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Abstract

Based on daily VDAX data this paper analyzes the factors governing the
movements of implied volatilities of options on the German stock index DAX.
Using Principal Components Analysis over the sample period from 1996 to 1997,
we derive common factors representing „shift“ and „curvature“ of the term
structure of „at the money“ DAX options. We present a risk management tool for
options portfolios using the „Maximum Loss“ methodology based on Principal
Components.
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1. Introduction

Pricing options and the estimation of real volatility of the underlying asset have
an intimate relationship. Classical approaches based on continuous time Brownian
motion yield exact analytical formulas, e.g. the Black & Scholes (B&S) option pricing
formula. Indeed, given maturity T, strike price X and interest rate r the B&S formula
is a one-to-one function of the volatility parameter. However, using quoted options
prices on the basis of the inverted B&S formula one can find a stylized U-shape of so
called implied volatilities across different strikes and maturities. The typical shape of
the implied volatility surface for a certain point in time t is plotted in Figure 1, where
“Moneyness” denotes the quotient of the underlyers price S and the strike X of the
respective option. The volatility surface is a function of time to maturity T as well,
and changes its shape and characteristics as time goes on.

Note that liquid options have discrete strikes and expirations, and so we have
interpolated between them to create a continuous surface. For a large number of
financial applications the monitoring of this surface is an important element of
analysis and prediction.
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Figure 1: Implied Volatility Surface of the DAX-Option on 18 July 1998

The objective of this paper is to identify common factors affecting implied
volatility movements of “at the money” options on the German stock index DAX. We
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also provide an intuitive meaning of the relevant risk factors observed in this market
and give tests on the stability of these factors over time.

Identifying common factors is important from the perspective of risk
management, vega-hedging and volatility trading. As a common practice option
traders use delta-gamma neutral hedging strategies in order to establish direct trades
on the vega exposure of their option portfolios, see Franke, Härdle and Stahl (2000).
The natural technique to identify the number of stochastic shocks that move the
implied volatility surface is Principal Components Analysis (PCA), see Skiadopoulos,
Hodges and Clewlow (1998). With respect to risk management, PCA has the
advantage that the complete term structure can be represented by a small number of
variables, i.e. the dimensions of the risk factor space can be drastically reduced.

The options on the DAX are the most actively traded contracts at the German-
Swiss derivatives exchange EUREX. Contracts of various strikes and maturities
constitute a liquid market at any specific time. This liquidity yields a rich basket of
implied volatilities for many pairs (X, T). Estimating the first and second order
sensitivities of a portfolio with respect to each implied volatility though is almost
impossible from a practitioners point of view, given the constraints on accessible
computer power that most market participants face.

Even if computers were not a constraint, treating each option implied volatility
independent of others in order to estimate the sensitivity of the portfolio to that
particular source of risk will result in unstructured non-informative volatility surfaces.
This may result in miscalibration of option pricing models, leading to poor valuations
and thus inaccurate estimates of sensitivities which may in fact deteriorate the
performance of investment strategies. Principal Components Analysis (PCA) will
generate smooth volatility structures, resulting in better volatility calibrations and
more accurate estimates of portfolio sensitivities, see Fengler, Härdle and Villa
(2000).

Our analysis indicates that two factors explain a large proportion of the total
variance in the volatility matrix of “at the money” DAX options. As a result of our
PCA, we present a risk management tool using the Maximum Loss (ML) methodology
based on Principal Components.

The paper is organized as follows. In the next section we present the data and
necessary cleaning and correction algorithms. In section 3 we perfom the PCA
procedure and identify the dominant factor components. In section 4 we discuss the
stability of our analysis over time and in section 5 the ideas are applied to ML
methodology. The last section presents the conclusions of our research.
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2. Data Description

The subject of investigation here is implied volatility as measured by the
German VDAX-Subindices available from Deutsche Börse AG. These indices,
representing different options maturities from one to 24 month, measure volatility
implied in European-style calls and puts with strikes equal to the current DAX level,
i.e. those options are “at the money” (ATM). The index calculations are based on the
assumption that the Black & Scholes options pricing formula is a suitable model for
the formation of options prices. The B&S formula for a European call at time t is

( ) ( )C S N d Xe N dt t
rT= − −

1 2

where N denotes the cumulative distribution function of a standard normal random
variable and the coefficients are given by
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Here r denotes the risk-free interest rate, S the price of the underlying, τ+= tT  the
maturity and X the strike price. For ATM options the strike is X=S.

The only parameter in the B&S formula that cannot be observed directly is the
actual volatility σ  of the underlying price process. One may substitute for σ  an
estimate based on prior observed returns of the underlying. As mentioned before the
B&S approach does not reflect option market prices, not even for ATM options. An
alternative approach uses implied volatilities. The implied volatility is defined as the
parameter σ  that yields the actually observed market price of a particular option
when substituted into the B&S formula. Quoting option prices in terms of implied
volatilities does not mean that market participants assume that the B&S formula with
all its imperfections applies to the actual market. Instead they just use this formula as
a convenient way of describing and quoting call option prices via implied volatilities.
The implied volatility of a European put with the same strike and maturity can be
deduced from t

rT
tt SXeCP −+= − . This relationship is known as “put-call parity”. Any

violation of put-call parity gives rise to a pure arbitrage opportunity.

Implied volatilities can be calculated by iterative numerical techniques and
may be used to monitor the market’s opinion about the volatility of a particular price
process. The implied B&S volatility is not equal to the actual volatility σ  but may
reflect in some way the expectations of market participants with respect to the future
volatility of the underlying price process. Nevertheless, the links between actual and
implied volatilities depend on certain theoretical assumptions and are of complex
nature. For theoretical approaches of that kind we refer to Schönbucher (1998),
Härdle and Hafner (1999).
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Implied volatility estimates may be obtained by Deutsche Börse AG, which has
been delivering daily closing prices of VDAX-subindices for maturities of 1, 2, 3, 6,
9, 12, 18 and 24 month since 18 March 1996. At that date long term options started
trading at EUREX. The term structure for ATM DAX options can be derived from
VDAX-subindices for any given trading day. Typical shapes are plotted in Figure 2,
with fitted interpolation polynomials for illustration. Figure 2 clearly shows that the
term structure at different times shifts and changes its shape.

Figure 2: Term Structure of ATM DAX Implied Volatilities

VDAX calculations are based on the assumption that the B&S-formula is a
suitable model for the formation of option prices. For a given subindex, implied
volatility is estimated from a subset of liquid “near the money” options. The
contribution of each implied volatility estimate is not subject to an explicit weighting
scheme. Instead, weights are determined implicitly by an ordinary least squares
regression yielding an estimate of ATM implied volatility. For more information on
VDAX calculation, see Redelberger (1994).

We did not exclusively confine our analysis to the highly liquid short term
option contracts which are represented by the subindices 1 to 4. This has been done
for two reasons: First, limited trading occurs on certain days in contracts near the
liquid ones, thus there might be information in these data entries on those days.
Ignoring them completely bears the risk of losing this information. VDAX subindices
for long term options on the DAX are available since 18 March 1996. After the
expiration day on 19 December 1997 the quality of VDAX data provided by Deutsche
Börse AG unfortunately deteriorated in terms of missing data items and frequently
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unchanged longer term subindices. For that reason we decided to limit our data base
until 19 December 1997.

Second, for our analysis a constant option maturity is needed, instead of
floating targets based on EUREX expiration dates. This is vital because changes in
volatility arising from changing option maturities (due to the passage of time) will
affect any statistical analysis. This observation forces us to use interpolated volatility
values, which are most important for short-dated options. To accomplish constant
time to maturity we linearly interpolated between neighbouring VDAX subindices. A
similar weighting scheme is used by Deutsche Börse AG for the calculation of the
“Volatility DAX” (VDAX). For a more detailed discussion on that topic see
Redelberger (1994).

With ( ))σ t T−  and ( ))σ t T+ , the respective nearby and second nearby implied

volatility subindices, we calculated indices ( )$ *σ t jT  with fixed maturities of

Tj
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Proceeding this way we obtained j = 8 time series of fixed maturity. Each time
series is a weighted average of two neighbouring maturities and contains n = 441 data
points of implied volatilities. From now on we will refer to fixed maturity when
dealing with VDAX-indices.

3. Principal Components Analysis of Implied Volatility Dynamics

In the following section we outline a procedure to extract common factors from
historical term structure movements that govern the actual dynamics of implied
volatilities. The basic data set for analysis of variations of implied volatilities is a
collection of curves like in Figure 2. In order to identify common factors we used
Principal Components Analysis (PCA). Changes in the term structure can be
decomposed by PCA into a set of factors constituting an orthogonal base.

We computed Augmented Dickey-Fuller (ADF) tests on daily implied volatility
indices ( )*ˆ jt Tσ , see XploRe (2000). The ADF tests showed that the null hypothesis of
instationarity could not be rejected for any of the VDAX-subindices even at the 90%
confidence level. Our results suggested to perform Principal Components Analysis on
first differences ( )[ ]*ˆ jtjt Tx σ∆=  of implied volatility indices. First differences seemed
to be stationary as an additional ADF analysis indicated.
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Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8
2,08E-04 9,06E-05 6,66E-05 6,84E-05 4,29E-05 2,48E-05 2,11E-05 1,38E-05
9,06E-05 9,86E-05 6,67E-05 4,44E-05 3,21E-05 1,72E-05 1,11E-05 9,25E-06
6,66E-05 6,67E-05 6,43E-05 3,87E-05 2,63E-05 1,49E-05 1,01E-05 5,35E-06
6,84E-05 4,44E-05 3,87E-05 4,23E-05 2,66E-05 1,39E-05 1,38E-05 6,81E-06
4,29E-05 3,21E-05 2,63E-05 2,66E-05 2,62E-05 1,03E-05 1,02E-05 5,15E-06
2,48E-05 1,72E-05 1,49E-05 1,39E-05 1,03E-05 2,19E-05 6,36E-06 3,30E-06
2,11E-05 1,11E-05 1,01E-05 1,38E-05 1,02E-05 6,36E-06 1,76E-05 4,34E-06
1,38E-05 9,25E-06 5,35E-06 6,81E-06 5,15E-06 3,30E-06 4,34E-06 1,52E-05

Table I: Empirical Covariance Matrix Ω  of centered first differences

Let jx  denote the sample means of first differences jtx . Table I shows the

empirical covariance matrix Ω  of centered individuals jjt
c
jt xxx −= . Starting from Ω

we get the transformation Ω Γ Λ Γ= Tr  by matrix rotation. Γ Λ ΓTr  is the Jordan
Canonical Form with an 8 x 8 diagonal matrix Λ  of eigenvalues λk , k = 1,2,...,8 and
an 8 x 8 matrix of eigenvectors Γ . Time series of principal components are obtained
by Y Xc= Γ ; Xc  denotes the 441 x 8 matrix of centered individuals. Y is the 441 x 8
matrix of principal components. A measure of how well the first l PCs explain
variation of the underlying data is given by the relative proportion of eigenvalues
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with variance ϕ l  explained by the first l Principal Components. Figure 3 presents the
proportion of variance and the cumulative proportion of variance explained by the
respective principal components.

As is evident from Figure 3, the first PC captures 70% of the total data
variability. The second PC captures an additional 13%. The third PC explains a
considerably smaller amount of total variation in implied volatility. Thus the two
dominant PCs cumulatively explain around 83% of total variance in implied ATM
volatilities for DAX options.
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Figure 3: In-Sample Variation Explained by l = 1,2,… ,8 Principal Components

Figure 4: PC Eigenvalues, VDAX-Data from 18/03/1996 to 19/12/1997

The plot of eigenvalues in Figure 4 shows that there is an “elbow” like shape at
PC No. 2. With respect to the eigenvalues the so called “elbow criterion” suggests to
retain the first two components which account for more than 80% of total data
variability. The remaining residual information may be interpreted as unsystematic
noise.
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Figure 5 presents the factor loadings for the first two PCs. Taking
orthogonality of Principal Components into account these loadings can be estimated
by least squares from the single equation factor model

t
l

ltjl
c
jt ybx ε+= ∑

=

2

1

,

where ε t  is an i.i.d. nuisance term.
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Figure 5: Factor Loadings for First and Second Principal Component

Obviously, a shock on the first factor tends to affect all maturities in a similar
manner, causing a non-parallel shift. A shock in the second factor has a strong
positive impact on the front maturity but a negative impact on the longer ones, thus
causing a change of curvature in the term structure of implied volatilities. These
results are a little bit at odds with Sylla and Villa (1999) who applied PCA on the
implied ATM volatilities derived from traded options on the CAC 40-index. The
authors found a pronounced Z-shape in the factor loadings which they explain by a
distinct market segmentation for long term and short term options. A similar effect
was not readily observable in the DAX options market in 1996 and 1997.

4. Stability Analysis

In order to be able to use PCs for risk management, we need to investigate the
stability of this procedure over time. If PCs change shape frequently, they will not be
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able to explain much of the future variation in implied volatility, and would therefore
be ineffective for risk management purposes.

Our stability test extends in two directions: First, daily data may be noisy
because traders often consider different sections of the DAX options implied volatility
matrix as distinct from each other, sometimes updating options quotes in the more
liquid shorter maturities while ignoring the longer ones. Sections of the DAX options
market with little or no order flow during the day thus may include stale data during,
and possibly at the end of, the trading day. We estimated Principal Components using
weekly data rather than daily. If PCs are stable, one would not expect to find
substantially different results with daily versus weekly data.

Second, we divided the data set into two non-overlapping periods of equal
length. Each period contains m = 220 daily observations of centered first differences
of implied VDAX indices. We then conducted pairwise testing of ψλ ,k  with k=1,2

and 2,1=ψ  to see if the eigenvalues changed appreciably over time.

PC No. 1 2 3 4 5 6 7 8
Weekly: 18/03/96-19/12/97 73.85% 91.59% 95.09% 97.38% 98.80% 99.61% 99.88% 100%
Daily:    18/03/96-19/12/97 70.05% 83.12% 88.69% 91.80% 94.86% 96.97% 98.90% 100%
Sub 1:   18/03/96-05/02/97 83.36% 91.84% 94.65% 96.39% 97.76% 98.78% 99.52% 100%
Sub 2:   05/02/97-19/12/97 68.22% 82.21% 87.99% 91.35% 94.64% 96.93% 98.86% 100%

Table II: Historical PC Analysis: Cumulative Percentages of Variance Explained

As mentioned before, daily data may be noisy compared to weekly data items.
To reduce the potential non-synchronicity in the data due to low liquidity in the long
maturities, we checked our analysis using weekly data. As is clear from Table II, the
in-sample proportion of variance explained by the first two PCs in weekly data is
higher than in daily data by around 8.5 percentage points. This is not surprising, since
one would expect fewer unsystematic volatility movements in (higher quality) weekly
data. In fact weekly results are qualitatively very similar to daily results, so we do not
further discuss them here.

As stands out in Table II, the proportion of explained daily data variability
explained by the first two PCs diminished over the second subperiods. In light of this,
we needed to test for stability of Principal Components over time: We computed
eigenvalues over each subperiod. The estimated eigenvalues can be considered as
independent. Hence, a two-sided confidence interval for some pair of eigenvalues is
given by

1
22lnln

1
22ln 1,2,1, −

+≤≤
−

−
m

q
m

q kkk αα λλλ ,

were αq  denotes the α -quantil of a standard normal distribution, see Härdle and
Simar (2001, Chap 10). We immediately have
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1
22lnln 2,1, −

≥−
m

qkk αλλ

as a two-sided test for 2,1,0 : kkH λλ = . The null hypothesis implies equality of
eigenvalues in both subperiods and would thus be rejected if the above expression
holds at any statistically significant level.

P-values for the null hypothesis are 0,313 (90%), 0,373 (95%) and 0,490
(99%). The estimated differences for eigenvalues ( )2,11,1 ;λλ  and ( )2,21,2 ;λλ  are 0,667
and 1,183 respectivly, and hence are both significant different from zero at the 99%
level. Our analysis indicates that the common factors governing implied volatility
movements measured by the German VDAX are not stable over time. With respect to
this result we suggest some adaptive estimation technique as proposed by Härdle,
Spokoiny and Teyssiere (2000) for risk management purposes. In the next section we
outline a method to determine the maximum loss of option portfolios on a day by day
basis.

5. Measuring Implied Volatility Risk using Principal Components Analysis

One of the key issues of portfolio management is the measurement of inherent
market risk. Monte-Carlo simulation techniques can be used to assess the risks of
highly non-linear portfolios. Unfortunately these techniques are computationally
expensive and time consuming. In the following we introduce an approach to
approximate the maximum loss of Delta-Gamma hedged options portfolios
analytically.

The market value P of a portfolio consisting of w single options on the same
underlyer is susceptible to changes in interest rates, the price of the underlyer, time to
maturity and implied volatilities. The Taylor series expansion of the change in market
value from time t-1 to time t is
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where )(t
uO  denotes the price of a particular option with maturity uT  in t. Interest rates

may be assumed to be constant over short investment periods.

As a common practice traders directly trade the so called “Vega” of their
portfolios, which is the portfolio sensitivity to the implied volatility. For European-
style options on an underlying asset paying no dividends Vega can be derived from
the B&S formula. In order to establish Vega trades market professionals use Delta-
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Gamma neutral hedging strategies which are insensitive to changes in the underlyer
and are insensitive to time decay on a regular basis, see Taleb (1997).

A popular strategy to exploit changes of implied volatility term structure is
buying and selling of “straddles” of different option maturities at the same time. A
straddle consists of the same number of “at the money” calls and puts. For instance,
when a trader expects the short term implied volatilities to rise relatively to the longer
ones, she will buy straddles in short term contracts and simultaneously sell straddles
in longer maturities. The resulting portfolio will be Delta-Gamma neutral and nearly
Theta-neutral over short periods of time (i.e. nearly insensitive to time decay on a
day-by-day basis). Hence, the Taylor series simplifies to
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Principal Components Analysis allows us to write the differences of implied
volatilities as a linear combination of PCs. Thus, taking nearby fixed maturity
subindices ( )*ˆ jt Tσ  as proxies for ( )u

t
impl T)(σ , we get
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In the follwing we present a risk management tool for options portfolios using
the „Maximum Loss“ methodology based on Principal Components:

Maximum loss analysis is based on the probability distribution of a change in
the value of a portfolio attributable to a change in fundamentals over a short period of
time. Since implied volatilities make up the fundamentals that determine the prices of
delta-gamma hedged derivatives portfolios, we require an accurate characterization of
the future probability distribution of volatilities of various-maturity options portfolios.

Maximum loss is defined as the maximum possible loss

- over a given risk factor space τA , where τA  will be assumed a closed set with
confidence level ( ) ατ =∈ AyyPr

- for some holding period τ .

In order to maintain Delta-Gamma neutrality, dynamic hedgers usually revise
their derivatives portfolios after short periods of time. )1(−−= ttτ  may be a realistic
assumption from a practitioners point of view, which implies a portfolio revision on
every single day.
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The ML-definition looks similar to the well known Value-at-risk (VaR)
definition at first glance. However, there is one important difference. Whereas VaR
calculation requires the return distribution to be known, ML is defined directly in the
risk factor space and thus has an additional degree of freedom called “trust region”.
For a detailed discussion of maximum loss, see Studer (1995).

In our analyis we decomposed the term structure of implied volatilities into a
set of two principal components that explain an essential part of term structure
variance. Hence, the first two PCs represent the risk factors we use for maximum loss
modelling. The portfolio profit and loss (P&L) surface is constructed with the help of
a suitable valuation model (B&S in this case). To accomplish this, the whole portfolio
has to be re-valuated for every point in the factor space. This is approximated by
marking the portfolio to the market at discrete points ),...,1( ll

z
l Nzy l =  while keeping

the other risk factors constant. Because of the orthogonality of PCs the P&L function
ist strictly additive with )()(),( 2121

2121
zzzz yPLyPLyyPL += . Thus, the one-

dimensional grid-values can be extrapolated onto a two-dimensional grid. The P&L of
points not lying on the grid may be obtained by interpolation procedures.

Assuming multinormal distributed PCs, trust regions can be constructed using
the joint density function

( )
( )

( )yyyf Tr 1
2

2
2

1 5,0exp
det2

1 −Λ−
Λ

=
π

τ ,

where matrix 2Λ  is a 2 x 2 diagonal matrix of eigenvalues λk , k = 1,2 and
( )Tryyy 21 ,= . It can be shown that 2

2
2
1

1
2 XXyyTr +=Λ −  results in a random variable

which is Chi-square distributed with 2 degrees of freedom, see Studer (1995). Hence,
a valid trust region for our portfolio is obtained by the equation for a centered ellipse

( )ατ cyyyA Tr ≤Λ= − 1
2 , where αc  denotes the α -quantil of a Chi-squared distribution

with 2 degrees of freedom.

6. Summary

In this paper we outlined a procedure for using principal components analysis
to determine the maximum loss of option portfolios bearing Vega exposure. The term
structure of implied volatilities “at the money” is decomposed into two orthogonal
factors that are then used to determine the price sensitivity of ATM DAX options. In
the last section of our paper we proposed a parsimonious way of determining the
maximum loss of a derivatives portfolio whose primary source of risk is that
associated with the term structure of implied volatilities. Financial institutions may
find our maximum loss approach useful in monitoring the Vega exposure of their
investment positions and in setting margin requirements for clients who trade with
them.
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Stability analysis indicated that the common factors governing implied
volatility movements of DAX options may vary over time. With respect to this, an
adaptive approach to PC estimation should be applied for risk management purposes.
We leave this topic to further research.

Acknowledgements

The research for this paper was supported by Sonderforschungsbereich 373 at
the Humboldt-Universität zu Berlin. We gratefully acknowledge the support of the
Deutsche Forschungsgemeinschaft.



15

References

Fengler, M.,  Härdle, W. and Villa, Ch. (2000) Common Principal Components
Analysis and the Dynamics of Implied Volatilities, Discussion Paper,
Sonderforschungsbereich 373, Humboldt University Berlin.

Franke, J. / Härdle, W. and Stahl, G. (eds) (2000) Measuring Risk in Complex
Stochastic Systems, LNS 147. Springer Verlag, New York.

Härdle, W. and Ch. Hafner (1997) Discrete Time Option Pricing with Flexible
Volatility Estimation, Discussion Paper, Sonderforschungsbereich 373, Humboldt
University Berlin.

Härdle. W. and Simar, L. (2001) Applied Multivariate Statistical Analysis, Springer
Verlag Heidelberg, Heidelberg.

Härdle, W., Spokoiny, V. and Teyssiere, G. (2000) Adaptive Estimation for a Time
Inhomogeneous Stochastic-Volatility Model, Discussion Paper No. 6,
Sonderforschungsbereich 373, Humboldt University Berlin.

Redelberger, T. (1994) Grundlagen und Konstruktion des VDAX-Volatilitätsindex
der Deutsche Börse AG. Deutsche Börse AG.

Schönbucher, J. (1998) A Market Model for Stochastic Implied Volatility, Discussion
Paper, Department of Statistics, Bonn University.

Skiadopoulos, G., Hodges, S. and Clewlow, L. (1998) The Dynamics of Implied
Volatility Surfaces, Working Paper, Financial Options Research Centre, Warwick
Business  School University of Warwick, Coventry.

Studer, G. (1995) Value at Risk and Maximum Loss Optimization, Discussion Paper,
ETHZ, RiskLab: Technical Report.

Sylla, A. and Villa, Ch. (1999) Measuring Implied Surface Risk using PCA, Franke,
J.. Härdle, W. and Stahl, G. (eds) (2000) Measuring Risk in Complex Stochastic
Systems, LNS 147, Springer Verlag, New York, p 131- 147.

Taleb, N. (1997) Dynamic Hedging: Managing Vanilla and Exotic Options, John
Wiley, New York.

XploRe Application Guide (www.i-xplore.de) (2000) Härdle, W., Hlavka, Z. and S.
Klinke (eds), Springer Verlag Heidelberg, Heidelberg.


