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Generalized Additive Models
Stefan Sperlich and Jifi Zelinka

Let’s assume that we have independent random variables T} and T and the
response variable Y having the form

Y = fl(Tl) + fz(TQ) +e.

The functions f;, fo are unknown and the random error ¢ is independent with
T, and T,. This situation can be simulated using XploRe very well:

n = 100

t = normal(n,2) ; explanatory variable
f1 = - sin(2*t[,1]) ; estimated functiomns
f2 = t[,2]°2

eps = normal(n,1) * sqrt(0.75) ; error

y = f1 + £f2 +eps ; response variable

Q gam01.xpl

The data can come from praxis, too. Our task is to estimate the unknown
functions f; and fo.

This chapter deals with such problems and their solutions. It ought to demon-
strate and to explain how to use XploRe for nonparametric regression and data
analysis in generalized additive models (GAM). It describes all quantlets
which belong to the gam quantlib which contains all routines of XploRe provided
for estimation and testing in generalized additive models. It also has several
links to the gplm quantlib for generalized partial linear models (GPLM)
in XploRe thus many quantlets which are used in gam are fully described in
Chapter ?? but not mentioned here.



1 Brief Theory

1.1 Models

An additive model (AM) with response variable Y and explanatory variable
T € R? has the form

d
E(Y|T =1t) =z

where ¢ is a constant with E (Y') = ¢ and the univariate functions, also called
additive components, f; obey Er, {f; (T;)} = 0 for all j.

Possible extensions which can be handled in XploRe are additive partially
linear models (APLM), generalized additive models (GAM), a mixture
of both (GAPLM), models with bivariate additive components and ad-
ditive models with interaction.

Generalized additive models are of the form
EYI|T =1t) Z fi @t

with a known link function G, ¢ := G~ {E (Y)} and the same conditions on
f; as above.

Special cases of these models are the well known probit and logit regression
models.

Additive partially linear models allow for an additional linear part to the origi-
nal additive model. When T € R? is the explanatory variable with an influence
of unknown functional form and X € RP an explanatory variable with linear
influence, we have

EY|T=tX=2)= ij Y+e+zT8,

where the additive components f; and the parameter 8 have to be estimated.
These models are especially recommended to include discrete and dummy vari-
ables into the model.



The mixture of both, that is the generalized additive partially linear
model, has the form

E(Y|T=tX=z) = Zf] )+c+azTp

Sometimes we know of joint influence of some explanatory variables, e.g. T} and
T, and thus their influence cannot be separated into two additive components.
In those cases, the sum of them, f (-) + fi (+), has to be replaced by a bivariate
additive component fi; (-,-).

A further possible extension is to keep the additive separable structure as
introduced above but to allow additionally for any kind of interaction term
fri- Do not mix them up with the bivariate additive components we just
spoke about! Here we focus on the isolated marginal influences with condition
Er, {fri Tk, t1)} = E1, {fr:1 (tx, T;)} = 0. The model we consider then is

d
EY|T =1t) :Z + ) fu(TeT)+c

1<k<i<d

with Er; {f; (T;)} = 0 as in the models before.

1.2 Marginal Integration

As indicated by its name, the marginal integration estimator is estimating the
marginal influence of a particular explanatory variable on a multidimensional
regression. If the true model is an additive separable one, the functional to
be estimated is exactly the additive component. Possible interaction in the
model will be neglected and the estimator is still giving the marginal and thus
interpretable influence of the considered variable.

The basic idea of the estimation procedure is to estimate a pre-estimator of
the hyperdimensional regression surface and then to integrate out the dimen-
sions not of interest keeping the direction of interest fixed. Assuming we are
interested in the first additive component at point ¢; this would lead to the
formula

fit) = > ot Toy)
=1



where 171 is a pre-estimator for E (Y'|T'). T_1,; denotes the I-th observation of the
explanatory vector T' € R? without the first influence variable and {Y;,T;};-,
the observations.

The pre-estimators are kinds of multidimensional kernel smoother in XploRe.
For the pre-estimation in generalized additive partially linear models we make
use of a variant of profile maximum likelihood.

The calculation of such an estimate would need O(n®) steps, to apply this
procedure on large data sets will take plenty of time. For those data sets an
alternative fast procedure can be applied which asymptotically (for a large
number of observations) yields the same results but needs only O(n?) comput-
ing steps. In that procedure for the pilot estimation the usual local polynomial
estimator is replaced by the fully internalized smoother (see Jones, Davies, and
Park 1994).

Since we know the asymptotics for the integration estimator, different test
procedures for component analysis can be constructed. The main idea is always
to estimate either the function or its derivative under hypothesis as well as
under alternative and to look on the squared integral of their difference. This
corresponds to the Euclidian distance between hypothesis and alternative. If
this distance is too large we reject the hypothesis.

For further details, especially how to estimate in extended models, we refer to
the list of the literature.

1.3 Backfitting

The backfitting estimator is projecting the multidimensional regression problem
into the space of additive models. It is always looking for that additive model
which yields the best regression fit. If the true model is an additive separable
one, the estimated functionals are just the additive components of the true
model.

If the true model is not additive, one reason for the use of backfitting is its effect
of dimension reduction in high dimensional regression problems. Even if the
model assumption is false, this method often leads to a reasonable regression
fit. But in that case the additive components must not be interpreted.

Since this algorithm is directly related to the whole regression it is not pos-
sible to estimate a single component separately. The implemented iterative
procedure works as follows. Given starting values on the (n x 1) vectors fJQ for



7 =1,2,...,d, update these vectors in the r-th step by

g5 (y- 35
i#k

until some tolerance is reached. Here, Sy is the one dimensional smoothing
operator calculating a regression from T} on (y =2 iz 5 _1).

In generalized additive models we have to work with a quasi likelihood function
and so the Fisher scoring algorithm is applied as an outer iterative procedure
before applying the above mentioned algorithm.

For a more detailed description of the backfitting procedure we refer to Hastie
and Tibshirani (1990) or Opsomer and Ruppert (1997).

1.4 Orthogonal Series

Another well known method to estimate regression functions nonparametrically
is to approximate them by an orthogonal function basis. You choose a basis of
functions which describes e.g. the Lo space, fix the degree of fineness (usually
depending on the number of observations and the dimensions of the particular
sample) and finally estimate the unknown parameters of the resulting function
to get an optimal fit for your sample.

Such a basis can be constructed by wavelets. Here, the fineness of the estimation
is mainly determined by the chosen level degree. The estimated coefficients of
the wavelets are asymptotically normally distributed.

Assuming an additive model for the considered regression problem, the additive
components are simply formed by the wavelets which correspond to the same
particular explanatory variable.

A testing procedure to examine the additive components is based on an analysis
of the estimated coeflicients.

For an introduction into wavelets and further information we recommend the
Chapter 14 in Hérdle, Klinke, and Miiller (2000) and the quantlibs twave and
wavelet in XploRe.

More details and theory can be found in Kaiser (1994) and Hérdle, Sperlich,
and Spokoiny (1997).



2 Data Preparation

All estimation quantlets in the XploRe quantlib gam expect at least two input
parameters:

n X p matrix, continuous explanatory variables for nonparametric part

n X q vector (more exactly a matrix of g vectors), observed responses

For partially linear models additionally:

n X d matrix, explanatory variables for linear part (at least the discrete
variables).

There should be no vector of ones concatenated to the data. A constant is
contained automatically in the nonparametric estimate for m (¢).

Neither the matrix x nor the vector y should contain missing values (NaN) or in-
finite values (Inf, -Inf). Those should be identified by isNumber and removed
by paf (or replaced by something reasonable) before using GAM quantlets.

3 Noninteractive Quantlets for Estimation

m = intest(t, y, h, g, loc{, opt})
estimates an additive model (AM)

{m, b, const} = intestpl(x, t, y, h, g, loc{, opt})
estimates an additive partially linear model (APLM)

{m, b, const} = backfit(t, y, h, loc, kern{, opt})
estimates an additive and additive partially linear model




m = gintest(code, t, y, h, g, loc{, opt})
estimates a generalized additive model (GAM)

{m, b, bv, const} = gintestpl(code, x, t, y, h, g{, opt})
estimates a generalized additive partially linear model (GAPLM)

m = intest2d(t, y, h, g, loc{, opt})
estimates a bivariate marginal influence

{fh, c} = interact(t, y, h, g, loc, incl{, tg})
estimates an additive model with interaction terms

m = fastint(t, y, hl, h2, loc{, tg})
estimates an additive model using marginal integration

Here is the list of all quantlets. Their use is described in the following subsec-
tions.

3.1 Estimating an Additive Model

m = intest(t, y, h, g, loc{, opt})
estimates an additive model (AM)

library("gam")

randomize (1234)

t = uniform(50,2)*2-1
gl = 2xt[,1]

g2 = t[,21"2

g2 = g2 - mean(g2)

y =gl + g2 + normal(50,1) * sqrt(0.25)
h = #(1.2, 1.0)

g = #(1.4, 1.2)

loc =1

gest = intest(t,y,h,g,loc)
gest

bild = createdisplay(1,2)



dat11l = t[,1]"gl
dat12 = t[,1] gest[,1]
dat21 = t[,2] g2

dat22 = t[,2]"gest[,2]
setmaskp(dat12,4,4,8)
setmaskp(dat22,4,4,8)
show(bild,1,1,datl11,dat12)
show(bild,1,2,dat21,dat22)

Q'gam02.xp1

The quantlet intest provides a way to estimate the univariate additive func-
tions and derivatives of a separable additive model using Nadaraya-Watson,
local linear or local quadratic estimation.

Input parameters:

h
p' x 1 bandwidth vector for the directions of interest (see remarks). It
can be p' = p, p' = pg or p' = 1 for the same bandwidth in all directions.

p x 1 bandwidth vector for the directions not of interest
loc scalar specifying the estimation procedure:

0 —Nadaraya-Watson (local constant)
1 —local linear

2 —local quadratic
Optional parameters (see Section 5):

opt.tg
ng X pg matrix, a grid for continuous part If tg is given, the nonparametric
function will be computed on this grid

opt.shf
scalar (show-how-far). If it exists and is equal to one, an output is
produced and it indicates how the iteration is going on (additive func-
tion/point of estimation/number of iteration).



Output value:

n(ng) X p' - (loc + 1) X ¢ matrix containing the marginal integration esti-
mates in the first p’ columns, followed by the 1-st and 2-nd derivative if
local linear or quadratic estimation is used

Remarks: The grid may have less dimensions (p') than the explanatory data.
The estimation will then be run on the first p’ directions of interest. Conse-
quently, it is possible to specify the bandwidth vector h for the directions of
interest only.

3.2 Estimating an Additive Partially Linear Model

{m, b, const} = intestpl(x, t, y, h, g, loc{, opt})
estimates an additive partially linear model (APLM)

library("gam")

randomize (1345)

loc= 2

x = matrix(50,2)

t = uniform(50,2)*2-1

xh = uniform(50,2)

x[,1]= 3*(xh>=0.8)+2*((0.8>xh)&&(xh>=0.3))+(0.3>xh)
x[,2]= (xh>(1/3))

gl = 2xt[,1]

g2 = (2%t[,2])"2

g2 = g2 -mean(g2)

m =gl + g2 + xx(0.2(-1.0)

y = m + normal(50,1)*0.25

h = #(1.4, 1.4)

g = #(1.4, 1.4)

{m,b,const} = intestpl(x,t,y,h,g,loc)
b

const

bild =createdisplay(1,2)
dat11l= t[,1]"gl



dat12= t[,1]1"m[,1]
setmaskp(dat12,4,4,8)
show(bild,1,1,datl11,dat12)
dat21= t[,2]"g2

dat22= t[,2]"m[,2]
setmaskp(dat22,4,4,8)
show(bild,1,2,dat21,dat22)

Q gam03.xpl

The quantlet intestpl estimates the univariate additive functions and its
derivatives in an additive partially linear model (APLM) using local linear
or local quadratic estimation.

Input parameters:

h

p x 1 vector or a scalar, the bandwidth for the directions of interest
g

p x 1 vector or a scalar, the bandwidth for the directions not of interest
loc

scalar indicating the estimation procedure:

1 —local linear
2 —local quadratic

Optional parameters (see Section 5):

opt.tg
ng X pg matrix, a grid for continuous part. If tg is given, the nonpara-
metric function will be computed on this grid.

opt.shf

scalar, if shf=1 then it is shown how the process is going on (default:
shf=0)

Output values:

m
ng x p - (loc + 1) x ¢ matrix, the marginal integration estimates in the
first p columns, followed by the 1-st and 2-nd derivative, if local linear or
quadratic is used

10



d x 1 vector, the coefficients of the linear part

const

scalar, the constant in the additive partial linear model

3.3 Estimating Additive and Additive Partially Linear
Model

{m, b, const} = backfit(t, y, h, loc, kern{, opt})
estimates an additive and additive partially linear model

library("gam")

randomize (1)
n = 100
t = normal(n,2) ; explanatory variable
x = normal(n,2) ; the linear part
f1 = - sin(2xt[,1]) ; estimated functions
f2 = t[,2]"2
eps = normal(n,1) * sqrt(0.75)
y = x[,1] - x[,2]/4 + £1 + £2 +eps ; response variable
h =0.5
gamopt ("x",x,"shf",1) ; the linear part is used

opt =

and the iterations will be shown

{m,b,const} = backfit(t,y,h,0,"qua",opt)

b
const
pic =
d1l
d2

createdisplay(1,2)
t[,11"m[,1]
t[,2]1™m[,2]

setmaskp(d1,4,4,4)
setmaskp(d2,4,4,4)

ml =
m2 =

mean(f1)
mean (£2)

; coefficients for the linear part
([1, -1/4] were used)
; estimation of the constant

; preparing the graphical output

11



yy =7y - xxb - const

x1 = t[,11"(yy - m[,2])

x2 t[,2]17(yy - m[,11)

setmaskp(x1,1,11,4)

setmaskp(x2,1,11,4)

setmaskl(dl, (sort(d1~(1:rows(d1)))[,3]1)’,4,1,1)
setmaskl(d2, (sort(d2~(1:rows(d2)))[,3])’,4,1,1)
show(pic,1,1,d1,x1,t[,1]17(f1-m1))
show(pic,1,2,d2,x2,t[,2]~ (£2-m2))

Q'gam04.xp1

The quantlet backfit estimates the univariate additive functions and its deriva-
tives in an additive (AM) or additive partially linear model (APLM) using the
backfitting algorithm. It accepts only one-dimensional response variables y.

Input parameters:

h
p % 1 vector or a scalar, the bandwidth

loc
scalar indicates the estimation procedure:
0 —Nadaraya-Watson (local constant)
1 —local linear
2 —local quadratic
kern
string indicates the kernel function
"qua" quartic kernel
"epa" Epanechnikov kernel

"gau" Gaussian kernel
Optional parameters:
opt.x

n X d matrix, the explanatory variables for the linear part (at least the
discrete variables)

12



opt.shf
shf=1 to show how the iteration is going on (default: shf=0)

opt.miter
scalar, the maximal number of iterations (default: miter=>50)

opt.cnv
scalar, the convergence criterion (default: ¢cnv=0.000001)

The quantlet returns

m
n x p- (loc+ 1) matrix, the estimate of the additive functions in column 1
to p, the first derivatives in column (p+1) to 2p and the second derivatives
in column (2p + 1) to 3p

b
d x 1 vector, the coefficients of the linear part

const

scalar, the estimate of the constant in the model

The example to this quantlet (@ gam04.xpl) produces the following graphical
output:

13



It can be seen original data (crosses), exact values of the estimated functions
(circles) and their estimations (small triangles connected by lines).

3.4 Estimating a Generalized Additive Model

m = gintest(code, t, y, h, g, loc{, opt})
estimates a generalized additive model (GAM)

library("gam")

randomize (1235)

n = 100

P =2

t = uniform(n,p)*2-1

gl = 2xt[,1]

g2 = t[,21"2

g2 = g2 - mean(g2)

m =gl + g2

y = cdfn(m) .> uniform(n) ; probit model
h = #(1.7, 1.5)

g = #(1.7, 1.5)

tg = grid(-0.8,0.1,19)

opt = gamopt("tg",tg tg,"shf",1)
loc =1

code = "bipro"

m = gintest(code,t,y,h,g,loc,opt)
d1 = tgl[,1]1"m[,1]

d2 = tgl,2]1"m[,2]

setmaskp(d1,4,4,8)
setmaskp(d2,4,4,8)
bild = createdisplay(1,2)
show(bild,1,1,d1,t[,1]1"gl)
show(bild,1,2,d2,t[,2]17g2)

clgam05.xp1

The quantlet gintest estimates the univariate additive functions and its deriva-
tives in a generalized additive model (GAM) using Nadaraya-Watson, local
linear or local quadratic estimation.

14



Input parameters:

code

loc

string, specifies the distribution of y and the link function. Currently
implemented codes are:

"bilo" binomial with logistic link (logit)
"bipro" binomial with normal distribution link (probit)

"noid" mnormal with canonical (identity) link

p' x 1 bandwidth vector for the directions of interest (see remarks). It
can be p' = p, p' = pg or p' =1 for the same bandwidth in all directions.

p x 1 bandwidth vector for the directions not of interest

scalar specifies the estimation procedure:

0 —Nadaraya-Watson (local constant)
1 —local linear

2 —local quadratic

Optional parameters:

opt.tg

ng X pg matrix, a grid for the continuous part (see remarks)

opt.shf

for shf=1 an indicator to show how the process is going on (default:
shf=0)

The quantlet returns

ng X p' - (loc + 1) x g, the marginal integration estimates in the first
p’ columns, followed by the 1-st and 2-nd derivative, if local linear or
quadratic estimation is used

15



Remarks: The grid may have less dimensions p’ than the explanatory data.
The estimation will then be run on the first p' directions of interest. Conse-
quently, you need to specify the bandwidth vector h for the directions of interest

only.

3.5 Estimating a Generalized Additive Partially Linear
Model

{m, b, bv, const} = gintestpl(code, x, t, y, h, g{, opt})
estimates a generalized additive partially linear model (GAPLM)

library("gam")

; probit model

randomize (1235)

n = 100

P =2

d =2

b =1/|2

t = uniform(n,p)*2-1

X = 2.%uniform(n,d)-1

gl = 2xt[,1]

g2  =t[,21"2

g2 = g2 - mean(g2)

m =gl + g2

y = cdfn(m+x*b) .> uniform(n)
h = #(1.7, 1.5)

g = #(1.7, 1.5)

tg = grid(-0.8,0.1,18)

opt = gamopt("tg",tg tg)

opt = gamopt("shf",1,opt)

code = "bipro"

{m,b,bv,c} = gintestpl(code,x,t,y,h,g,opt)

gamout (t,y,m,b,c,gamopt ("pl",1,"x",x,"bv",bv,opt))

Q gam06.xpl

The quantlet gintestpl estimates the univariate additive functions in a gen-
eralized additive partially linear model (GAPLM) using Newton-Raphson or
Fisher scoring algorithm.

16



Input parameters:

code
string specifying the distribution of y and the link function. It accepts
only one-dimensional y. Currently implemented codes are:

binomial

"bilo" binomial with logistic link (logit)

"bipro" binomial with normal distribution link (probit)
"bicll" binomial with complementary log-log link
normal

"noid" normal with canonical=identity link

"nopow" normal with power (inverse) link

gamma

"gacl" gamma with canonical=reciprocal (inverse) link
"gapow" gamma poisson with power (inverse) link
inverse gaussian

"igcl" inverse gaussian with canonical=squared reciprocal (inverse) link
"igpow" inverse gaussian with power (inverse) link
negative binomial

"nbcl" negative binomial with canonical (inverse) link
"nbpow" negative binomial with power (inverse) link

p x 1 bandwidth vector for the directions of interest

p x 1 bandwidth vector for the directions not of interest
Optional parameters:

opt.tg
np X p matrix to estimate on a grid

opt.shf
if shf=1 then it is shown how the process is going on (default: shf=0)

17



opt

opt

opt.

opt.

opt

opt

opt

opt

opt.

opt

opt

.bO

d x 1 vector to provide initial coefficients for the linear part (default:
GLM pre-estimation)

.nosort

nosort=1 indicates that t is already sorted by its first column (default:
nosort=0). Sorting is required by the algorithm, hence you should switch
if off only when the data are already sorted.

miter
maximal number of iterations (default: miter=10)
cnv
scalar to determine the convergence criterion (default: ¢nv=0.0001)
.fscor
fscor=1 to switch to the Fisher-Scoring algorithm (default: Newton-
Raphson). This parameter is ignored for canonical links.
WX
scalar or n x 1 vector to make use of prior weights. For binomial models
usually the binomial index vector (default: 1).
.wt
n x 1 vector, weights for t (trimming factors) (default: all components
set to 1)
.wtc
n X 1 vector to apply weights for the convergence criterion, w.r.t. m(t)
(default: wt is used)
off
scalar or n x 1 vector, offset, can be used for constrained estimation
(default: off=0)
.pow
scalar, power for power link (default: pow=0)
.nbk

scalar, extra parameter k for negative binomial distribution (default:
nbk=1—geometric distribution)

18



The quantlet returns

m
ng X p matrix, the marginal integration estimates
b
d x 1 vector, the coefficients of the linear part
bv
d x d covariance matrix for the estimated coeflicients
const

constant of the model

3.6 Estimating Bivariate Marginal Influence

m = intest2d(t, y, h, g, loc{, opt})
estimates a bivariate marginal influence

library("gam")

randomize (12345)

t = grid(#(-0.9,-0.9),#(0.2,0.2) ,#(10,10))
n = rows(t)

t = t~ (uniform(n) *2-1)

g3 = sin(2*t[,3])

gl2 = t[,1].xt[,2]"2

y = g3 + gl12 + normal(n)*sqrt(0.5)

h = #(1.0, 1.0)

g = #(1.1, 1.1, 1.2)

loc =1

gest = intest2d(t,y,h,g,loc)
library("graphic")

pic = createdisplay(1,2)

dat1l = grsurface(t[,1:2]7g12)

dat12 = grsurface(t[,1:2] gest[,1])

gc = grcube( datli|datl2 )
show(pic,1,1,dat11,gc.box,gc.x,gc.y,gc.2z,gc.c)

19



show(pic,1,2,dat12,gc.box,gc.x,gc.y,gc.z,gc.c)
setheadline(pic, 1, 1, "Original function")
setheadline(pic, 1, 2, "Estimated function")

@ am07. xpl

The quantlet intest2d provides a way to estimate the bivariate marginal in-
fluence function of the explanatory variables ¢; and ¢5. You can choose the
Nadaraya-Watson, the local linear or the local quadratic kernel smoother. Fur-
ther, if local linear is chosen the program gives you the first derivative functions
for both directions. If you choose the local quadratic smoother, you get the
mixed derivative function. This quantlet can be used e.g. to explore the joint
influence of two arbitrary explanatory variables in a multidimensional regres-
sion problem.

Input parameters:

h

scalar or 2 x 1 vector, the bandwidth for the directions of interest
g

scalar or p x 1 vector, the bandwidth for the directions not of interest
loc

scalar specifying the estimation procedure:

0 —Nadaraya-Watson (local constant)
1 —local linear
2 —local quadratic

Optionally it is possible to use:

opt.tg
ng X 2 matrix for estimating on a grid
opt.shf
shf=1 to show how the process is going on (default: shf=0)

The quantlet returns

m
ng X p' X gmatrix, the bivariate marginal integration estimate in the first
column, the derivatives in the following columns
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The example from this quantlet (@ gam07.xpl) gives the following picture:

(0.90.9,-1.0)
s 00 0®
(0909:10) (:09-09-1.0) %"

The original function is displayed on the left side, its estimate on the right side.

3.7 Estimating an Additive Model with Interaction Terms

{fh, c} = interact(t, y, h, g, loc, incl{, tg})
estimates an additive model with interaction terms

library("gam")

randomize (12345)

t = grid(#(-0.9,-0.9),#(0.2,0.2),#(10,10))
n = rows(t)

t = t~ (uniform(n) *2-1)

gl = 2xt[,1]

g2 =t[,2]"2 - mean(t[,2]"2)
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g3 = sin(3%t[,3])

gl2 = t[,1].*%t[,2]

y = gl+g2+g3+gl2+normal (n)*sqrt(0.5)
h = #(0.9, 0.9, 0.9)

g = #(1.0, 1.0, 1.0)

incl =172

f = interact(t,y,h,g,1,incl)

library("graphic")

pic = createdisplay(2,2)

dat1l = sort(t[,2]"g2)

datfl = sort(t[,2]1 " f.fh[,2])

dat12 = sort(t[,3]"g3)

datf2 = sort(t[,3]"f.fh[,3])
setmaskp(dat11,1,3,8)

setmaskp(dat12,1,3,8)

setmaskp(datf1,4,3,8)

setmaskp(datf2,4,3,8)

setmaskl(datfl, (1:rows(datf1))’,4,1,1)
setmaskl(datf2, (1:rows(datf2))’,4,1,1)
show(pic,1,1,dat11,datfl)
show(pic,1,2,dat12,datf2)

dat21 = grsurface(t[,1:2]7gl2)

dat22 = grsurface(t[,1:2]17f.fh[,4])

gc = grcube( dat21|dat22 )
show(pic,2,1,dat21,gc.box,gc.x,gc.y,gc.2z,gc.c)
show(pic,2,2,dat22,gc.box,gc.x,gc.y,gC.2Z,gC.C)

@ ¢am08. xpl

The quantlet interact estimates the univariate functions and the bivariate
interaction terms wished by the user and the constant of the model, i.e., all
functions f; and fj of the model m =c+ fi + ...+ fa+ fiz + ... + fla—1)a>
see also Subsection 1.2. Again the marginal integration estimator is used and
you can choose between the Nadaraya-Watson, the local linear and the local
quadratic smoother.

Input parameters:

h
scalar or p x 1 vector, the bandwidth for the directions of interest
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scalar or p x 1 vector, the bandwidth for the directions not of interest

loc
scalar specifying the estimation procedure:
0 —Nadaraya-Watson (local constant)
1 —local linear
2 —local quadratic
incl

pp X 2 matrix giving all pairs of indices j, k¥ for which f; shall be included

Optional parameters:

tg
ng X p matrix to estimate on a grid (see remarks)

The quantlet returns

fh
ng X (p+ pp) matrix, the marginal integration estimates of the univariate
functions and the chosen interaction terms

scalar, the constant of the model

The example @ gam08.xpl gives the following picture:
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You see displayed the second and third additive component in the upper plots,
where the original functions are black and their estimates blue. In the lower
plots are displayed the original interaction on the left and its estimate on the
right.

Remarks: Note that interact accepts only one-dimensional y. If you choose

a grid tg, the interaction functions can only be estimated up to a constant
shift.
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3.8 Estimating an Additive Model Using Marginal Inte-
gration

m = fastint(t, y, hl, h2, loc{, tg})
estimates an additive model using marginal integration

library("gam")

randomize (1234)
n = 100
d =2

5 generate a correlated design:
var = 1.0

cov = 0.4 *(matrix(d,d)-unit(d)) + unit(d)*var
{eval, evec} = eigsm(cov)

t = normal(n,d)

t = t*((evec.*sqrt(eval)’)*evec’)

gl = 2xt[,1]

g2 =t[,2]"2 -mean(t[,2]"°2)

y = gl + g2 + normal(n,1) * sqrt(0.5)
hi = 0.5

h2 = 0.7

loc =0

gest = fastint(t,y,h1,h2,loc)

library("graphic")
pic = createdisplay(1,2)
dat1l = t[,1]7gl

dat12 = t[,1] gest[,1]
dat21 = t[,2]"g2
dat22 = t[,2]"gest[,2]

setmaskp(dat12,4,4,8)
setmaskp(dat22,4,4,8)
show(pic,1,2,datl11,dat12)
show(pic,1,1,dat21,dat22)

QgamOQ.xpl

The quantlet fastint estimates the univariate additive components f; if and
only if the true model is of additive structure, i.e., the underlying model is
m = c+ f1 + ...+ fs. Here, the marginal integration estimator is applied
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and followed by a one-step-backfit . For the backfit step you can choose be-
tween the Nadaraya-Watson, the local linear and the local quadratic smoother.
Consequently you get estimates for the first or for the first and the second
derivatives. For the integration step we use the fully internalized smoother, see
Subsection 1.2.

This estimation procedure is very fast compared to the above mentioned inte-
gration procedures but we recommend to use it only if the number of obser-
vations is big compared to the number of covariates and if the true model is
indeed additive. It accepts only higher-dimensional y variables.

Input parameters:

hi
scalar or a p x 1 vector, the bandwidth for the pilot estimation,(marginal
integration); it is recommended to undersmooth here

h2
scalar or a p x 1 vector, the bandwidth for the backfit step

loc

scalar specifying the estimation procedure:

0 —Nadaraya-Watson (local constant)
1 —local linear

2 —local quadratic

Optionally it is possible to use:

tg
ng X pg matrix for estimating on a grid

The quantlet returns

ng x (p+ pp) matrix, the estimates of the univariate additive components
and their derivatives on t or tg, respectively
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4 Interactive Quantlet GAMFIT

gamfit(t, y{, opt})
interactive tool for fitting of GAM models

library("gam")

randomize (1234)

t = uniform(50,2)*2-1

gl = 2xt[,1]

g2  =t[,2]"2

g2 = g2 - mean(g2)

y =gl + g2 + normal(50,1) * sqrt(0.25)
gamfit(t,y)

Q gam10.xpl

gamfit provides a convenient interactive tool for the estimation of additive
models.

The inputs t and y are obligatory parameters. All the other variables, selections
and options needed for the estimation will be inquired interactively. The Break
option ends the dialogue at any level without doing any calculations. gamfit
starts with the model selection:

Select additive model |

Additive mode

Additive partially lingar model
Generalized additive model
Generalized additive part. linear madel
Break.

Pleaze select desired items and prezs OF
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For the additive (AM) and the additive partially linear model (APLM) it is
necessary to specify the estimation procedure. Since so far the backfitting
procedure is not implemented for generalized additive models, the marginal
integration estimator is automatically applied for GAM and GAPLM.

Select estimation procedure |

E stirmation by integration
B ackfitting algorithrn
Break

Pleaze select desired items and press OF.

Depending on these selections gamfit checks the input and finds out, which
further parameters are needed to run the estimation.

In case of a partially linear model you will be asked to quote the variable name
for the linear part (named here the discrete variables). You may, alternatively,
leave it out, which means to run the estimation on the linear part only and to
switch back to an additive (AM) or a generalized additive model (GAM).
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Dizcrete vanables have not been __. |

Run the estimation without discrete wariak
Give the name of the dizcrete vanable » &
Break

Pleaze select desired items and press OF.

Most quantlets of the quantlib gam allow to use different estimation procedures:
local constant, local linear or local quadratic. Hence, they are able to estimate
the additive functions and its derivatives.

Up to which derivative the estimat. ..

Function [local constant)

Function and 1. denvative [local linear)
Function. 1. and 2. derivative [local quad
Break

Pleaze select desired items and prezs OF

At least one vector of bandwidths is needed for all estimation procedures. Most
of them additionally ask for a second bandwidth for the directions not of in-
terest.
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Readvale |
Select Bandwidth h D
h ]

In case of the backfitting algorithm you need to specify the kernel function.

Select kernel function |

Quartic kernel
Epanechnikov kernel
Gauszzian kerel
Break,

Pleaze select dezsired items and press OF.

For generalized models you are asked to select the distribution of the dependent
variable y and the link function.
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Select exponential family for ¥ | Select a link function

Marmal [ : arw real value) Logit [canonical]
Birarmial [v:071or0..m] Probit
Break Break
Pleaze select dezsired items and press OF. Pleaze select desired items and press OF.

At last, before starting the estimation, it is possible to change the optional
control parameters. It depends on the previous selections which of them appear
(for detailed description of the options see Section 3). Some of them refer to
the graphical output, others allow to exclude variables, to supply a grid, to
produce an output with descriptive statistics and to display the steps of the
estimation process.

Select variables ?

Marme the wariables 7

Jze agnd Y

Show how the procedure iz going on 7
Don't show output graph #

Show descripbive statiztics 7

Mame of output ¢

Title the output windows 7

Break

Pleaze select desired items and press OF.

Subsequently a graphical output presents the estimation results for the nonlin-
ear and should the occasion arise also for the linear part. If selected, descriptive
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statistics are shown additionally.

The following pictures were acquired using the data from @ gam10.xpl.

Descriptive Statistics

n=50. 2 continuous wvariables

Minimun Maximun Mean Median Std.Error
4 -2.6209 2.2747 —0.28803 —0.23945 1.3253
tl —0.98382 0.8771% -0.128 -0.12612 0.62649
t2 -0.89808 0.98741 0.059073 0.0816 0.62705
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The resulting output is made globally available as a list object gamfit. It
contains:

gamfit.m
ng X p matrix, the estimates for the nonlinear part

gamfit.opt
internally used option list

and if given

gamfit.b
d x 1 vector, the coefficients of the linear part

gamfit.bv
d x d covariance matrix for the estimated coefficients of (GAPLM)

const
constant of the model

Although gamfit is an interactive tool, you are free to provide initially any
additional option or parameter needed for the estimation of your model. The
bandwidths h and g, the grid or the discrete variable x are typical examples.
Look up the options corresponding to your model in Section 3. Section 5 gives
instructions on optional parameters.

5 How to Append Optional Parameters

opt=gamopt (s0, vO{, s1, vi,...{, opt}})
creates option list for gam quantlets

All quantlets in the XploRe quantlib gam expect optional parameters to be
tailed onto the parameter list by means of a list object. The auxiliary quantlet
gamopt presents a convenient tool to create the option list opt.

sO0,s1,...
string, names of the components to add. Allowed are:
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nx" discrete predictor variables

"loc" indicator for local const, linear or quadratic estimation
"tg" grid

"h" bandwidth for the directions of interest
g bandwidth for the directions not of interest
"code" model code

"kern" name of the kernel function

"wx" weights

"off" offset

"shf" indicator to show iterations

"miter" maximal number of iterations

"cov" convergence criterion

"fscor" Fisher scoring will be used

"pow" power for gintestpl

"nopic" show no picture

"descript" add descriptive statistics

"pl" partially linear model

"name" output variable name

"xvars" discrete variable names

"tvars" name of t-variable

"yvars" name of y-variable

"title" output picture title

"byv" covariance matrix for b

vO,vl,...
the value of the corresponding component to add

opt
It is appropriate to use the old list of options as a parameter to save the
previously defined ones.

For instance, calling
opt = gamopt("code","bipro","miter",10,"nopic",1,o0pt)

appends the optional parameters code, miter and nopic containing the values
"bipro", 10 and 1 to the already existing option list opt.

Up to 10 optional parameters may be appended at one call. Rerun the quantlet
to extend your option list.
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Finally, check the list with the names command or by typing its name.

names (opt)
[1,] code
[2,] miter
[3,] nopic

opt
Content of object opt.code
[1,] bipro
Content of object opt.miter
[1,1 10
Content of object opt.nopic
(1,1 1

The resulting option list may be used with different quantlets of the gam
quantlib. Each quantlet picks out all the optional parameters needed, thus
it is possible to use one option list for all gam quantlets.

Principally it is possible to define the list of optional parameters with the
XploRe command 1ist. However, this approach has some drawbacks. First,
all elements of the option list would exist twice: as global objects as well as
list components. Also, name conflicts could arise, since the components need
to have specific names to be correctly identified by the gam quantlets. Finally,
XploRe supports list with identical names for different list components. In
this case, only the first of multiple elements with the same name can be iden-
tified.

Therefore, it is recommended to use the quantlet gamopt to set the options.

6 Noninteractive Quantlets for Testing

erg = wavetest(t, y, p{, dis, levels, data, adjust})
component analysis in additive (partially linear) models

erg = intertestl(t, y, h, g{, opt, file})
test for interaction

35



erg = intertest2(t, y, h, g{, opt, file})
test for interaction

With the following test procedures it is possible to do either component analysis
in additive models, e.g. test for linearity or you can test for interaction and thus
for additivity of a model.

6.1 Component Analysis in Additive (Partially Linear)
Models

erg = wavetest(t, y, p{, dis, levels, data, adjust})
component analysis in additive (partially linear) models

library("gam")

n = 100

randomize (1234)

x = normal(m,3)

eps = normal(n,1) * sqrt(0.8)

y = sin(2*x[,1]) + x[,2]1°2 + 2*x[,3] +eps
p =1

erg = wavetest(x,y,p)

erg

Q'gamli.xpl

The quantlet wavetest provides a test procedure for component analysis in
additive separable models. It is based on wavelets using the Haar basis. It
consists of two separated tests, the local one is e.g. looking for jumps, the
chi-square like one for the Lo distance. You can test whether the considered
additive component is significantly different from a predetermined polynomial.

Input parameters:

n X p matrix, the observed explanatory variable, where the dis (see list of
optional parameters) last columns are expected to be dummy variables
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n X 1 vector, the observed response variable

scalar, the degree of the polynomial of the hypothesis

Optionally it is possible to use:

dis
scalar, the number of dummy variables, if you have some included in x
levels
(p — dis) x 1 vector, the wavelet levels for the components (default: max-
imal possible)
data
string, the name of the file in which the estimates shall be saved
adjust
2 x 1 vector, multiplicators to justify the first error probability, see help
file

The quantlet returns a table displaying all information about the test results.
The example of this quantlet (1@ gam11.xpl) produces the following output:

Contents of erg

-

-

-

™

-

L IO e I e I e I e I e IO e O e A s N |

[y

non

-

R O W OW~NOU P WN =
O Y U T VA Y VA VY W |

-

m rm
=
N
—_

3

[13,1 " local Test chi-2 like Test "
[14,] "- = - = = = = = = = = = — = = — = = - = — - - - - - - - "



[15,]
[16,]
[17,]
[18,]
[19,]
[20,]

"level crit.value test stat. crit.value test stat. "

Here, the hypothesis of linearity has been rejected.

6.2 Testing for Interaction by intertestl

erg = intertesti(t, y, h, g{, opt, file})

test for interaction

library("gam")

randomize (12345)

n = 50

t = uniform(n,3)*2-1

gl = 2xt[,1]

g2 = t[,2]1"2 - mean(t[,2]1"2)

g3 = sin(3*t[,3])

gl2 = t[,1]1.xt[,2]

y = gl+g2+g3+gl2+normal (n)*sqrt (0.5)
h = #(0.9,0.9,0.7)

g = #(1.0,1.0,0.9)

boot = 99

hb =1.1

weight= matrix(n)-prod((abs(t[,1:2]).>0.85),2)
opt = list(boot,hb,weight)

test = intertestl(t,y,h,g,opt)

test

2] gaml2.xpl

The quantlet intertest1 provides a test procedure to test the hypothesis that
a predetermined interaction function is zero, i.e. the interaction is not existing.
The assumed underlying model is m = c+ f1 +...+ fa+ fiz+. .. + f(4-1)a, see
also 1.2 Marginal Integration. First, this procedure is estimating the interaction
by the marginal integration estimator. Then the difference of this estimate to

38



the hypothesis is calculated. Since the procedure is based on bootstrap, the
hypothesis model has to be determined by the user, in practice he has to decide
which of the possible interaction terms have to be included.

Input parameters:

t
n X p matrix, the observed explanatory variable where the directions of
interest have to be the first and the second column.
y
n X 1 vector, the response variable.
h
p x 1 bandwidth vector for the directions of interest.
g

p x 1 bandwidth vector for the directions not of interest.
Optional parameters:

opt
list:

opt.hyp
pp X 2 vector, all pairs of indices of which the interaction shall be
included

opt.boot
number of bootstrap replications (default: boot=249)

opt.hb
scalar, the bandwidth multiplicator for the bootstrap. When the
test statistics are calculated we take hxhb and g*hb instead of h and
g (default hb=1).

opt.weight
n x 1 vector, the weights for the test statistic (default: equal to 1
for all components)

file
string, the name of the file to which the estimates will be saved if wished
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The quantlet returns a table displaying all information about the test results.
The example of this quantlet @ gam12.xpl (probably with a different seed for
the function randomize) produces table with the following text:

Contents of test

[ 1,] nn

[ 2’] N 0 b e e e e m o e e e e e e e e e e e = = = = n
[ 3,1 "no output of function estimates"

[ 4’] "non

[ 5,1 "HYPOTHESIS: There is no interaction of x_1,x_2"

[ 6’] n.n

[ 7,1 " 1looking at the interaction function estimate "

[ 8,1 " Number of bootstrap replications: 99"

[ 9,] "non

[10,] "Hypothesis has not been rejected"

[11’] nn

[12,] " "
[13,] "= "
[14,] " niveau rejected crit.value test stat. "

[15,] "= = = = = = = = = = = = = = = = = - - - - - - - - - - - "
[16,1 " 1 0 7.77893 0.96358"

(17,1 0 6.00822 0.96358"

[18,1 " 10 0 5.18759 0.96358"

[19,1 " 15 0 4.37140 0.96358"

[20,1 " 20 0 3.73898 0.96358"

[21,] " "
[22,] " "
[23’] non

6.3 Testing for Interaction by intertest2

erg = intertest2(t, y, h, g{, opt, file})
test for interaction

library("gam")
randomize (12345)
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n = 50

t = uniform(n,3)*2-1

gl = 2%t[,1]

g2 =t[,2]"2 - mean(t[,2]"2)

g3 = sin(3*t[,3])

gl2 = t[,11.%t[,2]

y = gl+g2+g3+gl2+normal (n)*sqrt (0.5)
h =#(1.1,1.0,0.9)

g = #(1.2,1.2,1.1)

boot = 99

hb =1.5

weight= matrix(n)-prod((abs(t[,1:2]).>0.85),2)
opt = list(boot,hb,weight)

test = intertest2(t,y,h,g,opt)

test

@ gaml13.xpl

The quantlet intertest2 provides a test procedure to test the hypothesis that
a predetermined interaction function is zero, i.e. the interaction is not existing.
The assumed underlying model is m = c+ fi+...+ fa+ fia+. ..+ fla—1)4, see
also Subsection 1.2. First, this procedure is estimating the mixed derivative of
the interaction by the marginal integration estimator. Then the difference of
this estimate to the hypothesis is calculated. Since the procedure is based on
bootstrap, the hypothesis model has to be determined by the user, in practice
he has to decide which of the possible interaction terms have to be included.
For the bootstrap the user also can choose whether the model shall be estimated
with a local linear or a local quadratic estimator.

Input parameters:

t
A n x p matrix, the observed explanatory variable where the directions
of interest have to be the first and the second column.
y
A n x 1 vector, the response variable.
h
A p x 1 bandwidth vector for the directions of interest.
g

A p x 1 bandwidth vector for the directions not of interest.
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Optionally it is possible to use:

opt
list:

opt.hyp
pp X 2 vector, all pairs of indices of which the interaction shall be
included

opt.boot
number of bootstrap replications (default: boot=249)

opt.hb
scalar, the bandwidth multiplicator for the bootstrap. When the
test statistics are calculated we take h*hb and g*hb instead of h and
g (default hb=1).

opt.weight
n x 1 vector, the weights for the test statistic, (default: equal to 1
for all components)

opt.loc
scalar, the degree of the local polynomial smoother (1=local linear,
2=local quadratic)

file

string, the name of the file to which the estimates will be saved if wished

The quantlet returns a table displaying all information about the test results.
The example of this quantlet @ gam13.xpl (probably with a different seed for
the function randomize) produces the following output:

Contents of test

-

™

"no output of function estimates"
n.n

"HYPOTHESIS: There is no interaction of x_1,x_2"

™

-

-

testing for the mixed derivative "
Number of bootstrap replicatioms: 99"

-

-

Lo IO e B e Y e T e T e T e I e B |
O o0 ~NO O WN -
[T oy Y oy Y T oy T oy Ty T

-
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[10,] "Hypothesis has not been rejected"

[11’] n n

t2,] - "
[13,] "M== "
[14,] " niveau rejected crit.value test stat. "

[15,] "- = = = = = = = = = = = = = = = = = = = - = — — - - - - "
[16,]1 " 1 0 48.26525 6.55640"

(17,1 " 0 33.84235 6.55640"

[18,1 " 10 0 32.34334 6.55640"

[19,1 " 15 0 25.73994 6.55640"

[20,1 " 20 0 20.97699 6.55640"
ek, "
22,]"m-——"——"-"--———ee e e - "
[23’] " n

7 0Odds and Ends

7.1 Special Properties of GAM Quantlib Quantlets

This part of the chapter describes some features which may be interesting for
special problems.

The gam quantlib automatically loads the quantlibs xplore, glm and gplm, if
not yet active.

The quantlets gintestpl and intestpl perform the estimation on an inter-
nal grid if the number of observations exceeds 50 and 40, respectively. They
interpolate the estimated additive functions for the explanatory variable t, or,
if given, for the grid tg.

For graphical output gamfit makes use of the auxiliary quantlet gamout.
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7.2 Estimation on Principal Component by PCAD

{jhat, g, mhat} = pcad(x, xg, y, h, bn)
estimates the additive components, the significant directions and
the regression on principal components

library("gam")

= 100

=uniform(n,4)

=v[,2:4]
=x[,1]1°240.1*x[,2]+normal (n)
=0.5

bn=0.02

gest=pcad(x,x,y,h,bn)
gest.jhat

gest.g
gest.mhat

P X 4B

Q'gam14.xp1

The quantlet pcad estimates the additive components, the significant directions
and the regression function on principal components. It accepts only one-
dimensional y. The standard call is:

Input parameters:

X
n x p design matrix
xg
ng X p matrix, the grid on which we will estimate
y
n x 1 vector, the response variable
h
p x 1 bandwidth vector
bn

scalar, threshold for choosing significant directions
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The quantlet returns

jhat
A g x 1 vector, the set of significant directions.

g
A ng x ¢ matrix, the function estimates of the significant directions.
mhat
A ng x 1 vector, the estimate of the regression using the significant di-
rections.

8 Application for Real Data

We will demonstrate an example of processing of real data in this section. We
can use two data sets of Wisconsin farm data, 1987, from originally 1000 data.
Selected are middle sized animal farms, outliers were removed. The first data
set animal contains 250 observations (rows) of family labor, hired labor,
miscellaneous inputs, animal inputs and intermediate run assets. The
response variable livestock is contained in the second data set goods. Detailed
description of data, source, possible models of interest and some nonparametric
analysis can be found in Sperlich (1998).

In this example we will deal with the first three inputs, i.e. family labor, hired
labor, miscellaneous inputs and animal inputs. We will store them into the
variable t and also we must read the response variable y:

data=read("animal.dat")
t1 = datal,1]

t2 = datal,2]
t3 = datal,3]
t4 = datal,4]

t=t17t27t37t4
y=read("goods.dat")

Now we can calculate approximately bandwidth h:

h1=0.5*sqrt(cov(tl))
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h2=0.5*sqrt (cov(t2))
h3=0.5*sqrt (cov(t3))
h4=0.5*sqrt (cov(t4))
h=h1|h2|h3|h4

Finally we set up the parameters for estimation and run the partial integration
procedure intest. It will be shown running of the computation.

g=h

loc=0

opt=gamopt ("shf",1)

m = intest(t,y,h,g,loc,opt)

For an objective view of the results we create the graphical output on Figure 1.
It is produced by the following statements:

const=mean(y)*0.25

ml = t[,1] " (m[,1]+const)
m2 = t[,2] " (m[,2]+const)
m3 = t[,3] " (m[,3]+const)
m4 = t[,4] " (m[,4]+const)

setmaskp(m1,4,4,4)
setmaskp(m2,4,4,4)
setmaskp (m3,4,4,4)
setmaskp (m4,4,4,4)

setmaskl (m1, (sort (m1~(1:
setmaskl (m2, (sort (m2~ (1:
setmaskl (m3, (sort (m3~(1:
setmaskl(m4, (sort(md~ (1:
yy=y-mean(y)-sum(m,2)
di=t[,1]1~ (yy+m[,1]1)
d2=t[,2]~ (yy+m[,2])
d3=t[,3]" (yy+m[,3])
d4=t[,4]1" (yy+m[,4]1)
setmaskp(dl,1,11,4)
setmaskp(d2,1,11,4)
setmaskp(d3,1,11,4)
setmaskp(d4,1,11,4)

pic = createdisplay(2,2)
show(pic,1,1,m1,d1)

rows(m1)))[,3]1)7,4,1,1)
rows(m2)))[,3]1)7,4,1,1)
rows(m3)))[,31)’,4,1,1)
rows(m4)))[,3]1)’,4,1,1)
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Figure 1: Generalized additive model for animal, partial integration.
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show(pic,1,2,m2,d2)
show(pic,2,1,m3,d3)
show(pic,2,2,m4,d4)

@ gaml15.xpl

We see two properties of the data from the produced Figure 1:

1. the bandwidth h was chosen quite well; the data seems not to be over-
smoothed or undersmoothed.

2. there are several outliers in the data; they can be seen in the right part
of the pictures.

If we try to use quantlet intest with inner grid for computation (optional
variable opt.tg) the quantlet ends with an error message. It is because of
outliers where the data is too sporadic.

For better understanding the data we can use backfitting algorithm for estima-
tion (quantlet backfit) and compare the results.

kern="qua"
{mb,b,const} = backfit(t,y,h,loc,kern,opt)

For graphical output we can use the similar approach as above with several
differences.

ml
m2

t[,1]"mb[,1]

t[,2]"mb[,2]

m3 = t[,3]"mb[,3]

m4 = t[,4] mb[,4]

setmaskp(ml,4,4,4)

setmaskp(m2,4,4,4)

setmaskp(m3,4,4,4)

setmaskp(m4,4,4,4)

setmaskl (ml, (sort(m1~(1:rows(mi)))[,31)’,4,1,1)
setmaskl (m2, (sort (m2~ (1:rows(m2)))[,31)’,4,1,1)
setmaskl (m3, (sort (m3~ (1:rows(m3)))[,3])’,4,1,1)
setmaskl (m4, (sort(m4~ (1:rows(m4)))[,3])’,4,1,1)
yy=y-const-sum(mb, 2)

di=t[,1]1" (yy+mb[,11)
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d2=t[,2] " (yy+mb[,2])
d3=t[,3] " (yy+mb[,3])
d4=t[,4]1"~ (yy+mb[,4]1)
setmaskp(dl,1,11,4)
setmaskp(d2,1,11,4)
setmaskp(d3,1,11,4)
setmaskp(d4,1,11,4)
pic2 = createdisplay(2,2)
show(pic2,1,1,m1,d1)
show(pic2,1,2,m2,d2)
show(pic2,2,1,m3,d3)
show(pic2,2,2,m4,d44)

Q'gam15.xp1

The graphs of this estimation on Figure 2 are like the graphs on Figure 1
achieved using intest; only different scale factor was used. It seems that the
dependence of variable y on the miscellaneous inputs is almost linear. Unfor-
tunately the quantlet intestpl for additive partially linear model ends with
the error because of outliers. Likewise the testing of interactions (intertest1
or intertestl) is aborting. For data manipulation using this quantlets the
removing outliers from the data sets would be necessary.
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Figure 2:

Generalized additive model for animal, backfitting.
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