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Probabilistic Aspects of Financial Risk
Hans Follmer

Abstract. Problems arising in Finance have become a significant source of new
devopments in Stochastic Analysis. We discuss some recent case studies, in par-
ticular some decomposition and representation theorems which are motivated by
problems of hedging derivatives and of intertemporal consumption choice.

1. Introduction

In recent years, Mathematics has become highly visible as a key technology in the
area of Finance. This is reflected in new journals, new curricula, and in new job
profiles. Increasingly, advanced methods from Probability and Statistics are being
applied to the analysis of financial risk in its various forms. Their impact is not only
felt on a computational level. To a surprising extent, concepts of Stochastic Analysis
are shaping the discourse of the field, both on the academic level and in the financial
industry. Conversely, Finance has become a significant source of research problems
which are of intrinsic mathematical interest, in particular in the area of stochastic
analysis. The purpose of this lecture is to discuss some case studies which illustrate
this converse impact.

We begin by explaining the key paradigm of a perfect hedge. It is concerned
with financial derivatives, or contingent claims, which are defined in terms of some
underlying financial asset. The mathematical analysis of such derivatives was started
by Bachelier [1] who introduced Brownian motion as a model for the underlying price
dynamics and computed prices for certain derivatives as expected values in this
model. A nice diffusion model such as (geometric) Brownian is complete in the sense
that any derivative can be replicated by a trading strategy in the underlying asset.
From a mathematical point of view, this amounts to a version of It6’s representation
theorem which represents functionals of Brownian motion as It6 integrals. From a
financial point of view, the existence of a replicating strategy was the crucial insight
in the work of Black and Scholes [6] and Merton [29] on arbitrage-free option pricing.
Even though its standard version involves ”high tech” methods from probability
theory, the argument behind the pricing formula of Black and Scholes is essentially
probability-free on a conceptual level; this is explained in section 1.

However, the idea of a perfect hedge is limited in scope. Realistic models will
be incomplete, i.e., derivatives typically will carry an intrinsic risk which can not be
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hedged away completely. At this stage, Probability comes in on a more fundamental
level, and the hedging problem has become a source of new decomposition theorems
in the theory of semimartingales. In this setting, we are going to focus on controlling
the shortfall, i.e., that part of the contingent claim which will not be covered by
the result of our hedging strategy. In section 2.1 we insist on staying on the safe
side by constructing a superhedging strategy which keeps the shortfall down to 0.
In the general case, the construction of such a superhedging strategy involves a
decomposition theorem of Kramkov [24] which may be viewed as a new version of the
fundamental Doob-Meyer decomposition for supermartingales. In many situations
the cost of superhedging a given claim will be too high from a practical point of
view. Thus, we are led to the problem of constructing strategies which are efficient
with respect the cost and a suitably defined shortfall risk. In section 2.2 we discuss
the solution of this problem in Féllmer and Leukert [18]; in particular we will see
how it is reduced to the problem of superhedging a suitably modified claim.

As a further case study, we consider in section 3 a new variant of the problem
of intertemporal consumption choice. Through the analysis of Bank and Riedel [4],
it leads to a new stochastic representation problem which is closely related to the
continuous-time theory of the Gittins index in El Karoui and Karatzas [10]. Its
solution in Bank [2] involves a new stochastic analogue to the concept of a convex
hull and is of interest from a purely mathematical point of view, quite independent
of the initial motivation from Finance.

2. The idea of a perfect hedge

In this section we describe the idea of a perfect hedge, one of the key insights in
mathematical finance. It is concerned with financial derivatives defined in terms of
some underlying financial asset. A perfect hedge consists in replicating the deriv-
ative by a dynamical portfolio strategy which trades in the underlying asset. In a
nice diffusion model for the stochastic fluctuation of asset prices such as geometric
Brownian motion, this can indeed be done. In the usual presentation of this result
a paradox arises: The argument uses "high tech” probabilistic methods, but the
phenomenon itself does not really involve Probability on a conceptual level.

In the standard formalism of mathematical finance, the evolution of the (prop-
erly discounted) price of some underlying asset over a given time interval [0, 7] is
described as a semimartingale X = (X;)co,7] on a probability space (2, F, P) with
filtration (F)sc[o,7]- At this point, a reader not familiar with the notions of stochas-
tic analysis may feel somewhat discouraged. But in this section we will drastically
reduce the conceptual and technical difficulties by eliminating the probabilistic in-
gredients altogether. The basic uncertainty about the behaviour of asset prices will
be only reflected in the fact that we specify a large set 2 of possible scenarios w,
and that we do not know in advance which scenario will actually take place.
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A derivative, or a contingent claim, specifies a payoff H(w) contingent on the
scenario w € ) which will be realized. For example, a European call option with
strike price ¢ and exercise time 7" has payoff H(w) = (X7 (w) —c¢)*. What is the fair
price which should be payed by the buyer of such an option? In other words, what
is the fair deterministic equivalent to the random variable H? This is a classical
question, and the standard answer goes back to the founding fathers of probability
theory, in particular to Jacob Bernoulli. It says that you should assign probabilities
to the different scenarios w and compute the expexted value E[H] = [ HdP of the
random variable H with respect to the resulting probability measure P. Following
Daniel Bernoulli, one might also want to add a risk premium in order to take account
of risk aversion. But in our present financial context, the basic insight of Black and
Scholes [6] and Merton [29] leads to a quite different result. In particular there will
be no reason to add a risk premium, because the argument will show that there
is no intrinsic risk. As we are ging to see, the answer does not really involve the
probabilities of the different scenarios; it is the structure of the space of scenarios
which matters.

As scenarios we take the possible trajectories of the asset price starting from
a fixed initial value zy. Such a trajectory will be described as a positive continuous
function w : [0,7] — R™ . We use the notation X;(w) = w(t) for the corresponding
price at time ¢; in particular we have Xy(w) = zy. Let us introduce the space Q of
all such functions which admit a continuous quadratic variation

[X]i(w) = lim > Ky (W) — Xy (w))? (1)
ti<t,t;€Dp

along the sequence of dyadic partitions D,,. For such functions we can use a strictly
pathwise version of It6’s calculus; see Follmer [12]. In fact, for any function F(z,t) €
C? and for any scenario w € €, Itd’s formula holds in the form

t
F(X)(w),t) = Flx0,0)+ /0 Fy(X,(w), $)dX, ()

tq t
+/0 §Fm(Xs(w),3)d[X]s+/0 Fy(Xs(w), s)ds (2)

The second integral is well defined as a Lebesge-Stieltjes integral, while the first
exists as an It6 integral, i.e., as limit of the non-anticipating Riemann sums

Z gti (w) (XtH—l (w) - th' (w))’ (3)

t;<t,te Dy
along the dyadic partitions D,,, where we put & = Fy(Xy,t).

From a financial point of view where w is seen as a possible scenario for the
evolution of an asset price, the It integral can be interpreted as the cumulative gain
from a self-financing trading strategy defined by &. In fact, if &(w) is the number
of shares held at time ¢ then the terms of the non-anticipating Riemann sums in
(3) are the net gains generated by the price changes in successive periods. The



4 H. Follmer

non-anticipative construction of the Itd integral correponds exactly to the natural
financial requirement that the investment decision at a time does not anticipate
the upcoming price change during the next time interval. With this interpretation
in mind, it is quite crucial to insist on trajectories with a non-vanishing quadratic
variation. Otherwise there would be arbitrage opportunities, i.e., trading strategies
which would offer the chance of a strictly positive gain without ony downside risk.
In fact, suppose that we would only admit scenarios w with quadratic variation
[X](w) = 0. By Itd’s formula, the strategy &;(w) = 2(X;(w)—1zo) would then generate
the gain (X7 (w) — z0)?, and this is clearly an arbitrage opportunity.

From a probabilistic point of view, the set {2 provides a natural framework
because the law of a typical diffusion process will be carried by this set of paths. For a
specific model like geometric Brownian motion we can be more precise and describe
the typical trajectories in terms of a fixed volatility, given by a strictly positive
(piecewise) continuous function o on [0,7]. Without introducing any probabilities
at this point, we will simply restrict the discussion to the set 2, of all scenarios w € 2
such that the quadratic variation is absolutely continuous with d[X]; = o2(t)X?2dt.
In this context we can now explain the idea of a perfect hedge for a derivative of the
form H(w) = h(X1(w)) for some continuous function h > 0; a similar discussion can
be found in Bick and Willinger [5]. Let F'(z,t) denote the solution of the parabolic
equation

1 o 9
LS (z,t) == (ia(t)2x2w + E)F(w,t) =0 (4)
on the strip R™ x [0,7] with boundary condition F(z,T) = h(z). Consider the
trading strategy & = Fp(Xy,t). By Ito’s formula, we obtain

T
H(w) = F(Xr(w),T) = F(x0,0) —I—/O €s(w)dXs(w) (5)

since the remaining part in It6’s formula vanishes due to (4). As we have seen, the
It6 integral can be viewed as the net gain resulting from the self-financing trading
strategy &. Thus, the contingent claim H(w) is replicated as the final value of a
portfolio generated by the initial amount F'(zg,0) and the strategy £. This replication
of the derivative works simultaneously for all scenarios in our class €. Thus, it does
not involve any risk as long as we stick to the assumption that only scenarios with
volatility profile o will come up. Under this assumption, the initial cost F(xg,0) of
such a perfect replication is clearly the right price for the derivative. Otherwise there
would be an arbitrage opportunity. If, for example, the price would be higher then
one could sell the derivative at that price and at the same time replicate the option
at a lower cost. For any scenario one would then generate the required amount H(w)
at the final time T, and the difference between the price and the cost of replication
would remain as a risk free gain.

So far, our discussion did not involve any probabilities on the space of possible
scenarios. But we can now introduce probabilities as a "high tech” device which
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allows us to compute the correct price as an expected value rather than by solving
a partial differential equation. By a theorem of Paul Lévy, there is exactly one
probability measure P* on the space ), such that the coordinate process (Xt)sc(0,1]
becomes a martingale under P*, i.e.,

E*[ Xy Fs) = X (6)

for times s < t. Under some growth condition on the function h, this will imply
that the It6 integral in (6) has zero expectation under P*. Thus, the price of the
derivative can be computed as an expected value

F(Xo,0) = E"[H] (7)

with respect to the probability measure P*. In this sense, probabilities do arise. But
they do not appear as objective probabilities which govern the realization of the
different scenarios. Instead, the probability measure P* plays the role of a consistent
pricing rule for derivatives of the underlying asset. Consistency means, in particular,
that the price X;(w) of the asset at time s should be equal to the conditional
expectation of any future price X; under the measure P* given the information up
to time s, and this is exactly the martingale property required for P*.

Let us emphasize that the preceding probabilistic argument is optional, not
really essential. In principle, the argument of pricing a derivative by means of a
perfect replication is probability-free. But note that the volatility profile o has to be
known in advance; this is needed in order to solve in advance the parabolic differential
equation which determines both the initial cost and the self-financing strategy. If this
is not the case, then we have an additional source of uncertainty. Does probability
come in at this second stage? Not necessarily. Of course we could model volatility as
a stochastic process, and this is an important chapter in Mathematical Finance. But
we could also continue to insist on a probability free approach using the following
argument by T. Lyons [28]. Suppose that we are ready to assume that the unknown
volatility o(¢) will in any case stay inside some moving interval ¥(¢). Under some
regularity conditions, there is a solution F € C? of the non-linear Pucci equation

1 5,0 ,0% 0

LF(z,t):=( sup =o°(t)z

s(Hyex(t) 2 o2 T o)1) =0 ®

with terminal value F(z,T) = h(z). For any scenario w with a volatility profile o
staying inside the given moving boundaries, our pathwise It6 formula together with
equation (8) implies

t
F(Xy(w),t) = F(20,0) + /0 Fo(X, (), 8)dX s (w) — By(w) (9)
where
t
By(w) = / (L~ LO)F(X,(w), )ds (10)
0

is increasing in ¢. From a financial point of view, this means that we can superhedge
the contingent claim H(w) = F(Xr(w),T) as follows. We start with the initial
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amount F'(zg,0) and use the trading strategy & = F,(X¢(w),t). At the same time
we cumulatively withdraw the capital By(w). The resulting portfolio value at time
t is given by F(X¢(w),t), and at the final time 7" we have generated exactly the
required payoff H(w) of our derivative. Allocating the initial capital F(Xy,0) to the
purpose of hedging the derivative, we are thus staying on the safe side. As time goes
on and uncertainty is revealed, it will typically become clear at a given time that
the capitel generated so far by the initial amount and by the stragegy ¢ is higher
than what is actually needed to stay on the safe side from that time on, and this
explains the refunding scheme described by the increasing process B. As we will see
in the next section, the probabilistic analogue of this approach is provided in great
generality by Kramkov’s optional decomposition theorem.

3. Controlling the short fall

Now we return to the standard probabilistic setting where the (properly discounted)
price process is given as an adapted stochastic process X = (Xt)te[O,T] on a prob-
ability space (€2, F, P) with filtration (F});c[o,7)- From an economic point of view,
the model should be such that it excludes arbitrage opportunities. One of the fun-
damental theorems in Mathematical Finance states that this absence of arbitrage
is essentially equivalent to the existence of an equivalent martingale measure, i.e.,
a measure P* ~ P such that X is a martingale under P* in the sense of (6); for
a precise formulation see Delbaen and Schachermayer [9] and the references given
there. Let us therefore assume

P#0 (11)
where P denotes the class of all martingale measures P* ~ P.

This condition may be viewed as a minimal version of the ”Efficient Market
Hypothesis”. In its strong form, the efficient market hypothesis would claim that
(properly discounted) prices should be martingales under the objective measure
P. This is based on a rough equilibrium argument: If the present price is below
the market’s average expectation then the price should move immediately up, and
vice versa. In fact, such an equilibrium argument was the starting point in the
thesis of Bachelier [1] where Brownian motion was introduced as a model for price
fluctuation on a speculative market. Condition (11) is of course much weaker since
the martingale property is required only up to an equivalent change of measure. By
Girsanov’s theorem, it implies that X is a semimartingale under P, and so we are
free to use the general tools of stochastic analysis.

Uniqueness of the equivalent martingale measure P* is equivalent to complete-
ness, i.e., any derivative H of the underlying price process admits (under some
integrability conditions) a perfect replication in terms of a suitable trading strategy.
As in the previous section, it follows that the price must be equal to the cost of
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replication, and that it can be computed as the expectation E*[H| under the unique
equivalent martingale measure P*.

There are, however, many reasons why the reality of financial markets should
be seen as being incomplete: Not any contingent claim admits a perfect hedge. In
other words, there are intrinsic risks which cannot be hedged away completely by
a strategy which uses the available assets. From a mathematical point of view, this
means that there is more than one equivalent martingale measure, and since P is
convex we have

|P| = oo. (12)

In this general context let us now look at the problem of hedging a derivative
described by a Fr-measurable random variable H > 0. An admissible strategy is
determined by some initial amount V and by a predictable integrand ¢ for X such
that the resulting portfolio pocess

t
Vi = Vo + / £ods (13)
0

satisfy V; > 0 for all ¢ € [0,T]. Whichever strategy we use, we will end up at time T
with a decomposition

T
H:Vo+/ £ds + Cr (14)
0

of the contingent claim into a part which is perfectly hedged and hence priced by
arbitrage, and into the remaining hedging error Cr. There are different approaches to
the problem of choosing a hedging strategy, and hence a specific decomposition of the
contingent claim. From an economic point of view, they involve different preferences
towards risk. From a mathematical point of view, they have been a significant source
of new decomposition theorems in the general theory of stochastic processes.

One approach consists in choosing a strategy which minimizes the hedging er-
ror Cr in £2(P). This involves a projection of H on a space of stochastic integrals.
Alternatively, we could insist on a decomposition where the process C is mean-self
financing in the sense that it is a martingale under the objective measure P. In the
special case where the efficient market hypothesis holds in its strong form P € P,
both formulations of the problem are equivalent, and it is solved by the classical
Kunita-Watanabe decomposition for square integrable martingales; see Follmer and
Sondermann [13]. In the case P ¢ P, the two versions of the problem are differ-
ent but intimately related. Often, but not always, the problem can be reduced to
the Kunita-Watanabe-decomposition with respect to a suitable "minimal” martin-
gale measure; see Follmer and Schweizer [14]. In the general case, and in particular
through the work of Martin Schweizer, the projection problem has become a source
of new versions of the Kunita-Watanabe decomposition and of new closure results for
spaces of stochastic integrals with respect to a semimartingale; see, e.g., Rheinlander
and Schweizer [31]. For a survey of recent developments we refer to Schweizer [32].
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Note, however, that there is a basic asymmetry in the financial interpretation
of the hedging error which is not captured by the projection approach. It is really
the shortfall, i.e., the positive part C}' = (H — V)" of the hedging error, which
should be kept under control. Here we will describe two approaches which focus on
the shortfall. The first approach insists on staying on the safe side and keeping the
shortfall down to 0. This is the idea of superhedging which has already appeared in
the previous section. In our general probabilistic setting , it has led to a remarkable
new version of the Doob-Meyer decomposition. The second approach consists in
constructing partial hedges which are efficient in terms of the cost and of a suitably
defined shortfall risk, and here the technique of superhedging comes in as a crucial
tool.

3.1. Superhedging

In incomplete models it is not possible to replicate any given contingent claim H.
But we could insist on keeping the shortfall C’;E down to 0. Thus, we would require

P[Cr <0]=P[Vr > H]=1. (15)

The program of constructing such a strategy with a minimal initial amount has been
carried out on increasing levels of generality; see El Karoui and Quenez [11], Karatzas
[21] and the references given there, Kramkov [24] and Follmer and Kabanov [16].
More precisely, let us assume

Up := sup E*[H] < o0, (16)
P*eP

and let us define (Uy) as a right-continuous version of the process defined by

U =ess.sup E*[H | F] . (17)
pPxeP

The process (Uy) is a P-supermartingale, i.e., a supermartingale simultaneously for
any P* € P. In fact it is the smallest non-negative P-supermartingale with terminal
value > H.

The Doob-Meyer decomposition shows that a non-negative supermartingale
with respect to a fixed probability measure can be represented as the difference of a
local martingale and a predictable increasing process. Is there a reasonable analogue
for P-supermartingales which is valid simultaneously for all P* € P? The study
of this problem was initiated by El Karoui and Quenez [11] in a special context.
As shown in full generality in Kramkov [24] and in Follmer and Kabanov [16], any
non-negative P-supermartingale admits an optional decomposition of the form

¢
Ui = Uy +/ £sdXs — Cy (18)
0
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where C' is an increasing optional process and ¢ is an admissible strategy. Note that
the stochastic integral is a local martingale simultaneously for all P* € P. On the
other hand, the increasing process is only optional but not necessarily predictable.

For the specific P-supermartingale defined in (17), the optional decomposition
can be interpreted as the following superhedging procedure: Put up the initial capital
Uy, then follow the trading strategy £ and withdraw the cumulative amount of capital
C; from the resulting portfolio as additional information comes in. As a corollary of
the optional decomposition, the value U; can be characterized as the least amount
of capital needed at time t to cover the claim H by following an admissible strategy
¢ from time ¢ up to the final time 7', i.e.,

U; = ess.infV} (19)

where V; runs through the class of F;-measurable random variables > 0 such that

T
Vi +/ (dXs > H P —a.s. (20)
t

for some admissible strategy £. In other words, U; is an upper bound for any
arbitrage-free price of the claim computed at time t. If additional constraints are
imposed on the strategies ¢ then the dual description (19) of the process defined by
(17) has a corresponding analogue in terms of a suitable extension of the class P;
see Karatzas [21] and Follmer and Kramkov [15].

The minimal initial amount which is needed for staying on the safe side is given
by Up. From a practical point of view, this is usually too much. In fact, the whole idea
of superhedging is more extreme resp. conservative than in any actuarial approach.
It is also extreme from a mathematical point of view: For a convex derivative, the
superhedging strategy can often be identified as a perfect replication strategy with
respect to an associated complete model which is no longer equivalent to the initial
model but sits on some kind of Choquet boundary of the initial space of scenarios.

In any case, superhedging provides the lowest upper bound Uy for any arbi-
trage-free price of the given derivative. Moreover, as we shall see next, the optional
decomposition of a suitably modified claim can be a crucial ingredient in the con-
struction of hedging strategies which may be more realistic from a practical point
of view.

3.2. Efficient Hedging: Cost versus Shortfall Risk

Together with the risk of a loss, superhedging will also take away the opportunity of
making a profit. In fact, the cost of superhedging a contingent claim will typically
exceed any actual price which could be obtained for that claim. Now suppose that
the investor is unwilling to put up the initial amount Uy required by a superhedging
strategy and is therefore ready to accept some risk. What is the optimal partial
hedge which can be achieved with a given smaller amount of capital V47 In order
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to make this question precise we need a criterion expressing the investor’s attitude
towards the risk of a shortfall.

One possible criterion is the probability P[Cr > 0] that some shortfall occurs,
i.e., that the final amount Vr generated by the strategy falls short of the amount
which is required to cover the contingent claim. We could fix an upper bound « for
this shortfall probability and minimize the initial cost under this constraint. Alterna-
tively, we could fix some initial cost Vjy < Uy and look for a strategy which minimizes
the probability of a short fall. This problem is solved in Follmer and Leukert [17],
translating and extending an idea of Kulldorf [26] to the present financial context.
The resulting strategy of quantile hedging arises as the superhedging strategy for
a modified claim H. Typically, the modified claim takes the form of a knock-out
option HI,, and the set A is constructed as the optimal test in a Neyman-Pearson
problem where the alternative is given by the objective measure P, and the com-
pound hypothesis is defined in terms of the contingent claim and the class P of
equivalent martingale measures. Quantile hedging may be viewed as a a dynamic
version of the Value at Risk approach. It invites the same critique since it only takes
into account the probability that a shortfall occurs, but not the size of the shortfall
if it does occur. This motivates a modified approach where the investor’s attitude
towards the shortfall is specified in terms of a loss function /.

Let us assume that [ is an increasing function on R™ with [(0) = 0 and
E[l(H)] < oo; convexity of [ would correspond to risk aversion. We introduce the
notion of shortfall risk, defined as the expectation

E[I((H —Vr)")]

of the shortfall C;f = (H — Vp)* weighted by the loss function [ under the objective
measure P. If we would be ready to allocate the initial amount Uy then we could
reduce the shortfall risk to 0 by using the superhedging strategy. For an initial capital
Vo < Uy, our problem is to find an admissible strategy which minimizes the shortfall
risk under this cost constraint; alternatively, we could fix a bound on the shortfall
risk and minimize the cost. In other words, we are looking for hedges which are
efficient with respect to cost and shortfall risk. These efficient hedges interpolate
in a systematic way between the extremes of a superhedge (no risk, no chance of
making a profit) and no hedge (full risk of shortfall, full chance of profit), depending
on the accepted level of shortfall risk.

This problem of minimizing the shortfall risk under a cost constraint is solved
in Follmer and Leukert [18]. The solution proceeds in two steps. In a first step, we
consider the statistical decision problem

Din BlI((1 — ) H)] (21)
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where Ry denotes the class of all Fr-measurable random values ¢ with values in
[0, 1] such that
sup B[ipH] < Vi (22)
Prep
There exists a solution @, and we may assume ¢ = 1 on {H = 0}. As pointed
out in Delbaen and Schachermayer [9], existence results of this type follow very
easily from a (simplified) version of Komlés’s theorem that any sequence of random
variables with bounded £!'-norms admits a subsequence which satisfies the strong
law of large numbers. Here we even have random variables bounded by 1, and in this
case the theorem was already known to Rényi; see [23]. In fact, if () is a sequence
of functionsin Ry whose shortfall risk approaches the infimum in (21), and if ¢ is the
limit of an almost surely convergent sequence of averages along some subsequence,
then it is easy to check that ¢ is indeed a solution of problem (21).

Let us introduce the modified claim H = @H, and let U denote a right-
continuous version of the process
U; = ess.sup E*[H | F). (23)
P*ecP
Since U is a ‘P-supermartingale, we can now apply the optional decomposition theo-
rem. As shown in Follmer and Leukert [18], this yields the solution of our optimiza-
tion problem:

Theorem. The strategy 5 determined by the optional decomposition of the 'P—supermartingalel
U generated by the modified claim H = @oH minimizes the shortfall risk under the
constraint that the initial cost is bounded by Vj.

In the complete case where the equivalent martingale measure P* is uniquely
determined, the structure of the optimal profile H = @ H can be described explicitely,
and the optimal strategy consists in replicating the contingent claim @H. For a
smooth convex loss function let T = (I')~! the inverse of I', and denote by p* the
Radon-Nikodym derivative of P* with respect to P. Then the solution ¢ of the
optimization problem (21) is given by

6:1—(@/\1) on {H > 0}, (24)

where the constant c is determined by the condition E*[gH| = Vj.

It is instructive to introduce a whole scale for the attitude towards risk and to
consider the special case I(z) = %p where the risk is defined in terms of an upper
partial moment of the hedging error. In the risk-averse case p > 1, the optimal hedge

consists in replicating the modified claim
1
wpH = H —c,y(p*)»-* NH (25)

where the constant ¢, is determined such that E*[p,H] = Vj. In the limit p — oo of
ever increasing risk aversion, the modified claim ¢, H converges to (H — ¢)™, where
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¢ is the unique constant that satisfies E*[c A H] = E*[H] — V,. If H is a call at
strike K, then the limit for p — 0o is again a call at the higher strike K=K+c¢
whose arbitrage free price is given by V. We may also consider the case p < 1
where risk-averse behavior is replaced by risk-seeking behavior. As appetite for risk
increases and p decreases from 1 to 0, the corresponding efficient hedges converge to
the knock-out option which appears in the case of quantile hedging.

In the incomplete case, the problem of computing the optimal profile is much
more subtle. A specific case study, where the problem consists in constructing effi-
cient hedges for a volatility jump, can be found in Follmer and Leukert [18]. The
general case involves methods of convex duality, and in particular a deep result of
Kramkov and Schachermayer [25] which describes the duality between the class of
claims which can be generated by admissible strategies and a suitable set of su-
permartingale densities. We refer to Leukert [27] for details in the present context.
Closely related results and extensions appear in Pham [31], Mnif and Pham [30],
Cvitani¢ and Karatzas [7], and in Cvitanié¢, Schachermayer and Wang [8].

4. Stochastic optimization under intertemporal preferences

So far, our discussion has involved preferences on the space of portfolio values Vi
generated by a trading strategy at a fixed terminal time T'. Initiated by von Neumann
und Morgenstern, the structure of reasonable preferences on a space of random
variables has been studied in depth and is now well understood; for a survey see
Karni and Schmeidler [22]. Typically, they can be represented in terms of an expected
utility functional. Our optimization problem above fits into this framework: For a
convex loss function /, we have maximized the functional E[u(Vr(w),w)] defined

in terms of the increasing concave scenario-dependent utility function u(z,w) =
—I(H(w) — ).

In the microeconomic theory of intertemporal consumption choice, the natural
commodity space is no longer a space of random variables but a space of positive
optional random measures C defined on a given time interval [0,7]. Such a measure
describes a consumption pattern contingent on the scenario and adapted to the
incoming information. Identifying measures with their distribution functions, we
take as our commodity space C the space of all optional increasing processes C' =
(Ct)iefo,r) on our probability space (22, F, P) with filtration (F)cjo,r)-

As a corollary to the optional decomposition, the minimal cost of financing the
consumption pattern C by a trading strategy on the underlying financial market can
be identified as

T ¢
sup E*[/O exp(—/0 r5ds)dCY]. (26)

P*xecP
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Here (r;) is a predictable process describing the short term interest rate; in the
previous sections it did not appear explicitely since all assets were already assumed
to be discounted by a savings account growing at the short rate. For any preference
functional U on the space of positive measures, we have a corresponding optimization
problem
ax E|U(C 27

max B[U(C(w))] (27)
where Cy is the class of all optional measures C' € C such that the cost of financing
C as defined in (26) is not greater than a given initial amount Vj.

Of course, the structure of the solution will depend both on the underlying
price dynamics and on the choice of the preference functional U. A common choice
consists in admitting only absolutely continuous measures dC = c¢;dt with a rate of
consumption (c¢;), and to use a functional of the form

T
U(C) = /0 w(er, t)dt, (28)

where u is some time-dependent utility function, typically of the form u(z,t) =
u(z) exp(—dt) with some discounting factor § and some classical utility function u.
In this case, the corresponding optimization problem may be viewed as a space-time
version of the optimization problem considered in section 2, and it can be solved in an
analogous way. It turns out, however, that the choice (28) of a preference functional
on absolutely continuous measures is much less canonical than the expected utility
functional on a space of random variables, both from a mathematical and from
a microeconomic point of view. In particular, there is no reasonable extension to
the space of all measures, no reasonable transition between discrete and continuous
time, and no continuity with respect to the natural weak topology on the space of
measures. Hindy, Huang, Kreps [19] provide a thorough analysis why a functional of
the form (28) is not satisfactory from a microeconomic point of view. Instead, they
propose a utility functional of the form

U(C) = /0 "LV, (29)

defined for all finite measures C on [0, 7], where Y, is some index of past consump-
tion up to time %, for example a weighted average

t
ve = /O exp(—B(t — 5)) dCs. (30)

The process Y¢ will be called the level of satisfaction generated by C.

For a utility functional U of the form (29), the structure of the optimization
problem (27) becomes much richer than in the case (28). Typically, the optimal
optional measure C is no longer absolutely continuous; it may involve consumption
in gulps and at a singular rate. If the underlying price dynamics is Markovian then
one can use a standard approach in terms of a Hamilton-Jacobi-Bellman equation;
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see Hindy and Huang [20]. Starting with the deterministic case, Bank and Riedel
[3,4] have initiated a quite different approach which is based on a new infinite-
dimensional version of the Kuhn-Tucker theorem. In a general stochastic setting,
and in particular in the thesis of Bank [2], this approach leads to some remarkable
new problems, which are of independent interest from the point of view of general
semimartingale theory.

Existence and uniqueness of a solution C can be shown in great generality. In
the complete case, and for a functional of the form (30), Bank and Riedel [4] and
Bank [2] succeed in clarifying the structure of the optimal consumption plan C in
terms of a reference process I = (I;), called the minimal level of satisfaction. They
show that C' can be explicitely constructed by ”tracking” I. More precisely, C is
reconstructed from its level of satisfaction Y, and Y is computed explicitely as the
minimal process in the class of all feasible index processes Y¢ > I with C € (.
The crucial reference process I can be characterized in terms of the solution of
a remarkable new stochastic representation problem of the following general form.
Given an optional process Z = (Z;) (in our case defined in terms of the state-price
densities) and a function f(l,t) decreasing in [ (in our case defined in terms of u),
we want to construct an optional process L = (L;) such that

T
Zy = E[/ f(sup Ly, s)ds|F- (31)
t t<v<s
In discussions at an Oberwolfach meeting in May 2000, N. El Karoui and P. Bank
clarified the connection to the theory of the Gittins index in continuous time; see
El Karoui and Karatzas [10]. Using this connection, the complete solution of the
representation problem (31) is carried out in Bank [2]. In the simple special case
f(l,t) = —I, the process L appears as the solution of the optimal stopping problem

E[X: — Xi|F]
E[T —t|.7:t] ’

where the essential infimum is taken over all stopping times 7 with values in (¢, 7.

In the general case the construction of the solution is quite intricate; see Bank [2].

L; = ess.inf (32)

Thus, the initial problem of intertemporal consumption choice leads to new
extensions of the theory of optimal stopping which are of intrinsic mathematical
interest, quite independent of the financial motivation.
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