951 .908 .841 .757 .667 .557 .442 .322 .203 .093 .026 

T/10 R�  .996 .992 .985 .973 .957 .935 .904 .864 .791 .667 .452 

T/20 R�  1.000 1.000 .999 .999 .998 .997 .996 .992 .983 .957 .862 

T = 160 True model: (1 � 2cos wr L + L2)1+θ xt = εt,  with r  = T/4  and  θ = 0 

r Statistic θ = -1 θ = 0 θ = 0 θ = 1 
T/4 r�  1.000 0.156 0.015 0.998 
T/4 R�  1.000 0.095 0.995 
T/2 R�  1.000 1.000 1.000 
T/8 R�  1.000 1.000 0.999 
T/10 R�  1.000 1.000 1.000 
T/20 R�  1.000 1.000 1.000 

*: 10,000 replications were used for each case. Sizes are in bold and the nominal size was 5%. r�  and R�  are 
Robinson�s (1994) test statistics in (8). 
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TABLE 3* 

Rejection frequencies of the tests of Robinson (1994)  

True model: (1 � 2 cos wr L + L2)1+θ xt = εt, with r  = T/8 and  θ = 0 T = 40 
Values of θ 

r Stat. -1 -0.8 -0.6 -0.4 -0.2 0 0 0.2 0.4 0.6 0.8 1 
T/8 r�  1.000 1.000 .999 .983 .772 0.199 0.008 .175 .540 .664 .632 .577 

T/8 R�  1.000 1.000 .998 .966 .657 0.119 .110 .418 .560 .533 .472 

T/2 R�  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T/4 R�  .998 .985 .989 .993 .994 .996 .996 .996 .991 .982 .953 

T/10 R�  1.000 .999 .960 .686 .291 .337 .666 .893 .974 .989 .987 

T/20 R�  .941 .739 .425 .169 .071 .136 .346 .597 .809 .938 .979 

T = 160 True model: (1 � 2cos wr L + L2)1+θ xt = εt,  with r  = T/8  and  θ = 0 

r Statistic θ = -1 θ = 0 θ = 0 θ = 1 
T/8 r�  1.000 0.121 0.019 0.997 
T/8 R�  1.000 0.074 0.992 
T/2 R�  1.000 1.000 1.000 
T/4 R�  1.000 1.000 1.000 
T/10 R�  1.000 0.955 1.000 
T/20 R�  1.000 0.956 1.000 

*: 10,000 replications were used for each case. Sizes are in bold and the nominal size was 5%. r�  and R�  are 
Robinson�s (1994) test statistics in (8).  
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TABLE 4* 

Rejection frequencies of the tests of Robinson (1994)  

True model: (1 � 2 cos wr L + L2)1+θ xt = εt, with r  = T/10 and  θ = 0 T = 40 
Values of θ 

r Stat. -1 -0.8 -0.6 -0.4 -0.2 0 0 0.2 0.4 0.6 0.8 1 
T/10 r�  1.000 1.000 .999 .992 .811 0.181 0.011 .253 .665 .739 .682 .614 

T/10 R�  1.000 1.000 .999 .982 .694 0.105 .170 .554 .644 .585 .513 

T/2 R�  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T/4 R�  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T/8 R�  1.000 .975 .749 .316 .341 .706 .926 .986 .997 .998 1.000 

T/20 R�  .998 .963 .737 .332 .191 .437 .750 .932 .987 .998 .998 

T = 160 True model: (1 � 2cos wr L + L2)1+θ xt = εt,  with r  = T/10  and  θ = 0 

r Statistic θ = -1 θ = 0 θ = 0 θ = 1 
T/10 r�  1.000 0.117 0.022 0.997 
T/10 R�  1.000 0.070 0.991 
T/2 R�  1.000 1.000 1.000 
T/4 R�  1.000 1.000 1.000 
T/8 R�  1.000 1.000 1.000 
T/20 R�  1.000 0.984 1.000 

*: 10,000 replications were used for each case. Sizes are in bold and the nominal size was 5%. r�  and R�  are 
Robinson�s (1994) test statistics in (8).  
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TABLE 5* 

Rejection frequencies of the tests of Robinson (1994) 

True model: (1 � 2 cos wr L + L2)1+θ xt = εt, with r  = T/20 and  θ = 0 T = 40 
Values of θ 

r Stat. -1 -0.8 -0.6 -0.4 -0.2 0 0 0.2 0.4 0.6 0.8 1 
T/20 r�  1.000 1.000 .999 .998 .881 0.180 0.014 .431 .798 .811 .764 .734 

T/20 R�  1.000 1.000 .999 .993 .765 0.101 .343 .736 .750 .692 .648 

T/2 R�  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T/4 R�  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T/8 R�  .251 .389 .643 .856 .956 .993 .999 .999 1.000 1.000 1.000 

T/10 R�  .813 .466 .354 .615 .882 .981 .998 .999 1.000 1.000 1.000 

T = 160 True model: (1 � 2cos wr L + L2)1+θ xt = εt,  with r  = T/20  and  θ = 0 

r Statistic θ = -1 θ = 0 θ = 0 θ = 1 
T/20 r�  1.000 0.110 0.022 1.000 
T/20 R�  1.000 0.063 1.000 
T/2 R�  1.000 1.000 1.000 
T/4 R�  1.000 1.000 1.000 
T/8 R�  0.955 1.000 1.000 
T/10 R�  0.963 1.000 1.000 

*: 10,000 replications were used for each case. Sizes are in bold and the nominal size was 5%. r�  and R�  are 
Robinson�s (1994) test statistics in (8).  
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TABLE 6* 

Rejection frequencies of the Ahtola and Tiao (1987)�s tests 

Null model: (1 � 2 cos wr L + L2)1+θ xt = εt, with θ = 0. T = 40 
Values of θ 

r Stat.  -1 -0.8 -0.6 -0.4 -0.2   0 0.2 0.4 0.6 0.8 1 
T/2 A - T 1.000 1.000 1.000 .999 .679 0.103 .516 .820 .936 .976 .989 

T/4 A � T 1.000 .999 .934 .501 .128 0.051 .196 .434 .636 .776 .860 

T/8 A � T 1.000 1.000 .995 .707 .172 0.060 .216 .415 .653 .787 .862 

T/10 A � T 1.000 1.000 .998 .797 .198 0.056 .219 .456 .651 .786 .867 

T/20 A � T 1.000 1.000 1.000 .949 .299 0.058 .163 .499 .673 ..787 .859 

T = 160 Null model: (1 � 2cos wr L + L2)1+θ xt = εt, with θ = 0. 

r Statistic θ = -1 θ = 0 θ = 1 
T/2 A � T 1.000 0.091 0.997 
T/4 A � T 1.000 0.048 0.881 
T/8 A � T 1.000 0.050 0.995 
T/10 A � T 1.000 0.052 0.983 
T/20 A - T 1.000 0.051 0.983 

 
*: 10,000 replications were used for each case. Sizes are in bold and the nominal size was 5% . A � T means Ahtola and 

Tiao�s (1987) test statistic. 
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TABLE 7 

R�  in (8) with white noise ut 

 Periods per cycle 

a):   β1 = β1 = 0 1 2 3 4 5 6 7 8 9 10 20 40 

Real GNP 56.55 11.76 52.56 24.10 3.80 .0004 1.93 5.15 8.29 15.84 71.40 147.8 
Nominal GNP 56.85 16.81 24.20 18.83 3.45 .0001 1.82 5.15 8.23 15.52 71.91 140.1 
Real pcap. GNP 55.35 18.66 30.03 17.38 3.06 .0006 1.58 4.41 7.34 13.39 60.52 128.8 
Ind. Production 58.82 12.53 50.55 35.76 5.38 0.016 2.85 6.40 9.00 23.32 92.35 175.3 

Employment 55.20 16.72 19.71 14.66 2.82 .0000 1.46 4.49 7.45 12.88 56.55 124.7 

Unemployment 51.84 24.80 0.34 1.41 0.19 1.51 3.49 5.24 6.65 14.40 15.28 219.0 

GNP deflator 55.95 17.72 64.64 28.51 4.32 .0004 1.84 5.15 7.72 15.36 77.44 137.8 

C.P.I. 55.65 16.72 65.12 30.03 4.08 .0004 1.74 5.19 7.89 14.28 78.49 137.1 

Wages 57.00 18.06 38.56 22.46 3.68 .0001 1.79 5.42 8.64 15.13 75.56 143.2 

Real wages 55.95 15.13 64.80 28.51 3.88 .0001 1.76 5.10 8.46 14.13 69.22 146.1 

Money stock 60.99 15.52 60.21 38.44 5.52 .001 2.82 8.23 10.56 23.13 104.0 186.3 

Velocity 38.81 16.32 12.25 9.00 0.84 .193 4.84 5.61 7.12 18.57 38.93 40.19 

Bond yield 50.55 32.14 23.42 11.49 1.34 .435 2.43 7.07 14.59 12.60 86.30 137.3 

Stock prices 58.06 10.75 17.13 31.58 2.37 .028 3.45 8.58 6.70 22.84 75.86 170.0 

   β2 = 0 1 2 3 4 5 6 7 8 9 10 20 40 
Real GNP 259.2 6.30 65.93 40.70 7.34 .0009 3.49 9.30 14.97 29.59 116.6 268.6 
Nominal GNP 259.2 42.77 65.77 40.96 7.39 .0004 3.61 10.04 18.40 28.62 118.8 267.9 
Real pcap. GNP 259.2 52.99 66.09 40.96 7.18 .0001 3.27 5.80 9.36 29.26 110.2 248.3 
Ind. Production 252.8 219.0 62.41 36.96 7.07 .040 3.45 10.95 12.60 29.70 118.8 268.6 

Employment 259.2 39.81 66.25 41.08 7.12 .0004 3.27 7.67 10.75 29.48 116.6 253.1 

Unemployment 262.4 262.4 2.34 2.10 1.87 5.76 23.52 56.40 35.64 45.83 70.72 219.9 

GNP deflator 256.0 216.0 65.77 40.70 7.29 .0009 3.61 10.43 17.55 25.40 116.6 266.0 

C.P.I. 256.0 210.2 65.93 40.70 7.34 .0009 3.57 9.67 16.40 25.00 118.8 267.6 

Wages 259.2 85.95 66.09 40.96 7.34 .0004 3.57 9.48 18.40 29.05 118.8 268.6 

Real wages 259.2 219.0 66.09 40.57 7.12 .0001 2.89 8.12 16.72 27.45 118.8 262.4 

Money stock 252.8 210.2 64.80 40.32 7.07 0.002 3.68 11.02 18.49 29.48 118.8 264.3 

Velocity 252.8 259.2 43.83 28.51 0.92 3.76 5.80 25.90 11.35 33.75 39.94 271.2 

Bond yield 243.3 204.5 24.01 11.56 1.36 0.53 2.43 8.58 22.27 26.83 108.1 210.5 

Stock prices 249.6 240.2 49.42 32.26 4.04 0.048 3.88 9.73 9.73 24.20 96.04 223.8 

  β1 and β1 ≠ 0 1 2 3 4 5 6 7 8 9 10 20 40 
Real GNP 424.3 12.67 66.09 40.83 7.45 .0009 3.68 11.42 19.00 29.59 118.8 268.9 
Nominal GNP 424.3 16.89 66.09 40.96 7.45 .0004 3.61 11.35 19.0 29.70 118.8 268.9 
Real pcap. GNP 428.5 20.88 66.25 41.08 7.45 .0001 3.61 11.35 18.57 29.59 118.8 269.2 
Ind. Production 424.3 292.4 63.20 38.56 7.23 0.04 4.20 12.18 19.00 29.70 118.8 268.6 

Employment 428.5 24.70 66.25 41.08 7.50 .0001 3.57 11.22 18.57 29.59 121.0 269.2 

Unemployment 424.3 412.1 2.84 2.49 3.80 5.76 26.41 57.60 39.31 48.16 139.2 259.8 

GNP deflator 424.3 20.70 65.77 40.70 7.34 .0009 3.64 11.42 18..66 29.81 118.8 268.9 

C.P.I. 424.3 32.26 65.93 40.70 7.34 .0009 3.64 11.35 18.66 29.81 118.8 268.9 

Wages 428.5 19.00 66.09 40.96 7.39 .0004 3.64 11.35 18.57 29.70 118.8 268.9 

Real wages 428.5 68.65 66.25 40.83 7.45 .0001 3.64 11.35 18.66 29.70 118.8 269.2 

Money stock 424.3 75.47 65.44 40.44 7.12 .002 3.68 11.62 18.92 29.81 118.8 266.6 

Velocity 420.2 219.0 17.13 28.51 1.90 5.15 22.37 31.02 34.80 34.92 123.2 271.5 

Bond yield 408.0 353.4 35.64 21.16 2.92 0.57 5.42 12.81 22.37 36.12 118.8 266.3 

Stock prices 420.2 353.4 50.12 33.75 4.66 0.05 4.88 14.36 21.62 31.69 118.8 271.2 
In bold: The non-rejection values of the one-sided tests at the 95% significant level. 
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TABLE 8 

R�  in (8) with AR(1) ut 

Periods p. cylce 1 2 3 4 5 6 7 8 9 10 20 40 

Real GNP 8.06 174.2 432.6 234.1 41.12 0.006 25.60 64.32 187.7 169.2 725.2 9999 
Nominal GNP 8.29 9999 681.2 376.3 68.22 0.003 38.31 103.0 255.6 276.8 1194 9999 
Real pcap. GNP 9.67 9999 8930 4886 882.1 0.02 506.2 135.7 38.01 35.29 9999 9999 
Ind. Production 5.90 9999 31.58 16.64 2.99 0.01 3.16 5.10 14.59 12.67 52.56 8790 

Employment 10.24 9999 9999 9999 9999 0.01 71.74 184.4 9999 9999 9999 9999 

Unemployment 13.76 9999 143.2 840.4 1147 275.5 52.86 988.6 120.1 9999 6925 1525 

GNP deflator 8.12 9999 196.0 112.3 20.07 .0003 10.95 31.02 63.68 85.74 344.4 667.7 

C.P.I. 8.41 9999 262.4 151.3 27.45 .0004 14.89 41.99 79.92 119.0 494.4 9999 

Wages 8.00 6674 670.8 225.0 40.57 .0004 23.23 61.15 153.7 163.5 726.3 12.40 

Real wages 8.35 9999 519.8 272.2 48.72 .0002 31.24 75.69 237.4 196.5 808.8 12.90 

Money stock 5.29 9999 25.70 13.46 2.34 .0009 1.53 3.92 11.42 10.04 44.35 86.11 

Velocity 35.40 9999 17.64 9.48 0.62 3.68 9.61 23.52 16.40 12.88 14.28 24.60 

Bond yield 9.24 278.2 13.42 1.27 0.14 0.01 0.26 0.54 4.11 4.90 5.07 5.15 

Stock prices 5.38 9999 9.42 4.97 0.67 .008 0.81 2.13 4.92 4.88 16.81 21.43 

R�  in (8) with AR(2) ut 

Real GNP 4.20 9999 552.2 292.4 57.60 0.008 36.12 89.49 260.1 225.9 828.8 1509 
Nominal GNP 3.88 9999 1156 519.8 96.43 0.006 54.46 143.5 356.0 370.1 13.69 2538 
Real pcap. GNP 4.00 9999 9999 7022 1296 0.03 729.0 1836 502.3 4792 9999 9999 
Ind. Production 4.70 9999 40.19 16.89 3.64 0.02 2.99 7.02 19.89 16.81 73.78 9999 

Employment 5.88 9999 9999 9999 1.93 0.02 9999 9999 9999 9999 9999 9999 

Unemployment 5.66 9999 9999 1417 1927 415.7 7435 115.1 152.7 9999 7274 184.6 

GNP deflator 4.53 9999 234.1 9999 26.31 0.004 15.60 43.29 87.98 114.9 416.4 775.0 

C.P.I. 4.53 9999 320.4 171.6 36.60 0.006 21.34 58.36 110.4 160.5 604.6 9999 

Wages 4.04 9999 580.8 285.6 55.20 0.003 33.06 84.82 213.4 219.0 865.8 9999 

Real wages 4.57 9999 630.0 309.7 66.25 0.003 44.22 104.2 330.5 264.3 913.2 9999 

Money stock 4.41 9999 31.58 13.46 2.78 0.001 2.07 5.15 15.52 9.79 49.98 9999 

Velocity 19.09 9999 12.81 15.52 0.94 5.56 12.60 24.80 19.27 18.40 19.71 25.80 

Bond yield 5.52 9999 12.68 1.63 0.21 0.60 0.37 0.73 4.10 4.17 4.22 6.05 

Stock prices 5.15 9999 15.36 5.06 0.92 0.01 1.06 2.75 6.40 6.50 19.44 26.31 

R�  in (8) with AR(3) ut 

Real GNP 20.61 9999 1451 249.6 73.78 0.01 148.3 538.7 1741 1812 6412 7871 
Nominal GNP 18.92 9999 2246 404.0 118.8 0.01 222.0 863.7 2390 2956 9999 9999 
Real pcap. GNP 19.62 9999 292.4 5285 1560 0.08 2941 9999 9999 9999 9999 9999 
Ind. Production 22.84 9999 108.1 17.55 5.29 0.06 13.03 42.64 132.7 136.6 464.4 533.1 

Employment 18.74 9999 9999 9999 225.0 0.06 9999 9999 9999 9999 9999 9999 

Unemployment 29.59 9999 1780 864.9 1958 907.8 9999 9999 9999 9999 9999 956.6 

GNP deflator 22.27 9999 670.8 113.8 35.16 0.01 63.52 260.1 594.8 912.0 3041 4057 

C.P.I. 22.37 9999 936.3 161.3 48.02 0.01 85.93 351.1 746.3 1262 4366 5984 

Wages 19.71 9999 1361 237.1 70.89 0.008 134.5 512.5 1436 1745 6368 7544 

Real wages 22.27 9999 1764 292.4 85.19 0.008 180.6 629.5 2221 2101 7157 7860 

Money stock 21.25 9999 88.92 14.21 4.12 0.003 8.94 32.14 106.5 107.5 390.8 519.8 

Velocity 102.0 9999 2959 10.30 1.10 11.76 50.97 167.9 144.0 138.3 124.7 149.3 

Bond yield 29.59 9999 625.0 1.27 0.24 0.07 1.41 4.45 7.61 19.09 31.58 30.91 

Stock prices 25.40 9999 2883 5.24 1.18 0.02 4.75 17.72 42.77 51.69 148.1 9999 
In bold: The non-rejection values of the one-sided tests at the 95% significant level;   9999 means that the value of the test 
statistic exceeds that quantity. 
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