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Flexible Time Series Analysis

Wolfgang Hérdle and Rolf Tschernig

In this chapter we present nonparametric methods and available quantlets for
nonlinear modelling of univariate time series. A general nonlinear time
series model for an univariate stochastic process {Y;}1_, is given by the het-
eroskedastic nonlinear autoregressive (NAR) process

}/;5 = f(n—h;ytt—iza s ;Yt—im) + U(n—h ) Y;‘:—iza ... ;Yt—im)gt; (1)

where {&;} denotes an i.i.d. noise with zero mean and unit variance and f(-) and
o(-) denote the conditional mean function and conditional standard deviation
with lags 41,... ,4m,, respectively. In practice, the conditional functions f(-)
and o(-) as well as the number of lags m and the lags itself iy,... ,4,, are
unknown and have to be estimated.

In Section 1 we discuss nonparametric estimators for the conditional mean
function of nonlinear autoregressive processes of order one. While this case
has been most intensively studied in theory, in practice models with several
lags are often more appropriate. Section 2 covers the estimation of the latter,
including the selection of appropriate lags. For all models we discuss methods
of bandwidth selection which aim at an optimal trade-off between variance and
bias of the presented estimators.

Both sections contain practical examples. The corresponding quantlets for
fitting nonlinear autoregressive processes of order one are contained in the
quantlib smoother. A number of quantlets for fitting higher order models are
found in the third party quantlib tp/cafpe/cafpe.

Although obvious we would like to mention that in the following we only discuss
methods for which quantlets are available. For an overview of alternative meth-
ods and models we would like to refer the reader to the surveys of Tjgstheim
(1994) or Hardle, Liitkepohl, and Chen (1997).



1 Nonlinear Autoregressive Models of Order One

1.1 Estimation of the Conditional Mean

mh = regxest(x{, h, K, v})
computes the univariate conditional mean function using the
Nadaraya-Watson estimator

mh = regest(x{, h, K, v})
computes the univariate conditional mean function using the
Nadaraya-Watson estimator and WARPing

mh = lpregxest(x{, h, p, v})
computes the univariate conditional mean function using local
polynomial estimation

mh = lpregest(x{, h, p, K, d})
computes the univariate conditional mean function using local
polynomial estimation and WARPing

Let us turn to estimating the conditional mean function f(-) of a nonlinear
autoregressive processes of order one (NAR(1) process)

Y, = f(Yi-1) + 0 (Yi—1)& (2)

using nonparametric techniques. The basic idea is to estimate a Taylor ap-
proximation of order p of the unknown function f(-) around a given point y.
The simplest Taylor approximation is obtained if its order p is chosen to be
zero. One then approximates the unknown function by a constant. Of course,
this approximation may turn out to be very bad if one includes observations
Y;_1 that are distant to y since this might introduce a large approximation
bias. One therefore weights those observations less in the estimation. Using

the least squares principle, the estimated function value f(y, h) is provided by
the estimated constant ¢q of a local constant estimate around y

T
Co = arg ming.} Z {Y; — co}2 Kp(Yi—1 — ), (3)

t=2



where K denotes the weighting function, which is commonly called a kernel
function, and Kp(Yi—1 —y) = h™*K {(Y;—1 — y)/h}. A number of kernel func-
tions are used in practice, e.g. the Gaussian density function or the quartic
kernel K(u) = 15/16(1 — u?)? on the range [—1,1] and K (u) = 0 elsewhere.

fly,h) = ¢ is known as the Nadaraya-Watson or local constant function esti-
mator and can be written as

_ Y, Kn(Yie1 — )Y
2322 Kh(Y;&—l - y)

The parameter h is called bandwidth parameter and controls the weighting of
the lagged variables Y;_; with respect to their distance to y. While choosing
h too small and therefore including only few observations in the estimation
procedure leads to a too large estimation variance, taking h too large implies a
too large approximation bias. Methods for bandwidth selection are presented
in Subsection 1.2.

fly, ) (4)

Before one applies Nadaraya-Watson estimation one should be aware of the
conditions that the underlying data generating mechanism has to fulfil such that
the estimator has nice asymptotic properties: most importantly, the function
f(-) has to be continuous, the stochastic process has to be stationary and the
dependence among the observations must decline fast enough if the distance
among the observations increases. For measuring dependence in nonlinear time
series one commonly uses various mixing concepts. For example, a sequence is
said to be a-mixing (strong mixing) (Robinson 1983) if

sup  |P(ANB) - P(A)P(B)| < a,
A€F],BEFS,

where o — 0 and ff is the o-field generated by Xj,..., X;. An alternative
and stronger condition is given by the S-mixing condition (absolute regularity)

Esup {|P(B|4) — P(B)[} < (k)

for any A € F{' and B € F;5,. An even stronger condition is the ¢-mixing
(uniformly mixing) condition (Billingsley 1968) where

|P(AN B) — P(A)P(B)| < ¢1P(A)

for any A € 7' and B € F3; and ¢ tends to zero for k — oo. The rate at
which ayg, Bk or ¢ go to zero plays an important role in showing asymptotic
properties of the nonparametric smoothing procedures. We note that these



conditions are in general difficult to check. However, if the process follows a
stationary Markov chain, then geometric ergodicity implies absolute regularity,
which in turn implies strong mixing conditions. Techniques exist for checking
geometric ergodicity, see e.g. Doukhan (1994) or Lu (1998). Further and more
detailed conditions will be discussed in Subsection 2.2.

The quantlet regxest allows to compute Nadarya-Watson estimates of f(-) for
an array of different y’s. Its syntax is

mh = regxest(x{, h, K, v})

with the input variables

X
(T — 1) x 2 matrix, in the first column the independent, in the second
column the dependent variable,

h
scalar, bandwidth for which if not given, 20% of the range of the values
in the first column of x is used,

K
string, kernel function on [-1,1] or Gaussian kernel "gau" for which if not
given, the Quartic kernel "qua" is used,

v

m X 1 vector of values of the independent variable on which to compute
the regression for which if not given, x is used.

This quantlet returns a (T'— 1) X 2 or m X 2 matrix mh, where the first column
is the sorted first column of x or the sorted v, the second column contains the
regression estimate on the values of the first column.

In order to illustrate the methods presented in this chapter, we model the
dynamics underlying the famous annual Canadian lynx trappings in 1821-1934,
see e.g. Brockwell and Davis (1991, Appendix, Series G). Figures 1 and 2 of
their original and logged time series are obtained with the quantlet

library("plot")
setsize(640,480)
lynx = read("lynx.dat") ; read data



d1 createdisplay(1,1)
x1 #(1821:1934) “lynx
setmaskl (x1, (1:rows(x1))’, 0, 1)
show(d1,1,1,x1) ; plot data
setgopt(dl,1,1,"title","Annual Canadian Lynx
Trappings, 1821-1934")
setgopt(dl,1,1,"xlabel","Years","ylabel","Lynx")
d2 = createdisplay(1,1)
x2 #(1821:1934) “log(lynx)
setmaskl (x2, (1:rows(x2))’, 0, 1)
show(d2,1,1,x2) ; plot data
setgopt(d2,1,1,"title","Logs of Annual Canadian
Lynx Trappings, 1821-1934")
setgopt(d2,1,1,"xlabel","Years","ylabel","Lynx")

QfltsOl.xpl

Their inspection indicates that taking logarihms is required to make the time se-
ries look stationary. The following quantlet reads the 1ynx data set, constructs
the vectors of the dependent and lagged variables, computes the Nadaraya-
Watson estimator and plots the resulting function including the scatter plot
which is displayed in Figure 3. For selecting the bandwidth we use here the
primitive rule to take one fifth of the data range.

library("smoother")
library("plot")
setsize(640,480)
H data preparation

lynx = read("lynx.dat")
lynxrows = rows(lynx)
lagi = lynx[1:1lynxrows-1] ; vector of first lag
y = lynx[2:1lynxrows] ; vector of dep. var.
data = lagl”y
data = log(data)
; estimation
h = 0.2*%(max(data[,1])-min(datal[,1])); crude bandwidth
"Bandwidth used" h
mh = regxest(data,h) ; N-W estimation
H graphics
mh = setmask(mh,"line","blue")
Xy = setmask(data,'"cross","small")
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Figure 1: Time series of annual Canadian Lynx Trappings, 1821-1934

plot(xy,mh)
setgopt (plotdisplay,1,1,"title","Estimated NAR(1)

mean function'")
setgopt (plotdisplay,1,1,"xlabel","First Lag","ylabel","Lynx")

Q f1ts02.xpl

For long time series the computation of the Nadaraya-Watson estimates may
become quite slow since there are more points at which to estimate the function
and each estimation involves more data. In this case one may use the WARPing,
weighted average of rounded points, technique. The basic idea is the
“binning” of the data in bins of length d. Each observation is then replaced by
the bincenter of the corresponding bin which means that each point is rounded
to the precision given by d. A typical choice for d is h/5 or (max¥;_; —
minY;_1)/100. In the latter case, the effective sample size r, i.e. the number
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Figure 2: Time series of logarithm of annual Canadian Lynx Trappings, 1821-
1934

of nonempty bins, for computation is at most 101. If WARPing is necessary,
just call the quantlet regest which has the same parameters as the quantlet
regxest.

While the Nadaraya-Watson function estimate is simple to compute it may suf-
fer from a substantial estimation bias due to the zero order Taylor expansion.
Therefore, it seems natural to increase the order p of the expansion. For exam-
ple, by selecting p = 1 one obtains the local linear estimator which corresponds
to the following weighted minimiziation problem

T

{2o,61} = arg mingg, ;3 Y (Vi —co—er(Vier — DY Kn(Viei —y),  (5)
t=2

where the estimated function value f;(y, h) is provided as before by the esti-



Estimated NAR(1) mean function

Lynx

Figure 3: Nadaraya-Watson estimates of NAR(1) mean function for lynx data
and scatter plot

mated constant ¢y. In a similar way one obtains the local quadratic estimator
if one chooses p = 2. The quantlet 1pregxest allows to compute local linear
or local quadratic function estimates using the quartic kernel. Its syntax is

y = lpregxest (x,h {,p {,v}})
where the inputs are:

(T — 1) x 2 matrix, in the first column the independent, in the second
column the dependent variable,

scalar, bandwidth for which if not given, the rule-of-thumb bandwidth



computed by the quantlet 1pregrot is used,

integer, order of polynomial: p=0 yields the Nadaraya-Watson estimator,
p=1yields local linear estimation (which is default), p=2 (local quadratic)
is the highest possible order,

m X 1, values of the independent variable on which to compute the re-
gression for which if not given, x is used.

The output is given by the

mh

(T —1) x 2 or m X 2 matrix, the first column is the sorted first column
of x or the sorted v, the second column contains the regression estimate
on the values of the first column.

The following quantlet allows to visualize the difference between local constant
and local linear estimation of the first order nonlinear autoregressive mean
function for the 1lynx data. It produces Figure 4 where the solid and dotted
lines display the local linear and local constant estimates, respectively. One
notices that the local linear function estimate shows less variation.

library("smoother")
library("plot")

setsize(640,480)
5 data preparation
lynx = read("lynx.dat")
lynxrows = rows(lynx)
lagl = lynx[1:1lynxrows-1] ; vector of first lag
y = lynx[2:1lynxrows] ; vector of dep. var.
data = lagl”y
data = log(data)
; estimation
h = 0.2%(max(datal,1])-min(datal,1])); crude bandwidth
mh = regxest(data,h) ; N-W estimation
mhlp = lpregxest(data,h) ; local linear estimation
; graphics
mh = setmask(mh,"line","blue","dashed")



mhlp = setmask(mhlp,"line","red")
Xy = setmask(data,"cross","small")
plot(xy,mh,mhlp)

setgopt (plotdisplay,1,1,"title","Estimated NAR(1)

mean function")

setgopt (plotdisplay,1,1,"xlabel","First Lag","ylabel","Lynx")

Q £1t503.xpl

Lynx

Estimated NAR(1) mean function

Figure 4: Local linear estimates (solid line) and Nadaraya-Watson estimates
(dotted line) of NAR(1) mean function for lynx data and scatter plot

Like Nadaraya-Watson estimation local linear estimation may become slow for
long time series. In this case, one may use the quantlet lpregest which uses
the WARPing technique.

10



1.2 Bandwidth Selection

{hecrit, crit} = regxbwsel(x{, h, K})
interactive tool for bandwidth selection in univariate kernel re-
gression estimation.

{hcrit, crit} = regbwsel(x{, h, K, d})
interactive tool for bandwidth selection in univariate kernel re-
gression estimation using the WARPing method.

So far we have used a primitive way of selecting the bandwidth parameter h.
Of course, there are better methods for bandwidth choice. They are all based
on minimizing some estimated distance measures. Since we are interested in
one bandwidth for various y, we look at “global” distances like, for instance,
the integrated squared error (ISE)

4 = [ {10)- Fw.w} v ©)

Here p(-) denotes the density of the stationary distribution and w(-) is a weight
function with compact support. Note that the bandwidth which minimizes the
ISE d;(h) in generally varies from sample to sample. In practice, one may want
to avoid the integration and consider an approximation of the ISE, namely the
average squared error (ASE)

1 & ~ 2
W)= 57 2 {00 - Fi s m} w(viow). (™)
Since the measure of accuracy da(h) involves the unknown autoregression func-
tion f(-), it cannot be used directly. Instead, one may estimate f(Y;—1) by Y.
One then obtains the average squared error of prediction (ASEP)

-~

T 2
aap(h) = 7= 3 ¥ = )} w(via), ®

This, however, implies the new problem that dap(h) can be driven to zero by
choosing h small enough. To see this consider the Nadaraya-Watson estimator
(4) and imagine that the bandwidth h is chosen so small that (4) becomes

-~

f(Y;_1,h) = Y;. This implies d4p(h) = 0. This estimation problem can easily

11



be solved by always leaving out Y; in computing (4) which leads to

T
Ei:z,i;ﬁt Kh(Yifl - y)Y,
T
Zi:Q,z’;ﬁt Kh(Yz'—l - y)
and is called the leave-one-out cross-validation estimate of the autore-

gression function. One therefore estimates dap(h) with the cross-validation
function

Foely) = (9)

T
1 - 2

CV(h) = = Z Vi - Futie, )} w(vion). (10)
Let A be the bandwidth that minimizes CV (h). Hardle (1990) and Hardle and
Vieu (1992) proved that under an a-mixing condition,

~

da(h)

m — 1 in probability.

The interactive quantlet regxbwsel offers cross-validation and other bandwidth
selection methods. The latter may be used in case of independent data. It is
called by

{hcrit, crit} = regxbwsel(x{, h, K})

with the input variables:

X

(T'—1) x 2 vector of the data,
h

m X 1 vector of bandwidths,
K

string, kernel function on [—1,1] e.g. quartic kernel "qua" (default) or
Gaussian kernel "gau".

The output variables are:

herit
p x 1 vector, selected bandwidths by the different criteria,

12



crit
p x 1 string vector, criteria considered for bandwidth selection.

If one wants to use WARPing one has to use the quantlet regbwsel. Using
the following quantlet one may estimate the cross-validation bandwidth for the
lynx data set and obtains h = 1.12085.

library("smoother")
library("plot")
setsize(640,480)
H data preparation

lynx = read("lynx.dat")

lynxrows = rows(lynx)

lagl = lynx[1:1lynxrows-1] ; vector of first lag
y = lynx[2:1lynxrows] ; vector of dep. var.
data = lagl”y

data = log(data)

tmp = regxbwsel (data)

QfltsO4.xpl

It was already noted that the optimal bandwidth with respect to ISE (6) or
ASE (7) may vary across samples. In order to obtain a sample independent

optimal bandwidth one may consider the mean integrated squared error
(MISE)

~

au) = | [ {16) - Fo.w} wntan). (1)

Like dr(h) or da(h), it also cannot be used directly. It is, however, possible to
derive the asymptotic expansion of dys(h). This allows to obtain an explicit
formula for the asymptotically optimal bandwidth h,,; which, however, con-
tains unknown constants. In Subsection 2.2 we show how one can estimate
these unknown quantities in order to obtain a plug-in bandwidth hp.

13



1.3 Diagnostics

acfplot(x)
generates plot of autocorrelation function of time series contained
in vector x.

{jb, probjb, sk, k} = jarber(x, 1)
checks for normality of the data contained in vector x using the
Jarque-Bera test.

It is well known that if a fitted model is misspecified, then resulting inference
can be misleading like, for example, for confidence intervals or significance tests.
One way to check whether a chosen model is correctly specified is to investi-
gate the resulting residuals. Most importantly, one checks for autocorrelation
remaining in the residuals. This can easily be done by inspecting the graph
of the autocorrelation function using the quantlet acfplot. It only requires
the (T — 1) x 1 vector x with the estimated residuals as input variable. The
quantlet also draws 95% confidence intervals for the case of no autocorrelation.

Another issue is to check the normality of the residuals. This is commonly
done by using the Bera-Jarque test suggested by Bera and Jarque (1982). Tt is
commonly called JB-test and can be computed with the quantlet jarber which
is called by

{jb, probjb, sk, k} = jarber(resid, printout)
with input variables

resid
(T —1) x 1 matrix of residuals,

printout
scalar, 0 no printout, 1 printout,

and output variables

jb
scalar, test statistic of Jarque-Bera test,

probjb
scalar, probability value of test statistics,

14



sk
scalar, skewness,

scalar, kurtosis.

In the following quantlet these diagnostics are applied to the residuals of the
NAR(1) model fitted to the 1ynx data using the Nadaraya-Watson estimator

(4) with the cross-validation bandwidth & = 1.12085

5 load required quantlets
library("smoother")
library("plot")
func("acfplot")
func("jarber")

setsize(640,480)
H data preparation
lynx = read("lynx.dat")
lynxrows = rows(lynx)
lagl = lynx[1:1lynxrows-1] ; vector of first lag
y = lynx[2:1lynxrows] ; vector of dep. var.
data = lagl”y
data = log(data)
datain = data”#(1:lynxrows-1) ; add index to data
dataso = sort(datain,1) ; sorted data
; estimation
h = 1.12085 ; Cross-validation bandwidth
mhlp = regxest(dataso[,1/2],h)
; local constant estimation
5 graphics
mhlp = setmask(mhlp,"line","red")
Xy = setmask(data,"cross","small")

plot(xy,mhlp)
setgopt (plotdisplay,1,1,"title",

"Estimated NAR(1) mean function")
setgopt (plotdisplay,1,1,"xlabel","First Lag","ylabel","Lynx")

H diagnostics
yhatso = mhlp.datal,2] dataso[,3] ; sorted est. fct. values
yhat = sort(yhatso,2) ; undo sorting
eps = datal,2] - yhat[,1] ; compute residuals

15



acfplot(eps) ; plot autocorrelation function of res.
setgopt(dacf,1,1,"title","Autocorrelation function of NAR(1)
residuals")
{jb,probjb,sk,k} = jarber(eps,1)
; compute Jarque-Bera test for normality of residuals

Q £1t505.xpl

The plot of the resulting autocorrelation function of the residuals is shown
in Figure 5. It clearly shows that the residuals are not white noise. This
indicates that one should use a higher order nonlinear autoregressive process
for modelling the dynamics of the lynx data. This will be discussed in Section
2. Moreover, normality is rejected even at the 1% significance level since the
JB-test statistic is 11.779 which implies a p-value of 0.003.

Autocorrelation function of NAR(L) residuals

0.5
i
T

Figure 5: Autocorrelation function of estimated residuals based on a NAR(1)
model for the lynx data
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1.4 Confidence Intervals

{mh, clo, cup} = regxci(x{, h, alpha, K, xv})
computes pointwise confidence intervals with prespecified confi-
dence level for univariate regression using the Nadaraya-Watson
estimator.

{mh, clo, cup} = regci(x{, h, alpha, K, d})
computes pointwise confidence intervals with prespecified confi-
dence level for univariate regression using the Nadaraya-Watson
estimator. The computation uses WARPing.

Once one selected the bandwidth and checked the residuals one often wants
to investigate the variance of estimating the autoregression function. Under
appropriate conditions, the variance of both the Nadaraya-Watson and the
local linear estimator can be approximated by

N 1 o%(y) 2
Var(f(y,h)) ~ — K (12)
(fly, 1) ~ 7 ) T2
as will be seen in Subsection 2.1. (12) can be used for constructing confidence
intervals for f(-) since one can estimate the conditional variance o (y) by the
kernel estimate
_ T Kn(Yi —9)¥?

5%(y, h) = — fly, b 13
R TR "

and the density u(y) by the kernel estimate

T
iy,h) =Y Kn(Yi —y). (14)
t=1

Based on these estimates the quantlet regxci computes pointwise confidence
intervals using the Nadaraya-Watson estimator. It is called with

{mh, clo, cup} = regxci(x{, h, alpha, K, xv})

with input variables:

17



(T — 1) x 2 matrix of the data with the independent and the dependent
variable in the first and second column, respectively,

h
scalar, bandwidth for which if not given 20% of the range of the values
in the first column x is used,
alpha
confidence level with 0.05 as default value,
K
string, kernel function on [—1, 1] and the quartic kernel "qua" as default,
XV

m x 1 matrix of the values of the independent variable on which to com-
pute the regression and x as default.

The output variables are:

mh
(T'—1) x 2 or m x 2 matrix, the first column is the sorted first column
of x or the sorted xv, the second column contains the regression estimate
on the values of the first column,

clo
(T'—1) x 2 or m X 2 matrix, the first column is the sorted first column
of x or the sorted xv, the second column contains the lower confidence
bounds on the values of the first column,

cup

(T'—1) x 2 or m x 2 matrix, the first column is the sorted first column
of x or the sorted xv, the second column contains the upper confidence
bounds on the values of the first column.

If the WARPing technique is required, one uses the quantlet regci.

In Subsection 1.3 we found that the NAR(1) model for the lynx data is mis-
specified. Therefore, it is not appropriate for illustrating the computation of
pointwise confidence intervals. Instead we will use a simulated time series. The
quantlet below generates 150 observations of a stationary exponential AR(1)

18



process
Y; = 0.3Y;1 +2.2Y;qexp (—0.1Y2 ) + &, &~ N(0,1), (15)

calls the interactive quantlet regxbwsel for bandwidth selection where one
has to choose for the first time cross-validation and for the second time stop,
computes the confidence intervals and plots the true and estimated function
(solid and dashed line) as well as the pointwise confidence intervals (dotted
line) as shown in Figure 6.

library("smoother")
library("plot")
library("times")
setsize(640,480)

; generate exponential AR(1) process

phil 0.3
phi2 = 2.2
g =0.1
randomize (0)
X = genexpar(1l,g,phil,phil+phi2,normal(150))
5 data preparation
xrows = rows(x)
lagl = x[1:xrows-1] ; vector of first lag
y = x[2:xrows] ; vector of dep. var.
data = lagl”y
; true function
f = sort(lagl~(philxlagl + phi2xlagl.*exp(-gxlagl~2)),1)
; estimation
{hcrit,crit} = regxbwsel(data)

{mh, clo, cup} regxci(data,hcrit)

f = setmask(f,"line","solid","red")

data = setmask(data,'"cross")

mh = setmask(mh,"line","dashed","blue")

clo = setmask(clo,"line","blue","thin","dotted")
cup = setmask(cup,"line","blue","thin","dotted")

19



plot(data,f,mh,clo,cup)

setgopt (plotdisplay,1,1,"title","Confidence intervals of
estimated NAR(1) mean function")

setgopt (plotdisplay,1,1,"xlabel","First Lag","ylabel","Y")

Q f1ts06.xpl

Confidence intervals of estimated NAR(1) mean function

First Lag

Figure 6: True and estimated mean function plus pointwise confidence intervals
for a generated exponential AR(1) process
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1.5 Derivative Estimation

mh = lpderxest(x, h{, q, p, K, v})
estimates the g-th derivative of a regression function using local
polynomial kernel regression with quartic kernel.

mh = lpderest(x, h{, q, p, K, d})
estimates the g-th derivative of a autoregression function using
local polynomial kernel regression. The computation uses WARP-
ing.

When investigating the properties of a conditional mean function, one is often
interested in its derivatives. The estimation of derivatives can be accomplished
by using local polynomial estimation as long as the order p of the polynomial
is at least as large as the order ¢ of the derivative to be estimated. Using a
local quadratic estimator
{co,c1, 2}
T
=argmin Y {¥i—co—c1(Vim1 —y) — c2(Vio1 — )2} Kn(Yii1 —y)

{co,c1,c2} t=1

one estimates the first and second derivative of f(y) at y with

-~

fl(yah) = 817 Jl/.\”(y,h) = 262

In general, one uses a g+ 1 instead of a ¢g-th order polynomial for the estimation
of the g-th derivative since this reduces the complexity of the estimation bias,
see e.g. Fan and Gijbels (1995). The estimated derivative is then obtained as
f(q) = g'c,. The quantlet 1pderxest allows to estimate first and second order
derivatives where maximally a second order polynomial is used. It is called by

mh = lpderxest (x, h{, q, p, K, v})

with input variables

(T'—1) x2 matrix of the data with the independent and dependent variable
in the first and second column, respectively.
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scalar, bandwidth for which if not given the rule-of-thumb bandwidth is
computed with lpderrot,

q
integer < 2, order of derivative for which if not given, q=1 (first deriva-
tive) is chosen,

p
integer, order of polynomial for which if not given, p=q + 1 is used for
q< 2 and p=q is used for q=2,

v

m X 1, values of the independent variable on which to compute the re-
gression for which if not given, x is used.

The output variable is

mh
(T'— 1) x 2 or m x 2 matrix where the first column is the sorted first
column of x or the sorted v and the second column contains the derivative
estimate on the values of the first column.

The quantlet 1pderest which applies the WARPing technique (Fan and Marron
1994) allows for p < 5 and q < 4. We note, however, that WARPing may waste
a lot of information. Bandwidth selection remains an important issue and can
be done using the quantlet 1pderrot.

In the following quantlet we estimate the first and second derivatives of the
conditional mean function of the exponential AR(1) process (15) based on 150
observations. The true derviatives (solid lines) and their estimates (dashed
lines) are shown in Figures 7 and 8.

library("smoother")
library("plot")
library("times")

setsize(640,480)
; generate exponential AR(1) process
phil 0.3
phi2 = 2.2
g =0.1
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randomize (0)
X = genexpar(1l,g,phil,phil+phi2,normal(150))

data preparation

xrows = rows(x)

lagl = x[1:xrows-1] ; vector of first lag

y = x[2:xrows] ; vector of dep. var.

data = lagl”y

ffder = sort(lagl™(phil + exp(-gxlagl~2).*
phi2.*(1-2.*g.*lagl1"2)),1)

fsder = sort(lagl”(exp(-gxlagl~2).x*(-2*g.*lagl)*

phi2.*(3-2.*g.*lagl"2)),1)

estimate first derivative
ffder = setmask(ffder,"line","solid","red")
mhfder = lpderxest(data)
mhfder = setmask(mhfder, "line","dashed","blue")
plotder = createdisplay(1,1)
show(plotder,1,1,ffder,mhfder)
setgopt (plotder,1,1,"title","Estimated first derivative
of mean function")
setgopt (plotder,1,1,"xlabel" ,"First lag","ylabel",
"First derivative")
estimate second derivative
fsder = setmask(fsder,"line","solid","red")

hrot = 2x1pderrot(data,2)
mhsder = lpderxest(data,hrot,2)
mhsder = setmask(mhsder, "line","dashed","blue")

plot(fsder,mhsder)
setgopt (plotdisplay,1,1,"title","Estimated second
derivative of mean function")
setgopt (plotdisplay,1,1,"xlabel","First lag","ylabel",
"Second derivative")

QfltsO7.xp1
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Estimated first derivative of mean function

First derivative

Figure 7: True and estimated first derivative for a generated exponential AR(1)
process

2 Nonlinear Autoregressive Models of Higher
Order

In Subsection 1.3 we briefly discussed diagnostics to check for the correct spec-
ification of a time series model. There we found for the 1ynx data set that the
nonlinear autoregressive model of order one (2) is of too low order to capture
the linear correlation in the data. For practical flexible time series modelling it
is therefore necessary to allow for higher order nonlinear autoregressive models
(1). Their estimation and the selection of relevant lags will be discussed in
this section. To simplify notation, we introduce the vector of lagged variables
X; = (Y3,Yi,,...,Y;, )T such that (1) can be written as

Y = f(Xy) + o(X¢)&: (16)
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Second derivative

Estimated second derivative of mean function

Figure 8:

process

True and estimated second derivative a generated exponential AR(1)

2.1 Estimation of the Conditional Mean

mh

mh

regxestp(x{, h, K, v})
computes the Nadaraya-Watson estimator for multivariate au-

toregression.

regestp(x{, h, K, d})

Nadaraya-Watson estimator for multivariate regression. The
computation uses WARPing.
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mh = lpregxestp(x{, h, K, v})
estimates a multivariate regression function using local polyno-
mial kernel regression with quartic kernel.

mh = lpregestp(x{, h, K, d})
estimates a multivariate regression function using local polyno-
mial kernel regression. The computation uses WARPing.

{mA, gsqA, denA, err} = fvllc(Xsj, Yorig, h, Xtj,
kernreg, lorq, fandg, loo)
estimates a multivariate regression function using local linear re-
gression with Gaussian kernel.

It is not difficult to extend the Nadaraya-Watson estimator (4) and local linear
estimator (5) to several lags in the conditional mean function f(-). One then
simply uses Taylor expansions of order p for several variables. In the weighted
minimization problem of the local constant estimator (3) one has to extend the
kernel function Kp(-) for several lagged variables. The simplest way of doing
this is to use a product kernel

m X, i — 1
KX - ) = [y (X195 )
= hi
where one h = (hy,ha,...,hy)T is a vector of bandwidths for each lag or
variable. Of course, one may also use the same bandwidth h = (h, h,... ,h)T

for all lags in which case we write Kj,(X; — z). Using a scalar bandwidth, (3)
becomes

T
G =argmingy Y {Yi—co}’ Kn(X¢ — ) (18)
t=im+1
and the Nadaraya-Watson estimator is given by
n Y KX - )Y,
fl (.'17, h) =3 = tTlm-‘rl .
Zt:im+1 Kn(Xt — )

Note that from now on we indicate the Nadaraya-Watson estimator and local
linear estimator by the indices 1 and 2, respectively.

(19)
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The local linear estimator with p = 1 is derived from the weighted minimization

T
{Co,01} =argminge, oy Y. {Yi—co— (X — )} Kn(Xy —2).  (20)
t=im+1
Using the notation

T

. 1 .. 1 . : T
Z2_<le+1_x RPN XT_:L') ? Y_(}/;m"rlJ“‘JYT)

1 T

e=(1,01xm)”, W =diag — Kp(X; — ) ,
T —im t=im+1

the estimate fg(:c, h) = ¢ can be written for any z € IR™ as
Foz) =T (2FW 2,) " ZTWY. (21)

Under suitable conditions which are listed in Subsection 2.2 the Nadaraya-
Watson estimator (19) and local linear estimator (21) have an asymptotic nor-
mal distribution

o(z)

m N 02 —m —
T2/ (F(w,h) = f(@)) > N (ﬂ%‘ra,ﬁ mIIKII%), a= 1,? |
22

where

ri(z) = Te {V2f(2)} + 2VT u(@)Vf(2)/u(z), r2(2) = Tr {V?f(2)}. (23)

Thus, the rate of convergence deteriorates with the number of lags. This fea-
ture is commonly called the ‘curse of dimensionality’ and often viewed as a
substantial drawback of nonparametric methods. One should keep in mind,
however, that the v/T-rate of parametric models only holds if one estimates
a model with an a priori chosen finite number of parameters which may im-
ply a large estimation bias in case of misspecified models. If, however, one
allows the number of parameters of parametric models to grow with sample
size, \/T—convergence may no longer hold.

The quantlets regxestp and lregxestp compute the Nadaraya-Watson esti-
mator (19) and local linear estimator (21) for higher order autoregressions.
They are called by
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mh = regxestp(x{, h, K, v})
or
mh = lregxestp(x{, h, K, v})

with input variables

X
(T —im) x (m+ 1) matrix of the data with the m lagged variables in the
first m columns and the dependent variable in the last column,

h
scalar or m x 1 or 1 x m vector of bandwidth for which if not given 20%
of the range of the values in the first column of x is used,

K
string, kernel function on [-1,1] or Gaussian kernel "gau" for which if not
given, the quartic kernel "qua" is used,

v

n X m matrix of values of the independent variable on which to compute
the regression for which if not given, a grid of length 100 (m = 1), length
30 (m = 2) and length 8 (m = 3) is used in case of m < 4. When m > 4
then v is set to x.

The output variable is a

mh
(T —im) x (m+1) or n x (m + 1) matrix where the first m columns
contain the grid or the sorted first m columns of x, the m + 1 column
contains the regression estimate on the values of the first m columns.

As before, there are also quantlets which apply WARPing. They are called
regestp and lregestp, respectively.

Since we found in Subsection 1.3 that a NAR(1) model is not sufficient to cap-
ture the dynamics of the lynx trappings, we compute and plot in the following
quantlet the autoregression function for lag 1 and 2 for both estimators using
the crude bandwidth of 20% of the data range. Note that you have to click on
the graph and rotate it in order to see the regression surface.
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library("smoother")
library("plot")
setsize(640,480)

lynx

data preparation

= read("lynx.dat")

lynxrows rows (lynx)
lagl lynx[1:1lynxrows-2] ; vector of first lag
lag?2 lynx[2:1ynxrows-1] ; vector of second lag
y lynx[3:1lynxrows] ; vector of dep. var.
data lagl~lag2”y
data log(data)
; estimation
h 0.2*%(max(data[,1])-min(datal[,1])) ; crude bandwidth
mh regxestp(data,h) ; local constant estimation
mhlp lregxestp(data,h) ; local constant estimation
; graphics
mhplot = createdisplay(1,1)
mh = setmask(mh,"surface","blue")
show(mhplot,1,1,data,mh) ; surface plot

setgopt (mhplot,1,1,"title",

mhlpplot

mhlp

"Nadaraya-Watson estimate -- ROTATE!")
createdisplay(1,1)
setmask (mhlp,"surface","red")

show(mhlpplot,1,1,data,mhlp) ; surface plot
setgopt (mhlpplot,1,1,"title",

"Local linear estimate —- ROTATE!")

QfltsO8.xpl

Figures 9 and 10 show three-dimensional plots of the observations and the es-
timated regression function. In Figure 9 one can clearly see the problem of
boundary effects, i.e. in regions where are no or only few data points the esti-
mated function values may easily become erratic if the bandwidth is too small.
Therefore, a selected bandwidth may be appropriate for regions with plenty of
observations while inappropriate elsewhere. As can be seen from Figure 10, this
boundary problem turns out to be worse for the local linear estimator where
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Nadaraya-Watson estimate -- ROTATE!

,'I,‘};;/I" ‘z”&
/I///ag"",.%»‘ <
X3RS
(B0
i Al

Figure 9: Observations and Nadaraya-Watson estimate of NAR(2) regression

function for the lynx data

one observes a large outlier for one grid point. Such terrible estimates happen
if the inversion in (20) is imprecise due to a too small bandwidth. One then
has to increase the bandwidth. Try the quantlet @ £1ts08.xpl with replacing
in the crude bandwidth choice the factor 0.2 by 2. Note that increasing the
bandwidth makes the estimated regression surfaces of the two estimators look
flat and closer to linearity, respectively. This, however, can increase the esti-
mation bias. Therefore, an appropriate bandwidth choice is important. It will

be discussed in the next section.
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3. column*E2

Local linear estimate -- ROTATE!

Figure 10: Observations and local linear estimate of NAR(2) regression function

for the lynx data

2.2 Bandwidth and Lag Selection

{Bhat, Bhatr, hB, Chat, sumwc, hC, hA} = hoptest (xsj,

lagmax, robden)

quantlet to compute plug-in bandwidth for multivariate regres-
sion or nonlinear autoregressive processes of higher order.

yorig, xtj, estimator, kernel, ntotal, sigy2, perB,
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{crmin, crpro} = cafpe(y, truedat, xdataln, xdatadif,
xdatastand, lagmax, searchmethod, dmax)
quantlet for local linear lag selection for the conditional mean
function based on the Asymptotic Final Prediction Error
(AFPEs) or its corrected versions (CAF PE,) using default set-
tings.

{crmin, crpro, crstore, crstoreadd, hstore, hstoretest}
= cafpefull(y, truedat, xresid, trueres, xdataln,
xdatadif, xdatastand, lagmax, volat, searchmethod,
dmax, selcrit, robden, perA, perB, startval,
noutputf, outpath)
quantlet for local linear lag selection for the conditional mean or
volatility function based on the asymptotic final prediction error
(AFPE,) or its corrected version (CAFPE,).

{mA, gsqA, denA, err} = fvllc(Xsj, Yorig, h, Xtj,
kernreg, lorq, fandg, loo)
can estimate the multivariate regression function, first or second
direct derivatives using local linear or partial local quadratic re-
gression with Gaussian kernel.

The example of the previous section showed that the bandwidth choice is very
important for higher order autoregressive models. Equally important is the
selection of the relevant lags. Both will be discussed in this section. The
presented procedures are based on Tschernig and Yang (2000).We start with
the problem of selecting the relevant lags. For this step it is necessary to a priori
specify a set of possible lag vectors by choosing the maximal lag M. Denote the
full lag vector containing all lags up to M by X; pr = (Y1, Yie2, ..., Yiem) .
The lag selection task is now to eliminate from the full lag vector X; »s all lags
that are redundant. Let us first state the assumptions that Tschernig and Yang
(2000) require:

(Al) For some M > iy, the vector process Xy pr is strictly stationary and
B-mixing with B(T) < koT~219/9 for some § > 0, ko > 0.

(A2) The stationary distribution of the process X¢ ar has a continuous density
pnr(zar), xar € RM. Note that u(-) is used for denoting pas(-) and all
of its marginal densities.
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(A3) The function f(-) is twice continuously differentiable while o (-) is contin-
uous and positive on the support of u(-).

(A4) The errors {;}¢>i,, have a finite fourth moment my.

(A5) The support of the weight function w(-) is compact with nonempty in-
terior. The function w(-) is continuous, nonnegative and u(zar) > 0 for
xp in the support of w(-).

(A6) The kernel function K : IR — IR is a symmetric probability density and
the bandwidth A is a positive number with h — 0, nh™ — oo as n — oo.

For the definition of S-mixing see Section 1.1 or Doukhan (1994). Conditions
(A1) and (A2) can be checked using e.g. Doukhan (1994, Theorem 7 and Re-
mark 7, pp. 102, 103). Further conditions can be found in Lu (1998).

For comparing the quality of competing lag specifications, one needs an appro-
priate measure of fit, as for example the final prediction error (FPE)

9]

o ~ U 2
FPE,(hyi1,... ,im) = E [(Yt - fa(Xt,h)) w(Xt,M)] . a=1,2. (24)

In the definition of the FPE(-) the process {Y;} is assumed to be independent of
the process {Y;} but to have the same stochastic properties. If we now indicate
the vector of lagged values of the data generating process by the superscript *
and assume its largest lag is smaller than the chosen M, we can easily relate
the definition of the FPE (24) to the MISE

~

daar(isim) = B| [ {16 = )} womntonon] . (29)

which here extends (11) to functions with several lags. First note that

FPE,(h,i1,. .. im) E {E [(Yt ~ fa()”(t,h,))2 wXea)|Y, ... ,YT] }

B{ [ (v- 7.@) wlomnty.am)dydan |
Using {y - ]?(m)}2 = {y — f(@)* + f(x)* - ]?(:1:)}2 one obtains the decompo-
sition

FPEy(hyiv, ... yim) = A+ das(hyit, ... yim), (26)

33



where
A = / o2 (2w (w0 r Azt (27)

denotes the mean variance or final prediction error for the true function f(z*).
Therefore, it follows from (26) that the FPE measures the sum of the mean
variance and the MISE.

In the literature mainly two approaches were suggested for estimating the un-
known FPE,(-) or variants thereof, namely cross-validation (Vieu 1994), (Yao
and Tong 1994) or estimation of an asymptotic expression of the FPE,(-)
(Auestad and Tjgstheim 1990), (Tjostheim and Auestad 1994), (Tschernig and
Yang 2000). Given Assumptions (A1) to (A6), Tschernig and Yang (2000, The-
orem 2.1) showed that for the local constant estimator, a = 1, and the local lin-
ear estimator, a = 2, one has FPE,(h,i1,... ,im) = AFPE,(h,i1,... ,im) +
o{h* + (T — i)~ th™™} where

AFPE,(hyiy, ... yim) = A+ b(h)B + c(h)C, (28)

denotes the asymptotic final prediction error. The terms b(h)B and c(h)C
denote the expected variance and squared bias of the estimator, respectively,
with the constants

B = / o (2" Yw (s ) (za) /() e, (29)

Ca

/ra(a:)Qw(a:M)u(a:M)da:M (30)
and the variable terms
b(h) = ||K|3™(T —im)h™™, c(h) = oych? /4 (31)

with ||K|]} = [ K(u)?du and 0% = [ K(u)u’du. The sum of the expected
variance and squared bias of the estimator just represents the asymptotic mean
squared error. Note that if the vector of correct lags X/ is included in X}, then
AFPE,(h,-) tends to A as both b(h)B and ¢(h)C, tend to zero.

From (28) it is possible to determine the asymptotically optimal bandwidth
hopt by minimizing the asymptotic MISE, i.e. solving the variance-bias tradeoff
between b(h)B and ¢(h)C. The asymptotically optimal bandwidth is given by

m N1l —4q1/(mt4
haopt = {m||K|Z"B(T — i)~ C o}/ (32)
Note that for a finite asymptotically optimal bandwidth to exist one has to

assume that
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(A7) C, defined in (30) is positive and finite.

This requirement implies that in case of local linear estimation there does not
exist a finite hg ,p¢ for linear processes. This is because there does not exist an
approximation bias and thus a larger bandwidth has no cost.

In order to obtain the plug-in bandwidth Ea,opt one has to estimate the unknown
constants B and C,. A local linear estimate of B (29) is obtained from

T 2
Ba(hs) = 771" {¥i = FalXe, hm) | w(Xen0) /(X0 i),
t=1

where [i(-) is the Gaussian kernel estimator (40) of the density u(x). For
estimating hp one may use Silverman’s (1986) rule-of-thumb bandwidth

. 4 1/(m+4)
hB = a'\ (T—-|-2> T_l/(m+4) (33)

1/m
with o = (H;n:l VVar(X J)) denoting the geometric mean of the standard
deviation of the regressors.
For the local linear estimator (21), C2 (30) can be consistently estimated by

2
T m

@(hc):% S FIX he) | w(Xem), (34)

t=im+1 | j=1

where f(7)(.) denotes the second direct derivative of the function f(-). It can
be estimated using the partial local quadratic estimator

{80,611, - ,81m7521, - ,/C\gm} = arg min{cO,cll,... ,C1m yC21 54+ sC2m } (35)
T
Yimin 41 1Yo —co —en1(Xen —x1) — -+ = cim (Xem — Tm)
2
—co1 (X —m1)? — - — - — com(Xem — 2m)?}” Kn(X; — ).
The estimates of the direct second derivatives are then given by U9 (z,h) =
2035, j = 1,... ,m. Excluding all cross terms has no asymptotic effects while
keeping the increase in the ‘parameters’ cg,cij,¢25, J = 1,...,m linear in

the number of lags m. This approach is a simplification of the partial cubic
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estimator proposed by Yang and Tschernig (1999) who also showed that the
rule-of-thumb bandwidth

4 )1/<m+6)

7o T—1/(m+6) (36)

he = 26 (
has the optimal rate. We note that for the estimation of Cy of the Nadaraya-
Watson estimator one has additionally to estimate the derivative of the density
as it occurs in (23). Therefore, we exclusively use the local linear estimator
(21). The direct second derivatives fU7)(z) can be estimated with the quantlet
tp/capfe/fvllc.

The plug-in bandwidth /i\zg,opt is then given by

~ ~ o~ A o~y 1/(m+a)
Foopt = {mI|K|E" Ba(hp)(T = i)~ Calhc) Mo}

(37)
It now turns out that when taking into account the estimation bias of A, the
local linear estimator of AFPEy(h,-) (28) becomes

AFPE; = Ay (ha opt) + 2K (0)™(T = i) ‘hy T, Ba(hp) (38)

and the expected squared bias of estimation drops out. In practice, ha opt is
replaced by the plug-in bandwidth (37). Note that one can interpret the second
term in (38) as a penalty term to punish overfitting or choosing superfluous lags.
This penalty term decreases with sample size as ha op¢ is of order T—1/(m+4),
The final prediction error for the true function A (27) is estimated by taking
the sample average

T

A =13 {u - AL} w(Xew)

t=1

of the residuals from the local linear estimator Jg(Xt,h). The asymptotic
properties of the lag selection method rely on the fact that the argument of
w(-) is the full lag vector X; as.

In order to select the adequate lag vector, one computes (38) for all possible
lag combinations with m < M and chooses the lag vector with the smallest
AFPE,. Given Assumptions (A1) to (A7) and a further technical condition,
Tschernig and Yang (2000, Theorem 3.2) showed that this procedure is weakly
consistent, i.e. the probability of choosing the correct lag vector if it is included
in the set of lags considered approaches one with increasing sample size. This
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consistency result may look surprising since the linear FPE is known to be
inconsistent. However, in the present case the rate of the penalty term in (38)
depends on the number of lags m. Thus, if one includes [ lags in addition to
m* correct ones, the rate of the penalty term becomes slower which implies
that too large models are ruled out asymptotically. Note that this feature is
intrinsic to the local estimation approach since the number of lags influence
the rate of convergence, see (22). We remark that the consistency result breaks
down if Assumption (A7) is violated e.g. if the stochastic process is linear. In
this case overfitting (including superfluous lags in addition to the correct ones)
is more likely. The breakdown of consistency can be avoided if one uses the
Nadaraya-Watson instead of the local linear estimator since the former is also
biased in case of linear processes.

Furthermore, Tschernig and Yang (2000) show that asymptotically it is more
likely to overfit than to underfit (miss some correct lags). In order to reduce
overfitting and therefore increase correct fitting, they suggest to correct the
AFPE and estimate the Corrected Asymptotic FPE

CAFPE, = AFPE, {1 + (T — i)™ <m+4)} , a=1,2. (39

The correction does not affect consistency under the stated assumptions while
additional lags are punished more heavily in finite samples. One chooses the
lag vector with the smallest CAFPE,, a =1,2.

We note that if one allows the maximal lag M to grow with sample size, then
one has a doubled nonparametric problem of nonparametric function estimation
and nonparametric lag selection.

The nonparametric lag selection criterion CAFPE, can be computed using
the quantlet tp/cafpe/cafpe. The quantlet tp/cafpe/cafpefull also allows
to use AFPE,. Both are part of the third party quantlib tp/cafpe/cafpe
which contains various quantlets for lag and bandwidth selection for nonlinear
autoregressive models (16). The quantlet tp/cafpe/cafpe is called as

{crmin, crpro} = cafpe(y, truedat, xdataln, xdatadif,
xdatastand, lagmax, searchmethod, dmax)

with the input variables:

y
T x 1 matrix of the observed time series or set to zero if truedat is used,
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truedat
character variable that contains path and name of ascii data file if y=0,

xdataln
character variable where "yes" takes natural logs, "no" doesn’t,

xdatadif
character variable where the value "yes" takes first differences of data,
"no" doesn’t,

xdatastand
character variable where "yes" standardizes data, "no" doesn’t,

lagmax
scalar variable, largest lag to be considered,

searchmethod
character variable where "full" considers all possible lag combinations,
"directed" does directed search (recommended if lagmax > 10),

dmax
scalar variable with maximum number of possible lags,

and output variables

crmin
(dmax+1)x1 vector that stores for all considered lag combinations in the
first dmax columns the selected lag vector, in the dmax+1 column the
estimated CAFPF,, in the dmax+2 column A, in the dmax+3 column
the bias corrected estimate of A, see TY (equation 3.3),

crpro

(dmax+1)x (dmax+6) matrix that stores for each number of lags (0,1,...
,dmax) in the first dmax colunms the selected lag vector, in the dmax+1
column the plug-in bandwidth 32,0” for estimating the final prediction
error for thg true function A and CAF PE,, in the dmax+2 column the
bandwidth hp for estimating the constant B which is used for computing
CAFPE, and the plug-in bandwidth hs op¢, in the dmax+3 column the
bandwidth ﬁc for estimating the constant C' which is used for comput-
ing the plug-in bandwidth hs op¢, in the dmax+4 column the estimated
CAFPE,, in the dmax+5 column ;1\, in the dmax+6 column the bias
corrected estimate of A4, see TY (equation 3.3).
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Some comments may be appropriate. The weight function w(-) is the indicator
function on the range of the observed data. If M is large or the time series is
long, then conducting a full search over all possible lag combinations may take
extraordinarily long. In this case, one should use the directed search suggested
by Tjgstheim and Auestad (1994): lags are added as long as they reduce the
selection criterion and one adds that lag from the remaining ones which delivers
the largest reduction.

For computing CAFPE,; TY follow Tjgstheim and Auestad (1994) and im-
plement two additional features for robustification. For estimating p(z, h) the
kernel estimator

T+
iz, h) = (T — i +i1)™" Y Kn(X; — ) (40)
1=im+1
is used where the vectors X;,¢ =T+1,... ,T+1; are all available from the ob-
servations Yy, t = 1,... ,T. For example, X1, is given by (Y7, ... , Y44, i ).

This robustification is switched off if the sum stops at 7. Furthermore, 5%
of those observations whose density values fi(-) are the lowest, are screened
off. These features can be easily switched off or modified in the quantlet
tp/cafpe/cafpefull. This quantlet also allows to select the lags of the condi-
tional standard deviation o(-) and is therefore discussed in detail in Subsection
2.4.

If one is only interested in computing the plug-in bandwidth ﬁg,opt, then one
can directly use the quantlet tp/cafpe/hoptest. However, before it can be
called it requires to prepare the time series accordingly so that it is easier to
run the lag selection which automatically delivers the plug-in bandwidth for
the chosen lag vector as well. For the definition of its variables the reader is
referred to the helpfile of tp/cafpe/hoptest.

We are now ready to run the quantlet tp/cafpe/cafpe on the lynx data set.
The following quantlet conducts a full search among the first six lags

pathcafpe = "tp/cafpe/" ; path of CAFPE quantlets
H load required quantlibs
library("xplore")
library("times")
func(pathcafpe + "cafpeload") ; load XploRe files of CAFPE
cafpeload(pathcafpe)

setenv("outheadline","") ; no header for each output file
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setenv("outlineno","") ; no numbering of output lines
H set parameters

truedat = "lynx.dat" ; name of data file

y =0

xdataln = "yes"; ; take logarithms

xdatadif = "no"; ; don’t take first differences
xdatastand = "no"; ; don’t standardize data
lagmax =6 ; the largest lag considered is 6
searchmethod = "full" ; consider all possible lag comb.
dmax =6 ; consider at most 6 lags

5 conduct lag selection
{ crmin,crpro } = cafpe(y,truedat,xdataln,xdatadif,xdatastand,
lagmax,searchmethod ,dmax)
"selected lag vector, estimated CAFPE "
crmin[,1:dmax+1]
"number of lags, chosen lag vector, estimated CAFPE,
plug-in bandwidth"
(0:dmax) “crprol[,1:dmax| (dmax+4) | (dmax+1)]

Q £1t509.xpl

A screenshot of the output which shows the criteria for all other number of lags
is contained in Figure 11. The selected lags are 1 to 4 with plug-in bandwidth
ho,opt = 0.90975 and CAFPE, = 0.2163. However, the largest decrease in
CAFPE, occurs if one allows for two lags instead of one and lag 2 is added.
In this case, CAFPE, drops from 0.64125 to 0.24936. Therefore lag 2 seems
to capture the autocorrelation in the residuals of the NAR(1) model which was
estimated in Subsections 1.1 to 1.3. For this reason a NAR(2) model could be
sufficient for the lynx data. Its graphical representation is discussed in the next
section.
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Figure 11: Results of the lag selection procedure using CAF PE, for lynx data

2.3 Plotting and Diagnostics

{hplugin, hB, hC, xs, resid} = plotloclin(xdata, xresid,
xdataln, xdatadif, xdatastand, volat, lags, h,
xsconst, gridnum, gridmax, gridmin)
computes 1- or 2-dimensional plot of regression function of a non-
linear autoregressive process for a given lag vector on the range
of the data; if more than 2 lags are used, then only two lags are
allowed to vary, the others have to be fixed

Once the relevant lags and an appropriate bandwidth are determined, one
would like to have a closer look at the implied conditional mean function
as well as checking the residuals for potential model misspecification as dis-
cussed in Subsection 1.3. The latter may be done by inspecting the auto-
correlation function and testing the normality of the residuals. The quantlet
tp/cafpe/plotloclin of the quantlib tp/cafpe/cafpe allows to do both. It
generates two- or three-dimensional plots of the autoregression function on a
grid that covers the range of data and computes the residuals for the given time
series. Both is done either with a bandwidth specified by the user or the plug-in
bandwidth ho op¢ which is automatically computed if required. The quantlet
tp/capfe/plotloclin also allows to compute three-dimensional plots of func-
tions with more than two lags by keeping m — 2 lags fixed at user-selected
values. It is called by
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{hplugin,hB,hC,xs,resid} = plotloclin(xdata,xresid,xdataln,
xdatadif ,xdatastand,volat,lags,h,xsconst,
gridnum,gridmax,gridmin)

with the input variables

xdata
T x 1 vector of the observed time series

xresid
T' x 1 vector of residuals or observations for plotting conditional volatility
function, if not needed set xresid = 0,

xdataln
character variable, "yes" takes natural logs, "no" doesn’t,

xdatadif
character variable, "yes" takes first differences of data, "no" doesn’t,

xdatastand
character variable, "yes" standardizes data, "no" doesn’t,

volat
character variable, "no" plots conditional mean function, "resid" plots
conditional volatility function, the residuals of fitting a conditional mean
function have to be contained in xresid,

lags
m x 1 vector of lags,

h
scalar bandwidth for which if set to zero a scalar plug-in bandwidth using
hoptest is computed or a m X 1 vector bandwidth

xsconst
m x 1 vector (only needed if m > 2) indicates which lags vary and which
are kept fixed for those keeping fixed, the entry in the correponding row
contains the value at which it is fixed for those to be varied, the entry in
the corresponding row is 1e-100,

gridnum

scalar, number of grid points in one direction,
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gridmax

scalar, maximum of grid,

gridmin

scalar, minimum of grid,

and output variables

hplugin
scalar plug-in bandwidth hs ,,+ (37) or chosen scalar or vector bandwidth,
hB
scalar, rule-of-thumb bandwidth (33) for nonparametrically estimating
the constant B in CAF PE, and for computing the plug-in bandwidth,
hC
scalar, rule-of-thumb bandwidth (36) for nonparametrically estimating
the constant C' for computing the plug-in bandwidth,
XS
T' x m matrix with lagged values of time series which are used to compute
plug-in bandwidth and residuals for potential diagnostics,
resid

T' x 1 vector with residuals after fitting a local linear regression at xs.

Figure 12 shows the plot of the conditional mean function for an NAR(2)
model of the lynx data on a grid covering all observations. The autocorrelation
function of the residuals is shown in Figure 13. These graphs and a plot of
the standardized residuals are computed with the following quantlet. It also
returns the Jarcque-Bera test statistic of 2.31 with p-value of 0.32.

pathcafpe = "tp/cafpe/" ; path of CAFPE quantlets

load required quantlibs

library("xplore")

library("times")

func("jarber")

func(pathcafpe + "cafpeload"); load XploRe files of CAFPE
cafpeload(pathcafpe)

setenv("outheadline","") ; no header for each output file
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setenv("outlineno","") ; no numbering of output lines
H set parameters

lynx = read("lynx.dat");

xresid =0

xdataln = "yes"; ; take logarithms

xdatadif = "no"; ; don’t take first differences
xdatastand = "no"; ; don’t standardize data

lags = 1|2 ; lag vector for regression function
h =0

xsconst = 1e-100|1e-100 ; 1e-100 for the lags which are

; varied for those kept fixed it
; includes the chosen constant

gridnum = 30 ; number of gridpoints in one dir.
gridmax =9 ; maximum of grid
gridmin =4 ; minimum of grid

compute opt. bandwidth and plot regression fct. for given lags

{ hplugin,hB,hC,xs,resid } = plotloclin(lynx,xresid,xdataln,
xdatadif,xdatastand,volat,lags,h,
xsconst,gridnum,gridmax,gridmin)

"plug-in bandwidth" hplugin

H diagnostics

acfplot(resid) ; compute and plot acf of residuals

{jb,probjb,sk,k} = jarber(resid,1)

; compute Jarque-Bera test for normality of residuals

Qfltle.xpl

From inspecting Figure 13 one can conclude that a NAR(2) model captures
most of the linear correlation structure. However, the autocorrelation at lags 3
and 4 is close to the boundaries of the confidence intervals of white noise and
explains why the CAFPE procedure suggests lags one to four. The regression
surface in Figure 12 nicely shows the nonlinearity in the conditional mean
function which may be difficult to capture with standard parametric nonlinear
models.

2.4 Estimation of the Conditional Volatility

So far we have considered the estimation and lag selection for the conditional
mean function f(z). Finally, we turn our attention to modelling the function
of the conditional standard deviation o(x). The conditional standard deviation
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plays an important role in financial modelling, e.g. for computing option prices.
As an example we consider 300 logged observations dmus58-300 of a 20 minutes
spaced sample of the Deutschemark/US-Dollar exchange rate. Figures 14 and
15 display the logged observations and its first differences. The figures are
generated with the quantlet

library("plot")
library("times")

setsize(640,480)

fx = read("dmus58-300.dat"); read data
d1 = createdisplay(1,1)

x1 = #(1:300) " fx

setmaskl (x1, (1:rows(x1))’, 0, 1)
show(d1l,1,1,x1) ; plot data

setgopt(dl,1,1,"title",
"20 min. spaced sample of DM/US-Dollar rate")
setgopt(dl,1,1,"xlabel","Periods","ylabel","levels")

d2 createdisplay(1,1)
x2 #(2:300) “tdiff (£x)
setmaskl (x2, (1:rows(x2))’, 0, 1)
show(d2,1,1,x2) ; plot data
setgopt(d2,1,1,"title","20 min. spaced sample of

DM/US-Dollar rate - first differences")
setgopt(d2,1,1,"xlabel","Periods","ylabel","first differences")

Qfltsil.xpl

In the following we assume that the conditional mean function f(-) is known
and subtracted from Y;. Thus, we obtain Y; = Y; — f(X;). After squaring (16)
and rearranging we have

Y2 =0?(Xe) + o (Xo) (& — 1). (41)

Since 02(X;)(£2 — 1) has expectation zero, the stochastic process (41) can be
modelled with the methods described in Subsections 2.1 and 2.2 by simply
replacing the dependent variable Y; by its squares. However, we have to re-

. 2
mark that the existence of the expectation [(Y? — o2 (Xt)) is a necessary

condition for applying CAFPE,. Otherwise, the FPE cannot be finite. We
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note that if f(x) has to be estimated, the asymptotic properties of CAF PE,
are expected to remain the same. Therefore, it may be used in practice, how-
ever, after replacing Y; by the residuals Y; — fo(X}). This is possible with the
quantlet tp/capfe/cafpefull which extends the functionality of the quantlet
tp/cafpe/cafpe and allows the user to change additional tuning parameters.
The quantlet tp/cafpe/cafpefull is called by

{crmin, crpro,crstore,crstoreadd,hstore,hstoretest} =

cafpefull (y,truedat,xresid,trueres,xdataln,xdatadif ,xdatastand,
lagmax,volat,searchmethod,dmax,selcrit,robden,perA,
perB,startval ,noutputf,outpath)

and has input variables

y
T x 1 vector of univariate time series,
truedat
character variable that contains path and name of ascii data file if y=0,
xresid
T' x 1 vector of residuals or observations for selecting lags of conditional
volatility function, if not needed set xresid = 0,
trueres
character variable, "yes" takes natural logs, "no" doesn’t,
xdatadif
character variable, "yes" takes first differences of data, "no" doesn’t,
xdatastand
character variable, "yes" standardizes data, "no" doesn’t,
lagmax
scalar, largest lag to be considered,
volat

character variable, "no" conducts lag selection for conditional mean func-
tion, "resid" conducts lag selection for conditional volatility function,
the residuals of fitting a conditional mean function have to be contained
in xresid or a file name has to be given in trueres,

46



searchmethod
character variable for determining search method, "full" conducts full
search over all possible input variable combinations, "directed" does
directed search,

dmax
scalar, maximal number of lags

selcrit
character variable to select lag selection critierion, "lqafpe" estimates
the asymptotic Final Prediction Error AFPE, (38) using local linear
estimation and the plug-in bandwidth /ﬂz,opt (37), "1qcafpe" estimates
the corrected asymptotic Final Prediction Error CAFPE, (39) using
local linear estimation and the plug-in bandwidth ﬁz,opt (37)

robden
character variable, "yes" and "no" switch on and off robustification in
density estimation (40),

perA
scalar, parameter used for screening off a fraction of 0 < perA < 1 obser-
vations with the lowest density in computing A

perB
scalar, parameter like perA but for screening off a fraction of perB obser-
vations with lowest density in computing B>,

startval
character variable to control treatment of starting values, "different"
uses for each lag vector as few starting values as necessary, "same" uses
for each lag vector the same starting value which is determined by the
largest lag used in the lag selection quantlet tp/cafpe/xorigxe,

noutputf
character variable, name of output file,

outpath

character variable, path for output file.

The output variables are
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crmin
vector that stores for all considered lag combinations in the first dmax
rows the selected lag vector, in the dmax+1 row the estimated criterion,
in the dmax+2 row Az, in the dmax+3 row the bias corrected estimate of
A

’

crpro
matrix that stores for each number of lags in the first dmax rows the
selected lag vector, in the dmax+1 row the plug-in bandwidth hy ,p¢ for
estimating A and (C)AFPE, in the dmax+2 row the bandwidth hp used
for estimating B, in the dmax+3 row the bandwidth he for estimating C,
in the dmax—}—il\ row the estimated criterion AFPE,; or CAFPEs, in the
dmax+5 row Aj, in the dmax+6 row the bias corrected estimate of A,

crstore
matrix that stores lag vector and criterion value for all lag combinations
and bandwidth values considered, in the first dmax rows all considered
lag vector are stored, in the dmax+1 rows the estimated criterion for each
lag vector is stored,

crstoreadd
matrix that stores those criteria that are evaluated in passing for all lag
combinations where all values for one lag combination are stored in one
column (see program for details),

hstore
row vector that stores the bandwidths used in computing (C)AFPE for
each lag vector

hstoretest
matrix that stores for each lag vector in one column the plug-in bandwidth
hz,opt, hB and ho.

The quantlet @ £f1ts12.xpl (for brevity not shown) conducts a lag selection
for the conditional mean function f(x) and finds lag 1 and 3 with bandwidth
lALQ,Opt = 0.000432. If you run the quantlet, you will obtain the XploRe warn-
ing “quantlet fvllc: inversion in local linear estimator did not work because
probably the bandwidth is too small”. This means that for one of the checked
combinations of lags, one of the rule-of-thumb bandwidths or the plug-in band-
width was too small so that the matrix ZJ W Z, in the local linear estimator
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(21) is near singular and the matrix inversion failed. In this case, the rele-
vant bandwidth is doubled (at most 30 times) until the near singularity dis-
appears. Therefore, lag selection for the conditional volatility function o(z)
is done with replacing the observations Y; in model (41) by the estimated
residuals Y; — f(Xt). The computations are carried out with the following
quantlet which also generates a plot of the conditional mean function on the
range [—0.0015,0.0015] displayed in Figure 16 and plots the autocorrelation
function of the residuals (not shown). The latter plot does not show significant
autocorrelation.

pathcafpe = "tp/cafpe/" ; path of CAFPE quantlets
H load required quantlibs
library("xplore")
library("times")
func("jarber")
func(pathcafpe + "cafpeload") ;load XploRe files of CAFPE
cafpeload(pathcafpe)
H set output format

setenv("outheadline","") ; no header for each output file
setenv("outlineno","") ; no numbering of output lines

3 load data
X = read("dmus58-300.dat") ; name of data file
y = tdiff(x) ; compute first differences
xresid =0
truedat =" ; name of potential data file
trueres =" ; name of potential residuals file
xdataln = "no" ; don’t take logarithms
xdatadif = "no" ; don’t take first differences
xdatastand = "no" ; don’t standardize data
lagmax =6 ; the largest lag considered is 6
searchmethod = "full" ; consider all possible lag comb.
dmax =6 ; consider at most 6 lags
volat = "no" ; plot cond. mean function
selcrit = "lqcafpe" ; use CAFPE with plug-in bandwidth
robden = "yes" ; robustify density estimation
perA =0
perB = 0.05 ; screen off data with lowest density
startval = "different"
noutputf = ; name of output file
outpath = "test" ; path for output file
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lags = 1|3 ; lag vector for regression function
h =0
xsconst = 1e-100|1e-100 ; 1e-100 for the lags which are
; varied for those kept fixed it
; includes the chosen constant
gridnum = 30 ; number of gridpoints in one direction
gridmax = 0.0015 ; maximum of grid
gridmin = -0.0015 ; minimum of grid

; compute optimal bandwidth and plot cond. mean for given lags
{ hplugin,hB,hC,xs,resid } = plotloclin(y,xresid,xdataln,
xdatadif,xdatastand,volat,lags,h,xsconst,gridnum,
gridmax,gridmin)
"plug-in bandwidth for conditional mean" hplugin
; diagnostics
acfplot(resid); compute and plot acf of residuals
{jb,probjb,sk,k} = jarber(resid,1)
; compute Jarque-Bera test for normality of residuals
; conduct lag selection for cond. standard deviation
xresid = resid
volat "resid" ; conduct lat selection for cond. vol.
{crmin, crpro,crstore,crstoreadd,hstore,hstoretest}
= cafpefull(y,truedat,xresid,trueres,xdataln,
xdatadif,xdatastand,lagmax,volat,
searchmethod,dmax,selcrit,robden,
perA,perB,startval ,noutputf,outpath)
"Lag selection for cond. standard deviation using residuals"
"selected lag vector, estimated CAFPE "
crmin[,1:dmax+1]
"number of lags, chosen lag vector, estimated CAFPE,
plug-in bandwidth"

(0:dmax) “crprol[,1:dmax| (dmax+4) | (dmax+1)]
@ flts13.xpl

For the conditional standard deviation one obtains lags 2 and 6 with bandwidth
ha,opt = 0.000456. Figures 17, 18 and 19 display the plot of the estimated con-
ditional standard deviation o3(z), of the standardized residuals of the modified
model (41) and of their autocorrelation. The plots are generated with the
following quantlet
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pathcafpe = "tp/cafpe/" ; path of CAFPE quantlets

load required quantlets
library("xplore")
library("times")
func("jarber")
func(pathcafpe + "cafpeload"); load XploRe files of CAFPE
cafpeload(pathcafpe)

setenv("outheadline","") ; no header for each output file
setenv("outlineno","") ; no numbering of output lines

set parameters

b'e = read("dmus58-300.dat");

y = tdiff (x)

xresid =0

xdataln = "no" ; don’t take logarithms

xdatadif = "no" ; don’t take first differences
xdatastand= "no" ; don’t standardize data

volat = "no" ; compute cond. standard deviation
lags =13 ; lag vector for regression function
h =0 ; compute plug-in bandwidths

xsconst = 1e-100|1e-100

; 1e-100 for the lags which are varied
; for those kept fixed it includes the
; chosen constant

gridnum = 30 ; number of gridpoints in one direction
gridmax = 0.0015 ; maximum of grid
gridmin = -0.0015 ; minimum of grid

; compute optimal bandwidth and plot cond. mean for given lags
{ hplugin,hB,hC,xs,resid } = plotloclin(y,xresid,xdataln,
xdatadif,xdatastand,volat,lags,h,xsconst,gridnum,
gridmax,gridmin)
"plug-in bandwidth for mean" hplugin

; compute plug-in bandwidth and

; plot cond. standard deviation for given lags

lags = 2[6 ; lags for cond. volatility
xresid resid
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volat = "resid"
gridmax 0.0008 ; maximum of grid
gridmin -0.0008 ; minimum of grid

{ hplugin,hB,hC,xs,resid } = plotloclin(y,xresid,xdataln,
xdatadif,xdatastand,volat,lags,h,xsconst,gridnum,
gridmax,gridmin)
"plug-in bandwidth for conditional volatility" hplugin

; diagnostics
acfplot(resid); compute and plot acf of residuals
{jb,probjb,sk,k} = jarber(resid,1)
; compute Jarque-Bera test for normality of residuals

Q f1ts14.xpl

The surface plot of the conditional standard deviation is computed on the range
[—0.0008,0.0008] in order to avoid boundary effects. Inspecting the range of
the standardized residuals in Figure 18 indicates that the analysis may be
strongly influenced by outliers which also may explain the extreme increase of
the conditional standard deviation in Figure 17 in one corner. Moreover, Figure
19 shows some significant autocorrelation in the residuals. One explanation for
this finding could be the presence of long memory in the squared observations.
This topic is treated in detail in Chapter ??. Therefore, one should continue
to improve the current function estimates by excluding extreme observations
and using models that allow for many lags in the function of the conditional
standard deviation such as, for example, Yang, Hardle and Nielsen (1999).
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Estimated conditional mean function

Figure 12: Plot of the conditional mean function of a NAR(2) model for the
logged lynx data
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Figure 13: Plot of the autocorrelation function of the residuals of a NAR(2)
model for the logged lynx data
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20 min. spaced sample of logged DM/US-Dollar rates
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Figure 14: Time series of logarithm of 20 minutes spaced sample of DM/US-
Dollar rate
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20 min. spaced sample of DM/US-Dollar returns
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Figure 15: Time series of 20 minutes spaced sample of exchange rate returns
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Estimated conditional mean function

Figure 16: Plot of the conditional mean function of a NAR model with lags 1
and 3 for the returns of the Deutschemark/US-Dollar exchange rate
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Estimated conditional standard deviation
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Figure 17: Plot of the conditional standard deviation of a NAR model with
lags 2 and 6 for the returns of the Deutschemark/US-Dollar exchange rate
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Standardized estimated residuals

(0]

Standardized residuals

Figure 18: Plot of the standardized residuals of the modified model (41)
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Figure 19: Plot of the autocorrelation function of residuals of the modified
model (41)
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