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Nonparametric Estimation of Generalized Impulse Response
Functions

RoLF TSCHERNIG* and L1JIAN YANG
Humboldt- Universitat zu Berlin, Michigan State University

October 2000

Abstract

A local linear estimator of generalized impulse response (GIR) functions for non-
linear conditional heteroskedastic autoregressive processes is derived and shown to be
asymptotically normal. A plug-in bandwidth is obtained that minimizes the asymp-
totical mean squared error of the GIR estimator. A local linear estimator for the
conditional variance function is proposed which has simpler bias than the standard
estimator. This is achieved by appropriately eliminating the conditional mean. Alter-
natively to the direct local linear estimators of the k-step prediction functions which
enter the GIR estimator the use of multi-stage prediction techniques is suggested.
Simulation experiments show the latter estimator to perform best. For quarterly data
of the West German real GNP it is found that the size of generalized impulse response
functions varies across different histories, a feature which cannot be captured by linear
models.

KEY WORDS: Confidence intervals; general impulse response function; heteroskedas-

ticity; local polynomial; multi-stage predictor; nonlinear autoregression; plug-in band-
width.

1 INTRODUCTION

Recent advances in statistical theory and computer technology have made it possible to
use nonparametric techniques for nonlinear time series analysis. Consider the conditional
heteroskedastic autoregressive nonlinear (CHARN) process {Y;},+,

Y = f(Xi—1) + o(Xem1)Up, t=m,m+1,.... (1)

where X;_ 1 = (Y1, ..., Y},m)T, t =m,m+1,... denotes the vector of lagged observations
up to lag m, and f and o denote the conditional mean and conditional standard devia-
tion, respectively. The series {U;};>nm represents i.i.d. random variables with E(U;) = 0,
E(U}) =1, E(U}) = m3, E(U}t) = my < +00 and which are independent of X;_;. Masry
and Tjgstheim (1995) showed asymptotic normality of the Nadaraya-Watson estimator of
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Fakultdt, Humboldt-Universitat zu Berlin, Spandauer Str.1, D-10178 Berlin, Germany, email:
rolf@wiwi.hu-berlin.de.



the conditional mean function f under an a-mixing assumption. Hardle, Tsybakov and
Yang (1998) proved asymptotic normality for the local linear estimator of f. For select-
ing the order m one may use the nonparametric procedures suggested by Tjgstheim and
Auestad (1994) and Tschernig and Yang (2000) which are based on local constant and
local linear estimators of the final prediction error, respectively. Alternatively one may
use cross-validation, see Yao and Tong (1994). For further references on nonparametric
time series analysis, see the surveys of Tjgstheim (1994) or Hardle, Liitkepohl and Chen
(1997).

An important goal of nonlinear time series modelling is the understanding of the un-
derlying dynamics. As is well known from linear time series analysis it is not sufficient
for this task to estimate only the conditional mean function. This is even more so if the
conditional mean function is nonlinear. One appropriate tool that allows to study the
dynamics of processes like (1) is the generalized impulse response function.

In this paper we propose nonparametric estimators for generalized impulse response
(GIR) functions for CHARN processes (1) and derive their asymptotic properties. Here,
we follow Koop, Pesaran and Potter (1996) and define the generalized impulse response
GIRy, for horizon k as the quantity by which a prespecified shock u in period ¢ changes
the k-step ahead prediction based on information up to period ¢ — 1 only. Formally, one
has

GIRk(X, u) = E(Yt+k_1|Xt_1 = X, Ut = U) - E(YYH_]C_l'Xt_l = X)
= BE(Yirk1lYe = F(%) + 0w, Yiet = @1,y Yiemsr = &me1)  (2)
_E(th—l—kfﬂy;f—l =1y ey Yiom = xm)

In general, the GIRy depends on the condition x as well as the size and sign of the shock
u. An alternative definition of nonlinear impulse response functions is given by Gallant,
Rossi and Tauchen (1993).

We propose local linear estimators for the multi-step ahead prediction functions which
are contained in GI Ry, and derive the asymptotic properties of the resulting plug-in estima-
tor of GIRy,. This also delivers an asymptotically optimal bandwidth allowing to compute
a plug-in bandwidth. The conditional standard deviation ¢ in GIRj can be estimated
with the local linear volatility estimator of Hardle and Tsybakov (1997). Alternatively,
we propose a simpler local linear estimator based on a “de-meaning” idea that is asymp-
totically as efficient as if the true conditional mean function is known. The prediction
functions can be estimated either directly or via the multi-stage prediction techniques of
Chen, Yang and Hafner (2000). For two CHARN processes we compare the performance
of the nonparametric direct and multi-stage GI Ry, estimators with parametric ones using
Monte Carlo simulations. The multi-stage GI Ry estimator with improved volatility esti-
mation shows the best overall performance. It is then used to investigate the dynamics of
the West German real GNP.

The paper is organized as follows. In Section 2 we define local linear estimators for
the generalized impulse response function and investigate its asymptotic properties. The
alternative estimator for the conditional standard deviation is introduced in Section 3.
In Section 4 a GIR estimator based on multi-stage prediction is proposed. Issues of
implementation are discussed in Section 5. The results of the Monte Carlo study are
summarized in Section 6. Section 7 presents the empirical analysis and Section 8 concludes.



2 DIRECT GIR ESTIMATION

To facilitate the presentation, we use the following notation. Denote for any & > 1 the
k-step ahead prediction function by

fe(x) = E(Yeig-1|Xs-1 = x) (3)
and write
Yitk-1 = fu(Xiz1) + 0k (Xe—1)Up g (4)
where
i (x) = Var(Yeip-1Xy-1 = x) (5)

and where the Uy ’s are martingale differences since E(U; |Xi—1) = E(Uyx|Yi-1,...) =0,
E(ng|Xt_1) = E(ng|Yt_1,...) =1,t=m,m+1,.... Apparently, f1 = f, 01 = 0. One
also denotes

oy k(%) = Cov { (Y, _y, Y1) X1 = x}, (6)

oy (%) = COU{ {Yt+k'_1 — [ (Xt—l)}2 Yiig—1 — fk(Xt—l)] 1X¢1 = X} - (7

One can now write the generalized impulse response (GIRy) function defined in (2)
more compactly as

GIR(x,u) = fe—1 {f(%) + o(X)u, X'} — fr(x) = fr—1(xu) — fr(x) (8)

where x' = (21, ..., Zm—1) and x, = {f(x) + o(x)u,x'}.
The plug-in estimate of the GI Ry, function in (8) is then

GIRy(x,u) = fr—1 (%) — fi(x) (9)

where all unknown functions are replaced by local linear estimates. The estimator of x,
is X, = {f(x) +8(x)u,x’}. For defining the local linear estimators, K : R' — IR!
denotes a kernel function which is assumed to be a continuous, symmetric and compactly
supported probability density and

Ka(x) = 1/ T] K(ay/h)
j=1

defines the product kernel for x € R™ and the bandwidth h = Bn=Y/(m+4) 3 > (. Define
further the matrices

T
1 1
_ T _
e=100m)",  Ze= ( Xpmo1—%x o+ X, p—X )
—d; n—k+1 o T
Wi = dlag{Kh(Xi,l —X)/’n}i:m , Yi= ( Yiik—1 - Yg )

The local linear estimator fi(x) of the k-step ahead prediction function f(x) can then be
written as .
Fi(x) = e (Z{WiZy)  ZEWi Y. (10)
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The local linear estimate o%(x) of the conditional k-step ahead standard deviation is
defined by

_ 1/2
Gr(x) = {eT (ZEwWizs) lzgka]%—f,?(X)} . (11)

For simplicity, we write f(x) = f1(x), 5(x) = 51 (x).

In the following theorem we show the asymptotic normality of the local linear GI Ry
estimator (9) based on (10) and ( 1). Closed formulae for optimal bandwidth are derived
in the corollary. We denote ||K||5 = [ K?(u)du, 0% = [ K (u)u’du.

Theorem 1 Define the asymptotic variance

1K |ly™ o® (x) lai_l(Xu) px) o
2

(%)
Hx) nx)o2(x) | o2(x)
(

{3fk—1 (Xu)}2{1+um3+u2(m4—1)} Ofr—1(%u) {2‘71k x) +u0'11,k(x) H

Oy 4 Oy o?(x) o3(x)

2

oGIRE(X,u) = +

o

K"
p(x)

—=J (x=x%y) {20’]6_1,19()() - Qafk%xl(xu)alyk_l(X) +u

Ofk—1 (Xu) o11,5-1(%) }
0z o(x)
(12)
and the asymptotic bias

afk 1 (xu)

barr,k(x,u) = b1 (Xu) — bp(x) + {b7(%) + by (x)u} (13)

where

bfk(x) = UKTr{Vka }/2 (14)
ok(X) = 0% [TrVZ{fF(x) +o7(x)} = 2fp(x) Tr V2 { fi(x)}] / {40k (x)} -

Tr {V2fr(x)} denotes the Laplacian operator, and one abbreviates by 1(x),bs1(x) simply
as by(x),by(x). Then under assumptions (A1)-(A3) given in the Appendiz, one has

Vnh™ {G/I\Rk(x,u) — GIRy(x,u) — bGIR,k(x,u)h2} - N {O, O'%;IR,]C(X, u)} . (15)
Corollary 1 The optimal bandwidth for estimating GIRy(x,u) is

mUQGIR,k(X,U) }1/(m+4)

16
4b2GIR7k(x, u)n (16)

hopt (x,u) = {

which asymptotically minimizes the mean squared error (MSE)
— 2
MSEy(x,u;h) = B {GIR(x,u) — GIRx(x,u)} .

For any compact subset Cx of R™, the minimizer of the mean integrated squared error
(MISE)

MISE(Cy,u; h) :/ E{@k(x,u) —GIRk(x,u)}Qu(x)dx

x

s asymptotically

m fo O-é]R,k(xa u)p(x)dx }1/(m+4)
X

h Cx, =
ot u) {4nfcx b%”R,k(x,u)u(x)d



Obviously, each of the optimal bandwidth formulas (16) and (17) contains unknown
quantities. In Section 5 we discuss estimators for those quantities in order to obtain a
plug-in version of the optimal bandwidth (16). This plug-in bandwidth is then used in
the Monte Carlo experiments and in the empirical analysis presented in Sections 6 and 7,
respectively.

Koop, Pesaran and Potter (1996) consider various definitions of generalized impulse
response functions. For example, one alternative to (2) is to allow the condition to be a
compact set Cx. Denoting by C,, a compact subset of R, the generalized impulse response
function over these compact sets is defined by

GIRk(Cx, Cu) = E{GIRk(XZ'_l, Ui)|XZ'_1 e Cy,U; € Cu} . (18)

For its estimation, we consider its empirical version

n—k+1
GIR.(Cx,Cy) = 3" GIR(Xi1,U)I (X;1 € Cx, U €Cy)  (19)
(CX’C i=m
where
P (Cy, Cy) Z I(X; 1€Cx,U; €C,).

The asymptotic properties of the estimator (19) for generalized impulse response functions
over compact sets (Cyx,Cy) are summarized in the next theorem.

Theorem 2 Under assumptions (A1)-(A4) given in the Appendiz
GIR(Cx, Cu) — GIRy(Cx, Cu) = barai(Cx; Cu)l* + 0y(h?) (20)

where
barrk(Cx, Cu) = E{barrr(Xi—1,U;)|X;—1 € Cx,U; € Cy} .

Theorem 2 shows that for the generalized impulse response functions over compact
sets there does not exist the usual bias-variance trade-off. Within the constraint of h =
Bn~1/(m+4) it ig better to use a smaller h. This, of course, has to be qualified for finite
samples.

While the estimator for GIR) proposed in this section has reasonable asymptotic
properties, its application may be problematic in finite samples. In the next two sections
we discuss this problem in more detail and present an improved estimator.

3 EFFICIENT VOLATILITY ESTIMATION

The GIRy, estimator (9) is based on the standard estimator (11) for the conditional volatil-
ity. This local linear estimator 52(x), however, has an asymptotic bias involving the mean
function f, as seen in (14), and hence may perform poorly due to the influence of f. This
problem can also occur for other auxiliary functions such as o4 (x) and &1 (x),etc., which
will be needed for computing the plug-in bandwidth based on formulas (16) or (17). In this



section we present an alternative local linear estimator for the conditional standard devi-
ation that is asymptotically as accurate as if the true function f is known. The proposed
method can also be used for estimating the covariance functions o2(x), o1 4 (x), 011k (%)
The idea for estimating o} (x) is to base the estimator on the estimated residuals and
use .
52(x) = el (z{w,czk)_ ZIWL Vi (21)

T
- 2 ~ 2
where Vi = ( {Ym+k_1 — f,c(Xm_l)} {Yn - fk(Xn_k)} ) . In the next theo-

rem it is shown that this approach is indeed useful.

Theorem 3 Under assumptions (A1)-(A4) in the Appendiz, one has

n

> Kn(Xj—1 = x)op(Xj-1) (U7 — 1) + 0p(R%) (22)

np(x) =
where )
bo(x) = 2 TV {of (%)} (23)
and
vk {53 (x) — 0} (%) = ber(x)h?} = N {0,02 (%)}
with

_ 1K™ ob(x)

() -

(m4 k

)

0ok (X)

where My = E(Uﬁk).

This theorem basically says that by “de-meaning” one can estimate o,%(x) as well as if
one knew the true k-step prediction function f;. As one would expect, the noise level is
the same for both 52(x) and &7 (x) which can be seen from (22) and (29). However, from
comparing b, j and gg,k given by (14) and (23), it can be seen that 2(x) has a simpler
bias which does not depend on fy.

In a similar way one can define estimators for the quantities (6) and (7). For example,

one can estimate o1 4 (x) as
~ T (T -1 7
Jll,k(x) =€ (Zk chZk:) Zk kall,k

where
Vi =

( Vo= F X )} {Yonirr = &m0} Yk = F X)) {% = X)) )

and likewise 01 (x). Under assumptions (A1)-(A3) in the Appendix, these respective
estimators have similar properties as 52(x).

The fact that &x(x) has a simpler bias that does not involve fj facilitates the compu-
tation of the plug-in bandwidth since the asymptotic bias term in the optimal bandwidth
(16) becomes much simpler as well. For this reason and also the fact that it is more



efficient, we use from now on in the GI Ry estimator (9) the new estimator (21) instead
of (11) for estimating conditional volatilities. We note that despite of the fact that 5 (x)
is obtained by smoothing positive quantities, it still can take negative values in finite
samples. In such cases, one replaces in (21) the local linear by either the local constant
(Nadaraya-Watson) estimator or even a homoskedastic estimator which always produces
positive estimates.

4 MULTI-STAGE GIR ESTIMATION

The main ingredients of the GI Ry, estimator (9) are the direct local linear predictors fk
and fk_l. While they are simple to implement, they may contain too much noise which
has accumulated over the k prediction periods.

To estimate fi(x) more efficiently, we therefore propose to use instead the multi-stage
method of Chen, Yang and Hafner (2000). To describe the procedure, one starts with

Yt(o) =Y}, and repeats the following stage for j = 1,...,k — 1. For an easy presentation,
we use here the Nadaraya-Watson form.
Stage j: Estimate

- Sk K (X - )Y

t+j
f]() tleh (Xt—x)

b

and obtain the j-th smoothed version of Y;,; by Y, t+y = fj (X4).
Then, the conditional mean function fi(x) is estimated by
k-1

- m 1 th (Xt — )Y( )

t+k ) (24)
t m— 1th(Xt —x)

Fr(x) =

Graphically, the above recursive method can be presented as
1) (k—2) 1)
(ViprrXiqno1) < (1) Vi Xetk—2) _ (9 (! k:xt+k—3) YVgr 0 Xed1) _ (k—1 (v, B Xt) ~
Vi Ot ) OiEgees) i ORI Oy CR F g

The following theorem is shown in Chen, Yang and Hafner (2000).
Theorem 4 Under conditions (A1)-(A8) in the Appendiz, if hj = o(hg),nh* — oo for

j=1,...,k—1, and hy = Bn=Y/ ") for some B> 0, and if the estimators f;(x) are all
obtained local linearly, then

b { F(0) — fu(x) = bra(ORE } —N {0, ”K”j(nix)k”}
where
spx) = Var { fi 1(X)[ X1 = x} .
The local linear GI Ry, estimator based on multi-stage prediction is therefore given by
GIRy(x,u) = fr 1 (%) — fi(x) (25)

with the multi-stage predictor fk(x) and the alternative estimator for the conditional
standard deviation & (x) given by (24) and (21), respectively. In the next section we turn
to issues of implementation.



5 IMPLEMENTATION

Computing the direct or multi-stage GIR estimators (9) or (25) requires suitable band-
width estimates. Both estimators use the Gaussian kernel and a plug-in bandwidth Bopt
which is obtained by consistently estimating the unknown quantities in the asymptotically
optimal bandwidth (16). Since the efficient volatility estimator (21) is used instead of the
standard estimator (11), the bias term (14) in the optimal bandwidth (16) is replaced by
(23). For estimating the second order direct derivatives in the bias (13) we use a partial

quadratic estimator with bandwidth h {m + 4,34/ @(X)} with Var(X) denoting the

geometric mean of the variances for each regressor and
h(k,0) = o{4/k}L/ k2 =1/ (k+2)

The partial quadratic estimator is a simplified version of the partial cubic estimator pre-
sented in Yang and Tschernig (1999). For estimating all other unknown functions in
0%, r i and bgrgx we employ a plug-in bandwidth for estimating the conditional mean
functyion, see Tschernig and Yang (2000, Section 5) for details of implementation. The
main consideration for these bandwidth choices is that they are of the right order.

For the multi-stage GIRy, estimator (25) there does not exist a scalar optimal band-
width. According to Chen, Yang and Hafner (2000) the optimal bandwidth for the
first j < k — 1 predictions f](x) has a different rate. In their simulations they find
hayrsg—1 = ?Loptn_‘l/ (m+4)? /5 to work quite well. However, in simulations the application
of harsk—1 was often found to produce too small bandwidths and thus causing singular
matrices in the local linear estimator. The plug-in bandwidth ?Lopt may be smaller than the
optimal bandwidth for exclusively estimating f} since it serves several estimation purposes
simultaneously. We therefore use ﬁopt for all steps.

These quantities are also used for computing confidence intervals based on (15). All
computations are carried out in GAUSS.

6 MONTE CARLO STUDY

In this section we investigate the performance of the proposed GIRy estimators for two
conditional heteroskedastic autoregressive nonlinear (CHARN) processes (1), each with
two lags, 300 observations and i.i.d. standard normal errors Uy;:

CHARN1 , ( ’
3-Y2 3—(Y;2—0.5
Y; = —0.4 =1 106
t 1+Y2, + 1+ (Y;_o —0.5)*

+ 0.1 O'(Yéfl)Ut,
with

(y) = 0.8 + 0.4 (0.1 12 Y%+ 0.4(0.1 4+ 28(—5y)) 4

and ® denoting the c.d.f. of the standard normal distribution.



CHARN?2
Y, = 0.7Y1 —0.2Y;

1
+(=0.3Y; 1 +0.7Y; 2)

1 +exp{—10(-Y; 1 —0.02)}

+ 0.50’(}/75_1)Ut,

with )
Yy

14y

A plot of one realization of the CHARN1 process, of o(y) and of the density on the
range of the realizations are shown in Figure 1(a) to (¢). For the CHARNZ2 process the
corresponding plots are displayed in Figure 1(d) to (f).

For illustration we computed GIR4(x,1) functions on a two-dimensional grid for x
using the simulation method described in Koop, Pesaran and Potter (1996). Figure 2(a)
displays the resulting surface for the CHARNY1 process where all grid points outside the
range of one realization of 300 observations are ignored. Figure 2(b) shows the surface of
the multi-stage GIR estimates for the 389 relevant grid points. For the CHARNZ2 process
the corresponding plots are shown in Figure 2(c) and (d).

While these estimates seem to be encouraging, we conducted a simulation study to
obtain a more precise evaluation of the suggested methods. To save computation time, we
only considered about 50 different histories x. They were obtained by taking subsequent
observations of one realization for each process and discarding 5% of those observations
for which the density is lowest. The density is estimated using 10000 observations. Based
on 100 replications we computed the mean squared errors for various estimators of the
generalized impulse response function GIRy(x,u) with k¥ = 4,7 and 10 and u = —1,1.
We considered both the one-stage estimator (9) with (10) and (21) and the multi-stage
estimator (25) based on (24) and (21). We also fitted a linear homoskedastic AR(2)
model and computed the corresponding generalized impulse responses. Finally, for the
CHARNZ2 process we computed the generalized impulse responses based on the estimated
parameters of the correct parameterization of the CHARN2 mean function. This last
exercise is not possible for the CHARN1 process due to identifiability problems of the
parameters.

Since presenting the mean squared errors of the GIRy(x,u) for each k,x,u of one
process involves 300 numbers, we decided to summarize this information into the mean
integrated squared error }_; GI Ry(x?,u). Inspecting the mean integrated squared errors
for the CHARNI1 process in Table 1 indicates that both nonparametric estimators per-
form substantially better than the linear estimator based on a misspecified homoskedastic
AR(2) model. Overall, the multi-stage GIR estimator shows the smallest mean integrated
squared error. The superiority of the multi-stage GIR estimator over the direct GIR and
the linear estimator is also found for the CHARN2 process although it is now less dra-
matic with respect to the linear estimator, see Table 2. Note that the multi-stage GIR
estimator also outperforms the nonlinear parametric GIR estimator except for £ = 7 and
u = —1.

The results of this simulation study suggest that the proposed multi-stage estimator
can be useful in practice if one expects the underlying process to exhibit substantial
nonlinearities or heteroskedasticity or both and the functional form is unknown. In the
next section it will be applied to a typical macroeconomic time series problem.

o?(y) = 0.25 4+ 0.75 .



Table 1: Mean integrated squared errors (*10~3) of generalized impulse response estima-
tors for the CHARNY1 process

horizon k 4 7 10
Estimator \ shock u -1 1 -1 1 -1 1
multi-stage GIR 5945  3.754 5397  8.443 3.952 6.381
direct GIR 8.557 5382 8388 8967 8918 7.902
linear AR(2) 28.297 28.337 16.931 16.880 7.008 8.013

Table 2: Mean integrated squared errors (¥10~2) of generalized impulse response estima-
tors for the CHARN2 process

horizon k 4 7 10
Estimator \ shock u | -1 1 -1 1 -1 1
multi-stage GIR 1.606 1.495 2.273 1.808 1.280 1.267
direct GIR 3.085 2.730 3.671 3.421 3.836 3.490
linear AR(2) 2.261 1.800 2.883 2.695 1.960 1.909
nonlinear AR(2) 1.700 1.631 1.784 1.818 1.823 1.850

7 An empirical application

For the analysis of business cycles linear models may be inadequate if the dynamics vary
with the stage of the cycle. Potential explanations include asymmetric adjustment costs
of labor (see Hamermesh and Pfann (1996) for a survey) or recessions as cleansing pe-
riods (see, for example, Caballero and Hammour (1994)) or the insider-outsider theory
(Lindbeck and Snower (1988)).

In general, the empirical analysis of relevant macroeconomic time series is based on
parametric models such as the smooth transition model (e.g. Skalin and Terasvirta (1998))
which incorporates seasonal features of macroeconomic time series. On the other hand, it
is not easy to choose an appropriate class of nonlinear models. For the latter reason, Yang
and Tschernig (1998) extend the CHARN model (1) by deterministic seasonal components.
Let S denote the number of seasons. The simplest seasonal model which they propose for
a seasonal process V; is the seasonal shift model

Vs—|—’rS —0s = f (VS—F’TS*I - 5{571}a s aVs-}—’rSfm - 6{57m})
+ o (Vs+75—1 — Ofs—1}s-++ VstrS—m — 5{s_m}) Usirs

where the time index ¢ is replaced by s+75,s=10,1,...,S—1and 7 =0, 1, ..., and the d
denote seasonal mean shifts. For any integer a we define {a} as the unique integer between
0 and S — 1 that is in the same congruence class as ¢ modulo S. For identifiability one
requires dyp = 0. In the following we estimate the GIR function for the CHARN process
Ysirs = Virrs—0ds. Yang and Tschernig (1998) show that for the purpose of nonparametric
inference the deseasonalized Y; can be obtained by subtracting the estimated §,’s.
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We use this model for the analysis of the quarterly (seasonally non-adjusted) West
German real GNP from 1960:1 to 1990:4 compiled by Wolters (1992, p. 424, note 4).
Based on seasonal unit root testing by Franses (1996) we take the first differences of the
logs. By subtracting the estimated seasonal means b1 to 53, the deseasonalized Y;’s are
growth rates with respect to the spring season. In order to avoid the dependence on a
spec1ﬁc season, we ignore the 1dent1ﬁab1hty issue and subtract all four means o = 0. 0386,
6, = 0.0518, 65 = 0.0089 and b3 = —0.0673.

To keep the model parsimonious we employ a CHARN model with all lags up to
four. Since we have more than two lags, we can no longer investigate the generalized
impulse response function on a grid as it was done in the previous section. Instead,
we pick six distinct histories: x! = (—0.02, —0.01,0,0.01) = (-0.01,0,0.01,0. 02)

= (0,0.01,0.02,0.01)", x* = (0.01,0,—0.01,—0.02) T, x® (0 02,0.01,0,—0. 01) x6 =
(0.03,0.02,0.01,0)” which represent various stages of the business cycle ranging from a
substantial downswing to a considerable upswing. These growth rates correspond to the
deseasonalized Y; process.

In Figure 3 we display for each history and a positive unit shock the multi-stage
GIRy(x,1) estimator (solid line) plus 95% confidence intervals (dots and dashes) and the
GIRy(x,1) estimator based on a homoskedastic linear model (dashed line) for k = 3, ..., 20
or up to five years. Note that the unit shock is multiplied with the estimated conditional
standard deviation which for the given histories x*, i = 1,...,6 takes values in the range
from 0.008 to 0.016. Both models exhibit strong seasonal dynamics. Subtracting seasonal
means cannot remove all seasonal effects. The overall dynamics implied by both estimators
are qualitatively similar. For history x*, they are basically identical, see Figure 3(d). For
histories that include a 2% growth of the deseasonalized real GNP, Figures 3(b), (c),
(e) and (f) indicate that for the first two years the linear model would overestimate the
generalized impulse responses of a unit shock. Taking absolute values, these results also
hold for a negative unit shock as can be seen from Figure 4. Such differences cannot be
revealed by GIR estimates based on linear models.

8 Conclusion

Impulse responses have proven important to study the dynamics of linear time series pro-
cesses. For conditional heteroskedastic autoregressive nonlinear processes we provide local
linear estimators of generalized impulse response functions as defined by Koop, Pesaran
and Potter (1996). Asymptotic normal distributions are derived for the proposed nonpara-
metric estimators without prior choice of the parametric forms of the process. An efficient
new estimator of the conditional variance function is proposed based on a “de-meaning”
idea. Plug-in optimal bandwidths are obtained and implemented, and multi-stage predic-
tion techniques are used for enhanced performance.

In a simulation study we compare the direct and multi-stage GIR estimators with a
linear parametric estimator for two conditional heteroskedastic autoregressive nonlinear
processes of order two and find the multi-stage GIR estimator to perform best in terms of
its mean integrated squared error.

Finally we investigate quarterly data of the West German real GNP using the multi-
stage GIR estimator and a GIR estimator based on a linear model after subtracting sea-
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sonal means. For six distinct histories it is found that the magnitude of the nonparametri-
cally estimated generalized impulse response functions differ across histories, a feature that
is completely missed by linear models. The responses are smaller if there was considerable
growth in at least one quarter. Based on the confidence intervals which are computed
using the asymptotic distribution, these differences are significant.

In sum, we may conclude from the results of the Monte Carlo study and the empirical
analysis that the proposed nonparametric multi-stage estimator of generalized impulse
response functions can be a useful tool for studying nonlinear phenomena in economics

and other fields.

APPENDIX
With regard to the process (1) we assume the following:

(A1) The vector process X;_1 = (Y;_1, ..., Y;_m)7 is strictly stationary and geometrically
B-mixing: B(n) < cop~™ for some 0 < p < 1, ¢y > 0. Here

B(n) = Esup{\p(mfj;) - P(A)‘ P A€ FEy)

where F!' is the o-algebra generated by Xy, X4 1, ..., Xy

(A2) The stationary distribution of the process X;_; has a density u(x), x € IR™, which
is continuous.

(A3) The functions f and o have bounded continuous derivatives up to order 4 and o is
positive on the support of u.

(A4) There exists constants a,r > 0 such that Eexp {a|Yy|"} < +oo.

A discussion of assumptions (A1) to (A3) can be found e.g. in Tschernig and Yang
(2000). Assumption (A3) is needed for the functions fj, o2 to be 4-th order smooth, as
shown in the lemma that follows. The 4-th order smoothness is needed for using the
plug-in bandwidths of Yang and Tschernig (1999).

Lemma 1 Under assumptions (A1)-(A3), one has for t > m and k > 2

fk(x) = Efy_1{f(x)+o(x)U,x'}, (26)
or(x) = Efi_i {f(x) + o(x)U;, X'} — fi(x) + Boi_y {f(%) + o(x)Us, X'} . (27)

Moreover, all functions fk,a,%, k =2,3,... have continuous derivatives up to order 4.

Proof. By the definitions in (3), (5) and (4), for any ¢ > m, one has

Yitkh—1 = fr—1 (X¢) + 01 (Xe)Upg1,5-1

and hence

fr(x) = E(Yip-11Xsm1 = x) = E [fr—1 (X4) [X¢ = { (%) + 0(x) Uy, X' }]

12



which is the same as in (26). Likewise, using the martingale property of U1 ;_1, one has
or(x) = Var (Y- X1 = x) = Var {fe—1 (X¢) + 0p—1(Xe)Upp1,6-1 X1 = x}
=Var{fr—1 (Xs) | X1 = x} + Var {op—1(X4)Upy1,6-1| X1 = x}
= E{ 2.1 (X)) [Xe-1 = x}=[E{fe 1 (X0) [Xe1 =} +B {0}y (Xe)UZ1 o[ Xe 1 = x}

= B [f2_1 (X0) 1Xe = {£(2) + () U, X'} = f ()+E [0}y (X)X, = {£(x) + 0 (x) U, x'}]

which is the same as in (27). Now the recursive formulae (26) and (27), assumption
(A3) plus the fact that the shock variable U; has finite 4-th moment yield the smoothness
results.

For proving Theorem 1 it is necessary to derive some auxiliary results first and de-
compose the GI Ry, estimator in several terms. By Hardle, Tsybakov and Yang (1998), we
have

n—k+1
Fr(x) = fr(x) + brp(x)h? + nﬂl(x) Z Kp(Xi—1 — x)ok(Xi—1) Uik + 0p(h?),  (28)

Gh(x) = of(x) + B0k [Tr V2 { F2(0) + 0}(0) } — 2fx(x) Tr V2 { fi(x)}] /2

1 n—k+1
+nu(x) Z Kh(Xifl - X)O'I%(Xifl)(UiZ,k - 1) + op(hz) (29)

which entails that
k(%) = 0% (X) + bok(x)h>
1 n—k+1
> Kn(Xio1 — x)0p(Xio1) (Ul — 1) + 0p(h?). (30)

=m

Now (28) and (30) imply that the estimated GIR function is

T o))

Cm%k(x,u) = fk_1 (Xu) — ﬁc(x)

= fe—1 (Ru) = fr(®) + {bpr—1 (Ru) — bpi(x)} h*+

1 n—k+2
——— > Kn(Xio1 — Ru)ok—1(Xi—1) Ui e—1
ny (Xu) i=m
1 n—k+1
— Z Kh(Xi—l — X)O’k(X,'_l)Ui,k + Op(h2)
nu(x)
= fr—1 (xu) = fu () + [bpa-1 (xu) = bra(x)] h*+
1 n—k+2
> Kp(Xict — xu)0p—1(Xic1) Ui e
np (xy) =2
1 n—k+1
_nu(x) Z:Zm Kh(Xifl —X)O’k(Xz’,l)Ui,k+

13



78}‘;05;1(:(”) { f(x) — f(x) +&(x)u— a(x)u} + 0p(h?)

hence

GTI\Rk(x,u) = GIRk(x,u) + bGIR,k(x; u)h2 + T+ Ty +T13+ Ty + Op(h,z) (31)

where bgrr (X, u) is as defined in (13) while

1 n—k+2
T, = Kp(X;_1 — (X)) U; g1,
1 n//'(xu) Z;ﬂ h( i—1 xu)Uk 1( i 1) i,k—1
n—k+1
T = Xi—1 —x)ok(Xi—1) Ui,
i=m

Ofk1(xu) 1 . ) , :
13 = oz, nu(x) Z (Xzfl - X)U(Xzfl)Uza

T — afkéglgl(xu) 2nu z Kp(Xi—1 — x)0*(Xi1) (U7 — 1) (32)

by Hérdle, Tsybakov and Yang (1998). We now consider the expectations of all products
T;T}, 1,5 = 1,...,4 which are needed to compute the asymptotic variance. First, one has
the following five equations

2
E(T2) = || K||2m -1 (%u) ~1p-m
(1) = I KN ey o (0 ™).

B(T) = ||K||2m"'“—”+o(n—1h—m),

nh™ p(x)
X 0'2 X
w0 fp_1 (xu) )2 m 02(x) (Mg — rem
m(r) = {3 2Lt g —‘n,Zf,m‘gx) Dpo(nnm),
X 0'2 X
BT =5 {L’“alf “)} & - ()x)m3+0(n_1h_m). (33)
Lemma 2
B(TiTy) — - PR S o (),
E(NT;) = afké;(xw T ;(h'zz ((};) ) IKI5™ + o0 (n_lh_m) .
e =

14



Proof. We take ¢ = 3 as an illustration. By the definitions in (32)

E(NTs) = afkéi«l(xu) n2u(x;u ()

n n—k+2
Z Z E {Kh(Xi—l — X)Kh(Xj_l - xu)U(Xi—l)Uk:—l(Xj—l)Uin,k:—l} .

=m j=m

Take a typical term from the double sum
E{Kp(Xi—1 —x)Kp(Xj_1 —x4)0(Xi—1)op—1(Xj—1)UiUj -1}
and apply change of the random variable X;_; = x+hZ, the term becomes

him {K(Z)K (w) O'(X-l-hZ)O'k_l(Xj_l)Uin,k_l} .

If 4 # j, then X;_1 = (Yj_1,...,Yj_)" contains variables that are not in X;_; and so
further changes of variable will make the above term of order O(h~™*!). If i < j, then
both X;_; and U; are predictable from Y;_1, ..., Y;_,, ... and so by the martingale property
of Ujx—1 the above term equals 0. Similarly the term equals 0 if 7 > j + k — 2. Hence,
the only nonzero terms satisfy 0 < ¢ — j < k — 2, and there are only O(n) such terms.
Furthermore, these nonzero terms are of order O(h~™%!) unless i = j. So one has

—17— afk—l (xu) 1
E(T\Ts) = Lt
(TTs) = Ol b ) e W e
n—k+2
> E{Kp(Xi1 —x)EKp(Xi-1 — x4)0(Xi1)0%—1(Xi1)UilUj g—1} -

If x = x, then by definition of o1 (x)
E{o(Xi-1)op-1(Xi=1)UiUjp—11Xi=1} = 01,5-1(Xi-1)
and so

O0fr—1 (xu)

1 n—k-+2
Oz1  n?u(x)p (xu)

Z E {KI%(Xi—l — X)U(Xi—l)akfl(Xz‘—l)UiUi,kfl}

n—k+2
Z E {KI%(Xz'—l - X)Ul,k—l(xi—l)}
i=m

_ Ofp—1(x) 1
or1  n’p?(x)
Ofi 1 (%) [IK|l3™ o1,-1(x) 1,
— ’ h m .
0z nh™u?(x) +oln )
If x # x,,, using the same change of variable X;_; = x+hZ, one gets

1 X1 —x X1 —x
e L e e e

15



X — Xy

himE {K (Z)K ( + Z) o(x+hZ)ak_1(x+hZ)UiUi,k—1}

which is of order o(h™™) as

sup K (z) K (x—xu —I—z) — 0.
zZER™ h

The latter follows from the fact that x # x, makes the maximum of ||z and ||*7*= + z|
go to zero uniformly for all z €R™, the boundedness of K and that lim, . K(z) =0.
Hence, now one has

E(T1T3) = O(n th™™) £ o(n th™™).

Lemma 3
E(TyTs) = _8fk{-)3151(XU) n(ij;:/g)(?() IK[3™ + 0 (n_lh_m) , (35)
_ u0fg-1 (%) o11k(x) om Cem
BT = =5 = ae, nhmuxoel) K2 TO (n=thm). (36)

Proof. We prove (35) as an illustration. By the definitions in (32)

_afk—l (xu) 1

E(TyT3) =
(To1y) oz1  n2p2(x)

n n—k+1
Z Z E{Kh(Xi_l — X)Kh(Xj_l - X)O’(Xz‘_l)O'k(Xj_l)Uin’k}

i=m j=m
and by the same reasoning as in Lemma 2, one has

_afk—l (xu) 1
or1  n?p?(x)

E(TyT3) =

n—k+1
S EB{K(Xi 1 —%)0(Xi 1)ox(Xi 1)Uilik} + o0 (n A7)
i=m

Note that by definition of oqx(x)
E{o(Xi—1)ok(Xi—1)UjU; | X1} = 01x(Xi-1)
and so

_Ofk1(x) 1 H_ZHIE {Ki(Xi—l - X)Ulk(Xz’—l)} +o (”Ahim)

i=m

E(TyT3) =

or;  n2p?(x)

iz 1 om L
= e g 12 o1k(x) + o (nth™™)

which is (35).
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Lemma 4
E(T1 + T2 + T3 + T4)2 == n_lh_maéIR’k(x, u) +o (’n_lh_m)
where oéIR’k(x,u) is as defined in (12).

Proof. This follows from equations (33), (34), (35) and (36), together with

E(Ty +To + T + Ty)? ZET2+2 > E
1<i<j<4

Proof of Theorem 1.

Note that all the four terms 14,75, 13,7, and their linear combinations can be written
as sample means of martingale differences, and so one can apply Corollary 6 of Liptser and
Shirjaev (1980). Then using Lemma 4, the asymptotic normal distribution is established.
Proof of Theorem 3.

Note that by definition

~

{ k1 — fe(X; )}2 = {Vjir 1 — f(Xj-1) )2 + {fk(Xj—l) - fk(Xj—l)}2

+2{Yj k1 — fo(Xjm)} { A (Xyo1) = Fu(Xjo0) (37)
and that Theorem 3.2 of Bosq (1998) entails

sup {fe(0) — ()} = 0,(1?)

XECX

and so one can drop the second term when smoothing V, in the decomposition (37). Since

Yjrh—1 — fr(Xj-1) = ou(X-1)Ujk,

so instead of Vi, one smoothes local linearly a vector whose terms are

~

oh(Xj—1)UZ g + 204(Xj-1) U {flc(Xj—l) - fk(Xj—l)} = 0(Xj-1) U

1 n
+201(X;-1)Uj {bf,k(le)h2 t X > En(Xio1— le)Uk(Xi1)Ui,k}+0p(h2)-
J=1) i=m

Now obviously

2n2 &
Kh X'_l—Xb’k X'_1 gk X'_1 U',kZO h2,
”N(X)Jgn(] )f(])(])y p()

so one only needs to smooth the following term local linearly on X;_; = x:

20k

X
0B (X)) U2 + (, )

Uik ZKh i1~ Xj-1)20%(X; 1)U -
X ) i=m

(
ny
By using the geometric mixing conditions as in Hardle, Tsybakov and Yang (1998),
local linear smoothing of o2(X; )U2 & gives the two terms on the right hand side of (22)
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except the higher order term, so it remains to show that local linear smoothing of the
following term is o, (h?):

204 (X]’,1)Uj’k

n
Kp( X1 — X-1)20:(X;-1)U; 1.
i (X;-1) > Kp(Xi —1)20%(Xi-1)Ui

i=m

Writing explicitly the local linear smoothing, one needs to show that

where

K;p(X,_1—x K;(X;_1—x
T”':{ T TRt oy )}Kh(x"‘l_Xj‘l)"’“(X"‘l)”’“(xf"l)Ui”“U"’“

2 2 n 1
S: T: K X,_ _XK OUQX'_ U2,
V0 2, T e 2wy K K0k
2
52 n2u(x) > T

m<i<j<n

It is easy to verify that S; = O(n~'h~™™) by Corollary 6 of Liptser and Shirjaev (1980).
It is also clear that E(T;;Ty;) =0 for all m <i < j <n,m <4 <j' <n,j#j. Thus
4

8
BSy = oy 2 BIj+ aes Y. B(TyTy).
ntp?(x) m<i<j<n ntp?(x) m<i<i' <j<n

Now let k,, = [cInn] be such that B(k,) < n~%, then

n‘ﬁé(x) z E(TZ_27) - ( Z + Z ) E(TZ%)

4,,2
m<i<j<n M%)\ ciciTRcjcn  m<j—kmsi<i<n
4 h2m 4 hm+1
<= c c-—
— n4,u2(x) Z h4m + n4u2(x) Z h4m

m<i<j—kn<j<n m<j—kn<i<j<n

=O0(n 2R + n 3k, b3 = O(n™th™™) = o(h?). (38)

Meanwhile 3, ;cir<j<n E(T;;Ty ) is decomposed into also two parts: part 1 consists of
those terms with max (i — i, j — ') > k,, while part 2 those terms with max (i’ —i,7 — ') <
kn. Then it is clear that terms in part 1 can be treated as if U; ;, or Uy x is independent of
the other variables index around j or j', with negligible errors, so part 1 is of smaller order
than n*h*. Part 2 has at most O(nk2) terms, so it is at most O(nk2h'=3™) = o(n*h*).
Hence we have proved that

8
T >, B(TyTyj) = op(hh). (39)
ntp?(x) m<i<i'<j<n
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Combining (38) and (39), we have shown that
S1+ S5 = op(h?)

and thus also the theorem.
Proof of Theorem 2.

Applying the uniform almost sure convergence results of Theorems 2.2 and 3.2 of Bosq
(1998), the decomposition of GIRy(x,u) in (31) holds uniformly for x € Cx,u € C, under
assumptions (A1)-(A4). Hence, by (18) and (19)

GIR(Cx, Cy) — GIR(Cx, Cy) =

1 n—k+1 -
—_— GIR,(Xi—1,U;)I (X1 € Cx,U; € Cy) — GIR,(Cy, Cy
’I’LP(CX,CU) Z:Zm lc( 1—1 z) ( i—1 ) k( )
n—k+1
= GIRy( ,Us i1 € Cx,U; € Cy) — GIR,(Cx,Cy)+
TLP(CX,CU Z k Xi-1 ) ( i—1 1 u) k( u)
n—k+1
3 (Cx,C ) sz barrk(Xic1, Ui)I (Xi—1 € Cx,U; € Cy) >+
1 n—k+1 )
—_— T+ To+T34+Ty) (X1, U;) I (X1 € Cx,U; € Cy) + 0p(h
nP(Cx,Cu) Z:Zm(l 2 3 4)( i—1 ’L) ( i—1 % u) p( )
4 —k+
= barrk(Cx; Cu)h” +0p(h*) + Z X1, Ui)I (Xi_1 € Cx, Ui € Cy) .
’ o lnP(Cx,C’

=m
To show that all the terms containing T are op(h?), we take s = 1 as an example.

n—k+1

> Ti(Xit, U)I (Xi—1 € Cx, Ui € Cy) =
=m
n—k+1n—k+2 1
> Z —— K (Xj1 = Xi1,03) 0k 1(Xj-1)Ujp 11 (Xi1 € Cx, Us € Cy)
i=m j=m Z 1 Ul)

which has second moment less than h* by the same technique used in the proof of Theorem
3. We have completed the proof of (20) and hence of the theorem.
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Figure 1: CHARNI1 process: (a) realisation of 300 observations, (b) conditional standard
deviation, (¢) marginal density; CHARNZ2 process: (d) realisation of 300 observations,
(e) conditional standard deviation, (f) marginal density;
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Figure 2: CHARN1 process: (a) true generalized impulse response functions GTR4(x, 1),
(b) multi-stage estimates of GIR4(x,1) based on 300 observations; CHARN2 process:

(c) true generalized impulse response functions GIR4(x,1), (d) multi-stage estimates of
GIR4(x,1) based on 300 observations
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Figure 3: Growth rates of seasonally demeaned West German real GNP: estimated

generalized impulse responses for a positive unit shock over & = 3,...,20: (a) x! =
(—0.02,—0.01,0,0.01)T; (b) x2 = (—0.01,0,0.01,0.02)7; (c) x* = (0,0.01,0.02,0.01)7;
(d) x* = (0.01,0,—0.01,-0.02)7; (e) x> = (0.02,0.01,0,—0.01)T; (f) x5 =
(0.03,0.02,0.01,0)” — multi-stage GIR estimates (solid line) and 95% confidence inter-
vals (dots and dashes), GIR estimates based on homoskedastic linear model (dashed line)
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Figure 4: Growth rates of seasonally demeaned West German real GNP: estimated
generalized impulse responses for a negative unit shock over k = 3,...,20: (a) x' =
(—0.02,—0.01,0,0.01)T; (b) x2 = (—0.01,0,0.01,0.02)7; (c) x* = (0,0.01,0.02,0.01)7;
(d) x* = (0.01,0,—0.01,-0.02); (e) x5 = (0.02,0.01,0,—0.01)T; (f) x5 =
(0.03,0.02,0.01,0)” — multi-stage GIR estimates (solid line) and 95% confidence inter-
vals (dots and dashes), GIR estimates based on homoskedastic linear model (dashed line)



