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ABSTRACT 

 We make use in this article of a testing procedure suggested by Robinson (1994) for 

testing deterministic seasonality versus seasonal fractional integration. A new test statistic is 

developed to simultaneously test both, the order of integration of the seasonal component and the 

need of seasonal dummy variables. Finite-sample critical values of the tests are computed and, an 

empirical application, using both, Robinson (1994) and the joint test described in the paper, is 

also carried out at the end of the article. 
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1. Introduction 

Modelling the seasonal component of macroeconomic time series has been a major focus of 

attention in recent years. Deterministic models based on seasonal dummy variables were initially 

adopted. Later on, however, it was observed that the seasonal component of many series changed 

over time and stochastic approaches based on seasonal differencing (see eg. Box and Jenkins, 

1970) were proposed. In recent years, seasonal-difference models have been extended to allow 

for other types of long memory behaviour, in particular, allowing seasonal fractional integration. 

For the purpose of the present paper, we assume that {xt, t = 0, ±1,…} is an I(0) process, defined 

as a covariance stationary process with spectral density function which is positive and finite at 

any frequency on the interval (-π, π]. We can consider the model 

...,2,1,)1( 4 ==− txyL tt
d    (1) 

where L4 is the seasonal lag operator (L4yt = yt-4) and where d can be any real number. Clearly, if 

d = 0 in (1), yt = xt, and a weakly autocorrelated process is allowed for. However, for d > 0 in (1), 

yt is said to be a seasonal long memory process, so-called because of the strong association (in 

the seasonal structure) between observations widely separated in time. The notion of fractional 

processes with seasonality was initially suggested by Abrahams and Dempster (1979) and Jonas 

(1981), and extended in a Bayesian framework by Carlin et. al. (1985) and Carlin and Dempster 

(1989). Porter-Hudak (1990) applied a seasonally fractionally integrated model like (1) to 

quarterly US monetary aggregates and other recent empirical applications can be found, for 

example, in Silvapulle (1995), Ooms (1997) and Gil-Alana and Robinson (2000). 

 The outline of the paper is as follows: Section 2 describes a version of the tests of 

Robinson (1994) for testing the order of integration of the seasonal component in raw time series, 

also including the possibility of seasonal dummy variables in the original series. Section 3 

presents a joint test statistic, based on Robinson (1994), for testing simultaneously the order of 

integration and the need of the seasonal dummy variables. In Section 4 the tests are applied to the 
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consumption and income series of the UK, Canada and Japan while Section 5 contains some 

concluding comments and extensions. 

 

2. The tests of Robinson (1994) and seasonality 

Let’s assume that {yt, t = 1, 2, …, T} is the time series we observe and consider the following 

model, 
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where β is a (4x1) vector of unknown parameters; D1, D2 and D3 are seasonal dummy variables 

and ut is I(0). Based on (2) and (3), Robinson (1994) proposed a Lagrange Multiplier (LM) test of  

   oo ddH =:      (4) 

for any real value do. Specifically,  the test statistic is given by 
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I(λj) is the periodogram of tû  defined as 
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tû : ),;(
2

);(
2

τλ
π

στλ gf =  withτ̂  obtained by minimising σ2(τ). Note that if ut is white noise, g 

≡ 1 and Â  below (5) becomes 
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which becomes asymptotically π2/6 ≈ 1.645. Finally, the summation on *  in the above 

expressions are over λ ∈ M where M = {λ: -π < λ < π, λ ∉ (ρl - λ1, ρl + λ1), l = 1, 2, …, s}, such 

that ρl, l = 1, 2, …, s < ∞ are the distinct poles of ψ(λ) on (-π, π]. 

Based on (4), Robinson (1994) showed that under certain regularity conditions, 

.ˆ 2
1 ∞→→ TasR d χ    (7) 

Thus, a 100α%-level test of (4) against Ha: d ≠ do will reject Ho (4) if 2
,1

ˆ
αχ>R , where  

αχχ α => )(Pr 2
,1

2
1ob . Furthermore, he also showed that the test is efficient in the Pitman sense, 

i.e. that against local alternatives of form: Ha: d = do + δT-1/2, for δ ≠ 0, R̂  has a limit distribution 

given by a )(2
1 νχ , with a non-centrality parameter, ν, which is optimal under Gaussianity of ut. 

An empirical application of this version of Robinson’s (1994) tests is Gil-Alana and Robinson 

(2000) and Monte Carlo experiments studying its finite-sample behaviour can be found in Gil-

Alana (2000a). 

 Let’s suppose now that we want to investigate if the seasonal component of a given time 

series is deterministic or alternatively, stochastically specified in terms of integrated processes. 

We can test Ho (4) with do = 0 in (2) and (3), and the non-rejections of Ho (4) will imply in this 

case that the seasonal component is deterministic and thus based exclusively on the seasonal 

dummy variables. On the other hand, testing Ho (4) for values of do > 0 and imposing βi = 0 for i 

= 1,2 and 3 a priori in (2), the non-rejection values will indicate that the seasonal component is 

stochastic, either with unit roots (if do = 1) or with fractional ones (if do ≠ 1). Furthermore, we 

can also test for seasonal fractional integration incorporating the seasonal dummies in (2), as well 
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as including stationary autoregressions for the seasonal component. In the following section, we 

present a joint test for testing simultaneously the need of the seasonal dummies and the order of 

integration of the seasonal component of the series. 

 

3. A joint test of seasonality and the order of integration 

Gil-Alana and Robinson (1997) propose a joint test for testing simultaneously the need of a linear 

time trend and the order of integration in a given time series at the zero frequency. In this section, 

a similar test is proposed but, instead of looking at the long run or zero frequency, we concentrate 

on the seasonal component of the series. 

 We can consider the model given by (2) and (3) and test the null hypothesis: 

,3,2,10: === iandddH ioo β     (8) 

against the alternative: 

.3,2,10: =≠≠ ianyfororddH ioo β    (9) 

A joint test is then given by 
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and R~  as in (5) but using the tu~  just defined. Then, under Ho (8), 2
2

~ χdS →  as T → ∞, and we 

would compare (10) with the upper tail of the 2
2χ  distribution. However, we know that in finite 

samples, the empirical distribution of the tests of Robinson (1994) can vary substantially from 

the asymptotic results, (see eg. Gil-Alana, 2000b). Thus, we have computed, in Table 1, finite-

sample critical values of both statistics, R̂  in (5) and S~  in (10). 

(Table 1 about here) 
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In both cases we generate Gaussian series obtained by the routines GASDEV and RAN3 

of Press, Flannery, Teukolsky and Vetterling (1986) with 50,000 replications each case, 

computing R̂  in (5) and S~  in (10) in a model given by (2) and (3). Due to the inclusion of the 

seasonal dummies in (2), the critical values will be affected by the order of integration in (3), 

thus we calculate the critical values for d = 0, 0.25, …, (0.25), …, 1.75 and 2, with sample sizes 

equal to 48, 96 and 120 and nominal sizes of 5% and 1%. 

 We see that for both statistics, the finite-sample critical values are much higher than those 

given by the 2χ distributions, especially if the sample size is small. Thus, when testing the nulls 

(4) and (8) against the alternatives: Ha: d ≠ do and (9) with the asymptotic critical values, the tests 

will reject the null more often than with the finite-sample ones. We went deeper into the 

examination of these results and observed that the large numbers obtained for the finite-sample 

critical values were due to the fact that the quantity (6) required in (5) and (10) converges to its 

asymptotic value (1.645) very slowly. Thus, if T = 48, this quantity is 0.989; if T = 96, it is 

1.216; if T = 120, it becomes 1.293 and only approximates 1.645 when T is higher than 300. (eg., 

1.624 if T = 360). 

 We next examine the sizes and the power properties of the tests in finite samples, 

comparing the results using the finite-sample critical values with those based on the asymptotic 

results. Tables 2 and 3 report the rejection frequencies of R̂  and S~  first, supposing that there is 

no need of seasonal dummies (in Table 3) and then including the dummy variables in the 

regression model (2). 

 In Table 2, we assume that the true model is given by 

,)1(;1 4
tttt xLxy ε=−+=  

with white noise εt and look at the rejection frequencies of R̂  and S~  in a model given by (2) and 

(3) with do = 0, 0.25, …, (0.25), …, 1.75 and 2 for a nominal size of 5% and the same sample 

sizes as in Table 1. Thus, the rejection frequencies corresponding to do = 1 will indicate the sizes 
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of the tests and, in case of R̂  in (5), the estimated β’s should be around 0. We observe that for 

both test statistics the sizes of the asymptotic tests are too large in all cases, especially for the 

joint test ,~S  though they improve slightly as we increase the number of observations. The higher 

sizes of the asymptotic tests are also associated with some superior rejection frequencies, being 

higher the differences when we are close to the null d = 1. Looking at the results with T = 48, we 

see that the power of R̂  is extremely low, especially when using the finite-sample critical values. 

This is not surprising noting that R̂  assumes the inclusion of seasonal dummy variables which 

are not present in the true model. In that respect, the power of S~  (which assumes no dummies 

under the null) is higher, though inferior with the finite-sample values than with the asymptotic 

results. Increasing the sample size (eg. T = 120) the results of both tests for both types of critical 

values improve considerably, the rejection probabilities being competitive in all cases when the 

alternatives are far away from the null. 

(Tables 2 and 3 about here) 

 Table 3 assumes that the true model is given by 

,)1(;321 4
321 ttttttt xLxDDDy ε=−++++=  

and we perform the same experiment, i.e., computing R̂  and S~  for the same type of alternatives 

as in Table 2. Thus, the rejection frequencies of R̂  with d = 1 will indicate its size while the 

rejection probabilities of R̂  for d ≠ 1 and of S~  for any d will give us information about the 

power of the tests. Surprisingly, the results for R̂  are practically the same as in Table 2. That 

means that Robinson’s (1994) tests have not much power in relation to the seasonal dummy 

variables, which makes the joint test statistic S~  in (10) useful when describing these situations. 

Looking at the rejection frequencies of ,~S  we see that they are very high when using the 

asymptotic critical values even if the sample size is small. Using the finite-sample ones, they are 
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small for T = 48 if do is around 1, however, increasing T, they improve considerably, being 

higher than 0.900 if do ≤ 0.50 of if do ≥ 1.50 with T = 120. 

 

4. An empirical application 

We analyse in this section the quarterly, seasonally unadjusted, consumption and income series 

for the UK, Canada and Japan. For the UK, the time period is 1955q1-1984.4;  for Canada 

1960q1-1994q4; and for Japan, 1961q1-1987q4. Consumption is measured as the log of the total 

real consumption while income is in all cases the log of the total personal disposable income. The 

series for the UK and Japan were respectively analysed in Hylleberg, Engle, Granger and Yoo 

(HEGY, 1990) and in Hylleberg, Engle, Granger and Lee (HEGL, 1993) studying its seasonal 

integrated and cointegrated structure. The same series for the two countries were also examined 

in Gil-Alana and Robinson (2000), extending the analysis of HEGY (1990) and HEGL (1993) to 

a fractional model. The latter paper, however, do not consider deterministic dummy variables for 

describing the seasonal component and thus, this paper improves Gil-Alana and Robinson (2000) 

in that respect. 

 Denoting any of the series yt, we employ throughout the model (2) and (3) with white 

noise ut, testing initially Ho (4) for values do = 0.00, 0.25, …, (0.25), …, 1.75 and 2.00. Table 4 

reports values of the test statistic R̂  in (5). We see that for the UK series, Ho (4) cannot be 

rejected if do ranges between 1 and 2, the lowest statistic being achieved in both series at do = 

1.50. For the Canadian consumption and income, the only non-rejection values appears when do 

= 1.75 and 2, while for Japan, Ho (4) cannot rejected with do  = 1.75 and 2 for consumption and 

with do  = 1.50 and 1.75 for income. On the other hand, we also observe that Ho (4) always 

results in a rejection for do = 0, implying that at least for this simple case of  white noise 

disturbances, the deterministic seasonal models are inappropriate for these series. 

(Tables 4 and 5 about here) 
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 In Table 5 we present the statistic S~  in (10) for the same do values as before. We see a 

few more non-rejection values than in Table 4 and in all cases the non-rejection do’s in that table 

form a proper subset of those in Table 5, suggesting that the seasonal dummies were non-

necessary when modelling these series. The results in these two tables seem to indicate that a 

seasonal unit root is present in the UK consumption and income, while for Canada and Japan, 

higher orders of integration are observed. However, the significance of these results might be due 

in large part to unaccounted-for I(0) autocorrelated disturbances. Thus, Tables 6 and 7 reports the 

same statistics as in Tables 4 and 5 but allowing a seasonal autoregressive structure on ut.  We 

consider a seasonal AR(1) process of form 

   ,4 ttt uu εφ += −     (11) 

with white noise εt and, though higher order seasonal and non-seasonal AR processes were also 

performed, the results were very similar to those reported in the tables. A problem here with the 

estimated AR’s coefficients appears in that, though they entail roots that cannot exceed one in 

absolute value, they can be arbitrarily close to it, thus the disturbances being possibly non-

significantly different from a seasonal unit root. In order to solve this problem,  we perform 

Dickey, Hasza and Fuller (DHF, 1984) tests on the residuals of the differenced regression and in 

those cases where unit roots cannot be rejected, we do not report the statistics and mark with ‘—‘ 

in the tables. We see across Tables 6 and 7 that all of these cases occur when d is a relatively low 

number and close to 0. This is not surprising if we take into account that (3) with d = 1 is a 

similar process, (though with very different statistical properties) to (11) with α close to 1. The 

critical values for the AR(1) case with T = 120 were computed and though we do not report the 

values here, they were slightly higher than those given in Table 1. Starting with R̂  in (5), we see 

in Table 6 that the non-rejection values occur at exactly the same (do/series) combination as in 

Table 4 with only two extra non-rejected do’s corresponding to do = 1.50 for Canadian and 

Japanese income. 
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(Tables 6 and 7 about here) 

 Similarly for the joint test, in Table 7, the non-rejections also coincide with those in Table 

5 for the case of white noise disturbances, again with two extra non-rejected values, this time 

corresponding to do = 0.75 for the UK consumption and income series. In view of these results 

we have further evidence against the need of seasonal dummy variables for all the series in the 

three countries considered. 

 As a final remark and following HEGY (1990), HEGL (1993) and Gil-Alana and 

Robinson (2000), we also investigate if consumption and income may be cointegrated. Using a 

very simplistic version of the “permanent income hypothesis theory” as discussed for example by 

Davidson et al. (1978), we can consider a given cointegrating vector (1, -1) and look at the 

degree of integration of the difference between consumption and income. Thus, in Tables 8 and 9 

we again perform R̂  and S~  this time on the differenced series, using both white noise and 

seasonal AR(1) disturbances. Starting with the case of white noise disturbances (in Table 8) we 

see that the non-rejection values of R̂  take place when do ranges between 0.75 and 1.25. Thus, 

they are smaller by about 0.50-0.75 than those given in Table 4. Similarly, using the joint statistic 

,~S  the non-rejection values of do also are smaller by approximately the same magnitude as 

before compared with Table 5 and, apart from the case of do = 0.25 where Ho (8) cannot be 

rejected now, all the remaining non-rejections occur at the same values of do as when using R̂ . 

Thus, we find in this table evidence against deterministic seasonality as well as evidence of 

fractional cointegration at least for this case of white noise disturbances. 

(Tables 8 and 9 about here) 

 Table 9 extends the results of Table 8 to the case of AR(1) disturbances. We see that the 

non-rejection values of do are smaller for both statistics, ranging between 0.50 and 1.50. 

Comparing the results here with those in Tables 6 and 7, we see that the orders of integration are 
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again smaller for the differenced series, suggesting further evidence in favour of seasonal 

fractional cointegration. 

 

5. Concluding comments and extensions 

A version of the tests of Robinson (1994) for testing the order of integration of the seasonal 

component of raw time series including seasonal dummy variables has been proposed in this 

article. Also, a joint test statistic for simultaneously testing the order of integration and the need 

of the dummies was developed. Both tests have standard null and local limit distributions. 

However, finite-sample critical values were computed and the values were much higher than 

those given by the 2χ distributions. Monte Carlo experiments conducted in the paper showed that 

the tests based on the asymptotic results have much larger sizes than their corresponding nominal 

values, these larger sizes being also associated with some superior rejection frequencies 

compared with the finite-sample-based tests. 

 The tests were applied to the consumption and income series of the UK, Canada and 

Japan. The results based on Robinson’s  (1994) tests indicated that the order of integration of the 

UK consumption and income fluctuate widely between 1 and 2 while the orders of integration of 

the Japanese and Canadian series resulted much higher than 1. The joint test statistic was also 

performed on the series to check if the seasonal dummy variables were in fact required and the 

results showed that for all of them the deterministic seasonals were inappropriate. Finally, we 

also performed the tests on the differenced series to check if a seasonally fractionally 

cointegrated relationship exists between consumption and income. The results showed that the 

degree of integration of the differenced series was smaller by about 0.50-075 than in the original 

series, supporting the idea of the permanent income hypothesis. 

 The results obtained in this article are not directly comparable with those in Gil-Alana 

and Robinson (2000), the reason being that the latter paper does not include seasonal dummy 

variables in its regression model. In that respect, we found in this article certain evidence against 
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the deterministic dummies and thus, the conclusions obtained in Gil-Alana and Robinson (2000) 

remains valid. HEGY (1990) and HEGY (1993) looked respectively at the UK and Japanese 

series exclusively in terms of seasonally integrated and cointegrated processes and though they 

allow deterministic seasonality, they do not consider the possibility of seasonal fractional 

integration. Our results support the idea that the UK consumption and income may both be 

quarterly I(1) process (as in HEGY, 1990), however, unlike HEGL (1993)  we found evidence 

against this hypothesis for the Japanese case. Finally, and similarly to all these authors, we also 

found support for the permanent income hypothesis for the three countries considered. 

 We should also mention that that the test statistics presented in this article have nothing to 

do with the estimation of the fractional differencing parameter but simply generates computed 

diagnostics against departures from real values of d. In this context, Ooms (1997) suggests Wald 

tests based on Robinson’s (1994) model, using for the estimation a modified periodogram 

regression procedure of Hassler (1994), whose distribution is evaluated under simulation. Similar 

methods based on this and other procedures (eg, Hosoya, 1997) can be applied to these and other 

macroeconomic time series. 

 The frequency domain set-up of the tests used in this article may result cumbersome for 

the practitioners. There also exist time domain versions of Robinson’s (1994) tests (cf., 

Robinson, 1991). However, the preference here for the frequency domain approach is motivated 

by the somewhat greater elegance it affords especially if the disturbances are weakly 

autocorrelated. The FORTRAN code used in this application is available from the author upon 

request. 

 This article can be extended in several directions. First, the seasonal differenced structure 

(1 – L4)d can be decomposed  (as in Gil-Alana and Robinson, 2000) into its long run component 

((1 – L)d) and its remaining seasonal components ((1 + L)d and (1 + L2)d) and thus, we could test 

separately each of these components in the presence of seasonal dummies. Also, the joint test 

statistic developed in the paper can be designed for other versions of  the tests of Robinson 
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(1994), (eg, Gil-Alana, 1999 with monthly integrated structures, and Gil-Alana, 2000c in case of 

cyclic behaviours). Work in all these directions is now under progress. 
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TABLE 1 

Finite-sample critical values of R̂  in (5) and S~ in (10) 

Model: �
=

=−++=
3

1

4
0 .)1(;

i
tt

d
titit xLxDy εββ  

R~  (Ho: d = do) S~  (Ho: d = do & β1 = β2 =β3 = 0) do 

5% 1% 5% 1% 
0.00 6.82 9.31 13.91 19.03 
0.25 7.02 9.42 13.88 19.01 
0.50 7.40 9.96 13.81 18.69 
0.75 8.10 10.88 13.37 17.65 
1.00 8.40 11.43 13.10 17.33 
1.25 8.26 11.39 13.16 17.30 
1.50 8.15 11.44 13.14 17.41 
1.75 8.04 11.39 13.33 17.47 

 
 
 
 
 

T   =  48 

2.00 7.94 11.18 13.42 17.69 

R~  (Ho: d = do) S~  (Ho: d = do & β1 = β2 =β3 = 0) do 

5% 1% 5% 1% 
0.00 5.72 8.20 12.19 16.44 
0.25 5.84 8.37 12.23 16.58 
0.50 6.28 8.90 11.97 16.30 
0.75 6.68 9.38 11.76 15.76 
1.00 6.74 9.33 11.65 15.51 
1.25 6.57 9.13 11.77 15.46 
1.50 6.46 9.05 11.78 15.63 
1.75 6.37 8.96 11.79 15.67 

 
 
 
 
 

T   =  96 

2.00 6.25 8.93 11.87 15.75 

R~  (Ho: d = do) S~  (Ho: d = do & β1 = β2 =β3 = 0) do 

5% 1% 5% 1% 
0.00 5.37 8.05 11.59 16.35 
0.25 5.50 8.13 11.59 16.11 
0.50 5.95 8.60 11.54 15.53 
0.75 6.36 8.99 11.37 15.40 
1.00 6.23 8.95 11.30 15.35 
1.25 6.03 8.75 11.36 15.26 
1.50 5.92 8.66 11.38 15.42 
1.75 5.87 8.60 11.39 15.72 

 
 
 
 
 

T   =  120 

2.00 5.77 8.64 11.36 15.71 
            The critical values of a 2

1χ  distribution are 3.84 at the 5% significance level and 6.63 at the 1% 
level. For the 2

2χ  distribution are 5.99 and 9.21 respectively. 
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TABLE 2 

Rejection frequencies of R̂  and S~ in (5) and (10) 

True model: .1;)1(;1 4 ==−+= ott
d

tt dxLxy o ε  

Alternative:   .)1(; 4
3322110 tt

d
ttttt xLxDDDy o εββββ =−++++=  

R~  (Ho: d = do) S~  (Ho: d = do & β1 = β2 =β3 = 0) do 

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.297 0.477 0.975 0.996 
0.25 0.089 0.246 0.868 0.967 
0.50 0.020 0.099 0.496 0.797 
0.75 0.044 0.234 0.122 0.514 
1.00 0.052 0.365 0.050 0.486 
1.25 0.092 0.534 0.103 0.665 
1.50 0.208 0.745 0.250 0.844 
1.75 0.380 0.879 0.439 0.944 

 
 
 
 
 

T   =  48 

2.00 0.542 0.954 0.627 0.982 

R~  (Ho: d = do) S~  (Ho: d = do & β1 = β2 =β3 = 0) do 

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.959 0.973 0.999 1.000 
0.25 0.869 0.909 0.996 0.999 
0.50 0.367 0.510 0.784 0.941 
0.75 0.037 0.110 0.117 0.406 
1.00 0.050 0.213 0.050 0.366 
1.25 0.314 0.678 0.230 0.750 
1.50 0.771 0.957 0.599 0.968 
1.75 0.960 0.997 0.875 0.997 

 
 
 
 
 

T   =  96 

2.00 0.995 1.000 0.969 0.999 

R~  (Ho: d = do) S~  (Ho: d = do & β1 = β2 =β3 = 0) do 

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.991 0.994 1.000 1.000 
0.25 0.961 0.974 0.999 0.999 
0.50 0.602 0.700 0.892 0.974 
0.75 0.068 0.137 0.138 0.432 
1.00 0.050 0.175 0.050 0.332 
1.25 0.451 0.741 0.304 0.796 
1.50 0.919 0.986 0.751 0.987 
1.75 0.996 0.999 0.961 1.000 

 
 
 
 
 

T   =  120 

2.00 0.999 1.000 0.994 1.000 
              The nominal size is 5% in all cases. The sizes are in bold. 
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TABLE 3 

Rejection frequencies of R̂  and S~ in (5) and (10) 

True model: .1;)1(;321 4
321 ==−++++= ott

d
ttttt dxLxDDDy o ε  

Alternative:   .)1(; 4
3322110 tt

d
ttttt xLxDDDy o εββββ =−++++=  

R~  (Ho: d = do) S~  (Ho: d = do & β1 = β2 =β3 = 0) do 

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.297 0.477 0.987 0.997 
0.25 0.089 0.246 0.923 0.983 
0.50 0.020 0.099 0.701 0.911 
0.75 0.044 0.234 0.414 0.824 
1.00 0.050 0.365 0.342 0.838 
1.25 0.092 0.534 0.470 0.908 
1.50 0.208 0.745 0.659 0.962 
1.75 0.380 0.879 0.798 0.987 

 
 
 
 
 

T   =  48 

2.00 0.542 0.954 0.886 0.996 

R~  (Ho: d = do) S~  (Ho: d = do & β1 = β2 =β3 = 0) do 

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.959 0.973 1.000 1.000 
0.25 0.869 0.909 0.996 0.999 
0.50 0.367 0.505 0.877 0.968 
0.75 0.037 0.110 0.421 0.770 
1.00 0.050 0.213 0.358 0.768 
1.25 0.314 0.678 0.622 0.935 
1.50 0.771 0.957 0.864 0.993 
1.75 0.960 0.997 0.968 0.999 

 
 
 
 
 

T   =  96 

2.00 0.995 1.000 0.993 1.000 

R~  (Ho: d = do) S~  (Ho: d = do & β1 = β2 =β3 = 0) do 

FSCV ASYMPTOTIC FSCV ASYMPTOTIC
0.00 0.991 0.994 1.000 1.000 
0.25 0.961 0.974 0.999 0.999 
0.50 0.601 0.700 0.935 0.986 
0.75 0.068 0.137 0.454 0.777 
1.00 0.050 0.175 0.364 0.749 
1.25 0.451 0.741 0.680 0.947 
1.50 0.919 0.986 0.926 0.997 
1.75 0.996 0.999 0.991 0.999 

 
 
 
 
 

T   =  120 

2.00 0.999 1.000 0.999 1.000 
The nominal size is 5% in all cases. The sizes are in bold. 
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TABLE 4 

Testing Ho (4) in (2) and (3) with R̂  given by (5) with white noise disturbances 

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
UK Consumption 158.32 119.71 74.85 24.69 2.36’ 0.10’ 0.37’ 1.93’ 3.90’ 

UK Income 152.12 113.33 67.58 18.18 1.49’ 0.03’ 0.37’ 1.65’ 3.32’ 
CAN Consumption 295.10 243.65 191.62 200.61 182.89 78.61 19.76 0.24’ 4.31’ 

CAN Income 298.72 246.65 194.32 201.88 157.60 59.61 13.29 0.15’ 2.51’ 
JAP Consumption 151.97 108.73 62.42 35.52 59.53 36.30 8.63 0.16’ 1.32’ 

JAP Income 160.05 117.03 72.36 53.83 58.96 21.30 1.00’ 2.43’ 8.58 
     ‘ and in bold: Non-rejection values at the 95% significance level. 
 
 
 
 
 

TABLE 5 

Testing Ho (8) in (2) and (3) with S~  given by (10) with white noise disturbances 

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
UK Consumption 170.49 130.76 73.44 14.68 0.98’ 0.01’ 0.78’ 2.64’ 4.72’ 

UK Income 188.09 139.06 76.45 14.98 1.60’ 0.10’ 0.37’ 1.88’ 3.80’ 
CAN Consumption 292.60 242.38 190.38 193.84 154.38 53.28 8.98’ 0.36’ 7.67’ 

CAN Income 296.27 245.41 193.02 193.91 128.94 39.81 5.19’ 0.69’ 6.70’ 
JAP Consumption 138.95 103.42 59.70 30.42 32.64 14.10 1.30’ 0.73’ 3.83’ 

JAP Income 109.45 93.92 59.50 32.94 18.24 3.04’ 0.53’ 4.34’ 8.00’ 
    ‘ and in bold: Non-rejection values at the 95% significance level. 
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TABLE 6 

Testing Ho (4) in (2) and (3) with R̂  given by (5) and seasonal AR(1) disturbances 

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
UK Consumption -- -- 13.86 12.35 1.61’ 0.76’ 0.24’ 0.001’ 0.15’ 

UK Income -- -- 13.49 10.39 1.70’ 0.79’ 0.27’ 0.01’ 0.06’ 
CAN Consumption -- -- -- 252.13 230.04 54.08 9.41 4.08’ 0.23’ 

CAN Income -- -- -- 214.48 176.32 33.63 7.08’ 2.20’ 0.01’ 
JAP Consumption -- -- 71.22 66.72 55.08 24.34 12.60 6.37’ 1.29’ 

JAP Income -- -- -- 50.31 45.54 14.19 7.25’ 1.18’ 0.56’ 
     ‘ and in bold: Non-rejection values at the 95% significance level. ‘—‘ means that the disturbances contains  
     a seasonal unit root. 
 
 
 
 
 

TABLE 7 

Testing Ho (8) in (2) and (3) with S~  given by (10) and seasonal AR(1) disturbances 

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
UK Consumption -- -- 12.25 9.18’ 0.89’ 0.42’ 0.09’ 0.04’ 0.36’ 

UK Income -- -- 12.90 9.25’ 1.32’ 0.60’ 0.18’ 0.008’ 0.11’ 
CAN Consumption -- -- -- 201.39 178.07 34.30 6.55’ 1.94’ 0.14’ 

CAN Income -- -- -- 200.22 134.75 24.11 7.22’ 2.14’ 0.07’ 
JAP Consumption -- -- 50.76 42.29 28.50 12.95 7.07’ 2.09’ 0.09’ 

JAP Income -- -- -- 21.44 13.62 6.77’ 2.84’ 0.26’ 1.29’ 
    ‘ and in bold: Non-rejection values at the 95% significance level. ‘—‘ means that the disturbances contains  
     a seasonal unit root. 
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TABLE 8 

Testing Ho (4) in (2) and (3) with R̂  given by (5) with white noise disturbances 

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
UK:             Ct - Yt 134.91 63.08 9.37 0.02’ 1.75’ 4.41’ 7.21 9.78 12.04 
CANADA:  Ct - Yt 111.10 61.85 12.65 0.01’ 3.76’ 10.82 16.61 20.56 23.32 
JAPAN:       Ct - Yt 108.06 69.22 23.84 2.92’ 0.32’ 4.13’ 8.22 11.15 13.16 

Testing Ho (8) in (2) and (3) with S~  given by (10) with white noise disturbances 

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
UK:             Ct - Yt 53.72 38.10 5.93’ 0.19’ 2.39’ 5.21’ 8.00’ 12.45 12.56 
CANADA:  Ct - Yt 21.74 19.05 7.69’ 0.26’ 8.05’ 17.90 25.19 30.16 33.63 
JAPAN:       Ct - Yt 25.93 12.86 2.26’ 1.97’ 0.09’ 2.57’ 5.87’ 18.50 20.41 

     ‘ and in bold: Non-rejection values at the 95% significance level. 
 
 
 
 
 

TABLE 9 

Testing Ho (4) in (2) and (3) with R̂  given by (5) with AR(1) disturbances 

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
UK:             Ct - Yt -- -- 1.14’ 0.10’ 0.82’ 1.63’ 2.55’ 7.47 9.40 
CANADA:  Ct - Yt -- -- 0.11’ 0.36’ 2.42’ 5.22’ 8.64 11.95 14.77 
JAPAN:       Ct - Yt -- -- 0.56’ 1.46’ 0.77’ 0.04’ 1.56’ 7.95 9.09 

Testing Ho (8) in (2) and (3) with S~  given by (10) with AR(1) disturbances 

Series / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 10.75 20.00 
UK:             Ct - Yt -- 10.01 0.15’ 0.42’ 1.30’ 2.16’ 8.09’ 13.96 16.81 
CANADA:  Ct - Yt -- 12.28 6.77’ 3.58’ 3.91’ 6.74’ 10.58’ 14.46 18.08 
JAPAN:       Ct - Yt -- 12.95 1.92’ 0.11’ 0.46’ 0.04’ 8.80’ 12.35 14.00 

     ‘ and in bold: Non-rejection values at the 95% significance level. ‘—‘ means that the disturbances contains 
     a seasonal unit root. 
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