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ON TESTING CONDITIONAL MOMENT RESTRICTIONS:
THE CANONICAL CASE

GAUTAM TRIPATHI AND YUICHI KITAMURA

Abstract. Let (x, z) be a pair of random vectors. We construct a
new “smoothed” empirical likelihood based test for the hypothesis that

E(z|x)
a.s.
= 0, and show that the test statistic is asymptotically normal

under the null. An expression for the asymptotic power of this test under
a sequence of local alternatives is also obtained. The test is shown to
possess an optimality property in large samples. Simulation evidence
suggests that it also behaves well in small samples.

1. Introduction

In a series of papers Owen (1988, 1990, 1991) studied the use of inference
based on the nonparametric likelihood ratio. This approach is particularly
useful when testing hypotheses that can be expressed as moment restrictions.
As a specific example suppose that {z1, . . . , zn} is a random sample in Rd,
and we want to test the null hypothesis Ez1 = 0. Owen’s empirical likelihood
ratio testing procedure is as follows: First, maximize the log likelihood under
the null hypothesis of a discrete distribution that has support on the data;
i.e. obtain the restricted empirical log likelihood

ELr = max
p1,...,pn

n∑
i=1

log pi s.t. pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

zipi = 0.

Next, obtain the unrestricted empirical log likelihood

ELur = max
p1,...,pn

n∑
i=1

log pi s.t. pi ≥ 0,
n∑

i=1

pi = 1.

Finally, construct the empirical likelihood ratio

ELR = 2{ELur − ELr}

and reject H0 if ELR is large. Owen demonstrated that critical values for
this test can be obtained by using the fact that, under the null hypothesis,
ELR d−→ χ2

d as n ↑ ∞. As some recent papers (described later) have shown,
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2 TRIPATHI AND KITAMURA

this approach can be used to handle quite general forms of moment restric-
tions. However, the attention of most of the literature seems to have been
confined to dealing with hypotheses expressed as unconditional moment re-
strictions. In this paper we extend the empirical likelihood paradigm to
handle conditional moment restrictions.

Let (x, z) denote a pair of observable random vectors. Throughout the
paper we will treat z as the response and x as the conditioning variable. We
extend the empirical likelihood approach to test

H0 : Pr{E(z|x) = 0} = 1 vs. H1 : Pr{E(z|x) = 0} < 1.

Note that this null hypothesis1 is a special case of restrictions of the form
E{g(z, θ0)|x} = 0, where θ0 is an unknown finite dimensional parameter and
g a vector of known functions. However, the mathematical detail required
in dealing with such restrictions is substantially higher than that involved in
testing the prototypical conditional moment restriction E(z|x) = 0. There-
fore, our research program is to first obtain results for testing the canonical
restriction E(z|x) = 0. The results in this paper, apart from being theo-
retically interesting in their own right, are directly applicable to situations
where we want to test for orthogonality of observed variables or to test the
hypothesis of no relationship between the response and explanatory variable.

Much progress has been made in the area of testing conditional moment
restrictions. See, among others, contributions by Newey (1985) and Bierens
(1990, 1994). Related to this literature is the work on specification testing of
a parametric regression function against a nonparametric alternative. See,
for instance, the papers by Eubank and Spiegelman (1990), Wooldridge
(1992), Yatchew (1992), Härdle and Mammen (1993), Whang and Andrews
(1993), Fan and Li (1996), Hong and White (1995), Zheng (1996), Aı̈t-
Sahalia, Bickel, and Stoker (2000), Andrews (1997), Bierens and Ploberger
(1997), and Horowitz and Spokoiny (1999). We show that a test based on
Owen’s empirical likelihood provides a useful alternative to the procedures
developed in the above mentioned papers. Moreover, our test possesses
an asymptotic optimality property and also appears to work well in finite
samples.

The paper is organized is as follows: In Section 2 we introduce the
smoothed empirical log likelihood (hereafter abbreviated as SEL) approach
for testing E(z|x) = 0. Section 3 describes the assumptions employed in this
paper along with some notation which is used subsequently. Sections 4 and
5 have results regarding the asymptotic distribution of the SEL based test
under the null, and under a sequence of local alternatives, respectively. In
Section 6 we describe an optimality property of our test and in Section 7
we present some simulation results about the small sample behavior of our
test. Section 8 concludes. All proofs are confined to the appendices.

1When writing conditional moment restrictions such as E(z|x) = 0, we frequently omit
the qualifier “w.p 1.”
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Notation. The following notation is used throughout the paper: By a “vec-
tor” we mean a column vector. We do not make any notational distinction
between a random variable and the value taken by it. The difference should
be clear from the context. S is a subset of Rs which may be unbounded.
When S is open we let Ck(S) denote the set of all real valued functions
on S which have continuous partial derivatives up to order k. When S is
closed we say that f ∈ Ck(S) if f ∈ Ck(int(S)) and f along with its par-
tial derivatives up to order k can be extended continuously to S. L2(S)
stands for the Hilbert space of all real valued square integrable functions
on S which are integrable with respect to the probability distribution on
S. I{A} is the indicator function of set A, and for a matrix V the symbol
‖V ‖ =

√
tr(V V ′) denotes the Frobenius norm. ‖V ‖ reduces to the usual

Euclidean norm in case V happens to be a vector. Unless stated otherwise,
all limits are taken as the number of observations n ↑ ∞. To simplify typog-
raphy we frequently suppress the dependence of a function upon n without
warning the reader. �

2. The Smoothed Empirical Likelihood Approach

This section develops an empirical likelihood based test of conditional mo-
ment restriction E(z|x) = 0. Our main tool is empirical likelihood, though
a kernel smoothing technique plays an important part in formulating our
test procedure. Recall that smoothing arises naturally in the theory of local
likelihood estimation by considering expected log likelihood. See, for ex-
ample, Brillinger (1977), Owen (1984), Hastie and Tibshirani (1986), and
Staniswalis (1987). Our empirical likelihood ratio based test can also be
motivated using an expected log likelihood criterion.

Let f(x, z) denote the density of (x, z) with respect to some appropriate
measure. Define f(x, z) = f(z|x)h(x), where f(z|x) and h(x) denote the
conditional density of z given x and the marginal density of x, respectively.
We want to test the conditional moment restriction

∫
Rd zf(z|x) dF (z) =

0, where F is a dominating measure for the marginal distribution of z.
Throughout the paper we assume that x is continuously distributed and that
f(z|x) is smooth in x. To illustrate why smoothing the empirical likelihood
is important, we first ignore the smoothness of f(z|x) and see what happens
when we calculate the empirical likelihood for this problem without any
smoothing. So let {xi, zi}n

i=1 be a random sample and νx,n and νz,n denote
the counting measures on {xi}n

i=1 and {zi}n
i=1 respectively. Consider the

n+ 1 sets of probability measures P(n)
z|x=xi

= {Pz|x=xi
� νz,n :

∫
dPz|x=xi

=

1,
∫
z dPz|x=xi

= 0} for i = 1, . . . , n, and P(n)
x = {Px � νx,n :

∫
dPx = 1}.

Let pzj |xi
be the Radon-Nikodym derivative of Pz|x=xi

∈ P(n)
z|x=xi

with respect
to νz,n, evaluated at (zj , xi). Here i, j = 1, . . . , n. Similarly, pxi denotes the
Radon-Nikodym derivatives of Px ∈ P(n)

x with respect to νx,n, evaluated at
xi. Define pxi,zi = pzi|xi

pxi . The conventional empirical likelihood is simply
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the multinomial likelihood Πn
i=1pxi,zi = Πn

i=1pzi|xi
pxi maximized over the

Radon-Nikodym derivatives of Pz|x=xi
∈ P(n)

z|x=xi
and Px ∈ P(n)

x . This is
equivalent to maximizing

(2.1)
n∑

i=1

log pxi,zi =
n∑

i=1

log pzi|xi
+

n∑
i=1

log pxi

with respect to {pzj |xi
, pxi : i, j = 1, . . . , n}, subject to the constraints

(2.2) pzj |xi
≥ 0, pxi ≥ 0,

n∑
j=1

pzj |xi
= 1,

n∑
i=1

pxi = 1,
n∑

j=1

zjpzj |xi
= 0.

Although maximizing (2.1) under (2.2) yields the usual nonparametric mle
of px, namely p̂xi = 1/n for each i, it does not return a consistent solution for
pzj |xi

. To see this, suppose d = 1 for simplicity and assume that the convex
hull of {z1, . . . , zn} contains the origin so that the maximization problem is
well defined. Then it is easy to see that the solution is to set at least n− 2
of the pzj |xi

’s to zero, irrespective of the sample size. Moreover, without the
last constraint in (2.2), the solution is pzj |xi

= δij , where δij is Kronecker’s
delta. This, unfortunately, does not yield any meaningful results.

The above problem is analogous to the failure of likelihood based function
estimation reported in Hastie and Tibshirani (1986, Section 5). The remedy
they suggest is to maximize the expected log likelihood instead. Applying
this idea to our problem, consider maximizing the empirical analog of

(2.3) E{log f(x, z)} = E{E[log f(z|x)|x]}+ E{log h(x)},

subject to (2.2). This leads to the following maximization problem:

max
{pzj |xi

,pxi :i,j=1,...,n}
n−1

n∑
i=1

n∑
j=1

wij log pzj |xi
+ n−1

n∑
i=1

log pxi(2.4)

s.t. pzj |xi
≥ 0, pxi ≥ 0,

n∑
j=1

pzj |xi
= 1,

n∑
i=1

pxi = 1,
n∑

j=1

zjpzj |xi
= 0.

Here

wij =
K(xi−xj

bn
)∑n

j=1K(xi−xj

bn
)

=
Kij∑n

j=1Kij
,

where the function K is chosen to satisfy Assumption 3.4. The wij ’s are
kernel weights familiar from the nonparametric regression literature and are
mathematically quite tractable. The bandwidth bn is a null sequence of
positive numbers satisfying certain conditions described later in the paper.

To solve (2.4), let us first rewrite it using joint probabilities. This will sim-
plify treatment later on. So define pij = pxi pzj |xi

to be the probability mass
placed at (xi, zj) by the joint distribution PxiPzj |x=xi

. Since
∑n

j=1wij = 1
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for each i, after dropping the inessential factor n−1 on the objective function
we can rewrite (2.4) as:

max
{pij :i,j=1,...,n}

n∑
i=1

n∑
j=1

wij log pij(2.5)

s.t. pij ≥ 0,
n∑

i=1

n∑
j=1

pij = 1,

∑n
j=1 zjpij∑n
j=1 pij

= 0.

In a bn neighborhood of xi, wij assigns smaller weights to those xj ’s which
are farther away from xi. This has the effect of smoothing the empirical log
likelihood at each xi. The Lagrangian for this problem is given by2

Lr =
n∑

i=1

n∑
j=1

wij log pij − µ(
n∑

i=1

n∑
j=1

pij − 1)−
n∑

i=1

n∑
j=1

λ′izjpij ,

where µ is the Lagrange multiplier for the second constraint and {λi ∈ Rd :
i = 1, . . . , n} the set of Lagrange multipliers for the third constraint. It is
easy to verify that the solution to this problem is given by

p̂ij =
wij

n+ λ′izj
,

where each λi solves

(2.6)
n∑

j=1

wijzj
n+ λ′izj

= 0, i = 1, . . . , n.

The λi’s in (2.6) can be numerically obtained as the solution to the opti-
mization problem

(2.7) min
ϕ∈Rd

−
n∑

j=1

wij log(n+ ϕ′zj).

Because ϕ 7→ − log(n+ϕ′zj) is strictly convex, (2.7) can be uniquely solved
for λi in few iterations by a standard Newton-Raphson procedure. Hence
we can write the restricted (i.e. under E(z|x) = 0) SEL as

SELr =
n∑

i=1

n∑
j=1

wij log p̂ij =
n∑

i=1

n∑
j=1

wij log{ wij

n+ λ′izj
}

=
n∑

i=1

min
ϕ∈Rd

n∑
j=1

wij log{ wij

n+ ϕ′zj
}.

2Since the objective function depends upon pij only through log pij , the nonnegativity
constraint pij ≥ 0 does not bind.
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Next we look at the unrestricted problem, which is similar to (2.5) except
that the conditional moment constraint is absent; i.e. we solve

max
{pij :i,j=1,...,n}

n∑
i=1

n∑
j=1

wij log pij s.t. pij ≥ 0,
n∑

i=1

n∑
j=1

pij = 1.

This can also be solved by the Lagrange multiplier technique to give

p̂ij =
wij

n
,

and we can write the unrestricted SEL as

SELur =
n∑

i=1

n∑
j=1

wij log{wij

n
}.

Note that for notational convenience we are ignoring the dependence of SELr

and SELur upon n.
An analog of the parametric likelihood ratio test statistic would then be:

2(SELur − SELr) = 2
n∑

i=1

n∑
j=1

wij log(1 +
λ′izj
n

)(2.8)

= 2
n∑

i=1

max
ϕ∈Rd

n∑
j=1

wij log(1 +
ϕ′zj
n

).

Heuristically speaking, (2.8) will be small if the conditional moment restric-
tion E(z|x) = 0 is indeed true. Therefore, it seems sensible to base the test
for E(z|x) = 0 upon (2.8). However, as described in the next section, we
will use a slightly modified version of (2.8) for our test.

Before proceeding any further, we mention some papers in the empirical
likelihood literature which may be relevant to us. The basic references are,
of course, the seminal papers by Owen (1988, 1990, 1991) for iid data. Using
iid data Qin and Lawless (1994, 1995) look at efficiently estimating finite di-
mensional parameters under unconditional moment restrictions. Kitamura
(1997) extends the treatment to weakly dependent data. Kitamura (1999)
also describes an optimal property of empirical likelihood based tests for un-
conditional moment restrictions. Not much work seems to have been done
as far as applying empirical likelihood to conditional moment restrictions is
concerned. Some exceptions include LeBlanc and Crowley (1995), Brown
and Newey (1998), and Kitamura, Tripathi, and Ahn (2000). LeBlanc and
Crowley (1995) and Kitamura, Tripathi, and Ahn (2000) are mainly con-
cerned with estimation, while Brown and Newey (1998) consider the boot-
strap under a conditional moment restriction. None of these papers contain
the results obtained here.

3. Basic Assumptions and Notation

The following basic assumptions are maintained throughout the paper:
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Assumption 3.1. (i) {xi, zi}n
i=1 is a random sample from a probability

distribution on S × Rd. (ii) x is continuously distributed with Lebesgue
density h : S → R. (iii) E‖z‖m <∞ for some m > 2. �

Notice that apart from the existence of certain moments, no other re-
strictions have been imposed on the distribution of z. For reasons about
to be described, we now look at a situation where the researcher is inter-
ested in the behavior of the conditional moment E(z|x) on a subset S∗ of S.
Therefore, consider the smoothed empirical likelihood ratio (SELR):

SELR = 2
n∑

i=1

I{xi ∈ S∗}
n∑

j=1

wij log(1 +
λ′izj
n

)

= 2
n∑

i=1

I{xi ∈ S∗} max
ϕ∈Rd

n∑
j=1

wij log(1 +
ϕ′zj
n

).

We now assume that

Assumption 3.2. S∗ is a compact proper subset of S. �

S∗ is equivalent to the “fixed trimming” set used in Aı̈t-Sahalia, Bickel,
and Stoker (2000) and described in Fan and Li (1996, Page 876). Para-
phrasing Aı̈t-Sahalia, Bickel, and Stoker (2000), it “. . . allows us to focus
goodness-of-fit testing on particular ranges of the predictor variables. By
choosing an appropriate S∗ specification tests can be tailored to the empir-
ical question of interest.” As pointed out by these authors, a consequence
of this assumption is that our test will be consistent only against those al-
ternatives which differ from the null on S∗. It is important to remember
that the λi’s used in SELR are still obtained by using the entire sample of
observations; i.e. the “trimming” is done after the λi’s have been computed.

Fixed trimming is also useful technically. As Härdle and Marron (1990,
Page 66) emphasize, it allows us to avoid the usual edge effects associated
with kernel estimators. For instance, and we use this many a time in the
proofs, suppose we want to simplify expressions of the form E{Kijψ(xj)|xi}
where ψ is some integrable function. We can use the fact that xi ∈ S∗ to
write (for small enough bn)

E{Kijψ(xj)|xi} = bsn

∫
u∈[−1,1]s

K(u)ψ(xi − bnu)h(xi − bnu) du.

Compactness of S∗ is required for utilizing uniform rates of convergence for
kernel estimators of conditional expectations. In addition to the previously
defined symbols, the following notation is used hereafter.

Notation. Ii = I{xi ∈ S∗}, V̂ (xi) =
∑n

j=1wijzjz
′
j , V (x) = E(zz′|x), and

V (lv) is the (lv)th element of V . SK = [−1, 1]s is the support of K and
R(K) =

∫
SK
K2(u) du denotes the “roughness” of the kernel. The con-

volution of K with itself is given by K∗(x) =
∫
SK
K(v)K(x − v) dv, and
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K∗∗ =
∫
[−2,2]s{K

∗(u)}2 du. S = {ξ ∈ Rd : ‖ξ‖ = 1} is the unit sphere in Rd,
and vol(S∗) =

∫
S∗
dx is the volume of S∗ in Rs. �

The next assumption imposes some additional restrictions upon the dis-
tribution of x.
Assumption 3.3. For 1 ≤ l, v ≤ d:

(i) h is bounded away from zero on S∗.
(ii) x 7→ h(x) and x 7→ V (lv)(x) are elements of C2(S).
(iii) (ξ, xi) 7→ ξ′V (xi)ξ is bounded away from zero on S× S∗. �

The choice of S∗ is influenced by (i), which requires that we estimate
conditional expectations in a region where we can avoid the “denominator
problem”. Such an assumption is regularly invoked in the kernel estimation
literature to minimize complexity of mathematical details when dealing with
ratios of random variables. See Newey (1994, Page 242) for a brief discussion.
Although it is possible to relax (i) by trimming away those x’s in S∗ at
which h(x) = 03, to keep the mathematical details manageable we avoid
this approach. Because supxi∈S∗ |

1
nbs

n

∑n
j=1Kij−h(xi)| = op(1) is due to the

uniform consistency of kernel density estimators and h is bounded above
zero on S∗, we can use Lemma C.1 to show that

sup
xi∈S∗

|{ 1
nbsn

n∑
j=1

Kij}−1 − h−1(xi)| = op(1).

This result will be useful in the proofs. (ii) also ensures that

sup
(xi,µ)∈S∗×[0,1]

∫
SK

K2(u)|u′∇2{V (lv)(xi − µbnu)h(xi − µbnu)}u| du <∞

for large enough n. This is the remainder term in evaluating integrals of the
form

∫
u∈SK

K2(u)V (xi − bnu)h(xi − bnu) du when V (xi − bnu)h(xi − bnu) is
element by element expanded around xi up to second order. See, for e.g.,
the proof of Lemma B.4. (iii) implies some nice results which have been
used quite a few times in the proofs. For instance, a direct implication of
(iii) is that: (a) (ξ, xi) 7→ ξ′EV̂ (xi)ξ is bounded away from zero on S × S∗
for large enough n, and (b) supxi∈S∗ ‖V

−1(xi)‖ <∞. (a) is used in the proof
of Lemma B.11. Since supxi∈S∗ ‖V̂ (xi) − V (xi)‖ = op(1) follows from the
uniform consistency of kernel estimators, Lemma C.2 yields

sup
xi∈S∗

‖V̂ −1(xi)− V −1(xi)‖ = op(1).

Consequently, we can use (b) to show that

sup
xi∈S∗

‖V̂ −1(xi)‖ = Op(1).

This result is used in the proof of Lemma A.1. Finally, the next assumption
describes the kernel functions used to construct SELR.

3See, for example, Ai (1997).
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Assumption 3.4. The kernels K belong to the class of second order product
kernels; i.e. for x = (x1, . . . , xs) let K(x) = Πs

i=1κ(xi), where κ : R → R is
a symmetric, nonnegative, Lipschitz function which vanishes outside [−1, 1]
and satisfies

∫ 1
−1 κ(t) dt = 1. �

Since these kernels are employed to estimate probabilities, the use of
kernels with order greater than two is ruled out. Furthermore, the non-
negativity of K is also explicitly used several times. See, for instance, the
proof of Lemma B.1. The Lipschitz condition allows us to use the uniform
convergence rates for kernel estimators obtained by Newey (1994). The
bandwidth bn used in the kernels is a null sequence of positive numbers such
that nbsn ↑ ∞. Subsequently, additional restrictions will be imposed upon
the choice of bn.

4. The Test Statistics and their Distributions under the Null

As mentioned earlier, the test for E(z|x) = 0 will be based on SELR. The
first step is to transform SELR so that we can apply a CLT due to de Jong
(1987). Following Lemma A.1 we can write

SELR = Tn +Op({
log n

n
1
2
− 1

m bsn
}2) +Op({

log n

n
1
3
− 2

m bsn
}3/2), where

Tn =
n∑

i=1

Ii(
n∑

j=1

wijz
′
j)V̂

−1(xi)(
n∑

j=1

wijzj).

Now use the summation identity in (D.1) to decompose Tn = Tn,1 + Tn,2 +
Tn,3 + Tn,4 + Tn,5, where

Tn,1 = K2(0)
n∑

i=1

Ii
z′iV̂

−1(xi)zi
{
∑n

u=1Kiu}2
,

Tn,2 =
n∑

i=1

n∑
j=1,j 6=i

Iiw
2
ijz

′
j V̂

−1(xi)zj ,

Tn,3 = K(0)
n∑

i=1

n∑
j=1,j 6=i

Ii
z′iV̂

−1(xi)zjwij∑n
u=1Kiu

,

Tn,4 = K(0)
n∑

i=1

n∑
j=1,j 6=i

Ii

wijz
′
j V̂

−1(xi)zi∑n
u=1Kiu

,

Tn,5 =
n∑

i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

Iiwijz
′
j V̂

−1(xi)ztwit.
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The asymptotic behavior of these terms under H0 can be obtained from
Lemmas A.2 – A.6. These results are summarized below:

Tn,1
Lemma A.2= Op(

1
nb2s

n

),

Tn,2
Lemma A.3= b−s

n {dR(K) vol(S∗) +Op(

√
log n
nbsn

+ b2n)},

Tn,3
Lemma A.4= op(

1√
nb2s

n

), Tn,4
Lemma A.5= op(

1√
nb2s

n

),

bs/2
n Tn,5

d−−−−−−−→
Lemma A.6

N(0, σ2), σ2 = 2dK∗∗ vol(S∗).

Although bs/2
n Tn,5 is asymptotically distributed as N(0, σ2) and

bs/2
n Tn,1 = op(1), bs/2

n Tn,3 = op(1), bs/2
n Tn,4 = op(1) as nb3s/2

n ↑ ∞,

b
s/2
n Tn,2 explodes as n ↑ ∞. Therefore, we have to center Tn appropriately

if we want a test statistic with a valid asymptotic distribution. We do this
by subtracting4 the troublesome quantity bs/2

n Tn,2 from SELR.
Let

ζ1,n
def= {bs/2

n SELR− bs/2
n Tn,2}/σ

denote the first version of our statistic for testing E(z|x) = 0. Obtaining
the asymptotic distribution of ζ1,n is straightforward. First, it is easily seen
that

ζ1,n = {bs/2
n Tn,1 + bs/2

n Tn,3 + bs/2
n Tn,4 + bs/2

n Tn,5}/σ

+Op({
log n

n
1
2
− 1

m b
3s/4
n

}2) +Op({
log n

n
1
3
− 2

m b
2s/3
n

}3/2).

Then using Lemmas A.2–A.6, the following result is almost immediate.
Theorem 4.1. Let E‖z1‖m <∞ for some m > 6 and choose bn = n−α for
0 < α < 1

2s(1−
6
m). Then under H0, ζ1,n

d−→ N(0, 1).
The test for H0 can be implemented by comparing ζ1,n with critical values

obtained from a standard normal distribution. Namely, to obtain a one sided
size-γ test we reject H0 if ζ1,n > zγ , where zγ denotes the γ-cutoff point for
the standard normal distribution; i.e. Pr{N(0, 1) ≥ zγ} = γ. Notice that
σ2 does not depend upon any unknown parameters and can be calculated
analytically.

Although our first test is simple to implement and does not require the
estimation of any variance term, we do have to calculate Tn,2 to obtain ζ1,n.

4Note that subtracting b
s/2
n Tn,2 does not lead to any loss of information as far as testing

E(z|x) = 0 is concerned. To verify this, look at Lemmas A.3 and A.9 which show that
the asymptotic behavior of Tn,2 remains unchanged under H0 and the sequence of local
alternatives H1n defined in the next section; i.e. Tn,2 is asymptotically uninformative
about the null hypothesis.
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Even this calculation can be eliminated for the special case s < 4; i.e. when
we have at most three explanatory variables. To see this, from Lemma A.3
observe that

bs/2
n Tn,2 = b−s/2

n dR(K) vol(S∗) +Op(

√
log n
nb2s

n

+ b
2− s

2
n ).

But the choice of bn in Theorem 4.1 implies that log n
nb2s

n
↓ 0. Therefore, when

s < 4 we propose to use the second version of our statistic defined as

ζ2,n = {bs/2
n SELR− b−s/2

n dR(K) vol(S∗)}/σ.

The following corollary is obvious.
Corollary 4.1. Let s < 4, E‖z1‖m <∞ for some m > 6, and bn = n−α for
0 < α < 1

2s(1−
6
m). Then under H0, ζ2,n

d−→ N(0, 1).
In practice, ζ2,n seems more useful than ζ1,n because s < 4 is a reasonable

bound for most applications of nonparametric regression.
A nice interpretation of Corollary 4.1 can be obtained by observing that

we can express its result as

(4.1)
SELR− c1γn

c2
√

2γn

d−→ N(0, 1),

where c1 = R(K), c2 =
√
K∗∗, and γn = b−s

n d vol(S∗). This can be regarded
as an analog of Wilks’s theorem: If SELR were distributed as a χ2 random
variable with c1γn degrees of freedom, and R(K) = K∗∗ so that c2 =

√
c1,

then (4.1) can be interpreted as the normal approximation of a χ2 random
variable with large degrees of freedom.

5. Distribution of ζ1,n under Local Alternatives

In this section we obtain an expression for the power of the test under a
sequence of local alternatives. Assume that
Assumption 5.1. δ = (δ(1), . . . , δ(d)) is a vector of L2(S) functions which
are continuous on S. �

Square integrability of each component ensures that δ(l) is bounded in prob-
ability for 1 ≤ l ≤ d. Continuity of xi 7→ δ(l)(xi) is used, for instance in the
proofs of Lemma A.7 and Lemma A.12, to bound gn(xi) =

∫
SK
K(u)δ(l)(xi−

bnu)h(xi − bnu) du when xi ∈ S∗. To see this, observe that we can write

|gn(xi)| ≤ sup
u∈SK

|δ(l)(xi − bnu)| sup
u∈SK

h(xi − bnu)
∫

SK

K(u) du.

But continuity of δ(l) and h implies that the maps xi 7→ supu∈SK |δ
(l)(xi −

bnu)| and xi 7→ supu∈SK h(xi − bnu) are continuous on S for each n. There-
fore, since S∗ is a compact subset of S and K integrates to one on SK, gn(xi)
is uniformly bounded on S∗ for each n. Furthermore, when xi ∈ S∗ this
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argument also shows that we can apply Lebesgue’s dominated convergence
theorem to obtain gn(xi) = δ(l)(xi)h(xi) + o(1).

Henceforth, let {xi, z̃i}n
i=1 denote a collection of iid random vectors sat-

isfying Assumption 3.1 such that E(z̃i|xi) = 0 and E(z̃iz̃′i|xi) = V (xi). The
z̃i’s are unobserved but we do observe zi, which is distributed according to
the sequence of local alternatives

H1n : zi = z̃i +
δ(xi)

n1/2b
s/4
n

i = 1, . . . , n.

Notice that E(zi|xi) = δ(xi)

n1/2b
s/4
n

under H1n. As Lemma A.7 shows, the re-

sult of Lemma A.1 remains valid under H1n. Defining ζ1,n = {bs/2
n SELR −

b
s/2
n Tn,2}/σ as before, we can thus write

ζ1,n
H1n= {bs/2

n Tn,1 + bs/2
n Tn,3 + bs/2

n Tn,4 + bs/2
n Tn,5}/σ

+Op({
log n

n
1
2
− 1

m b
3s/4
n

}2) +Op({
log n

n
1
3
− 2

m b
2s/3
n

}3/2).

Using Lemmas A.8–A.12 it is now easy to obtain the following result.
Theorem 5.1. Let E‖z̃1‖m <∞ for some m > 6 and choose bn = n−α for
0 < α < 1

2s(1 −
6
m). Also let µ = E[I{x1 ∈ S∗}δ′(x1)V −1(x1)δ(x1)]. Then

under H1n, ζ1,n
d−→ N(µ/σ, 1).

Therefore, Pr{ζ1,n > zγ}
H1n−−→ 1− Φ(zγ − µ

σ ), where Φ denotes the cdf of
a N(0, 1) random variable. The same result holds for ζ2,n when s < 4.

6. Asymptotic Optimality Of The SELR Test

As noted in the introduction, there are alternative tests for conditional
moment restrictions available in the literature. All of these tests are non-
parametric and are consistent against general alternatives. There is, of
course, a price one pays for this generality: nonparametric tests tend to
have lower power than parametric ones. Therefore, it is important to find a
nonparametric test with good power properties.

This section identifies an optimal test among a class of conditional mo-
ment restrictions tests. Aı̈t-Sahalia, Bickel, and Stoker (2000) provide a
convenient framework for this purpose. They consider a testing procedure
based on a weighted sum of squared residuals from kernel regression. Many
earlier tests, at least asymptotically, can be regarded as a special case of this
test with a particular choice of weighting function. Härdle and Mammen
(1993), Fan and Li (1996), Zheng (1996), and our SELR test, for example,
fall into this category. Hong and White (1995) apply a similar principle,
though they use series instead of kernels.

To simplify our argument let d = 1, s = 1, and S∗ = [0, 1]. In implement-
ing the Aı̈t-Sahalia, Bickel, and Stoker test the researcher chooses a piecewise
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smooth, bounded, and square integrable weight function a : [0, 1] → R+ and
calculates

G(a) = bn

n∑
i=1

Ê2(z|xi)a(xi).

The statistic for testing H0 proposed by Aı̈t-Sahalia et al. is

(6.1) τ(a) =
b
−1/2
n {G(a)−R(K)

∫ 1
0 V (x)a(x)dx}√

2K∗∗
∫ 1
0 V

2(x)a2(x) dx
.

We can replace V (x) with an appropriate consistent estimator without af-
fecting the asymptotic properties of the test. Since τ(ca) = τ(a) for any
c 6= 0, w.l.o.g we assume that

∫ 1
0 a

2(x)dx = 1. Now let

(6.2) M(a, δ) =

∫ 1
0 δ

2(x)a(x)h(x) dx√
2K∗∗

∫ 1
0 V

2(x)a2(x) dx
.

As Aı̈t-Sahalia et al. show, under H1n

(6.3) τ(a) d−→ N(M(a, δ), 1).

The asymptotic power of their test with critical value zγ is thus given by

(6.4) π(a, δ) = 1− Φ(zγ −M(a, δ)).

Comparing (6.4) and Theorem 5.1, we can see that our SELR test is asymp-
totically equivalent to the τ(a) test with the weighting scheme

(6.5) aSELR(x) =
1

V (x)
√∫ 1

0 V
−2(x) dx

.

We shall demonstrate that this choice of weighting, which is implicitly
achieved by the SELR test, is optimal in a certain sense.

If δ is known counterfactually, it is easy to derive the optimal weighting
function that maximizes (6.2). For a known δ, an application of the Cauchy-
Schwarz inequality on (6.2) shows that (6.4) is maximized by choosing

(6.6) a(x, δ) =
δ2(x)h(x)

V 2(x)
√∫ 1

0 δ
4(x)V −4(x)h2(x) dx

.

The notation a(x, δ) indicates that the optimal choice of a depends on δ.
This result is not terribly useful since δ is unknown in practice. It is also
clear from (6.6) that there is no uniformly (in δ) optimal test. This resembles
the multiparameter optimal testing problem considered in the seminal paper
of Wald (1943).

Wald shows that the likelihood ratio test, and other asymptotically equiv-
alent tests, for a hypothesis about finite dimensional parameters is optimal
in terms of an average power criterion. Loosely put, he considers a weighted
average of the power function where uniform weights are given along each
probability contour of the distribution of the estimator he uses (mle). This
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criterion is natural and attractive since it is impartial – it puts heavy (light)
weights in directions where the detection of departures from the null is dif-
ficult (easy). This approach has been used in the literature quite effectively.
For example, Andrews and Ploberger (1994) consider optimal inference in a
nonstandard testing problem. They derive a test that is optimal with respect
to a Wald-type average power criterion. Their optimal test performs well
in finite samples (see Andrews and Ploberger, 1996) indicating the practical
relevance of Wald’s approach.

Our testing problem is different from the ones considered by Wald in that
instead of being finite dimensional, our parameter of interest is an unknown
function. A natural extension of Wald’s approach is to consider a probability
measure on an appropriate space of functions and let the measure mimic the
distribution of the “estimator.” Then the local average power criterion is
obtained by integrating (6.4) against the probability measure. Note that the
tests we are comparing rely on the kernel regression estimator Ê(z|x), either
explicitly or implicitly. Therefore, we propose to use a probability measure
that approximates the distribution of the sample path of Ê(z|x).

So let δ̃ be a C([0, 1])-valued random variable given by
(6.7)

δ̃(x) = V 1/2(x)h−1/2(x) y(x) and y(x) =
∫ 1

0
k(
x

β
− z) dW (z − bzc),

where W is the standard Brownian motion on [0, 1], k(·) an appropriate
weighting function, β a positive adjustable parameter and bzc the integer
part of z. For each x in [0, 1], y(x) is a stochastic integral. Note the use
of dW (z − bzc) as the integrator. This implies that the covariance kernel
r(s) = E[y(x)y(x + s)] of the Gaussian process y is circular; i.e. r(s) =
r(1−s). Circular processes are widely used for analyzing stationary processes
on a finite interval (see, for example, Hannan, 1970 and Priestley, 1981).
In our case it lets us avoid treating y(x)’s close to the end points of the
interval [0, 1] differently from the ones in the middle. Consequently, for an
arbitrary function f such that the integral

∫ 1
0 f(y(x)) dx is well defined, the

joint distribution of the bivariate random vector (
∫ 1
0 f(y(x)) dx, y(x0)) does

not depend on the location x0 ∈ [0, 1]. Other properties of δ̃, such as its
Gaussianity, are not important in our argument below.

Note that the variance function of δ̃(x) coincides with the asymptotic
variance function of Ê(z|x) up to scale. This is one of the features we intend
to replicate by using δ̃. The Gaussian process δ̃ is constructed based on
an approximation of Ê(z|x) derived by Liero (1982). Also see Johnston
(1982) and Härdle (1989) for related results. In our theory however, k and
β do not have to be the same as K and bn. k determines the pattern of
autocorrelations of y(x) and β is used for scaling x. A large β and a spread-
out k correspond to stronger dependence, yielding paths of y and δ̃ that look
smoother. Our optimality result does not depend on the choice of β and k.
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We are now ready to define our average power concept. Let Q be the prob-
ability measure induced by δ̃ on C([0, 1]). Using (6.7) rewrite the random
variable M(a, δ̃) as

M(a, δ̃) =

∫ 1
0 V (x)y2(x)a(x) dx√

2K∗∗
∫ 1
0 V

2(x)a2(x) dx
=

1√
2K∗∗

∫ 1

0
A(x)y2(x) dx,

where

(6.8) A(x) =
V (x)a(x)√∫ 1

0 V
2(x)a2(x) dx

.

∫ 1
0 A

2(x) dx = 1 and it is sometimes convenient to deal with A rather than
a. Note that M(a, δ̃) = M(A/V, δ̃). Let FA be the cdf of M(A/V, δ̃). The
average asymptotic power of the test proposed by Aı̈t-Sahalia et al. (see
(6.4)) is the following functional of A:

(6.9) π̄(A) =
∫
π(A/V, δ̃)dQ(δ̃) =

∫ ∞

0
[1− Φ(zγ −m)]FA(dm).

Observe that the integrand in (6.9) is strictly increasing in m. So if there
exists a piecewise smooth, bounded, square integrable function A∗ : [0, 1] 7→
R+ such that

∫ 1
0 A

∗2(x) dx = 1 and for all A the cdf FA∗ first-order stochas-
tically dominates5 FA, then A∗ maximizes π̄(A). By (6.8), the optimal
weighting function a∗ is given by

a∗(x) =
A∗(x)

V (x)
√∫

A∗2(x)/V 2(x) dx
.

To find A∗, fix m ∈ R arbitrarily and consider solving the following vari-
ational problem over all piecewise smooth, bounded, square integrable func-
tions from [0, 1] → R+:

(6.10) min
A
FA(m) s.t.

∫ 1

0
A2(x)dx = 1.

For any x0 ∈ [0, 1] let FA(m|y(x0)) be the conditional cdf of M(A/V, δ̃)
given y(x0). fA(m|y(x0)) denotes the conditional pdf corresponding to
FA(m|y(x0)). Now it is clear that

FA(m) = Ey(x0) [FA(m|y(x0))],

where the symbol Ey(x0) indicates that the expectation is over y(x0). Fur-
thermore,

∂FA(m|y(x0))
∂A(x0)

=
∂E [I{

∫ 1
0 A(x)y2(x)dx < m}|y(x0)]

∂A(x0)
= y2(x0)fA(m|y(x0)).

5i.e. FA(m) ≥ FA∗(m) for all m.
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These results imply that

∂FA(m)
∂A(x0)

= Ey(x0) [y2(x0)fA(m|y(x0))] for all x0 ∈ [0, 1].

Thus the Euler-Lagrange equation for the variational problem (6.10) is

(6.11) Ey(x0) [y2(x)fA∗(m|y(x0))] = 2λA∗(x0) for all x0 ∈ [0, 1],

where λ is the Lagrange multiplier for the constraint in (6.10) and A∗ the
solution. To solve (6.11) we use a guess and verify approach. So suppose
that A∗(x) = I{x ∈ [0, 1]}. Clearly, this is a feasible guess. As noted
in our earlier discussion on the nature of the random process y, the joint
distribution of M(A∗/V, δ̃) = 1√

2K∗∗

∫ 1
0 y

2(x)dx and y(x0) does not depend
on x0 ∈ [0, 1]. Therefore,

Ey(x0) [y2(x0)fA∗(m|y(x0))]
def= K (say)

does not depend on x0 ∈ [0, 1]. So (6.11) is satisfied with A∗(x) = I{x ∈
[0, 1]} and λ = K/2. We have verified that A∗(x) = I{x ∈ [0, 1]} solves
(6.10). The optimal a corresponding to A∗(x) = I{x ∈ [0, 1]} is

a∗(x) =
I{x ∈ [0, 1]}

V (x)
√∫ 1

0 V
−2(x) dx

.

Comparing this with (6.5), we immediately obtain that the weight aSELR is
optimal.

The above result shows that the SELR test attains the maximum average
local power. An alternative way of achieving this optimality is to estimate
a∗ by

â∗(x) =
I{x ∈ [0, 1]}

V̂ (x)
√∫ 1

0 V̂
−2(x) dx

,

where V̂ (x) =
∑n

j=1 z
2
jK(x−xj

bn
)/

∑n
j=1K(x−xj

bn
). We then use â∗ to calculate

G for the test statistic in (6.1). While this approach is valid asymptotically,
such a “plug-in” method often leads to poor finite sample behavior. At the
very least it would require a good nonparametric estimator of V (x). An ad-
vantage of our statistic over plug-in statistics is that this optimal weighting
is carried out automatically and implicitly, eliminating the need of estimat-
ing V (x). This feature is similar to the “internal studentization” property of
other empirical likelihood ratio statistics emphasized in the literature. Em-
pirical evidence suggests that internal studentization often improves finite
sample properties of the tests substantially. See, for example, Fisher, Hall,
Jing, and Wood (1996).

7. Simulation Results

In this section we compare the SELR test with two other tests mentioned
in the introduction, namely, the tests proposed by Aı̈t-Sahalia, Bickel, and
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Stoker (2000) and Zheng (1996). From (6.1) it is easy to see that Zheng’s
statistic is asymptotically equivalent to the one proposed by Aı̈t-Sahalia et
al. under the weighting scheme a(x) = h(x).

Our experimental design is as follows. A random sample {xi, zi}n
i=1 is

drawn from the following conditionally heteroscedastic model:

zi = d(xi) + V 1/2(xi)εi, xi
iid∼ Uniform[0, 1], εi

iid∼ N(0, 1).

The three tests are applied to the simulated data to detect the deviation of
the function d from zero. Obviously S = [0, 1] under this specification.

The SELR test is implemented with the trimming set S∗ = [0.05, 0.95]
and the statistic ζ2,n. Using ζ1,n did not appear to change our simulation
results significantly. The Aı̈t-Sahalia et al. test is also carried out using the
same trimming set and a weighting function that is constant over it; namely,
we use (6.1) with the weighting function a(x) = I{x ∈ [0.05, 0.95]}. Since
the x’s are uniformly distributed in our experimental design, the uniformly
weighted Aı̈t-Sahalia et al. test and the Zheng test (hereafter designated as
“ABSuw” and “Zheng”) are equivalent in terms of their local power func-
tions. All of the three tests are implemented using a Gaussian kernel with
bandwidth bn = 0.5n−1/4.25σ̂x, where σ̂x is the sample standard deviation
of x1, . . . , xn. A similar bandwidth sequence is used by Aı̈t-Sahalia et al. in
their simulation study.

It should be noted that Zheng assumes that the conditioning variable x
has a distribution with unbounded support. Our simulation design violates
this condition. Although it is certainly possible to address this problem by
suitably modifying Zheng’s statistic, we implement Zheng’s test as suggested
in his paper. Therefore, the reader should interpret our simulation results
for Zheng’s test with some caution.

Three specifications of the heteroscedasticity function are considered:

V (x) =


1 + x2 in Tables 1 and 2,
x in Tables 3 and 4,
0.5 + I{x ≥ 0.5} in Tables 5 and 6.

For each specification of V (x), two choices of d are used:

d(x) =

{
dV 1/2(x) in Tables 1, 3 and 5
dV (x) in Tables 2, 4 and 6,

where

dV 1/2(x) = c I{x ∈ S∗}V 1/2(x) and dV (x) = c I{x ∈ S∗}V (x).

In each table the constant c varies over the set {0.0, 0.1, ..., 0.5}.
The above specification is motivated by the following considerations. Re-

call that (6.6) implies the optimal weighting function for a given (and un-
known) δ. For example, if δ = dV 1/2 the optimal weighting function is
proportional to I{x ∈ S∗}V −1(x), which the SELR test implicitly achieves.
Likewise, if δ = dV the optimal weighting function is a constant and thus
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ABSuw and Zheng are optimal. In short, according to our asymptotic theory,
dV 1/2 favors the SELR test and dV the other two.

Moreover, dV 1/2 favors SELR to the same degree as dV does ABSuw and
Zheng in the following sense: Recall the definition of the asymptotic mean
functional M(a, δ) in (6.2). Since asymptotically a = I{x ∈ S∗}V −1 in
SELR and a = I{x ∈ S∗} in the other two tests,

R(δ) = M(I{x ∈ S∗}V −1, δ)/M(I{x ∈ S∗}, δ)
gives the ratio of the asymptotic means of the two types of test statistics as
a functional of the local alternative δ. If R(δ) is substantially larger than
unity, the local power of SELR exceeds the local power of ABSuw and Zheng
by a large margin. It is easy to see that R(dV 1/2) is the reciprocal of R(dV ).
In this sense we treat the two types of tests symmetrically by considering
dV 1/2 and dV .

Tables 1-6 (see Appendix E) report simulated rejection probabilities of the
three tests calculated from 1000 Monte Carlo replications. The size of the
three tests, shown in rows with c = 0, appears to be reasonable although all
of the tests exhibit some size distortion. The subsequent discussion therefore
focuses on size-corrected power. The size correction is implemented by using
distributions of 10, 000 draws of each statistic under the null hypothesis6.

Table 1 shows the results with V (x) = 1 + x2 and d(x) = dV 1/2(x).
Though the SELR test tends to have somewhat higher power than the other
two, the differences are marginal. The rejection frequencies with n = 250
are considerably higher than those with n = 100, in accordance with the
consistency property of the three tests. With c = 0.5 and n = 250 all the
tests are always able to reject the alternative.

Table 2 displays the results for the same V (x) but with d(x) = dV (x),
which favors ABSuw (and Zheng as well, although the boundedness of S
may affect its performance as noted earlier). The power of ABSuw some-
times exceeds that of SELR as the asymptotic theory suggests, though the
differences tend to be quite small.

Tables 3-6 provide a clearer picture. In Table 3, where the SELR test is
asymptotically optimal, it actually tends to have substantially higher power
than the other two. When we choose an alternative that favors ABSuw

(i.e. Table 4), it has power that is only marginally higher than SELR’s
when n = 250 and the ranking is often reversed when n = 100. SELR also
performs well in Tables 5 and 6, where V (x) = 0.5 + I{x ≥ 0.5}. SELR
tends to be considerably more powerful than the other two tests in Table
5 where the alternative favors SELR, while the results are rather mixed in
Table 6 where at least ABSuw should perform well asymptotically.

While the scope of the simulation experiment is rather limited, the fol-
lowing picture emerges: (i) All the tests have satisfactory size and power
properties, though some size distortion remains even for n = 250; (ii) While

6Note that in the tables the size corrected power for c = 0 does not match nominal size
due to simulation errors.
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asymptotic theory predicts qualitative features of the local power of the tests
reasonably well, SELR seems to have better finite sample power properties
than the other tests. Namely, SELR tends to have considerably higher power
when the asymptotic theory predicts so, and keeps up with the other tests
quite well even when the asymptotic theory does not favor it.

8. Conclusion

The results obtained so far are quite encouraging. The SELR test is
easy to construct and straightforward to implement. It is asymptotically
normal under the null hypothesis and is able to detect local alternatives
which converge to the null at rate n−1/2b

−s/4
n . In large samples it also

possesses an optimality property.
As far as extending this work is concerned, testing conditional moment

restrictions of the form E{g(z, θ0)|x} = 0 is important. The challenge here
is to obtain the asymptotic distribution of the test statistic when θ0 is re-
placed by a consistent estimator (say θ̂), although one would expect that the
parametric rate of convergence of θ̂ should leave the asymptotic distribution
unchanged. In the future we also intend to do some work on choosing a
data driven bandwidth. This is important as the choice of bandwidth in-
fluences the optimization problem in (2.5): If bn is too small, say bn = 0
in the extreme case so that wij = 1 if i = j and zero otherwise, then (2.5)
reduces to maximizing (2.1) under (2.2) and our procedure breaks down.
On the other hand if bn is too large, say bn = ∞ in the extreme case so
that wij = 1/n, then (2.5) imposes the weaker restriction Ez = 0 instead of
the stronger restriction E(z|x) = 0. Therefore, one has to be careful when
picking a bandwidth to implement the test. �

Appendix A. Proofs of Main Results

Notation. The following symbols are used throughout the proofs: The
letter c denotes a generic constant which may differ from case to case,
X = {x1, . . . , xn}, ĥ(xi) = 1

nbs
n

∑n
u=1Kiu, Ĥ(xi) = V̂ (xi)ĥ2(xi), H(xi) =

V (xi)h2(xi), Ω̂(xi) = 1
nbs

n

∑n
j=1Kijzjz

′
j = V̂ (xi)ĥ(xi), and I∗ = {1 ≤ i ≤

n : xi ∈ S∗}. Following the discussion after Assumption 3.3, it is straight-
forward to show that Ĥ−1(xi) is element by element uniformly bounded in
probability on S∗ for large enough n. Similarly, H−1(xi) is element by ele-
ment uniformly bounded on S∗. These facts will be used subsequently. Id×d

denotes the d× d identity matrix, Od×d the d× d null matrix, and “elt. by
elt.” is shorthand for “element by element.” �

Lemma A.1. Let E‖z1‖m < ∞ for some m > 2 and choose bn = n−α for
0 < α < 1

s (1− 2
m). Then under H0, we can write

SELR = Tn +Op({
log n

n
1
2
− 1

m bsn
}2) +Op({

log n

n
1
3
− 2

m bsn
}3/2),
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where Tn =
∑n

i=1 Ii(
∑n

j=1wijz
′
j)V̂

−1(xi)(
∑n

j=1wijzj).

Proof of Lemma A.1 Our proof follows Owen (1990, Pages 100–102).
However, we obtain nonparametric (i.e. slower than n1/2) rates of conver-
gence for various terms as compared to Owen, who obtains parametric rates.
Begin by observing that since the λi’s solve (2.6), we can write

0 =
n∑

j=1

wijzj
n+ λ′izj

=
n∑

j=1

(wijzj/n)
1 + (λ′izj/n)

=
1
n

n∑
j=1

wijzj{1−
λ′izj
n

+
(λ′izj/n)2

1 + (λ′izj/n)
}

=
1
n

n∑
j=1

wijzj −
1
n2
V̂ (xi)λi +

1
n

n∑
j=1

wijzj(λ′izj/n)2

1 + (λ′izj/n)
.

Therefore, since V̂ (xi) is invertible for large enough n, we have

λi = nV̂ −1(xi)
n∑

j=1

wijzj + V̂ −1(xi)r
(1)
i , r

(1)
i = n

n∑
j=1

wijzj(λ′izj/n)2

1 + (λ′izj/n)
.

From Lemma B.1 we know that for cn
def=

√
log n
nbs

n
,

max
i∈I∗

‖r(1)i ‖ = n1+1/mOp(c2n).

In fact, because Assumption 3.3(iii) implies that ‖V̂ −1(xi)‖ is uniformly
bounded in probability on S∗, the above approximation for λi holds uni-
formly in i ∈ I∗ and we can rewrite it as

(A.1) λi = nV̂ −1(xi)
n∑

j=1

wijzj + r
(2)
i , max

i∈I∗
‖r(2)

i ‖ = n1+1/mOp(c2n).

Now under our choice of bn, the second result of Lemma B.1 ensures that
|λ

′
izj

n | = op(1) uniformly in i ∈ I∗ and j = 1, . . . , n. Therefore, for i ∈ I∗ and
1 ≤ j ≤ n, the expansion

log(1 +
λ′izj
n

) =
λ′izj
n

− 1
2
(
λ′izj
n

)2 + ηij

holds with the remainder term ηij = Op(|
λ′izj

n |3). Note that with probability

approaching one as n ↑ ∞, we can write |ηij | ≤ B|λ
′
izj

n |3 for some B > 0. B

does not depend upon i and j because |λ
′
izj

n | is asymptotically negligible in
probability uniformly in i ∈ I∗ and 1 ≤ j ≤ n. Using the above expansion
and the expression for λi in (A.1), some algebra shows that we can write

SELR = Tn −
1
n2

n∑
i=1

Iir
(2)
i

′
V̂ (xi)r

(2)
i + 2

n∑
i=1

n∑
j=1

Iiwijηij .
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But as we know that supxi∈S∗ ‖V̂ (xi)‖ = Op(1) and Ii ≤ 1, we can use the
bounds for r(2)i in (A.1) to see that

1
n2

n∑
i=1

Iir
(2)
i

′
V̂ (xi)r

(2)
i ≤ n1+2/mOp(c4n) = Op(

{log n}2n2/m

nb2s
n

).

Also use the second result of Lemma B.1 to obtain

|
n∑

i=1

n∑
j=1

Iiwijηij | ≤ B

n∑
i=1

n∑
j=1

wij |
λ′izj
n
|3 ≤ c{n1/mOp(cn)}3

n∑
i=1

n∑
j=1

wij

= n3/mOp(c3n)n = Op(
{log n}3/2n

3
m√

nb3s
n

).

The conclusion follows by simplifying the terms inside the Op symbols. �

Lemma A.2. nb2s
n Tn,1

H0= K2(0)E[I{x1 ∈ S∗}z′1
V −1(x1)
h2(x1)

z1] + op(1).

Proof of Lemma A.2. Since V̂ (xi) converges element by element in prob-
ability to V (xi), ĥ(xi)

p−→ h(xi), and h is bounded above zero on S∗,

Tn,1 = K2(0)
n∑

i=1

Ii
z′iV̂

−1(xi)zi
{
∑n

u=1Kiu}2
=
K2(0)
n2b2s

n

n∑
i=1

Iiz
′
iĤ

−1(xi)zi

=
K2(0)
n2b2s

n

n∑
i=1

Iiz
′
i{H−1(xi) +Remi}zi,

where Remi represents a matrix of remainder terms which are asymptoti-
cally negligible in probability. Because each element of Remi is op(1) and
the components of zi are bounded in probability,

Tn,1 =
K2(0)
nb2s

n

{E[I1z′1H−1(x1)z1] + op(1)}+ op(
1

nb2s
n

)

by an application of the WLLN. �

Lemma A.3. Let E‖z1‖m < ∞ for some m > 2, and choose bn = n−α for
0 < α < 1

s (1− 2
m). Then under H0,

Tn,2 = b−s
n {dR(K) vol(S∗) +Op(

√
log n
nbsn

+ b2n)}.

Proof of Lemma A.3. Set δ = 0 in the proof of Lemma A.9. �

Lemma A.4. Let E‖z1‖m < ∞ for some m > 2 and choose bn = n−α for
0 < α < min{1

s (1− 2
m), 1

2s}. Then under H0, Tn,3 = op( 1√
nb2s

n

).
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Proof of Lemma A.4. Let F̂ (lv)(xi) (resp. G
(lv)
n (xi)) denote the (lv)th

element of Ĥ−1(xi) (resp. {EΩ̂(xi)}−1

Eĥ(xi)
). From Lemma B.11 we know that

sup
xi∈S∗

|F̂ (lv)(xi)−G(lv)
n (xi)| = Op(cn),

where cn =
√

log n
nbs

n
and cn → 0 on choosing bn = n−α for 0 < α < 1

s (1− 2
m).

This result will be used later in the proof. Notice that since

Tn,3 =
K(0)
n2b2s

n

n∑
i=1

n∑
j=1,j 6=i

Iiz
′
iĤ

−1(xi)zjKij

=
d∑

l=1

d∑
v=1

K(0)
n2b2s

n

n∑
i=1

n∑
j=1,j 6=i

Iiz
(l)
i F̂ (lv)(xi)z

(v)
j Kij ,

it suffices to show that

Pn
def=

1
n3/2bsn

n∑
i=1

n∑
j=1,j 6=i

Iiz
(l)
i F̂ (lv)(xi)z

(v)
j Kij = op(1).

So write Pn = P
(1)
n + P

(2)
n where

P (1)
n =

1
n3/2bsn

n∑
i=1

n∑
j=1,j 6=i

Iiz
(l)
i G(lv)

n (xi)z
(v)
j Kij ,

P (2)
n =

1√
n

n∑
i=1

Iiz
(l)
i [F̂ (lv)(xi)−G(lv)

n (xi)]Qn,i, Qn,i =
1
nbsn

n∑
j=1,j 6=i

z
(v)
j Kij .

We look at P (1)
n and P

(2)
n one by one. First note that by (D.2) and the

Cauchy-Schwarz inequality

E{P (1)
n }2 ≤ 2

n3b2s
n

n∑
i=1

n∑
j=1,j 6=i

E{z(l)
i G(lv)

n (xi)z
(v)
j Kij}2,

where any remaining cross terms vanish since the random variables

Iiz
(l)
i G(lv)

n (xi)z
(v)
j Kij and Iiz

(l)
i G(lv)

n (xi)z
(v)
k Kik

are uncorrelated for i 6= j 6= k. Therefore, keeping in mind that G(lv)
n (xi)

is uniformly bounded in xi ∈ S∗ for large enough n (see the proof of
Lemma B.11), it is straightforward to show that

E{P (1)
n }2 ≤ c

n3b2s
n

n∑
i=1

n∑
j=1,j 6=i

E{z(l)
i z

(v)
j Kij}2 = O(

1
nbsn

);
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i.e. P (1)
n = Op( 1√

nbs
n

). Next, by the Cauchy-Schwarz inequality we have

|P (2)
n |2 ≤ 1

n

n∑
i=1

[z(l)
i ]2[F̂ (lv)(xi)−G(lv)

n (xi)]2
n∑

i=1

Q2
n,i

≤ { sup
xi∈S∗

|F̂ (lv)(xi)−G(lv)
n (xi)|}2 1

n

n∑
i=1

[z(l)
i ]2

n∑
i=1

Q2
n,i

= Op(c2n)
n∑

i=1

Q2
n,i.

But as z(v)
j Kij and z(v)

k Kik are uncorrelated for i 6= j 6= k, we can show

EQ2
n,i =

1
n2b2s

n

n∑
j=1,j 6=i

E{z(v)
j Kij}2 = O(

1
nbsn

) (uniformly in i ∈ {1, . . . , n}),

which yields that Q2
n,i = Op( 1

nbs
n
) for all i. Therefore

|P (2)
n |2 = Op(c2n)

n∑
i=1

Q2
n,i = Op(

c2n
bsn

),

which implies P (2)
n = Op(cnb

−s/2
n ). Hence recalling that cn =

√
log n
nbs

n
,

Pn = Op(
1√
nbsn

) +Op(cnb−s/2
n ) = Op(

1√
nbsn

) +Op(

√
log n
nb2s

n

)

= Op(

√
log n
nb2s

n

) = op(1).

The last equality follows if bn = n−α for 0 < α < min{1
s (1− 2

m), 1
2s}. �

Lemma A.5. Let E‖z1‖m < ∞ for some m > 2 and choose bn = n−α for
0 < α < min{1

s (1− 2
m), 1

2s}. Then under H0, Tn,4 = op( 1√
nb2s

n

).

Proof of Lemma A.5. Same as the proof of Lemma A.4. �

Lemma A.6. Let E‖z1‖m < ∞ for some m > 4 and choose bn = n−α for
0 < α < 1

2s(1−
4
m). Then under H0, b

s/2
n Tn,5

d−→ N(0, 2dK∗∗vol(S∗)).
Proof of Lemma A.6 Write Tn,5 = T∗

n,5 + (Tn,5 − T∗
n,5) where

(A.2) T∗
n,5 =

T̃∗
n,5

n2b2s
n

, T̃∗
n,5 =

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKijz
′
jH

−1(xi)ztKit.

As bs/2
n {Tn,5 − T∗

n,5} = op(1) from Lemma B.2 provided that bn = n−α for
0 < α < 1

s (1− 2
m), it suffices to show that under H0

bs/2
n T∗

n,5
d−→ N(0, 2dK∗∗vol(S∗)).
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To do so we will use a CLT for generalized quadratic forms due to de Jong
(1987). First notice that since the only restriction on the summation signs
in (A.2) is that t 6= j 6= i, we can change the order of summation in (A.2)
to write

T̃∗
n,5 =

n∑
t=1

n∑
j=1,j 6=t

n∑
i=1,i6=j 6=t

IiKijz
′
jH

−1(xi)ztKit

=
n∑

t=1

n∑
j=1,j 6=t

z′tAtjnzj , Atjn =
n∑

i=1,i6=j 6=t

IiKijH
−1(xi)Kit.

Next define Wtjn = z′tAtjnzj + z′jAtjnzt = 2z′tAtjnzj , and use Lemma B.3
to verify that Wtjn is clean7. Using de Jong’s notation we can then write
T̃∗

n,5 =
∑n−1

t=1

∑n
j=t+1Wtjn. Let us now find s2n, the variance of T̃∗

n,5. So
using (D.3) we can write

s2n = varT̃∗
n,5 =

n−1∑
t=1

n∑
j=t+1

EW 2
tjn = 4

n−1∑
t=1

n∑
j=t+1

E{z′tAtjnzj}2,

where any cross terms vanish due to the orthogonality of Wtjn and Wtkn for
t 6= j 6= k (see Remark B.1). Then using Lemma B.4 it follows that

s2n = n(n− 1)(n− 2)(n− 3)2db3s
n K∗∗vol(S∗){1 + o(1)}.

Next, as in de Jong (1987, Page 266), define the following terms:

GI =
n−1∑
t=1

n∑
j=t+1

EW 4
tjn,

GII =
n−2∑
t=1

n−1∑
j=t+1

n∑
k=j+1

(EW 2
tjnW

2
tkn + EW 2

jtnW
2
jkn + EW 2

ktnW
2
kjn),

GIV =
n−3∑
t=1

n−2∑
j=t+1

n−1∑
k=j+1

n∑
l=k+1

(EWtjnWtknWljnWlkn + EWtjnWtlnWkjnWkln

+ EWtknWtlnWjknWjln).

From Lemmas B.5, B.6, and B.7, we can see that:

GI

s4n
=
O(n4+ 8

m b2s
n )

n8b6s
n O(1)

= O(
1

n4− 8
m b4s

n

),
GII

s4n
=
O(n5+ 8

m b2s
n )

n8b6s
n O(1)

= O(
1

n3− 8
m b4s

n

),

GIV

s4n
=
O(n6+ 8

m b2s
n )

n8b6s
n O(1)

= O(
1

n2− 8
m b4s

n

).

7According to de Jong (1987, Page 263), Wtjn is said to be “clean” if E(Wtjn|xt, zt) =
E(Wtjn|xj , zj) = 0 a.s. for all 1 ≤ t, j ≤ n.
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If we let bn = n−α, where 0 < α < 1
2s(1 −

4
m), we get GI , GII , GIV =

o(s4n). Hence, from de Jong (1987, Proposition 3.2, Page 267), we have
s−1
n T̃∗

n,5
d−−−−−→

E(z|x)=0
N(0, 1). So using Slutsky’s lemma we obtain

bs/2
n T∗

n,5 =
T̃∗

n,5

n2b
3s/2
n

d−−−−−→
E(z|x)=0

N(0, 2dK∗∗vol(S∗)). �

Lemma A.7. Let E‖z1‖m < ∞ for some m > 2 and choose bn = n−α for
0 < α < 1

s (1− 2
m). Then SELR H1n= Tn+Op({ log n

n
1
2−

1
m bs

n

}2)+Op({ log n

n
1
3−

2
m bs

n

}3/2).

Proof of Lemma A.7. Following the details in the first half of the proof
of Lemma A.1, we can write

λi = nV̂ −1(xi)
n∑

j=1

wijzj + V̂ −1(xi)r
(1)
i (H1n),

where r(1)i (H1n) = n
∑n

j=1
wijzj(λ

′
izj/n)2

1+(λ′izj/n)
. Getting this far only required al-

gebraic manipulations; i.e. we did not use the fact that E(z|x) H1n= εnδ(x),
where εn

def= n−1/2b
−s/4
n for convenience. We do so now. Using the algebra

that led to (B.2), we can see that

‖r(1)i (H1n)‖ ≤ n1/mρi

n∑
j=1

wijξ
′
izj ,

where we have followed the notation of Lemma B.1 to write λi = ρiξ for
ρi > 0 and ξi ∈ S. Now let cn

def=
√

log n
nbs

n
, and observe that cn → 0 on letting

bn = n−α for 0 < α < 1
s (1− 2

m). From Newey (1994, Lemma B.1, Page 250)
we know that

sup
xi∈S∗

| 1
nbsn

n∑
j=1

Kijzj − E{ 1
nbsn

n∑
j=1

Kijzj}|
elt. by elt.

= Op(cn),

sup
xi∈S∗

|ĥ(xi)− Eĥ(xi)| = Op(cn),

sup
xi∈S∗

|Eĥ(xi)− h(xi)| = Op(b2n).

As h is bounded away from zero on S∗, the last result implies that Eĥ(xi)
is also bounded away from zero on S∗ for large enough n. Therefore, using
Lemma C.1 and the first two results,

sup
xi∈S∗

|
n∑

j=1

wijzj −
E{ 1

nbs
n

∑n
j=1Kijzj}

Eĥ(xi)
| elt. by elt.

= Op(cn).



26 TRIPATHI AND KITAMURA

But following Assumption 5.1, it is straightforward to see that under H1n

E{ 1
nbsn

n∑
j=1

Kijzj} = E{ εn
nbsn

n∑
j=1

Kijδ(xj)}

= εn

∫
SK

K(u)δ(xi − bnu)h(xi − bnu) du

elt. by elt.
= O(εn) (uniformly in xi ∈ S∗),

which implies that

(A.3)
n∑

j=1

wijξ
′zj

H1n= Op(max{εn, cn}) = Op(cn) (uniformly in xi ∈ S∗).

Hence ‖r(1)
i (H1n)‖ ≤ n1/mρiOp(cn), which is identical to the result in (B.3)

obtained under H0. Furthermore, because ‖V̂ −1(xi)‖ is uniformly bounded
in probability on S∗, we can use the approach described in the latter half of
Lemma B.1 to show that maxi∈I∗ ρi = nOp(cn). Thus we obtain

λi
H1n= nV̂ −1(xi)

n∑
j=1

wijzj + r
(2)
i (H1n), max

i∈I∗
‖ r(2)i (H1n)‖ = n1+1/mOp(c2n).

This approximation for λi is identical to the one obtained in (A.1) under
the null hypothesis. In a similar manner we can use (A.3) to show that all
remaining approximations in the proof of Lemma A.1 stay unchanged even
under H1n. The desired result follows. �

Lemma A.8. nb2s
n Tn,1

H1n= K2(0)E[I{x1 ∈ S∗}z′1
V −1(x1)
h2(x1)

z1] + op(1).

Proof of Lemma A.8. Same as Lemma A.2. �

Lemma A.9. Let E‖z̃1‖m < ∞ for some m > 2 and choose bn = n−α for
0 < α < 1

s (1− 2
m). Then under H1n,

Tn,2 = b−s
n {dR(K) vol(S∗) +Op(

√
log n
nbsn

+ b2n)}.
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Proof of Lemma A.9. For notational convenience define εn = n−1/2b
−s/4
n .

Now write Tn,2 = (A1) + (A2) + (A3) + (A4), where

(A1) =
n∑

i=1

n∑
j=1,j 6=i

Iiw
2
ij z̃

′
j V̂

−1(xi)z̃j

(A2) = εn

n∑
i=1

n∑
j=1,j 6=i

Iiw
2
ij z̃

′
j V̂

−1(xi)δ(xj)

(A3) = εn

n∑
i=1

n∑
j=1,j 6=i

Iiw
2
ijδ

′(xj)V̂ −1(xi)z̃j

(A4) = ε2n

n∑
i=1

n∑
j=1,j 6=i

Iiw
2
ijδ

′(xj)V̂ −1(xi)δ(xj).

Let us first look at (A1). So begin by observing that

(A1) =
1

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

IiK2
ij z̃

′
jĤ

−1(xi)z̃j = (A1)a + (A1)b, where

(A1)a =
1

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

IiK2
ij z̃

′
jH

−1(xi)z̃j

(A1)b =
1

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

IiK2
ij z̃

′
j{Ĥ−1(xi)−H−1(xi)}z̃j .

Next note that

|K2
ij z̃

′
j{Ĥ−1(xi)−H−1(xi)}z̃j | ≤ K2

ij‖z̃j‖2 ‖Ĥ−1(xi)−H−1(xi)‖.

But letting τn
def=

√
log n
nbs

n
+ b2n, from Lemma B.10 we know that

sup
xi∈S∗

|Ĥ−1(xi)−H−1(xi)|
elt. by elt.

= Op(τn),

and τn → 0 on choosing bn = n−α for 0 < α < 1
s (1− 2

m). Therefore, since

(A1)b ≤
1

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

K2
ij‖z̃j‖2‖Ĥ−1(xi)−H−1(xi)‖

≤ Op(τn)
nbsn

n∑
i=1

{ 1
nbsn

n∑
j=1,j 6=i

K2
ij‖z̃j‖2}

=
Op(τn)
bsn

Op(1) = Op(
τn
bsn

),
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we get (A1) = (A1)a +Op( τn
bs
n
). Now write

(A1)a =
1
nbsn

tr

n∑
i=1

Ii{
1
nbsn

n∑
j=1,j 6=i

K2
ij z̃j z̃

′
j}H−1(xi)

=
1
nbsn

tr

n∑
i=1

Ii{R(K)E(z̃z̃′|xi)h(xi) +R(A)(xi)}H−1(xi),

where R(A)(xi)
elt. by elt.

= Op(b2n) follows from the consistency of kernel es-
timators. Because E(z̃iz̃′i|xi) = V (xi) and V −1(xi) is element by element
uniformly bounded on S∗, the previous equation reduces to

(A1)a =
1
nbsn

tr

n∑
i=1

{R(K)Ii

h(xi)
Id×d + IiR

(A)(xi)H−1(xi)}

=
dR(K)
nbsn

n∑
i=1

Ii

h(xi)
+

1
nbsn

n∑
i=1

Ii tr R
(A)(xi)H−1(xi)

=
dR(K)
nbsn

n∑
i=1

Ii

h(xi)
+
Op(b2n)
bsn

.

By the CLT we know that

n1/2(
1
n

∑n
i=1 Iih

−1(xi)− E{I1h−1(x1)}√
var{I1h−1(x1)}

) = Op(1);

i.e.
1
n

n∑
i=1

Iih
−1(xi) = vol(S∗) +Op(n−1/2).

Using this approximation we have

(A1)a =
1
bsn
{dR(K)vol(S∗) +Op(n−1/2) +Op(b2n)}.

Combining the results for (A1)a and (A1)b we get that

(A1) =
1
bsn
{dR(K)vol(S∗) +Op(n−1/2) +Op(b2n)}+Op(

τn
bsn

)

=
1
bsn
{dR(K)vol(S∗) +Op(n−1/2) +Op(b2n) +Op(τn)}

=
1
bsn
{dR(K)vol(S∗) +Op(τn)}.

Now let us look at (A2). Observe that we can write

(A2) =
εn
nbsn

tr

n∑
i=1

Ii{
1
nbsn

n∑
j=1,j 6=i

K2
ijδ(xj)z̃′j} Ĥ−1(xi).
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But since (i) 1
nbs

n

∑n
j=1,j 6=iK2

ijδ(xj)z̃′j
p−→ Od×d because E(z̃j |xj) = 0, and

(ii) Ĥ−1(xi) is element by element Op(1) on S∗, we get

(A2) =
εn
nbsn

op(n) = op(
εn
bsn

).

Similarly, we can also show that (A3) = op( εn
bs
n
). Finally, observe that

(A4) =
ε2n
nbsn

tr

n∑
i=1

Ii{
1
nbsn

n∑
j=1,j 6=i

K2
ijδ(xj)δ′(xj)} Ĥ−1(xi).

But Ĥ−1(xi) is element by element Op(1) on S∗, and from Assumption 5.1
we know that 1

nbs
n

∑n
j=1,j 6=iK2

ijδ(xj)δ′(xj) is also element by element Op(1)
on S∗. This yields

(A4) =
ε2n
nbsn

Op(n) = Op(
ε2n
bsn

).

Combining the results for (A1)—(A4) we get that under H1n,

Tn,2 =
1
bsn
{dR(K)vol(S∗) +Op(τn)}+ op(

εn
bsn

) + op(
εn
bsn

) +Op(
ε2n
bsn

);

i.e. Tn,2 = b−s
n {dR(K) vol(S∗) +Op(τn)}. �

Lemma A.10. Let E‖z̃1‖m <∞ for some m > 2 and choose bn = n−α for
0 < α < min{1

s (1− 2
m), 1

2s}. Then under H1n, Tn,3 = Op( 1√
nb

5s/2
n

).

Proof of Lemma A.10. Define εn = n−1/2b
−s/4
n . Under H1n we can write

Tn,3 = (B1) + (B2) + (B3) + (B4), where

(B1) =
K(0)
n2b2s

n

n∑
i=1

n∑
j=1,j 6=i

IiKij z̃
′
iĤ

−1(xi)z̃j

(B2) =
εnK(0)
n2b2s

n

n∑
i=1

n∑
j=1,j 6=i

IiKij z̃
′
iĤ

−1(xi)δ(xj)

(B3) =
εnK(0)
n2b2s

n

n∑
i=1

n∑
j=1,j 6=i

IiKijδ
′(xi)Ĥ−1(xi)z̃j

(B4) =
ε2nK(0)
n2b2s

n

n∑
i=1

n∑
j=1,j 6=i

IiKijδ
′(xi)Ĥ−1(xi)δ(xj).

In Lemma A.4 we had shown that under H0

K(0)
n∑

i=1

n∑
j=1,j 6=i

Iiz
′
iĤ

−1(xi)zjKij = op(n3/2bsn),

provided we chose bn = n−α for 0 < α < min{1
s (1 − 2

m), 1
2s}. The only

properties we had used to obtain this result were that E(zi|xi) = 0 and that



30 TRIPATHI AND KITAMURA

the zi’s were iid. Since the same properties hold for z̃i under H1n, we also
have (B1)

H1n= op( 1√
nb2s

n

) if the bandwidth is chosen as described. Next write

(B2) =
εnK(0)
nbsn

n∑
i=1

Iiz̃
′
iĤ

−1(xi){
1
nbsn

n∑
j=1,j 6=i

Kijδ(xj)} =
εn
nbsn

Op(n),

where the second equality follows because: (i) 1
nbs

n

∑n
j=1,j 6=iKijδ(xj)

elt. by elt.
=

Op(1), (ii) E‖z̃‖2 < ∞, and (iii) Ĥ−1(xi) is element by element uniformly

bounded in probability on S∗. Since εn
def= n−1/2b

−s/4
n , we obtain that

(B2)
H1n= Op( 1√

nb
5s/2
n

). Similarly, we can show that (B3)
H1n= Op( 1√

nb
5s/2
n

).

Finally, we have

(B4) =
ε2nK(0)
nbsn

n∑
i=1

Iiδ
′(xi)Ĥ−1(xi){

1
nbsn

n∑
j=1,j 6=i

Kijδ(xj)} =
ε2n
nbsn

Op(n),

where the second equality follows from (i) and (iii) as listed above and the
fact that δ(xi) is element by element Op(1). Therefore, (B4)

H1n= Op( 1

nb
3s/2
n

)

and the lemma stands proved upon combining the results for (B1)–(B4) and
using the chosen bandwidth. �

Lemma A.11. Let E‖z̃1‖m <∞ for some m > 2 and choose bn = n−α for
0 < α < min{1

s (1− 2
m), 1

2s}. Then under H1n, Tn,4 = Op( 1√
nb

5s/2
n

).

Proof of Lemma A.11. Same as the proof of Lemma A.10. �

Lemma A.12. Let E‖z̃1‖m < ∞ for some m > 4 and choose bn = n−α

for 0 < α < 1
2s(1 −

4
m). Also let µ = E[I{x1 ∈ S∗}δ′(x1)V −1(x1)δ(x1)] and

σ2 = 2dK∗∗vol(S∗). Then under H1n, bs/2
n Tn,5

d−→ N(µ, σ2).

Proof of Lemma A.12. Define εn = n−1/2b
−s/4
n . Under H1n we can write

Tn,5 = (C1) + (C2) + (C3) + (C4), where

(C1) =
1

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKij z̃
′
jĤ

−1(xi)z̃tKit

(C2) =
εn

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKij z̃
′
jĤ

−1(xi)δ(xt)Kit

(C3) =
εn

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKijδ
′(xj)Ĥ−1(xi)z̃tKit

(C4) =
ε2n

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKijδ
′(xj)Ĥ−1(xi)δ(xt)Kit.
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Note that (C1) would be identical to T∗
n,5 (which is defined in Lemma A.6)

were it not for the fact that the former is a function of z̃ instead of z.
Therefore, we can once again use Lemma A.6 to show that bs/2

n (C1)
d−→

N(0, σ2) provided bn = n−α for 0 < α < 1
2s(1 −

4
m). Next write (C2) =

(C2)a + (C2)b, where

(C2)a =
εn

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKij z̃
′
jH

−1(xi)δ(xt)Kit,

(C2)b =
εn

n2b2s
n

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKij z̃
′
j{Ĥ−1(xi)−H−1(xi)}δ(xt)Kit.

From Lemmas B.8 and B.9 it follows that both b
s/2
n (C2)a and b

s/2
n (C2)b

are asymptotically negligible in probability. Therefore, bs/2
n (C2)

H1n= op(1).

Similarly, we can show that bs/2
n (C3)

H1n= op(1). To analyze (C4) recall that

εn
def= n−1/2b

−s/4
n and write

bs/2
n (C4) =

1
n2bsn

n∑
i=1

n∑
j=1,j 6=i

IiKijδ
′(xj)Ĥ−1(xi){

1
nbsn

n∑
t=1,t6=j 6=i

δ(xt)Kit}

=
1

n2bsn

n∑
i=1

n∑
j=1,j 6=i

IiKijδ
′(xj)Ĥ−1(xi){δ(xi)h(xi) + r

(α)
i },

where r(α)
i

elt. by elt.
= op(1), and the second equality follows from the consis-

tency of kernel estimators. Hence let bs/2
n (C4) = (C4)a + (C4)b, where

(C4)a =
1

n2bsn

n∑
i=1

n∑
j=1,j 6=i

IiKijδ
′(xj)Ĥ−1(xi)δ(xi)h(xi)

(C4)b =
1

n2bsn

n∑
i=1

n∑
j=1,j 6=i

IiKijδ
′(xj)Ĥ−1(xi)r

(α)
i .

Once again, use the consistency of kernel estimators to see that

(C4)a =
1
n

n∑
i=1

Ii{
1
nbsn

n∑
j=1,j 6=i

Kijδ
′(xj)}Ĥ−1(xi)δ(xi)h(xi)

=
1
n

n∑
i=1

Ii{δ′(xi)h(xi) + r
(β)
i

′
}Ĥ−1(xi)δ(xi)h(xi),

where r(β)
i

elt. by elt.
= op(1). Similarly, letting r

(γ)
i

def= 1
nbs

n

∑n
j=1,j 6=iKijδ

′(xj)
we have

(C4)b =
1
n

n∑
i=1

Iir
(γ)
i

′
Ĥ−1(xi)r

(α)
i .



32 TRIPATHI AND KITAMURA

So we can write bs/2
n (C4) = (I) + (II) + (III), where

(I) =
1
n

n∑
i=1

Iiδ
′(xi)Ĥ−1(xi)δ(xi)h2(xi),

(II) =
1
n

n∑
i=1

Iir
(β)
i

′
Ĥ−1(xi)δ(xi)h(xi), (III) =

1
n

n∑
i=1

Iir
(γ)
i

′
Ĥ−1(xi)r

(α)
i .

Therefore, using the facts that: (i) r(α)
i and r(β)

i are asymptotically negligible
element by element, (ii) the components of δ(xi) and r

(γ)
i are Op(1), and

(iii) Ĥ−1(xi) is element by element uniformly bounded in probability on S∗,
it is easy to see that (II), (III) = op(1). So it only remains to look at (I).
Write (I) = (I)a + (I)b, where

(I)a =
1
n

n∑
i=1

Iiδ
′(xi)H−1(xi)δ(xi)h2(xi) =

1
n

n∑
i=1

Iiδ
′(xi)V −1(xi)δ(xi),

(I)b =
1
n

n∑
i=1

Iiδ
′(xi){Ĥ−1(xi)−H−1(xi)}δ(xi)h2(xi).

Then by the weak law of large numbers, (I)a = µ+op(1). From Lemma B.10
we know that Ĥ−1(xi)

p−→ H−1(xi) element by element under our choice of
bn. Hence we get (I)b = op(1). Therefore, (I) = µ + op(1) which implies
that bs/2

n (C4) = µ + op(1). Combining the results for (C1)–(C4) we obtain
the desired conclusion. �

Appendix B. Proofs of Auxiliary Results

Lemma B.1. Let bn = n−α for 0 < α < 1
s (1− 2

m) and cn
def=

√
log n
nbs

n
. Then

under H0,

max
i∈I∗

‖r(1)
i ‖ = n1+1/mOp(c2n) and max

i∈I∗,1≤j≤n
|λ′izj | = n1+1/mOp(cn).

Proof of Lemma B.1 wij ≥ 0 from Assumption 3.4, and n + λ′izj ≥ 0
holds because the estimated probabilities are nonnegative. Hence

‖r(1)
i ‖ ≤

n∑
j=1

wij(λ′izj)
2

n+ λ′izj
‖zj‖ ≤ z∗n

n∑
j=1

wij(λ′izj)
2

n+ λ′izj
,

where z∗n = max{‖z1‖, . . . , ‖zn‖}. Furthermore, multiplying both sides of
(2.6) by λ′i we get

0 =
n∑

j=1

wijλ
′
izj

n+ λ′izj
=

n∑
j=1

wij

n
{λ′izj −

(λ′izj)
2

n+ λ′izj
}; i.e.

(B.1)
n∑

j=1

wij(λ′izj)
2

n+ λ′izj
=

n∑
j=1

wijλ
′
izj .
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Plugging this result in the above inequality we have

‖r(1)
i ‖ ≤ z∗n

n∑
j=1

wijλ
′
izj .

Now use Lemma C.3 to assume w.l.o.g that n is large enough so that z∗n <
n1/m holds almost surely. Thus the previous inequality reduces to

(B.2) ‖r(1)
i ‖ ≤ n1/m

n∑
j=1

wijλ
′
izj

for large enough n. Notice that E{ 1
nbs

n

∑n
j=1Kijzj} = 0 when E(zj |xj) = 0.

Therefore, we can use Newey (1994, Lemma B.1, Page 250) to show

sup
xi∈S∗

| 1
nbsn

n∑
j=1

Kijzj |
elt. by elt.

= Op(cn),

sup
xi∈S∗

| 1
nbsn

n∑
j=1

Kij − E{ 1
nbsn

n∑
j=1

Kij}| = Op(cn),

and cn ↓ 0 on letting bn = n−α for 0 < α < 1
s (1 − 2

m). But since h
is bounded away from zero on S∗, which means that for large enough n
the term E{ 1

nbs
n

∑n
j=1Kij} is bounded away from zero on S∗, we can use

Lemma C.2 to see that

sup
xi∈S∗

|
n∑

j=1

wijzj |
elt. by elt.

= Op(cn).

Hence if we can determine a bound for the λi’s, we can bound r
(1)
i . So let

us obtain the bound for λi. First, w.l.o.g let λi = ρiξi, where ρi ≥ 0 and
ξi ∈ S; i.e. ‖ξi‖ = 1. Therefore, (B.2) reduces to

(B.3) ‖r(1)i ‖ ≤ n1/mρiOp(cn).

Next, use the fact that

0 ≤ n+ λ′izj ≤ n+ ρi‖zj‖ ≤ n+ ρiz
∗
n ≤ n+ ρin

1/m

to see that 1
n+ρin1/m ≤ 1

n+λ′izj
. But this implies that (B.1) becomes

ρi

n+ ρin1/m

n∑
j=1

wij(ξ′izj)
2 ≤

n∑
j=1

wijξ
′
izj ;

i.e. using the nonnegativity of Kij we can write (uniformly in i ∈ I∗)

ρi

n+ ρin1/m
≤

∑n
j=1wijξ

′
izj

ξ′iV̂ (xi)ξi
=

Op(cn)
ξ′iV (xi)ξi + op(1)

= Op(cn),
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where the last equality follows from the fact that V̂ (xi) converges in proba-
bility to V (xi) uniformly on S∗, and that supxi∈S∗ ξ

′
iV (xi)ξi <∞. Therefore,

solving for ρi we have

ρi = ‖λi‖ =
nOp(cn)

1− n1/mOp(cn)
= nOp(cn) (uniformly in i ∈ I∗),

because n1/mcn ↓ 0 under our choice of bn. Substituting this in (B.3), we
get

‖r(1)
i ‖ = n1+1/mOp(c2n) (uniformly in i ∈ I∗).

Moreover, since |λ′izj | ≤ ‖λi‖‖zj‖ ≤ ρiz
∗
n, we also have

|λ′izj | = n1+1/mOp(cn) (uniformly in i ∈ I∗ and 1 ≤ j ≤ n). �

Lemma B.2. bs/2
n {Tn,5−T∗

n,5} = op(1) if bn = n−α and 0 < α < 1
s (1− 2

m).

Proof of Lemma B.2. Throughout this proof let

U = {γ ∈ R : |γ| ≤ 1} and Γn(xi) = Ĥ−1(xi)−H−1(xi).

Changing the order of summation write

bs/2
n {Tn,5 − T∗

n,5} =
1

n2b
3s/2
n

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKijz
′
jΓn(xi)ztKit

=
1

n2b
3s/2
n

n∑
t=1

n∑
j=1,j 6=t

n∑
i=1,i6=j 6=t

IiKijz
′
jΓn(xi)ztKit

=
1

n2b
3s/2
n

n∑
t=1

n∑
j=1,j 6=t

z′jBjt(Γn)zt,

where Bjt(Γn) =
∑n

i=1,i6=j 6=t IiKijΓn(xi)Kit. Note that since

z′jBjt(Γn)zt =
d∑

l=1

d∑
v=1

z
(l)
j Bjt(Γ(lv)

n )z(v)
t ,

it suffices to show that

A(Γ(lv)
n ) =

n∑
t=1

n∑
j=1,j 6=t

z
(l)
j Bjt(Γ(lv)

n )z(v)
t = op(n2b3s/2

n ).

Before we present the details showing A(Γ(lv)
n ) = op(n2b

3s/2
n ), we need two

useful facts. The first one follows from Lemma B.10; namely,

sup
xi∈S∗

|Γ(lv)
n (xi)| = Op(τn), τn

def=

√
log n
nbsn

+ b2n,
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and τn ↓ 0 on choosing bn = n−α for 0 < α < 1
s (1− 2

m). Hereafter, for γ ∈ U
we will also use the following notation:

B∗
jt(γ) =

n∑
i=1,i6=j 6=t

IiKijγKit, A∗(γ) =
n∑

t=1

n∑
j=1,j 6=t

z
(l)
j B∗

jt(γ)z
(v)
t .

The second useful fact, which is easily verified, is that the random variables
z
(l)
j B∗

jt(γ)z
(v)
t and z(l)

k B∗
kt(γ)z

(v)
t are uncorrelated for j 6= k 6= t when γ ∈ U .

See, for example, Remark B.1 in the proof of Lemma B.3. Let us continue
with the proof. So pick any ε > 0, and let Mε denote a positive number
which may depend upon ε. Observe that

(B.4) Pr{|A(τ−1/2
n Γ(lv)

n )| > Mε}

= Pr{|A(τ−1/2
n Γ(lv)

n )| > Mε, sup
xi∈S∗

τ−1/2
n |Γ(lv)

n (xi)| ≤ 1}

+ Pr{|A(τ−1/2
n Γ(lv)

n )| > Mε, sup
xi∈S∗

τ−1/2
n |Γ(lv)

n (xi)| > 1}.

Since supxi∈S∗ τ
−1/2
n |Γ(lv)

n (xi)| ≤ 1 implies that

τ−1/2
n Γ(lv)

n (x1)I1 ∈ U , . . . , τ−1/2
n Γ(lv)

n (xn)In ∈ U ,
the first term on the RHS of (B.4) is majorized by Pr{supγ∈U |A∗(γ)| > Mε}.
Moreover, from the first useful fact, the second term on the RHS of (B.4) is
o(1). Therefore, we have

Pr{|A(τ−1/2
n Γ(lv)

n )| > Mε} ≤ Pr{sup
γ∈U

|A∗(γ)| > Mε}+ o(1).

Because A∗(γ) is linearly homogeneous in γ, supγ∈U |A∗(γ)| ≤ |A∗(1)|.
Hence by Chebychev, the previous inequality reduces to

(B.5) Pr{|A(τ−1/2
n Γ(lv)

n )| > Mε} ≤ E|A∗(1)|/Mε + o(1).

Now using (D.2) along with the second useful fact, we can see that

{E|A∗(1)|}2 ≤ E{A∗(1)}2 = 2
n∑

t=1

n∑
j=1,j 6=t

E{z(l)
j B∗

jt(1)z(v)
t }2.

Because

{B∗
jt(1)}2 =

n∑
i=1,i6=j 6=t

IiK2
ijK2

it +
n∑

i=1,i6=j 6=t

n∑
u=1,u 6=i6=j 6=t

IiKijKitKujKut,

we have

E{z(l)
j B∗

jt(1)z(v)
t }2 =

n∑
i=1,i6=j 6=t

E{Ii[z
(l)
j ]2 [z(v)

t ]2K2
ijK2

it}

+
n∑

i=1,i6=j 6=t

n∑
u=1,u 6=i6=j 6=t

E{Ii[z
(l)
j ]2 [z(v)

t ]2KijKitKujKut}.
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It is straightforward (the details being very similar to the method used in
the proof of Lemma B.4) to see that

E{Ii[z
(l)
j ]2[z(v)

t ]2K2
ijK2

it} = O(b2s
n ).

Similarly, we can show that

E{Ii[z
(l)
j ]2 [z(v)

t ]2KijKitKujKut} = O(b3s
n ).

Therefore, using the above results we have

E{z(l)
j B∗

jt(1)z(v)
t }2 = O(n2b3s

n ).

Hence E{A∗(1)}2 = O(n4b3s
n ), which implies that E|A∗(1)| = O(n2b

3s/2
n ).

Thus (B.5) reduces to

Pr{|A(τ−1/2
n Γ(lv)

n )| > Mε} ≤ O(n2b3s/2
n )/Mε + o(1).

So choosing Mε appropriately, we obtain

A(τ−1/2
n Γ(lv)

n ) = Op(n2b3s/2
n ).

But since τn ↓ 0, we conclude that A(Γ(lv)
n ) = op(n2b

3s/2
n ). �

Lemma B.3. Wtjn is clean; i.e. E(Wtjn|xt, zt) = 0 a.s. for all 1 ≤ t, j ≤ n.

Proof of Lemma B.3 Since

E(Wtjn|xt, zt) = 2E(z′tAtjnzj |xt, zt) = 2z′tE(Atjnzj |xt, zt),

use iterated expectations to see that

E(Atjnzj |xt, zt) = E{E(Atjnzj |xt, zt)|X , zt} = E{AtjnE(zj |X , zt)|xt, zt}.

But as we are dealing with independent observations, under H0

E(zj |X , zt) = E(zj |xj) = 0;

i.e. E(Wtjn|xt, zt) = 0. Similarly, we can show that E(Wtjn|xj , zj) = 0.

Remark B.1. We can use a similar approach to show that Wtjn and Wtkn

are uncorrelated for t 6= j 6= k. To see this, note that

E{WtjnWtkn} = 4E{z′tAtjnzjz
′
kAtknzt}

= 4E{z′tAtjnzjE(z′k|X , zt, zj)Atknzt}
= 4E{z′tAtjnzjE(z′k|xk)Atknzt} = 0;

i.e. Wtjn and Wtkn are uncorrelated if a free8 index is present. �

Lemma B.4. E{z′tAtjnzj}2 = (n− 2)(n− 3)2db3s
n K∗∗vol(S∗){1 + o(1)}.

8An index is “free” if it occurs only once (de Jong 1987, Lemma 2.1, Page 263).
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Proof of Lemma B.4. Using iterated expectations and the independence
of observations, we can write

E{z′tAtjnzj}2 = E{z′tAtjnzjz
′
jAtjnzt} = E{z′tAtjnE[zjz′j |X , zt]Atjnzt}

= E{z′tAtjnE[zjz′j |xj ]Atjnzt} = E{z′tAtjnV (xj)Atjnzt}
= E tr {z′tAtjnV (xj)Atjnzt} = trE{AtjnV (xj)Atjnztz

′
t}

= trE{AtjnV (xj)AtjnE[ztz′t|X ]}
= trE{AtjnV (xj)AtjnE[ztz′t|xt]}
= trE{AtjnV (xj)AtjnV (xt)}.

But as AtjnV (xj)AtjnV (xt) is equal to

{
n∑

i=1,i6=j 6=t

IiKijH
−1(xi)V (xj)Kit} × {

n∑
u=1,u 6=j 6=t

IuKujH
−1(xu)V (xt)Kut},

we get that

E{z′tAtjnzj}2 =
n∑

i=1,i6=j 6=t

tr P1 +
n∑

i=1,i6=j 6=t

n∑
u=1,u 6=i6=j 6=t

tr P2, where

P1 = E{
IiK2

ijK2
itV

−1(xi)V (xj)V −1(xi)V (xt)
h4(xi)

},

P2 = E{IiIuKijKitKujKutV
−1(xi)V (xj)V −1(xu)V (xt)

h2(xi)h2(xu)
}.

Let us look at P1 and P2 one by one. By iterated expectations and the
independence of observations we can write

P1 = E{
IiK2

ijV
−1(xi)V (xj)V −1(xi)

h4(xi)
E[K2

itV (xt)|xi]}.

But using Assumption 3.3(ii) and the fact that xi ∈ S∗, we can show

(B.6) E[K2
itV (xt)|xi] = bsnR(K)V (xi)h(xi) + bs+2

n R(3)(xi),

where supxi∈S∗ ‖R
(3)(xi)‖ <∞. Hence substituting (B.6) in the expression

for P1, we have

P1 = bsnR(K)E{
IiK2

ijV
−1(xi)V (xj)
h3(xi)

}

+ bs+2
n E{

IiK2
ijV

−1(xi)V (xj)V −1(xi)R(3)(xi)
h4(xi)

}.
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But note that

E{
IiK2

ijV
−1(xi)V (xj)
h3(xi)

} = E{IiV
−1(xi)

h3(xi)
E[K2

ijV (xj)|xi]}

= bsnR(K)E{ Ii

h2(xi)
}Id×d + bs+2

n E{IiV
−1(xi)R(4)(xi)
h3(xi)

},

where ‖R(4)(xi)‖ < ∞ uniformly in xi ∈ S∗, and the last equality follows
from a result similar to the one obtained in (B.6). Hence using the facts:
(i) supxi∈S∗ ‖V

−1(xi)‖ < ∞, (ii) R(4)(xi) is element by element uniformly
bounded on S∗, and (iii) h is bounded away from zero on S∗, we have

bsnR(K)trE{
IiK2

ijV
−1(xi)V (xj)
h3(xi)

} = db2s
n R2(K)E{ Ii

h2(xi)
}

+ R(K)b2s+2
n trE{IiV

−1(xi)R(4)(xi)
h3(xi)

}

= db2s
n R2(K)E{ Ii

h2(xi)
}+O(b2s+2

n ).

Similarly, we can show that

bs+2
n trE{

IiK2
ijV

−1(xi)V (xj)V −1(xi)R(3)(xi)
h3(xi)

}

= bs+2
n trE{ Ii

h3(xi)
V −1(xi)E[K2

ijV (xj)|xi]V −1(xi)R(3)(xi)}

= b2s+2
n R(K)trE{IiV

−1(xi)R(3)(xi)
h2(xi)

}

+ b2s+4
n trE{IiV

−1(xi)R(5)(xi)V −1(xi)R(3)(xi)
h3(xi)

}

= O(b2s+2
n ) +O(b2s+4

n ) = O(b2s+2
n ),

where the last line follows from the observation that R(3)(xi), R(5)(xi), and
V −1(xi) are element by element uniformly bounded on S∗ and h is bounded
away from zero on S∗. Therefore, we have

tr P1 = db2s
n R2(K)E{ I1

h2(x1)
}[1 +O(b2n)].

Now let us look at P2. Once again, using iterated expectations and the
independence of observations, we can write

P2 = E{IiIuKijKujV
−1(xi)V (xj)V −1(xu)

h2(xi)h2(xu)
E[KitKutV (xt)|xi, xu]}.

Next, using Assumption 3.3(ii) and keeping in mind that xi, xu ∈ S∗, we
can show that

E{KitKutV (xt)|xi, xu} = bsnK∗
iuV (xu)h(xu) + bs+1

n R̃(1)(xi, xu),
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where K∗
iu = K∗(xi−xu

bn
) and supxi,xu∈S∗ ‖R̃

(1)(xi, xu)‖ < ∞. Using this
result, the expression for P2 reduces to

P2 = bsnE{IiIuKijKujK∗
iuV

−1(xi)V (xj)
h2(xi)h(xu)

}

+ bs+1
n E{IiIuKijKujV

−1(xi)V (xj)V −1(xu)R̃(1)(xi, xu)
h2(xi)h2(xu)

}.

But once again we can show that

E{IiIuKijKujK∗
iuV

−1(xi)V (xj)
h2(xi)h(xu)

}

= E{IiIuK∗
iuV

−1(xi)
h2(xi)h(xu)

E[KijKujV (xj)|xi, xu]}

= E{IiIuK∗
iuV

−1(xi)
h2(xi)h(xu)

[bsnK∗
uiV (xi)h(xi) + bs+1

n R̃(2)(xu, xi)]}

= bsnE{ IiIuK∗
iuK∗

ui

h(xi)h(xu)
}Id×d + bs+1

n E{IiIuK∗
iuV

−1(xi)R̃(2)(xu, xi)
h2(xi)h(xu)

},

for some R̃(2)(xu, xi) such that supxu,xi∈S∗ ‖R̃
(2)(xu, xi)‖ < ∞. Further-

more, after some tedious algebra we can also show the following results:

trE{ IiIuK∗
iuK∗

ui

h(xi)h(xu)
}Id×d = dbsnK∗∗vol(S∗),

trE{IiIuK∗
iuV

−1(xi)R̃(2)(xu, xi)
h2(xi)h(xu)

} = O(bsn),

trE{IiIuKijKujV
−1(xi)V (xj)V −1(xu)R̃(1)(xi, xu)

h2(xi)h2(xu)
} = O(b2s

n ) +O(b2s+1
n ).

Therefore, combining these results we get

tr P2 = db3s
n K∗∗vol(S∗){1 +O(bn)}.

The desired result follows. �

Lemma B.5. GI = O(n4+ 8
m b2s

n ).

Proof of Lemma B.5. Since

GI =
n−1∑
t=1

n∑
j=t+1

EW 4
tjn = 16

n−1∑
t=1

n∑
j=t+1

E{z′tAtjnzj}4,
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use the summation identity in (D.4) to see that

E{z′tAtjnzj}4 =
n∑

i=1,i6=j 6=t

E{IiKijz
′
tH

−1(xi)zjKit}4

+3
n∑

i=1,i6=j 6=t

n∑
k=1,k 6=i6=j 6=t

E{IiKijz
′
tH

−1(xi)zjKit}2{IkKkjz
′
tH

−1(xk)zjKkt}2.

Now |z′tH−1(xi)zj | ≤ ‖zt‖ ‖zj‖ ‖V −1(xi)‖
h2(xi)

. Therefore, by Assumption 3.3(iii)

and the result of Lemma C.3, |z′tH−1(xi)zj | ≤ cn
2
mh−2(xi) holds almost

surely for large enough n. Thus

E{IiKijz
′
tH

−1(xi)zjKit}4 ≤ cn
8
m E{

IiK4
ijK4

it

h2(xi)
}

also holds for large enough n. Next, a little algebra reveals that

E{
IiK4

ijK4
it

h2(xi)
} = O(b2s

n ).

But this means that

E{IiKijz
′
tH

−1(xi)zjKit}4 = O(n
8
m b2s

n ).

The result now follows from another application of Cauchy-Schwarz. �

Lemma B.6. GII = O(n5+ 8
m b2s

n ).

Proof of Lemma B.6. Follows by using the Cauchy-Schwarz inequality
and the result that EW 4

tjn = O(n2+ 8
m b2s

n ) (see proof of Lemma B.5). �

Lemma B.7. GIV = O(n6+ 8
m b2s

n ).

Proof of Lemma B.7. Same as the proof of Lemma B.6. �

Lemma B.8. bs/2
n (C2)a = op(1).

Proof of Lemma B.8. Change the order of summation to write

(C2)a =
εn

n2b2s
n

n∑
t=1

n∑
j=1,j 6=t

δ′(xt)Atjnz̃j , Atjn =
n∑

i=1,i6=j 6=t

IiKijH
−1(xi)Kit.

For notational convenience let btj = δ′(xt)Atjnz̃j and note that btj 6= bjt,
E{btjbjt} = 0 if t 6= j, and E{btjbmu} = 0 if u 6= j. Then using the
summation identity in (D.2), we have

E{bs/2
n (C2)a}2 =

ε2n
n4b3s

n

{
n∑

t=1

n∑
j=1,j 6=t

Eb2tj +
n∑

t=1

n∑
j=1,j 6=t

n∑
m=1,m 6=j 6=t

Ebtjbmj}.
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Recall that {z̃i}n
i=1 is a random sample and E(z̃i|xi) = 0. Therefore, as in

the proof of Lemma B.4, we can show that Eb2tj = O(n2b3s
n ). So it remains

to calculate Ebtjbmj . Using iterated expectations,

E{btjbmj} = E{δ′(xt)AtjnE(z̃j z̃′j |xj)Amjnδ(xm)}
= E{δ′(xt)AtjnE(zjz′j |xj)Amjnδ(xm)}
= E{δ′(xt)AtjnV (xj)Amjnδ(xm)},

where the second equality follows because E(z̃j z̃′j |xj) = V (xj). But as
AtjnV (xj)Amjn is equal to

{
n∑

i=1,i6=j 6=t

IiKitKijH
−1(xi)}V (xj)× {

n∑
u=1,u 6=j 6=m

IuKumKujH
−1(xu)},

we get that E{btjbmj} = E{(IV )× (V )} where

(IV ) =
n∑

i=1,i6=j 6=t

IiKitKijδ
′(xt)H−1(xi)V (xj),

(V ) =
n∑

u=1,u 6=j 6=m

IuKumKujH
−1(xu)δ(xm).

So we can write

E{btjbmj} =
n∑

i=1,i6=j 6=t

(V I)a +
n∑

i=1,i6=j 6=t

n∑
u=1,u 6=j 6=m

(V I)b,

where

(V I)a = E{IiKitK2
ijKim δ′(xt)H−1(xi)V (xj)H−1(xi)δ(xm)}

(V I)b = E{IiIuKitKijKumKuj δ
′(xt)H−1(xi)V (xj)H−1(xu)δ(xm)}.

We now sketch out the argument which shows that (V I)a = O(b3s
n ) and

(V I)b = O(b4s
n ). First, using iterated expectations and the independence of

observations, we can show that (V I)a is equal to

E{IiE[δ′(xt)Kit|xi]H−1(xi) E[V (xj)K2
ij |xi]H−1(xi) E[δ(xm)Kim|xi]}.

Then, keeping in mind the discussion after Assumption 5.1, we can show
that (element by element) the following results hold uniformly for xi ∈ S∗:

E[δ′(xt)Kit|xi] = O(bsn), E[V (xj)K2
ij |xi] = O(bsn), E[δ(xm)Kim|xi] = O(bsn).

Therefore, sinceH−1(xi) is element by element uniformly bounded on S∗, we
get that (V I)a = O(b3s

n ). Next we look at (V I)b. Using iterated expectations
once again, we can show that

(V I)b = E{IiIuE[δ′(xt)Kit|xi]H−1(xi) E[V (xj)KijKuj |xi, xu]H−1(xu)

× E[δ(xm)Kum|xu]}.
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But since the maps

K̃ : xi 7→ sup
u∈SK

K(xi + u), xi 7→ sup
u∈SK

h(xi + bnu), xi 7→ sup
u∈SK

‖V (xi + bnu)‖

are continuous on S, we can write

IiIuE[V (xj)KijKuj |xi, xu]
elt. by elt.

≤ bsnIiIuK̃(
xi − xu

bn
)M∗

where M∗ is a matrix of constants which does not depend upon (xi, xu).
Moreover, as pointed out earlier, we can also show that element by element

E{δ′(xt)Kit|xi} = O(bsn), E{δ(xm)Kum|xu} = O(bsn)

hold uniformly in xi, xu ∈ S∗. Therefore, since H−1(xi) and H−1(xu) are
element by element uniformly bounded on S∗, we get that

(V I)b ≤ cb3s
n E{IiIuK̃(

xi − xu

bn
)}.

However, using the facts that (i) K̃ is bounded on [−2, 2]s, and (ii) xi 7→
supu∈SK h(xi + bnu) and xi 7→ h(xi) are bounded on S∗, it is easy to show
that E{IiIuK̃(xi−xu

bn
)} = O(bsn). Therefore, (V I)b = O(b4s

n ), and we get

E{btjbmj} = O(nb3s
n ) +O(n2b4s

n ) = O(n2b4s
n ){1 +O(

1
nbsn

)} = O(n2b4s
n ).

Combining the results for Eb2tj and Ebtjbmj , it follows that

E{bs/2
n (C2)a}2 =

ε2n
n4b3s

n

{O(n4b3s
n ) +O(n5b4s

n )}

=
ε2n

n4b3s
n

O(n5b4s
n ) = O(bs/2

n );

i.e. E{bs/2
n (C2)a}2 = o(1). The desired conclusion follows. �

Lemma B.9. bs/2
n (C2)b = op(1).

Proof of Lemma B.9. Since the details here are very similar to the ones
in the proof of Lemma B.2, we provide only the barest outline. So write

bs/2
n (C2)b =

εn

n2b
3s/2
n

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKij z̃
′
jΓn(xi)δ(xt)Kit.

Hence it suffices to show that εnA(Γ(lv)
n ) = op(n2b

3s/2
n ), where

A(Γ(lv)
n ) =

n∑
i=1

n∑
j=1,j 6=i

n∑
t=1,t6=j 6=i

IiKij z̃
(l)
j Γ(lv)

n (xi)δ(v)(xt)Kit.

But this can be shown almost exactly as in the proof of Lemma B.2. �
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Lemma B.10. Let n1−2/mbs
n

log n → ∞ and suppose that the assumptions in
Newey (1994, Lemma B.3, Page 252) are satisfied. Then

sup
xi∈S∗

|Ĥ−1(xi)−H−1(xi)|
elt. by elt.

= Op(

√
log n
nbsn

+ b2n).

Proof of Lemma B.10. Define τn =
√

log n
nbs

n
+ b2n. From Newey (1994,

Lemma B.3, Page 252) we have

sup
xi∈S∗

| 1
nbsn

n∑
j=1

Kijzjz
′
j − V (xi)h(xi)|

elt. by elt.
= Op(τn), and

sup
xi∈S∗

|ĥ(xi)− h(xi)| = Op(τn).

Since h is bounded away from zero on S∗, we can use Lemma C.1 to show

sup
xi∈S∗

|V̂ (xi)− V (xi)|
elt. by elt.

= Op(τn).

Furthermore, as (ξ, x) 7→ ξ′V (x)ξ is bounded away from zero on S × S∗,
Lemma C.2 implies that

sup
xi∈S∗

|V̂ −1(xi)− V −1(xi)|
elt. by elt.

= Op(τn).

Therefore, applying Lemma C.1 twice, we get

sup
xi∈S∗

|V̂ −1(xi)ĥ−2(xi)− V −1(xi)h−2(xi)|
elt. by elt.

= Op(τn);

i.e. supxi∈S∗ |Ĥ
−1(xi)−H−1(xi)|

elt. by elt.
= Op(τn). �

Lemma B.11. Let n1−2/mbs
n

log n → ∞ and suppose that the assumptions in
Newey (1994, Lemma B.1, Lemma B.2) are satisfied. Then

sup
xi∈S∗

|Ĥ−1(xi)−
{EΩ̂(xi)}−1

Eĥ(xi)
| elt. by elt.

= Op(

√
log n
nbsn

).

Proof. Let cn
def=

√
log n
nbs

n
. Newey (1994, Lemmas B.1 and B.2) shows that

sup
xi∈S∗

|Ω̂(xi)− EΩ̂(xi)|
elt. by elt.

= Op(cn),

sup
xi∈S∗

|ĥ(xi)− Eĥ(xi)| = Op(cn),

sup
xi∈S∗

|Eĥ(xi)− h(xi)| = Op(b2n).
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Because h is bounded away from zero on S∗, the last result implies that
Eĥ(xi) is also bounded away from zero on S∗ for large enough n. Therefore,
using Lemma C.1 and the first two results, we get

sup
xi∈S∗

|V̂ (xi)−
EΩ̂(xi)

Eĥ(xi)
| elt. by elt.

= Op(cn).

In a similar manner we can show that for large enough n the map (ξ, xi) 7→
ξ′EΩ̂(xi)ξ is bounded away from zero on S × S∗. Therefore, we can use
Lemma C.2 to show that

sup
xi∈S∗

|V̂ −1(xi)− {EΩ̂(xi)

Eĥ(xi)
}−1| elt. by elt.

= Op(cn).

Finally, two successive applications of Lemma C.1 lead to

sup
xi∈S∗

| V̂
−1(xi)

ĥ2(xi)
− {EΩ̂(xi)

Eĥ(xi)
}−1 1

E2ĥ(xi)
| elt. by elt.

= Op(cn);

i.e. supxi∈S∗ |Ĥ
−1(xi)− {EΩ̂(xi)}−1

Eĥ(xi)
| elt. by elt.

= Op(cn). �

Appendix C. Some Useful Results

Lemma C.1. Let an and bn be sequences of positive numbers such that
an, bn ↓ 0. Also let rn be a sequence of functions such that supx |rn(x) −
r(x)| = Op(an) and supx |r(x)| < ∞. Furthermore, sn is a sequence of
functions such that supx |sn(x) − s(x)| = Op(bn) and infx |s(x)| > 0. Then
supx |

rn(x)
sn(x) −

r(x)
s(x) | = Op(max{an, bn}).

Proof of Lemma C.1. Let infx |s(x)| = m, supx |r(x)| = M , and no-
tice that | infx |sn(x)| − infx |s(x)|| ≤ supx |sn(x) − s(x)|. Therefore, since
supx |sn(x) − s(x)| = op(1) by assumption, infx |sn(x)| > m

2 holds with
probability approaching one as n ↑ ∞. Hence we can use the identity
a
b = a

c −
a(b−c)

c2
− a(b−c)2

bc2
to show that

|rn(x)
sn(x)

− r(x)
s(x)

| ≤ supx |rn(x)− r(x)|
|s(x)|

+ |rn(x)|supx |sn(x)− s(x)|
|s(x)|2

+
|rn(x)|
|sn(x)|

{supx |sn(x)− s(x)|}2

|s(x)|2

≤ supx |rn(x)− r(x)|
m

+ |rn(x)|supx |sn(x)− s(x)|
m2

+ 2|rn(x)|{supx |sn(x)− s(x)|}2

m3
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holds with probability approaching one. Because |rn(x)| ≤M+supx |rn(x)−
r(x)|, and supx |sn(x)− s(x)| = op(1) by assumption, we get that

|rn(x)
sn(x)

− r(x)
s(x)

| ≤ supx |rn(x)− r(x)|
m

+M(1 +
2
m

)
supx |sn(x)− s(x)|

m2

+ (1 +
2
m

)
supx |rn(x)− r(x)| supx |sn(x)− s(x)|

m2
.

holds with probability approaching one. The desired result follows. �

Lemma C.2. Let an be a sequence of positive numbers such that an → 0.
Also, let V̂ (x) be a sequence of d×d symmetric positive semidefinite matrices
such that supx∈S∗ ‖V̂ (x)−V (x)‖ = Op(an), and (ξ, x) 7→ ξ′V (x)ξ is bounded
away from zero on S× S∗. Then supx∈S∗ ‖V̂

−1(x)− V −1(x)‖ = Op(an).

Proof of Lemma C.2. Pick any α ∈ S. Clearly,

sup
(α,x)∈S×S∗

|α′V̂ (x)α− α′V (x)α| = Op(an).

Since α′V (x)α is bounded away from zero on S×S∗, we can use Lemma C.1
to see that sup(α,x)∈S×S∗ |

1
α′V̂ (x)α

− 1
α′V (x)α | = Op(an). This means that for

any ξ ∈ S, we can write

sup
(α,x)∈S×S∗

| (α′ξ)2

α′V̂ (x)α
− (α′ξ)2

α′V (x)α
| = Op(an).

In particular, this implies that

sup
x∈S∗

| sup
α∈S

(α′ξ)2

α′V̂ (x)α
− sup

α∈S

(α′ξ)2

α′V (x)α
| = Op(an),

which, for large enough n, reduces to

sup
x∈S∗

|ξ′V̂ −1(x)ξ − ξ′V −1(x)ξ| = Op(an).

As ξ ∈ S was arbitrary we obtain the required result. �

Lemma C.3. Let z1, . . . , zn be a sequence of iid random vectors such that
E‖z1‖m < ∞ for some m > 0, and let z∗n = max{‖z1‖, . . . , ‖zn‖}. Then
Pr{z∗n < n1/m} = 1 for large enough n.

Proof of Lemma C.3. For the reader’s convenience we repeat the argu-
ment in Owen (1988, Page 241). Since

∑∞
n=1 Pr{‖z1‖m ≥ n} ≤ E‖z1‖m,

we have
∑∞

n=1 Pr{‖z1‖m ≥ n} < ∞. But because z1, . . . , zn are identi-
cally distributed,

∑∞
n=1 Pr{‖zn‖m ≥ n} < ∞. Therefore, by the Borel-

Cantelli lemma Pr{An i.o.} = 0, where An
def= {‖zn‖m ≥ n}. Thus the event

{‖zn‖ < n1/m} happens for all but finitely many n with probability one.
Since n1/m will eventually exceed the largest element in the finite collection
of ‖zk‖’s that exceed k1/m, we get Pr{z∗n < n1/m} = 1 when n is large
enough. �
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Appendix D. Some Useful Summation Identities

The following identities have been used throughout the paper.

(D.1)
n∑

i=1

n∑
j=1

aij

n∑
k=1

bik =
n∑

i=1

aiibii +
n∑

i=1

n∑
j=1,j 6=i

aijbij +
n∑

i=1

n∑
t=1,t6=i

aiibit

+
n∑

i=1

n∑
k=1,k 6=i

aikbii +
n∑

i=1

n∑
k=1,k 6=i

n∑
t=1,t6=k 6=i

aikbit

(D.2) {
n∑

t=1

n∑
j=1,j 6=t

atj}2 =
n∑

t=1

n∑
j=1,j 6=t

a2
tj +

n∑
t=1

n∑
j=1,j 6=t

n∑
k=1,k 6=j 6=t

atjatk+

n∑
t=1

n∑
j=1,j 6=t

n∑
u=1,u 6=j 6=t

atjaju+
n∑

t=1

n∑
j=1,j 6=t

atjajt+
n∑

t=1

n∑
j=1,j 6=t

n∑
m=1,m 6=j 6=t

atjamj

+
n∑

t=1

n∑
j=1,j 6=t

n∑
m=1,m 6=j 6=t

atjamt+
n∑

t=1

n∑
j=1,j 6=t

n∑
m=1,m 6=j 6=t

n∑
u=1,u 6=m6=j 6=t

atjamu

(D.3) {
n−1∑
t=1

n∑
j=t+1

atj}2 =
n−1∑
t=1

n∑
j=t+1

a2
tj +

n−2∑
t=1

n∑
j=t+1

n∑
k=t+1,k 6=j

atjatk

+
n−1∑
t=1

n∑
j=t+1

n−1∑
m=1,m 6=t

n∑
u=m+1

atjamu

(D.4) {
n∑

i=1

ai}4 =
n∑

i=1

a4
i + 4

n∑
i=1

n∑
j=1,j 6=i

aia
3
j + 3

n∑
i=1

n∑
k=1,k 6=i

a2
i a

2
k+

6
n∑

i=1

n∑
j=1,j 6=i

n∑
m=1,m 6=j 6=i

aia
2
jam +

n∑
i=1

n∑
j=1,j 6=i

n∑
l=1,l 6=j 6=i

n∑
m=1,m 6=l 6=j 6=i

aiajalam

�
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Appendix E. Simulation Results

Table 1. z = c(1 + x2)1/2 + ε(1 + x2)1/2

Size Corrected Size Uncorrected
n = 100 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.007 0.049 0.103 0.019 0.063 0.103

ABSuw 0.006 0.056 0.098 0.010 0.048 0.073
Zheng 0.008 0.049 0.091 0.024 0.066 0.104

c = 0.1 SELR 0.026 0.103 0.174 0.052 0.120 0.176
ABSuw 0.030 0.093 0.162 0.038 0.089 0.126
Zheng 0.024 0.082 0.154 0.045 0.109 0.164

c = 0.2 SELR 0.141 0.311 0.423 0.207 0.348 0.428
ABSuw 0.122 0.290 0.399 0.144 0.263 0.359
Zheng 0.099 0.242 0.369 0.171 0.294 0.383

c = 0.3 SELR 0.430 0.639 0.728 0.520 0.664 0.729
ABSuw 0.387 0.614 0.716 0.422 0.577 0.672
Zheng 0.318 0.552 0.682 0.450 0.598 0.694

c = 0.4 SELR 0.738 0.879 0.936 0.815 0.895 0.937
ABSuw 0.707 0.864 0.927 0.733 0.851 0.901
Zheng 0.639 0.825 0.895 0.753 0.861 0.901

c = 0.5 SELR 0.941 0.979 0.990 0.963 0.982 0.990
ABSuw 0.928 0.974 0.986 0.937 0.971 0.982
Zheng 0.881 0.963 0.979 0.942 0.970 0.981

Size Corrected Size Uncorrected
n = 250 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.013 0.055 0.097 0.026 0.068 0.101

ABSuw 0.009 0.049 0.093 0.026 0.053 0.085
Zheng 0.010 0.052 0.096 0.028 0.072 0.102

c = 0.1 SELR 0.063 0.186 0.298 0.126 0.234 0.301
ABSuw 0.062 0.190 0.297 0.094 0.199 0.273
Zheng 0.050 0.161 0.265 0.096 0.208 0.278

c = 0.2 SELR 0.433 0.645 0.756 0.567 0.689 0.762
ABSuw 0.407 0.640 0.753 0.504 0.655 0.726
Zheng 0.346 0.592 0.701 0.494 0.637 0.715

c = 0.3 SELR 0.889 0.970 0.989 0.943 0.980 0.990
ABSuw 0.871 0.966 0.985 0.928 0.969 0.982
Zheng 0.831 0.947 0.969 0.910 0.952 0.971

c = 0.4 SELR 0.994 0.997 0.999 0.997 0.998 0.999
ABSuw 0.994 0.998 0.998 0.996 0.998 0.998
Zheng 0.989 0.998 1.000 0.997 0.998 1.000

c = 0.5 SELR 1.000 1.000 1.000 1.000 1.000 1.000
ABSuw 1.000 1.000 1.000 1.000 1.000 1.000
Zheng 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2. z = c(1 + x2) + ε(1 + x2)1/2

Size Corrected Size Uncorrected
n = 100 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.007 0.049 0.103 0.019 0.063 0.103

ABSuw 0.006 0.056 0.098 0.010 0.048 0.073
Zheng 0.008 0.049 0.091 0.024 0.066 0.104

c = 0.1 SELR 0.034 0.126 0.204 0.069 0.148 0.206
ABSuw 0.041 0.106 0.196 0.048 0.098 0.157
Zheng 0.028 0.103 0.176 0.058 0.134 0.188

c = 0.2 SELR 0.210 0.405 0.527 0.297 0.443 0.529
ABSuw 0.195 0.395 0.513 0.223 0.365 0.462
Zheng 0.151 0.344 0.475 0.257 0.398 0.497

c = 0.3 SELR 0.579 0.752 0.838 0.674 0.778 0.839
ABSuw 0.545 0.751 0.832 0.588 0.731 0.792
Zheng 0.484 0.700 0.809 0.606 0.749 0.820

c = 0.4 SELR 0.885 0.959 0.975 0.922 0.962 0.975
ABSuw 0.866 0.949 0.976 0.885 0.945 0.964
Zheng 0.831 0.932 0.961 0.892 0.952 0.964

c = 0.5 SELR 0.986 0.999 0.999 0.993 0.999 0.999
ABSuw 0.983 0.998 0.999 0.986 0.998 0.999
Zheng 0.973 0.993 0.999 0.988 0.995 0.999

Size Corrected Size Uncorrected
n = 250 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.013 0.055 0.097 0.026 0.068 0.101

ABSuw 0.009 0.049 0.093 0.026 0.053 0.085
Zheng 0.010 0.052 0.096 0.028 0.072 0.102

c = 0.1 SELR 0.096 0.244 0.354 0.169 0.284 0.366
ABSuw 0.084 0.245 0.362 0.145 0.257 0.339
Zheng 0.069 0.224 0.327 0.146 0.264 0.346

c = 0.2 SELR 0.599 0.788 0.872 0.709 0.819 0.879
ABSuw 0.579 0.804 0.882 0.677 0.809 0.866
Zheng 0.534 0.754 0.834 0.663 0.790 0.850

c = 0.3 SELR 0.975 0.994 0.995 0.989 0.995 0.995
ABSuw 0.970 0.994 0.996 0.980 0.994 0.996
Zheng 0.953 0.987 0.994 0.977 0.989 0.994

c = 0.4 SELR 0.999 1.000 1.000 1.000 1.000 1.000
ABSuw 0.999 1.000 1.000 0.999 1.000 1.000
Zheng 1.000 1.000 1.000 1.000 1.000 1.000

c = 0.5 SELR 1.000 1.000 1.000 1.000 1.000 1.000
ABSuw 1.000 1.000 1.000 1.000 1.000 1.000
Zheng 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3. z = cx1/2 + εx1/2

Size Corrected Size Uncorrected
n = 100 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.008 0.054 0.104 0.013 0.047 0.078

ABSuw 0.007 0.053 0.095 0.016 0.050 0.077
Zheng 0.006 0.047 0.091 0.030 0.068 0.100

c = 0.1 SELR 0.026 0.099 0.174 0.037 0.089 0.140
ABSuw 0.025 0.081 0.159 0.037 0.077 0.124
Zheng 0.020 0.073 0.140 0.046 0.098 0.153

c = 0.2 SELR 0.129 0.298 0.409 0.158 0.282 0.363
ABSuw 0.090 0.249 0.375 0.132 0.236 0.316
Zheng 0.078 0.202 0.325 0.152 0.249 0.344

c = 0.3 SELR 0.392 0.610 0.706 0.438 0.588 0.671
ABSuw 0.288 0.529 0.669 0.367 0.516 0.616
Zheng 0.245 0.470 0.609 0.389 0.542 0.626

c = 0.4 SELR 0.710 0.867 0.926 0.752 0.856 0.903
ABSuw 0.598 0.802 0.877 0.670 0.791 0.851
Zheng 0.536 0.751 0.846 0.686 0.813 0.857

c = 0.5 SELR 0.921 0.974 0.985 0.940 0.970 0.980
ABSuw 0.850 0.949 0.976 0.880 0.945 0.971
Zheng 0.802 0.918 0.964 0.895 0.944 0.966

Size Corrected Size Uncorrected
n = 250 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.013 0.054 0.092 0.021 0.053 0.074

ABSuw 0.011 0.049 0.093 0.027 0.052 0.084
Zheng 0.010 0.044 0.096 0.028 0.062 0.104

c = 0.1 SELR 0.059 0.191 0.287 0.096 0.188 0.263
ABSuw 0.052 0.169 0.273 0.081 0.175 0.243
Zheng 0.043 0.137 0.237 0.090 0.179 0.250

c = 0.2 SELR 0.415 0.641 0.746 0.500 0.639 0.716
ABSuw 0.334 0.590 0.701 0.440 0.598 0.683
Zheng 0.264 0.509 0.648 0.421 0.575 0.658

c = 0.3 SELR 0.877 0.969 0.987 0.917 0.969 0.983
ABSuw 0.810 0.944 0.972 0.891 0.951 0.967
Zheng 0.739 0.909 0.950 0.864 0.929 0.958

c = 0.4 SELR 0.994 0.998 0.999 0.996 0.998 0.998
ABSuw 0.989 0.996 0.998 0.992 0.996 0.997
Zheng 0.978 0.993 0.998 0.989 0.996 0.998

c = 0.5 SELR 1.000 1.000 1.000 1.000 1.000 1.000
ABSuw 0.999 1.000 1.000 0.999 1.000 1.000
Zheng 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4. z = cx+ εx1/2

Size Corrected Size Uncorrected
n = 100 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.008 0.054 0.104 0.013 0.047 0.078

ABSuw 0.007 0.053 0.095 0.016 0.050 0.077
Zheng 0.006 0.047 0.091 0.030 0.068 0.100

c = 0.1 SELR 0.013 0.074 0.144 0.024 0.069 0.107
ABSuw 0.021 0.071 0.134 0.031 0.065 0.094
Zheng 0.016 0.059 0.126 0.041 0.080 0.137

c = 0.2 SELR 0.067 0.176 0.275 0.083 0.167 0.234
ABSuw 0.063 0.170 0.270 0.075 0.161 0.225
Zheng 0.046 0.141 0.233 0.095 0.187 0.244

c = 0.3 SELR 0.182 0.361 0.475 0.225 0.343 0.429
ABSuw 0.155 0.346 0.472 0.202 0.327 0.423
Zheng 0.130 0.304 0.435 0.235 0.360 0.452

c = 0.4 SELR 0.368 0.599 0.691 0.432 0.574 0.649
ABSuw 0.348 0.581 0.703 0.414 0.560 0.650
Zheng 0.303 0.529 0.659 0.444 0.589 0.673

c = 0.5 SELR 0.609 0.797 0.868 0.658 0.785 0.837
ABSuw 0.573 0.788 0.865 0.638 0.779 0.828
Zheng 0.530 0.750 0.833 0.677 0.797 0.839

Size Corrected Size Uncorrected
n = 250 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.013 0.054 0.092 0.021 0.053 0.074

ABSuw 0.011 0.049 0.093 0.027 0.052 0.082
Zheng 0.010 0.044 0.096 0.028 0.062 0.104

c = 0.1 SELR 0.037 0.115 0.201 0.054 0.115 0.173
ABSuw 0.039 0.123 0.197 0.062 0.128 0.176
Zheng 0.030 0.106 0.189 0.071 0.137 0.201

c = 0.2 SELR 0.182 0.384 0.506 0.232 0.379 0.480
ABSuw 0.187 0.394 0.505 0.261 0.400 0.480
Zheng 0.156 0.346 0.459 0.255 0.406 0.478

c = 0.3 SELR 0.519 0.730 0.825 0.596 0.727 0.803
ABSuw 0.517 0.742 0.851 0.620 0.758 0.836
Zheng 0.460 0.693 0.810 0.609 0.749 0.816

c = 0.4 SELR 0.856 0.958 0.973 0.907 0.958 0.971
ABSuw 0.863 0.960 0.980 0.921 0.961 0.976
Zheng 0.820 0.939 0.971 0.908 0.956 0.972

c = 0.5 SELR 0.982 0.995 0.996 0.990 0.995 0.996
ABSuw 0.982 0.994 0.997 0.991 0.994 0.995
Zheng 0.971 0.993 0.997 0.990 0.994 0.998
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Table 5. z = c(0.5 + I{x ≥ 0.5})1/2 + ε(0.5 + I{x ≥ 0.5})1/2

Size Corrected Size Uncorrected
n = 100 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.011 0.047 0.100 0.016 0.044 0.088

ABSuw 0.009 0.050 0.097 0.014 0.047 0.074
Zheng 0.008 0.047 0.094 0.030 0.062 0.100

c = 0.1 SELR 0.026 0.103 0.174 0.044 0.101 0.147
ABSuw 0.026 0.087 0.160 0.033 0.084 0.127
Zheng 0.021 0.069 0.145 0.044 0.104 0.161

c = 0.2 SELR 0.125 0.305 0.415 0.171 0.303 0.372
ABSuw 0.093 0.248 0.383 0.131 0.238 0.328
Zheng 0.082 0.212 0.334 0.162 0.267 0.351

c = 0.3 SELR 0.385 0.617 0.724 0.463 0.613 0.699
ABSuw 0.309 0.540 0.668 0.369 0.528 0.622
Zheng 0.257 0.500 0.632 0.413 0.566 0.645

c = 0.4 SELR 0.709 0.872 0.929 0.782 0.871 0.914
ABSuw 0.613 0.810 0.893 0.679 0.798 0.867
Zheng 0.574 0.773 0.864 0.700 0.824 0.868

c = 0.5 SELR 0.918 0.976 0.993 0.947 0.976 0.988
ABSuw 0.865 0.954 0.984 0.890 0.950 0.974
Zheng 0.824 0.932 0.968 0.903 0.954 0.968

Size Corrected Size Uncorrected
n = 250 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.014 0.054 0.095 0.020 0.058 0.082

ABSuw 0.010 0.049 0.098 0.023 0.053 0.088
Zheng 0.009 0.047 0.093 0.021 0.068 0.105

c = 0.1 SELR 0.060 0.187 0.292 0.095 0.199 0.270
ABSuw 0.051 0.164 0.257 0.087 0.171 0.235
Zheng 0.046 0.143 0.229 0.093 0.180 0.239

c = 0.2 SELR 0.420 0.641 0.747 0.515 0.655 0.732
ABSuw 0.327 0.586 0.697 0.455 0.592 0.676
Zheng 0.289 0.538 0.652 0.452 0.594 0.667

c = 0.3 SELR 0.884 0.969 0.985 0.925 0.971 0.982
ABSuw 0.815 0.948 0.971 0.891 0.949 0.969
Zheng 0.766 0.916 0.953 0.873 0.936 0.958

c = 0.4 SELR 0.995 0.998 0.999 0.996 0.998 0.999
ABSuw 0.985 0.996 0.998 0.991 0.996 0.998
Zheng 0.980 0.992 0.998 0.989 0.996 0.998

c = 0.5 SELR 1.000 1.000 1.000 1.000 1.000 1.000
ABSuw 0.999 1.000 1.000 0.999 1.000 1.000
Zheng 1.000 1.000 1.000 1.000 1.000 1.000
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Table 6. z = c(0.5 + I{x ≥ 0.5}) + ε(0.5 + I{x ≥ 0.5})1/2

Size Corrected Size Uncorrected
n = 100 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.011 0.047 0.100 0.016 0.044 0.088

ABSuw 0.009 0.050 0.097 0.014 0.047 0.074
Zheng 0.008 0.047 0.094 0.030 0.062 0.100

c = 0.1 SELR 0.028 0.115 0.181 0.048 0.114 0.157
ABSuw 0.031 0.092 0.180 0.044 0.088 0.135
Zheng 0.025 0.082 0.158 0.054 0.121 0.166

c = 0.2 SELR 0.142 0.329 0.429 0.193 0.327 0.397
ABSuw 0.129 0.304 0.445 0.173 0.297 0.385
Zheng 0.111 0.255 0.402 0.198 0.322 0.425

c = 0.3 SELR 0.421 0.640 0.737 0.492 0.637 0.708
ABSuw 0.394 0.622 0.726 0.467 0.611 0.695
Zheng 0.358 0.576 0.710 0.494 0.638 0.720

c = 0.4 SELR 0.735 0.893 0.930 0.805 0.890 0.918
ABSuw 0.704 0.874 0.922 0.753 0.866 0.904
Zheng 0.676 0.847 0.898 0.787 0.874 0.905

c = 0.5 SELR 0.932 0.982 0.995 0.958 0.982 0.992
ABSuw 0.913 0.978 0.994 0.931 0.978 0.987
Zheng 0.888 0.965 0.984 0.940 0.980 0.987

Size Corrected Size Uncorrected
n = 250 1% 5% 10% 1% 5% 10%
c = 0.0 SELR 0.014 0.054 0.095 0.020 0.058 0.082

ABSuw 0.010 0.049 0.098 0.023 0.053 0.088
Zheng 0.009 0.047 0.093 0.021 0.068 0.105

c = 0.1 SELR 0.066 0.188 0.297 0.104 0.203 0.274
ABSuw 0.069 0.192 0.294 0.120 0.206 0.280
Zheng 0.060 0.173 0.272 0.114 0.213 0.289

c = 0.2 SELR 0.458 0.660 0.780 0.533 0.677 0.754
ABSuw 0.427 0.686 0.778 0.551 0.697 0.771
Zheng 0.399 0.627 0.744 0.543 0.684 0.759

c = 0.3 SELR 0.909 0.972 0.985 0.945 0.974 0.982
ABSuw 0.895 0.974 0.983 0.940 0.975 0.982
Zheng 0.872 0.960 0.978 0.925 0.969 0.981

c = 0.4 SELR 0.995 0.999 0.999 0.997 0.999 0.999
ABSuw 0.992 0.999 0.999 0.996 0.999 0.999
Zheng 0.991 0.999 1.000 0.997 0.999 1.000

c = 0.5 SELR 1.000 1.000 1.000 1.000 1.000 1.000
ABSuw 0.999 1.000 1.000 1.000 1.000 1.000
Zheng 1.000 1.000 1.000 1.000 1.000 1.000
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Härdle, W., and J. Marron (1990): “Semiparametric Comparison of Regression
Curves,” Annals of Statistics, 18, 63–89.



54 TRIPATHI AND KITAMURA

Hastie, T., and R. Tibshirani (1986): “Generalized Additive Models,” Statistical Sci-
ence, 1, 297–318.

Hong, Y., and H. White (1995): “Consistent Specification Testing via Nonparametric
Series Regressions,” Econometrica, 63, 1133–1160.

Horowitz, J. L., and V. G. Spokoiny (1999): “An Adaptive Rate-Optimal Test of a
Parametric Model Against a Nonparametric Alternative,” Manuscript.

Johnston, G. (1982): “Probabilities of maximal deviations for nonparametric regression
function estimates,” Journal of Multivariate Analysis, 12, 402–414.

Kitamura, Y. (1997): “Empirical likelihood methods with weakly dependent processes,”
Annals of Statistics, 25(5), 2084–2102.

(1999): “Asymptotic Optimality of Emptrical Likelihood for Testing Moment Re-
strictions,” Working Paper, Department of Economics, University of Wisconsin-Madison.

Kitamura, Y., G. Tripathi, and H. Ahn (2000): “Estimating Parameters under Con-
ditional Moment Restrictions by Smoothing the Empirical Likelihood,” Manuscript, De-
partment of Economics, University of Wisconsin-Madison.

LeBlanc, M., and J. Crowley (1995): “Semiparametric Regression Functionals,” Jour-
nal of the American Statistical Association, 90(429), 95–105.

Liero, H. (1982): “On the maximal deviation of the kernel regression function estimate,”
Mathematische Operationsforschung und Statistik. Series Statistics, 13, 171–181.

Newey, W. K. (1985): “Maximum Likelihood Specification Testing and Conditional
Moment Tests,” Econometrica, 53, 1047–1070.

(1994): “Kernel Estimation of Partial Means and a General Variance Estimator,”
Econometric Theory, 10, 233–253.

Owen, A. (1984): “The Estimation of Smooth Curves,” Stanford Linear Accelerator
Center Publication 3394.

(1988): “Empirical Likelihood Ratio Confidence Intervals for a Single Functional,”
Biometrika, 75(2), 237–249.

(1990): “Empirical Likelihood Ratio Confidence Regions,” The Annals of Statis-
tics, 18(1), 90–120.

(1991): “Empirical Likelihood for Linear Models,” The Annals of Statistics, 19(4),
1725–1747.

Priestley, M. (1981): Spectral Analysis of Time Series. New York: Academic Press.
Qin, J., and J. Lawless (1994): “Empirical Likelihood and General Estimating Equa-
tions,” Annals of Statistics, 22, 300–325.

(1995): “Estimating Equations, Empirical Likelihood and Constraints on Param-
eters,” The Canadian Journal of Statistics, 23(2), 145–159.

Staniswalis, J. G. (1987): “A Weighted Likelihood Motivation for Kernel Estimators of
a Regression Function with Biomedical Applications,” Technical Report, Virginia Com-
monwealth University.

Wald, A. (1943): “Tests of statistical hypotheses concerning several parameters when the
number of observations is large,” Transactions of the American Mathematical Society, 54,
426–482.

Whang, Y., and D. Andrews (1993): “Tests of Specification for Parametric and Semi-
parametric Models,” Journal of Econometrics, 57, 277–318.

Wooldridge, J. (1992): “A Test for Functional Form against Nonparametric Alterna-
tives,” Econometric Theory, 8, 452–475.

Yatchew, A. (1992): “Nonparametric Regression Tests Based on Least Squares,” Econo-
metric Theory, 8, 435–451.

Zheng, J. (1996): “A Consistent Test of Functional Form via Nonparametric Estimation
Techniques,” Journal of Econometrics, 75, 263–289.



55

Department of Economics, University of Wisconsin, Madison, WI-53706.
E-mail address: gtripath@ssc.wisc.edu

Department of Economics, University of Wisconsin, Madison, WI-53706.
E-mail address: ykitamur@ssc.wisc.edu


