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ON TESTING CONDITIONAL MOMENT RESTRICTIONS:
THE CANONICAL CASE

GAUTAM TRIPATHI AND YUICHI KITAMURA

ABSTRACT. Let (z,z) be a pair of random vectors. We construct a
new “smoothed” empirical likelihood based test for the hypothesis that

E(z|z) “€ 0, and show that the test statistic is asymptotically normal

under the null. An expression for the asymptotic power of this test under
a sequence of local alternatives is also obtained. The test is shown to
possess an optimality property in large samples. Simulation evidence
suggests that it also behaves well in small samples.

1. INTRODUCTION

In a series of papers Owen (1988, 1990, 1991) studied the use of inference
based on the nonparametric likelihood ratio. This approach is particularly
useful when testing hypotheses that can be expressed as moment restrictions.
As a specific example suppose that {z1,...,2,} is a random sample in R?,
and we want to test the null hypothesis Ez; = 0. Owen’s empirical likelihood
ratio testing procedure is as follows: First, maximize the log likelihood under
the null hypothesis of a discrete distribution that has support on the data;
i.e. obtain the restricted empirical log likelihood

n n n
EL" = pifna}]g Zlogpi st. p; >0, Zpi =1, Zzipi =0.
T =t i=1 i=1

Next, obtain the unrestricted empirical log likelihood

n n
EL" = max logp; s.t. p; >0, =0
oA Zz; gDi bi = ;pz

Finally, construct the empirical likelihood ratio

ELR = 2{EL"" — EL"}
and reject Hp if ELR is large. Owen demonstrated that critical values for
this test can be obtained by using the fact that, under the null hypothesis,

ELR % x4 asn T oo. As some recent papers (described later) have shown,
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2 TRIPATHI AND KITAMURA

this approach can be used to handle quite general forms of moment restric-
tions. However, the attention of most of the literature seems to have been
confined to dealing with hypotheses expressed as unconditional moment re-
strictions. In this paper we extend the empirical likelihood paradigm to
handle conditional moment restrictions.

Let (x,z) denote a pair of observable random vectors. Throughout the
paper we will treat z as the response and x as the conditioning variable. We
extend the empirical likelihood approach to test

Hp : Pr{E(z|z) =0} =1 ws. H;j:Pr{E(z|z) =0} < 1.

Note that this null hypothesis' is a special case of restrictions of the form
E{g(z,6p)|z} = 0, where ) is an unknown finite dimensional parameter and
g a vector of known functions. However, the mathematical detail required
in dealing with such restrictions is substantially higher than that involved in
testing the prototypical conditional moment restriction E(z|z) = 0. There-
fore, our research program is to first obtain results for testing the canonical
restriction E(z|x) = 0. The results in this paper, apart from being theo-
retically interesting in their own right, are directly applicable to situations
where we want to test for orthogonality of observed variables or to test the
hypothesis of no relationship between the response and explanatory variable.

Much progress has been made in the area of testing conditional moment
restrictions. See, among others, contributions by Newey (1985) and Bierens
(1990, 1994). Related to this literature is the work on specification testing of
a parametric regression function against a nonparametric alternative. See,
for instance, the papers by Eubank and Spiegelman (1990), Wooldridge
(1992), Yatchew (1992), Hérdle and Mammen (1993), Whang and Andrews
(1993), Fan and Li (1996), Hong and White (1995), Zheng (1996), Ait-
Sahalia, Bickel, and Stoker (2000), Andrews (1997), Bierens and Ploberger
(1997), and Horowitz and Spokoiny (1999). We show that a test based on
Owen’s empirical likelihood provides a useful alternative to the procedures
developed in the above mentioned papers. Moreover, our test possesses
an asymptotic optimality property and also appears to work well in finite
samples.

The paper is organized is as follows: In Section 2 we introduce the
smoothed empirical log likelihood (hereafter abbreviated as SEL) approach
for testing E(z|z) = 0. Section 3 describes the assumptions employed in this
paper along with some notation which is used subsequently. Sections 4 and
5 have results regarding the asymptotic distribution of the SEL based test
under the null, and under a sequence of local alternatives, respectively. In
Section 6 we describe an optimality property of our test and in Section 7
we present some simulation results about the small sample behavior of our
test. Section 8 concludes. All proofs are confined to the appendices.

IWhen writing conditional moment restrictions such as E(z|z) = 0, we frequently omit
the qualifier “w.p 1.”
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Notation. The following notation is used throughout the paper: By a “vec-
tor” we mean a column vector. We do not make any notational distinction
between a random variable and the value taken by it. The difference should
be clear from the context. S is a subset of R® which may be unbounded.
When S is open we let C*(S) denote the set of all real valued functions
on S which have continuous partial derivatives up to order k. When S is
closed we say that f € CF(S) if f € C¥(int(S)) and f along with its par-
tial derivatives up to order k can be extended continuously to S. L2(S)
stands for the Hilbert space of all real valued square integrable functions
on S which are integrable with respect to the probability distribution on
S. I{A} is the indicator function of set A, and for a matrix V' the symbol
IVII = /tr(VV’) denotes the Frobenius norm. ||V reduces to the usual
Fuclidean norm in case V' happens to be a vector. Unless stated otherwise,
all limits are taken as the number of observations n T co. To simplify typog-
raphy we frequently suppress the dependence of a function upon n without
warning the reader. O

2. THE SMOOTHED EMPIRICAL LIKELIHOOD APPROACH

This section develops an empirical likelihood based test of conditional mo-
ment restriction E(z|x) = 0. Our main tool is empirical likelihood, though
a kernel smoothing technique plays an important part in formulating our
test procedure. Recall that smoothing arises naturally in the theory of local
likelihood estimation by considering expected log likelihood. See, for ex-
ample, Brillinger (1977), Owen (1984), Hastie and Tibshirani (1986), and
Staniswalis (1987). Our empirical likelihood ratio based test can also be
motivated using an expected log likelihood criterion.

Let f(z,z) denote the density of (z,z) with respect to some appropriate
measure. Define f(z,z) = f(z|z)h(z), where f(z|z) and h(z) denote the
conditional density of z given x and the marginal density of x, respectively.
We want to test the conditional moment restriction [pq zf(z|z) dF(z) =
0, where F' is a dominating measure for the marginal distribution of z.
Throughout the paper we assume that x is continuously distributed and that
f(z|z) is smooth in z. To illustrate why smoothing the empirical likelihood
is important, we first ignore the smoothness of f(z|z) and see what happens
when we calculate the empirical likelihood for this problem without any
smoothing. So let {z;,z;}I"; be a random sample and v, and v, denote
the counting measures on {x;}!' ; and {z}" ; respectively. Consider the

n + 1 sets of probability measures S {Poo—zy K Vo i AP, p—y, =

zlx=x;
1,fzsz|z:xi =0} fori=1,...,n, and ’Pg(cn) ={P, K vgp: [dP, =1}
Let p., |z, be the Radon-Nikodym derivative of P,,—,, € pm

zlz=x;
to v, evaluated at (z;,2;). Here 4,j = 1,...,n. Similarly, p,, denotes the

with respect

Radon-Nikodym derivatives of P, € ngn) with respect to v, ,, evaluated at
z;. Define py, »;, = p.;|4,Pz;- The conventional empirical likelihood is simply
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the multinomial likelihood II7' i py, -, = I p., |4, Py, maximized over the
() and P, € P;S;n). This is

zle=x;

Radon-Nikodym derivatives of P,|,—,, €
equivalent to maximizing

n n n
(2'1) Z logpxi,zi = Z 10gpzi\:pi + Z logpxi
=1 =1 i=1

with respect to {pzjm,pxi 24,5 =1,...,n}, subject to the constraints

n n n
j=1 i=1 j=1

Although maximizing (2.1) under (2.2) yields the usual nonparametric mle
of pz, namely p,, = 1/n for each i, it does not return a consistent solution for
Dzjlz;- TO see this, suppose d = 1 for simplicity and assume that the convex
hull of {z1,...,2,} contains the origin so that the maximization problem is
well defined. Then it is easy to see that the solution is to set at least n — 2
of the p, |, ’s to zero, irrespective of the sample size. Moreover, without the
last constraint in (2.2), the solution is Pojlz; = i, where 0;; is Kronecker’s
delta. This, unfortunately, does not yield any meaningful results.

The above problem is analogous to the failure of likelihood based function
estimation reported in Hastie and Tibshirani (1986, Section 5). The remedy
they suggest is to maximize the expected log likelihood instead. Applying
this idea to our problem, consider maximizing the empirical analog of

(2.3) Eflog f(z, 2)} = E{E[log f(z|x)[x]} + E{log h(x)},

subject to (2.2). This leads to the following maximization problem:

n n n
(2.4) max o nt Z Z wijlogp, |»; + nt Z; log pa,
P

{pzjlxiypxifizjzl i=1 j=1
n

n n
S’t' pzj|x, Z 07 pl’z Z 07 szﬂfl‘z = 17 prl = 17 szpszsl = 0
j=1 i=1 j=1

Here
i — ’C(Lz;fg) Ky

W= =T -

Y KR XK
where the function K is chosen to satisfy Assumption 3.4. The w;;’s are
kernel weights familiar from the nonparametric regression literature and are
mathematically quite tractable. The bandwidth b, is a null sequence of
positive numbers satisfying certain conditions described later in the paper.
To solve (2.4), let us first rewrite it using joint probabilities. This will sim-
plify treatment later on. So define p;; = pg, p.,|., to be the probability mass
placed at (z;, z;) by the joint distribution Py, P, |;—,,. Since Z?Zl wij =1
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for each i, after dropping the inessential factor n~! on the objective function
we can rewrite (2.4) as:

(2.5) max , Z Z w;j log pyj

dg=1,...
{pijiij=1,.m} = =

n n ZTL ZiDii
=1
st pij 20, E E pij = 1, L =0

i=1 j=1 2 j-1Pij

In a b, neighborhood of z;, w;; assigns smaller weights to those x;’s which
are farther away from x;. This has the effect of smoothing the empirical log
likelihood at each z;. The Lagrangian for this problem is given by?

n n n n n n
£ = Z Z w;jlog pij — M(Z Zpij -1)— Z Z Nizipij,
=1 j=1 i=1 j=1 i=1 j=1

where 1 is the Lagrange multiplier for the second constraint and {); € R% :
i =1,...,n} the set of Lagrange multipliers for the third constraint. It is
easy to verify that the solution to this problem is given by

bii Wij
Y n+ Nozj
where each \; solves
2.6 —HY -0, i=1,...,n.
(2:6) Z n+ Nzj ’ "

j=1

The A;’s in (2.6) can be numerically obtained as the solution to the opti-
mization problem

n
1 .. / .
(2.7) ;relg}i —;w@] log(n + ¢'z;).

Because ¢ — —log(n+ ¢'z;) is strictly convex, (2.7) can be uniquely solved

for A; in few iterations by a standard Newton-Raphson procedure. Hence
we can write the restricted (i.e. under E(z|z) = 0) SEL as

n n non .
SELT =32 3wy oy = > 3wy los( )
e

i=1 j=1 i=1 j=1
n n .
- min Zwij log{ wl], }.
= pERd = n+ @'z;

2Since the ob jective function depends upon p;; only through log p;;, the nonnegativity
constraint p;; > 0 does not bind.
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Next we look at the unrestricted problem, which is similar to (2.5) except
that the conditional moment constraint is absent; i.e. we solve

n n n n
max Z Z wij logpij s.t. pij Z 0, Z sz'j =1.
{pw 1,5=1,.. 7”} i=1 j=1 i=1 j=1
This can also be solved by the Lagrange multiplier technique to give
LWy
bij = %7
and we can write the unrestricted SEL as

SELY" = i i Wi j log{ %j

i=1 j=1

Note that for notational convenience we are ignoring the dependence of SEL"
and SEL"" upon n.
An analog of the parametric likelihood ratio test statistic would then be:

ur ' g . )\’ILZ
(2.8) 2(SEL*" — SEL") = zz szj log(1 + TJ)
=1 j=1
=2 i1
3 g Dt + 50

Heuristically speaking, (2.8) will be small if the conditional moment restric-
tion E(z|z) = 0 is indeed true. Therefore, it seems sensible to base the test
for E(z|z) = 0 upon (2.8). However, as described in the next section, we
will use a slightly modified version of (2.8) for our test.

Before proceeding any further, we mention some papers in the empirical
likelihood literature which may be relevant to us. The basic references are,
of course, the seminal papers by Owen (1988, 1990, 1991) for iid data. Using
iid data Qin and Lawless (1994, 1995) look at efficiently estimating finite di-
mensional parameters under unconditional moment restrictions. Kitamura
(1997) extends the treatment to weakly dependent data. Kitamura (1999)
also describes an optimal property of empirical likelihood based tests for un-
conditional moment restrictions. Not much work seems to have been done
as far as applying empirical likelihood to conditional moment restrictions is
concerned. Some exceptions include LeBlanc and Crowley (1995), Brown
and Newey (1998), and Kitamura, Tripathi, and Ahn (2000). LeBlanc and
Crowley (1995) and Kitamura, Tripathi, and Ahn (2000) are mainly con-
cerned with estimation, while Brown and Newey (1998) consider the boot-
strap under a conditional moment restriction. None of these papers contain
the results obtained here.

3. BAsic ASSUMPTIONS AND NOTATION

The following basic assumptions are maintained throughout the paper:
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Assumption 3.1. (i) {z;, 2}, is a random sample from a probability
distribution on S x RY. (i) x is continuously distributed with Lebesgue
density h : S — R. (iii) E||z||™ < oo for some m > 2. O

Notice that apart from the existence of certain moments, no other re-
strictions have been imposed on the distribution of z. For reasons about
to be described, we now look at a situation where the researcher is inter-
ested in the behavior of the conditional moment E(z|z) on a subset S, of S.
Therefore, consider the smoothed empirical likelihood ratio (SELR):

MNzs

SELR = 22]1{.%,’ € Si} Zwij log(1 + ZTJ)
i=1 j=1
/

n n
_ . g PE
= 2;]1{3;, € S.} ;Ié%gg j;ww log(1 + - ).

We now assume that
Assumption 3.2. S, is a compact proper subset of S. U

S, is equivalent to the “fixed trimming” set used in Ait-Sahalia, Bickel,
and Stoker (2000) and described in Fan and Li (1996, Page 876). Para-
phrasing Ait-Sahalia, Bickel, and Stoker (2000), it “...allows us to focus
goodness-of-fit testing on particular ranges of the predictor variables. By
choosing an appropriate S, specification tests can be tailored to the empir-
ical question of interest.” As pointed out by these authors, a consequence
of this assumption is that our test will be consistent only against those al-
ternatives which differ from the null on S,. It is important to remember
that the \;’s used in SELR are still obtained by using the entire sample of
observations; i.e. the “trimming” is done after the \;’s have been computed.

Fixed trimming is also useful technically. As Hérdle and Marron (1990,
Page 66) emphasize, it allows us to avoid the usual edge effects associated
with kernel estimators. For instance, and we use this many a time in the
proofs, suppose we want to simplify expressions of the form E{K;;1(x;)|z;}
where 1) is some integrable function. We can use the fact that z; € S, to
write (for small enough b,)

E{K:jv(x))|zi} = b}, / K(uw)(zi — bpu)h(z; — bpu) du.

ue[—1,1]3

Compactness of S, is required for utilizing uniform rates of convergence for
kernel estimators of conditional expectations. In addition to the previously
defined symbols, the following notation is used hereafter.

Notation. I; = I{z; € S,}, V(x;) = > j—1 wijzizy, V(x) = E(22'|z), and
V) is the (lv)™* element of V. Sk = [~1,1]° is the support of K and
RK) = [, Sy K?(u) du denotes the “roughness” of the kernel. The con-
volution of I with itself is given by K*(x) = fS;c K(v)K(z — v)dv, and
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K = f[_2 2]S{IC"‘(U)}2 du. S = {¢ € R?: ||£]| = 1} is the unit sphere in R?,
and vol(Sy) = fS* dx is the volume of S, in RS. O

The next assumption imposes some additional restrictions upon the dis-
tribution of z.

Assumption 3.3. For 1 <l[,v <d:

(i) h is bounded away from zero on Si.

(i)  — h(z) and x — V) (z) are elements of C2(S).
(#1) (&, ;) — 'V (2)€ is bounded away from zero on S x S,. O

The choice of S, is influenced by (i), which requires that we estimate
conditional expectations in a region where we can avoid the “denominator
problem”. Such an assumption is regularly invoked in the kernel estimation
literature to minimize complexity of mathematical details when dealing with
ratios of random variables. See Newey (1994, Page 242) for a brief discussion.
Although it is possible to relax (i) by trimming away those x’s in S, at
which h(z) = 03, to keep the mathematical details manageable we avoid
this approach. Because sup,,¢g, % > i—1 Kij —h(z;)| = 0p(1) is due to the
uniform consistency of kernel density estimators and h is bounded above
zero on Sy, we can use Lemma C.1 to show that

n

sup [{— S K} — b=l = op(1).

; nbs

This result will be useful in the proofs. (ii) also ensures that

sup K2 () o' V2{V ) (25 — pbyu) (s — pbyu) bul du < oo
(xi,u)ES*X[O,l] Sk

for large enough n. This is the remainder term in evaluating integrals of the
form quS;c K2(u)V (x; — bpu)h(z; — byu) du when V (x; — byu)h(x; — byu) is
element by element expanded around z; up to second order. See, for e.g.,
the proof of Lemma B.4. (i) implies some nice results which have been
used quite a few times in the Proofs. For instance, a direct implication of
(3i) is that: (a) (&, z;) — EV(x;)§ is bounded away from zero on S x S,
for large enough n, and (b) sup, g, [|[V (x| < oc. (a) is used in the proof
of Lemma B.11. Since sup,,cg, 1V (x;) — V(2:)|| = 0,(1) follows from the
uniform consistency of kernel estimators, Lemma C.2 yields
sup [V (i) = V(@) = op(1).
T, ESx
Consequently, we can use (b) to show that
sup ||V (@) = Op(1).
T, ESx
This result is used in the proof of Lemma A.1. Finally, the next assumption
describes the kernel functions used to construct SELR.

3See, for example, Ai (1997).
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Assumption 3.4. The kernels IC belong to the class of second order product

kernels; i.e. for x = (x1,...,xs) let K(x) = I_ k(z;), where K : R — R is
a symmetric, nonnegative Lipschitz function which vanishes outside [—1,1]
and satisfies f k(t)dt =1. O

Since these kernels are employed to estimate probabilities, the use of
kernels with order greater than two is ruled out. Furthermore, the non-
negativity of IC is also explicitly used several times. See, for instance, the
proof of Lemma B.1. The Lipschitz condition allows us to use the uniform
convergence rates for kernel estimators obtained by Newey (1994). The
bandwidth b,, used in the kernels is a null sequence of positive numbers such
that nb) T oo. Subsequently, additional restrictions will be imposed upon
the choice of b,.

4. THE TEST STATISTICS AND THEIR DISTRIBUTIONS UNDER THE NULL

As mentioned earlier, the test for E(z|x) = 0 will be based on SELR. The
first step is to transform SELR so that we can apply a CLT due to de Jong
(1987). Following Lemma A.1 we can write

SELR = T,, + 0,({ 28" 12) 4 0,({—28"_13/2) " hiere
nz Eb% n3 mfl

B S ) SETMLSTE poe}
i=1  j=1 J=1

Now use the summation identity in (D.1) to decompose T, = Ty, 1 + Ty 2+
Tn,3 + Tn,4 + Tn,5; where

L Y(wy)z
Z {Zu oo K
Tpo = Z Z I, wszéV (xi)zj,

i=1 j= 1,3751
" N
Z Z ;V l‘z)zjww
TLS - ]I E bl
i=1 j=1,j#i =1 K
wwz Alas )z
Tha=K g E —a
i
’L 1 ] 1:.7#1 Zu:l mw

n n n
Tn,5 = Z Z Z Hiwijzgv_l(w,-)ztwit.

i=1 j=1j#i t=1t£j#i
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The asymptotic behavior of these terms under Hy can be obtained from
Lemmas A.2 — A.6. These results are summarized below:

L A2 1
Tn’1 emrga p( ),

nb2s
emma A.3 , _ 1
Tio "2 A 00 A R(K) vol(S.) + Oply |~ +82)),
n
Lemma A.4 1 Lemma A.5 1
Tn13 = Op( ), Tn14 - P( ),

o
25 25
nbz v/ nbz

bfL/2Tn75 Ld—AG) N(0,0?), o? = 2dKC*™* vol(S.).

7

Although bf/ 2Tn75 is asymptotically distributed as N(0, 02) and
1)75%/2Tn’1 = 0,(1), bZ/QTn,Z% = 0,(1), bfL/2Tn,4 = 0,(1) as nb3%/2 1 oo,

bf/ 2Tn72 explodes as n T oco. Therefore, we have to center T,, appropriately
if we want a test statistic with a valid asymptotic distribution. We do this

by subtracting® the troublesome quantity bf/ 2Tn,2 from SELR.

Let

Cin % {b/2SELR — b5/2T, 5} o

denote the first version of our statistic for testing E(z|z) = 0. Obtaining

the asymptotic distribution of ¢ 5 is straightforward. First, it is easily seen
that

Cin = {0/ > Ty + 052 T3 + 052 Ty s + b/?Tp5} o

logn logn
+ Op({fb?)s/él}% + Op({l_TbQS/g}?’/Q)-

n2 ns
Then using Lemmas A.2—A.6, the following result is almost immediate.
Theorem 4.1. Let E||z1||"™ < oo for some m > 6 and choose b, =n~% for
0<a<a(l—2L). Then under Hy, (1 4, N(0,1).

The test for Hy can be implemented by comparing ¢, with critical values
obtained from a standard normal distribution. Namely, to obtain a one sided
size-y test we reject Hy if (1., > z,, where z, denotes the ~y-cutoff point for
the standard normal distribution; i.e. Pr{N(0,1) > z,} = . Notice that
o2 does not depend upon any unknown parameters and can be calculated
analytically.

Although our first test is simple to implement and does not require the
estimation of any variance term, we do have to calculate T}, o to obtain (i .

4Note that subtracting by 2Tn,2 does not lead to any loss of information as far as testing
E(z|z) = 0 is concerned. To verify this, look at Lemmas A.3 and A.9 which show that
the asymptotic behavior of Ty, 2 remains unchanged under Hyp and the sequence of local
alternatives Hi, defined in the next section; i.e. Ty 2 is asymptotically uninformative
about the null hypothesis.
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Even this calculation can be eliminated for the special case s < 4; i.e. when
we have at most three explanatory variables. To see this, from Lemma A.3
observe that

b/ > T o = by "2 dR(K) vol (S.) + O, /% T bR,

But the choice of b, in Theorem 4.1 implies that 17;’1;52? 1 0. Therefore, when

s < 4 we propose to use the second version of our statistic defined as

Con = {b2/2SELR — b, */2d R(K) vol(8.)}/o.

The following corollary is obvious.
Corollary 4.1. Let s < 4, E||z1[|™ < 00 for some m > 6, and b, =n~% for
0<a<a(l—2L). Then under Hy, (o 4, N(0,1).

In practlce, C2,n seems more useful than (;, because s < 4 is a reasonable
bound for most applications of nonparametric regression.

A nice interpretation of Corollary 4.1 can be obtained by observing that
we can express its result as

SELR — ¢17v, 4
2Yn
where ¢; = R(K), ca = VK**, and 7, = b, * dvol(Sy). This can be regarded
as an analog of Wilks’s theorem: If SELR were distributed as a x? random
variable with c¢;7,, degrees of freedom, and R(K) = K** so that ¢y = /c1,

then (4.1) can be interpreted as the normal approximation of a x? random
variable with large degrees of freedom.

(4.1) 4 N(0,1),

5. DISTRIBUTION OF (i, UNDER LOCAL ALTERNATIVES

In this section we obtain an expression for the power of the test under a
sequence of local alternatives. Assume that
Assumption 5.1. § = (6(V,...,6) is a vector of L*(S) functions which
are continuous on S. O
Square integrability of each component ensures that § @) is bounded in prob-
ability for 1 <1 < d. Continuity of 2; — 00 (z;) is used, for instance in the
proofs of Lemma A.7 and Lemma A.12, to bound g,,(z;) fS )0W (5 —
bpu)h(z; — bpu) du when x; € Si. To see this, observe that we can erte

lgn(23)] < sup |6 (z; — byu)| sup h(x; — byu) K(u) du.

uESK u€SKc Sk
But continuity of §¢) and h implies that the maps x; — sup,c Sec 160 (25 —
bpu)| and z; +— sup,eg, h(z; — byu) are continuous on S for each n. There-

fore, since S, is a compact subset of S and K integrates to one on Sk, gn(z;)
is uniformly bounded on S, for each n. Furthermore, when x; € S, this
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argument also shows that we can apply Lebesgue’s dominated convergence
theorem to obtain g, (z;) = 6 (z;)h(z;) + o(1).

Henceforth, let {z;, Z;}I"; denote a collection of iid random vectors sat-
isfying Assumption 3.1 such that E(Z;|z;) = 0 and E(Z;2}|x;) = V(z;). The
Z;’s are unobserved but we do observe z;, which is distributed according to
the sequence of local alternatives

1=1,...,n.

Notice that E(z;|z;) = % under Hy,,. As Lemma A.7 shows, the re-
n n

sult of Lemma A.1 remains valid under Hy,,. Defining ¢y, = {bf/2SELR —

b/ 2ng} /o as before, we can thus write

Cln 2 (b2 Ty + b5/ 2Tps + b2 Tpg + b/ *Ty 5} o
logn logn
+ Op({m}z) + Op({mpﬂ)-

Using Lemmas A.8-A.12 it is now easy to obtain the following result.

Theorem 5.1. Let E||Z1||™ < oo for some m > 6 and choose b, =n~% for
0<a<s5(1-2) Alsolet p=E[{zy € 5.} (x1)V " (21)0(21)]. Then

under Hln; Cl,n i} N(/"/U, 1)

Therefore, Pr{¢i, > 2} Hin, g ®(zy — L), where ® denotes the cdf of

a N(0,1) random variable. The same result holds for (a2, when s < 4.

6. AsymMPTOTIC OPTIMALITY OF THE SELR TEST

As noted in the introduction, there are alternative tests for conditional
moment restrictions available in the literature. All of these tests are non-
parametric and are consistent against general alternatives. There is, of
course, a price one pays for this generality: nonparametric tests tend to
have lower power than parametric ones. Therefore, it is important to find a
nonparametric test with good power properties.

This section identifies an optimal test among a class of conditional mo-
ment restrictions tests. Ait-Sahalia, Bickel, and Stoker (2000) provide a
convenient framework for this purpose. They consider a testing procedure
based on a weighted sum of squared residuals from kernel regression. Many
earlier tests, at least asymptotically, can be regarded as a special case of this
test with a particular choice of weighting function. Héardle and Mammen
(1993), Fan and Li (1996), Zheng (1996), and our SELR test, for example,
fall into this category. Hong and White (1995) apply a similar principle,
though they use series instead of kernels.

To simplify our argument let d = 1, s = 1, and S, = [0, 1]. In implement-
ing the Ait-Sahalia, Bickel, and Stoker test the researcher chooses a piecewise
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smooth, bounded, and square integrable weight function a : [0, 1] — R, and

calculates .
a) = by Y B2 (z|zi)a(x,).

The statistic for testing Hg proposed by Ait-Sahalia et al. is
b2
"{Gla) ~ R(K) Jy V(w)a(x)dr}
\/2IC** f V2(z a2( )d:c

We can replace V(z) with an appropriate consistent estimator without af-

fecting the asymptotic properties of the test. Since 7(ca) = 7(a) for any
¢ # 0, w.l.o.g we assume that fol a’(z)dz = 1. Now let

(6.1) 7(a) =

(6.2) Mo, = DD dr
\/2IC** fol V2(z)a?(x) dx
As Ait-Sahalia et al. show, under Hy,
(6.3) 7(a) % N(M(a, 0), 1).
The asymptotic power of their test with critical value z, is thus given by
(6.4) m(a,6) =1— ®(zy — M(a,0)).

Comparing (6.4) and Theorem 5.1, we can see that our SELR test is asymp-
totically equivalent to the 7(a) test with the weighting scheme

(6.5) asmLR(T) = !

x)y/ fol V=2(z)dx .

We shall demonstrate that this choice of weighting, which is implicitly
achieved by the SELR test, is optimal in a certain sense.

If § is known counterfactually, it is easy to derive the optimal weighting
function that maximizes (6.2). For a known §, an application of the Cauchy-
Schwarz inequality on (6.2) shows that (6.4) is maximized by choosing

2
(6.6) alz,5) = e )h( ) .
V2(e)/ [} 54 (@) V @)k (2) de

The notation a(z,0) indicates that the optlmal choice of a depends on ¢.
This result is not terribly useful since § is unknown in practice. It is also
clear from (6.6) that there is no uniformly (in ¢) optimal test. This resembles
the multiparameter optimal testing problem considered in the seminal paper
of Wald (1943).

Wald shows that the likelihood ratio test, and other asymptotically equiv-
alent tests, for a hypothesis about finite dimensional parameters is optimal
in terms of an average power criterion. Loosely put, he considers a weighted

average of the power function where uniform weights are given along each
probability contour of the distribution of the estimator he uses (mle). This
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criterion is natural and attractive since it is impartial — it puts heavy (light)
weights in directions where the detection of departures from the null is dif-
ficult (easy). This approach has been used in the literature quite effectively.
For example, Andrews and Ploberger (1994) consider optimal inference in a
nonstandard testing problem. They derive a test that is optimal with respect
to a Wald-type average power criterion. Their optimal test performs well
in finite samples (see Andrews and Ploberger, 1996) indicating the practical
relevance of Wald’s approach.

Our testing problem is different from the ones considered by Wald in that
instead of being finite dimensional, our parameter of interest is an unknown
function. A natural extension of Wald’s approach is to consider a probability
measure on an appropriate space of functions and let the measure mimic the
distribution of the “estimator.” Then the local average power criterion is
obtained by integrating (6.4) against the probability measure. Note that the
tests we are comparing rely on the kernel regression estimator E(z\a:), either
explicitly or implicitly. Therefore, we propose to use a probability measure
that approximates the distribution of the sample path of I@l(z|:1:)

So let & be a C([0, 1])-valued random variable given by

(6.7)

1
0(z) = V() h V2 (2)y(z) and y(z) = /0 k(5 —2)dW(z = |2)),

where W is the standard Brownian motion on [0,1], k(-) an appropriate
weighting function, [ a positive adjustable parameter and |z] the integer
part of z. For each = in [0, 1], y(z) is a stochastic integral. Note the use
of dW(z — |z]) as the integrator. This implies that the covariance kernel
r(s) = Ely(z)y(z + s)] of the Gaussian process y is circular; i.e. 7(s) =
r(1—s). Circular processes are widely used for analyzing stationary processes
on a finite interval (see, for example, Hannan, 1970 and Priestley, 1981).
In our case it lets us avoid treating y(x)’s close to the end points of the
interval [0, 1] differently from the ones in the middle. Consequently, for an
arbitrary function f such that the integral fol f(y(z)) dz is well defined, the
joint distribution of the bivariate random vector ( fol f(y(x)) dz,y(xo)) does
not depend on the location zy € [0,1]. Other properties of 5, such as its
Gaussianity, are not important in our argument below.

Note that the variance function of S(x) coincides with the asymptotic
variance function of E(z|z) up to scale. This is one of the features we intend
to replicate by using 5. The Gaussian process § is constructed based on
an approximation of E(z|x) derived by Liero (1982). Also see Johnston
(1982) and Hérdle (1989) for related results. In our theory however, k and
[ do not have to be the same as I and b,. k determines the pattern of
autocorrelations of y(x) and [ is used for scaling . A large [ and a spread-
out k correspond to stronger dependence, yielding paths of y and 4 that look
smoother. Our optimality result does not depend on the choice of § and k.
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We are now ready to define our average power concept. Let @ be the prob-
ability measure induced by § on C([0,1]). Using (6.7) rewrite the random
variable M (a,d) as

- fol V($)y2<x)a(x) dx 1 1 ,
M(a,0) = _ Ae)(e) do.
V2K [V (@)ad(a) de VRS /0 Y
where
(6-8) A(m) _ V(x)a(x) ‘
\/fo1 V2(z)a?(x) dx

fol A%(z)dz = 1 and it is sometimes convenient to deal with A rather than
a. Note that M(a,d) = M(A/V,6). Let Fj be the cdf of M(A/V,5). The
average asymptotic power of the test proposed by Ait-Sahalia et al. (see
(6.4)) is the following functional of A:

69 7(A) = [#(A/V.5QE) = [ 1= Bl — m)] Fatam)

Observe that the integrand in (6.9) is strictly increasing in m. So if there
exists a piecewise smooth, bounded, square integrable function A* : [0, 1] —
R such that fol A*2(x)dx = 1 and for all A the cdf Fu« first-order stochas-
tically dominates® Fy4, then A* maximizes 7(A). By (6.8), the optimal
weighting function a* is given by

V(@) S A%2(2)/V2(x) do

To find A*, fix m € R arbitrarily and consider solving the following vari-
ational problem over all piecewise smooth, bounded, square integrable func-
tions from [0, 1] — Ry:

1
(6.10) mjnFA(m) s.t. /0A2(:L‘)d1‘:1.

For any zo € [0,1] let F4(m|y(zo)) be the conditional cdf of M(A/V,?)
given y(xzo). fa(m|y(xzo)) denotes the conditional pdf corresponding to
Fa(mly(zp)). Now it is clear that

Fa(m) = Ey(aq) [Fa(mly(zo))];

where the symbol E, ) indicates that the expectation is over y(xo). Fur-
thermore,

OFa(mly(z0)) _ OE[I{ fy Alx)y*(x)dx < m}[y(zo)]
dA(x0) 9A(z0)

(
= y*(x0) fa(mly(wo)).

5.e. Fa(m) > Fa-(m) for all m.
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These results imply that
OF 4(m)
0A(xp)

Thus the Euler-Lagrange equation for the variational problem (6.10) is

(6.11) Ey(z0) [ () fa= (m|y(z0))] = 2AA*(zo)  for all zg € [0, 1],

where A is the Lagrange multiplier for the constraint in (6.10) and A* the
solution. To solve (6.11) we use a guess and verify approach. So suppose
that A*(z) = I{x € [0,1]}. Clearly, this is a feasible guess. As noted
in our earlier discussion on the nature of the random process y, the joint
distribution of M(A*/V, ) \/W f x)dx and y(zp) does not depend

on g € [0,1]. Therefore,

= Ey(z0) W7 (@0) fa(mly(0))] for all z¢ € [0, 1].

def
Ey(xo) [y* (w0) fa+ (my(z0))] = K (say)
does not depend on zp € [0,1]. So (6.11) is satisfied with A*(x) = I{z €
[0,1]} and A = K/2. We have verified that A*(x) = I{z € [0, 1]} solves
(6.10). The optimal a corresponding to A*(x) = I{z € [0,1]} is

{z € [0,1]}

x)y/fol V—2(x) dr

Comparing this with (6.5), we immediately obtain that the weight aggrr is
optimal.

The above result shows that the SELR test attains the maximum average
local power. An alternative way of achieving this optimality is to estimate

a* by
Hz € [0, ]}

(2)y/ Jy V2

where V (z) = > i1 JQIC(x m])/z‘7 K% x]) We then use a* to calculate
G for the test statistic in (6.1). While this approach is valid asymptotically,
such a “plug-in” method often leads to poor finite sample behavior. At the
very least it would require a good nonparametric estimator of V' (z). An ad-
vantage of our statistic over plug-in statistics is that this optimal weighting
is carried out automatically and implicitly, eliminating the need of estimat-
ing V(x). This feature is similar to the “internal studentization” property of
other empirical likelihood ratio statistics emphasized in the literature. Em-
pirical evidence suggests that internal studentization often improves finite
sample properties of the tests substantially. See, for example, Fisher, Hall,
Jing, and Wood (1996).

a*(x) =

i (z) =

7. SIMULATION RESULTS

In this section we compare the SELR test with two other tests mentioned
in the introduction, namely, the tests proposed by Ait-Sahalia, Bickel, and
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Stoker (2000) and Zheng (1996). From (6.1) it is easy to see that Zheng’s
statistic is asymptotically equivalent to the one proposed by Ait-Sahalia et
al. under the weighting scheme a(x) = h(x).

Our experimental design is as follows. A random sample {x;,z;}!" ;| is
drawn from the following conditionally heteroscedastic model:

2 = d(z;) + VV2(2:)e:, 2 % Uniform[0,1], & 5 N(0, 1).
The three tests are applied to the simulated data to detect the deviation of
the function d from zero. Obviously S = [0, 1] under this specification.

The SELR test is implemented with the trimming set S, = [0.05,0.95]
and the statistic (2,. Using (1, did not appear to change our simulation
results significantly. The Ait-Sahalia et al. test is also carried out using the
same trimming set and a weighting function that is constant over it; namely,
we use (6.1) with the weighting function a(x) = I{x € [0.05,0.95]}. Since
the z’s are uniformly distributed in our experimental design, the uniformly
weighted Ait-Sahalia et al. test and the Zheng test (hereafter designated as
“ABS.y” and “Zheng”) are equivalent in terms of their local power func-
tions. All of the three tests are implemented using a Gaussian kernel with
bandwidth b, = 0.5n~Y/ 4255 where 6, is the sample standard deviation
of x1,...,x,. A similar bandwidth sequence is used by Ait-Sahalia et al. in
their simulation study.

It should be noted that Zheng assumes that the conditioning variable x
has a distribution with unbounded support. Our simulation design violates
this condition. Although it is certainly possible to address this problem by
suitably modifying Zheng’s statistic, we implement Zheng’s test as suggested
in his paper. Therefore, the reader should interpret our simulation results
for Zheng’s test with some caution.

Three specifications of the heteroscedasticity function are considered:

14 22 in Tables 1 and 2,

Viz) =<z in Tables 3 and 4,
0.5+ I{x > 0.5} in Tables 5 and 6.

For each specification of V' (z), two choices of d are used:

d(x) = dy1/2(x) in Tables 1, 3 and 5
) dv(2) in Tables 2, 4 and 6,

where
dy1jo(z) = cl{z € S,} VY2(x) and dy(z) = cl{z € S.} V(z).

In each table the constant ¢ varies over the set {0.0,0.1,...,0.5}.

The above specification is motivated by the following considerations. Re-
call that (6.6) implies the optimal weighting function for a given (and un-
known) J. For example, if 6 = dy1/2 the optimal weighting function is
proportional to I{z € S,}V~!(z), which the SELR test implicitly achieves.
Likewise, if § = dy the optimal weighting function is a constant and thus
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ABS,w and Zheng are optimal. In short, according to our asymptotic theory,
dy1/2 favors the SELR test and dy the other two.

Moreover, dy1/2 favors SELR to the same degree as dy does ABS,, and
Zheng in the following sense: Recall the definition of the asymptotic mean
functional M(a,d) in (6.2). Since asymptotically a = I{z € S,}V~! in
SELR and a = [{z € S.} in the other two tests,

R(6) = M(I{z € S}V, 6)/M(l{z € S.},9)

gives the ratio of the asymptotic means of the two types of test statistics as
a functional of the local alternative ¢. If R(J) is substantially larger than
unity, the local power of SELR exceeds the local power of ABS,,, and Zheng
by a large margin. It is easy to see that R(dy1/2) is the reciprocal of R(dy ).
In this sense we treat the two types of tests symmetrically by considering
dv1/2 and dv.

Tables 1-6 (see Appendix E) report simulated rejection probabilities of the
three tests calculated from 1000 Monte Carlo replications. The size of the
three tests, shown in rows with ¢ = 0, appears to be reasonable although all
of the tests exhibit some size distortion. The subsequent discussion therefore
focuses on size-corrected power. The size correction is implemented by using
distributions of 10,000 draws of each statistic under the null hypothesis®.

Table 1 shows the results with V(z) = 1+ 2% and d(z) = dy12(2).
Though the SELR test tends to have somewhat higher power than the other
two, the differences are marginal. The rejection frequencies with n = 250
are considerably higher than those with n = 100, in accordance with the
consistency property of the three tests. With ¢ = 0.5 and n = 250 all the
tests are always able to reject the alternative.

Table 2 displays the results for the same V(z) but with d(z) = dy(z),
which favors ABS,y (and Zheng as well, although the boundedness of S
may affect its performance as noted earlier). The power of ABS,y some-
times exceeds that of SELR as the asymptotic theory suggests, though the
differences tend to be quite small.

Tables 3-6 provide a clearer picture. In Table 3, where the SELR test is
asymptotically optimal, it actually tends to have substantially higher power
than the other two. When we choose an alternative that favors ABS,w
(i.e. Table 4), it has power that is only marginally higher than SELR’s
when n = 250 and the ranking is often reversed when n = 100. SELR also
performs well in Tables 5 and 6, where V(z) = 0.5 + I{z > 0.5}. SELR
tends to be considerably more powerful than the other two tests in Table
5 where the alternative favors SELR, while the results are rather mixed in
Table 6 where at least ABSy should perform well asymptotically.

While the scope of the simulation experiment is rather limited, the fol-
lowing picture emerges: (i) All the tests have satisfactory size and power
properties, though some size distortion remains even for n = 250; (i7) While

6Note that in the tables the size corrected power for ¢ = 0 does not match nominal size
due to simulation errors.
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asymptotic theory predicts qualitative features of the local power of the tests
reasonably well, SELR seems to have better finite sample power properties
than the other tests. Namely, SELR tends to have considerably higher power
when the asymptotic theory predicts so, and keeps up with the other tests
quite well even when the asymptotic theory does not favor it.

8. CONCLUSION

The results obtained so far are quite encouraging. The SELR test is
easy to construct and straightforward to implement. It is asymptotically
normal under the null hypothesis and is able to detect local alternatives

-1/ Qb,f/ S large samples it also

which converge to the null at rate n
possesses an optimality property.

As far as extending this work is concerned, testing conditional moment
restrictions of the form E{g(z,6p)|xr} = 0 is important. The challenge here
is to obtain the asymptotic distribution of the test statistic when 6y is re-
placed by a consistent estimator (say é), although one would expect that the
parametric rate of convergence of 6 should leave the asymptotic distribution
unchanged. In the future we also intend to do some work on choosing a
data driven bandwidth. This is important as the choice of bandwidth in-
fluences the optimization problem in (2.5): If b, is too small, say b, = 0
in the extreme case so that w;; = 1 if i = j and zero otherwise, then (2.5)
reduces to maximizing (2.1) under (2.2) and our procedure breaks down.
On the other hand if b, is too large, say b, = oo in the extreme case so
that w;; = 1/n, then (2.5) imposes the weaker restriction Ez = 0 instead of
the stronger restriction E(z|z) = 0. Therefore, one has to be careful when
picking a bandwidth to implement the test. O

APPENDIX A. PROOFS OF MAIN RESULTS

Notation. The following symbols are used throughout the proofs: The
letter ¢ denotes a generic constant which may diffqr fI'O{H case to case,
X = {xl,...,xn}, h(a;z) == %ZZ:I ’Ciuv H(l’l) == V(l‘l)hQ(Il), H(JZZ) ==
V(i) b2 (2:), Qws) = o= Y0y Kijzi2h = V(zi)h(zi), and I, = {1 < i <
n: x; € Sy}. Following the discussion after Assumption 3.3, it is straight-
forward to show that H ~1(z;) is element by element uniformly bounded in
probability on S, for large enough n. Similarly, H!(z;) is element by ele-
ment uniformly bounded on S,. These facts will be used subsequently. Ijxq
denotes the d x d identity matrix, Ogxq the d X d null matrix, and “elt. by
elt.” is shorthand for “element by element.” O

Lemma A.1. Let E||z1||™ < oo for some m > 2 and choose b, = n~% for

O<ax< %(1 — %) Then under Hy, we can write

logn logn
SELR = T + Op({——5—}*) + Op({——= —}""*).
n2- mby n3~ mbs
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where T = 3271 Li(EGoy wig2) V= (aa) (= wigz)-

Proof of Lemma A.1 Our proof follows Owen (1990, Pages 100-102).
However, we obtain nonparametric (i.e. slower than n'/?) rates of conver-
gence for various terms as compared to Owen, who obtains parametric rates.
Begin by observing that since the \;’s solve (2.6), we can write

n n
Wij 24 (wijzj/n)
0= 3% _ 373
Zn+)\§zj ]214—()\’ i/m)

Jj=1

_ 1 - i AiZ ()‘izj/”)Q
‘nZw”Zf“ n T /)

1 wi;iz;(Nizj/n)?
_ 2t ) I ij 2\ \i%j _
ZUJJZJ 2 l‘) + — ]Z; 1+()\;Zj/n)

Therefore, since V(:J;Z) is invertible for large enough n, we have

ol ANS ot () e wizi(Az/n)?
Ai =nV (xl)jz;w”zj+V (@i)ry 7y _n;H-()\;zJ/n)

From Lemma B.1 we know that for ¢, def m )

max Hr H = an/mOp(cZ).

1€,
In fact, because Assumption 3.3(iii) implies that ||V =!(z;)| is uniformly
bounded in probability on S, the above approximation for A; holds uni-
formly in ¢ € I, and we can rewrite it as

(A1) Ai=nV @) Y wyz n”, max [P =00,

Now under our choice of b,,, the second result of Lemma B.1 ensures that
|>\1'an\ = 0p(1) uniformly in ¢ € I, and j = 1,...,n. Therefore, for i € I, and

1 < 5 < n, the expansion

)\;Zj )\;Zj
)T Ty

holds with the remainder term 7;; = Op(|%|3). Note that with probability

1 )\;Zj 2

log(1 )+ Nij

. : Nz
approaching one as n T oo, we can write |;;| < B|=:2 |3 for some B > 0. B

does not depend upon i and j because |)‘l%| is asymptotically negligible in
probability uniformly in ¢ € I, and 1 < j < n. Using the above expansion
and the expression for A; in (A.1), some algebra shows that we can write

SELR =T, ——Z]ITQ)/ V(o)r 2+2ZZMWW

i=1 j=1
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But as we know that sup,,cg. |V (x:)|| = Op(1) and T; < 1, we can use the
bounds for 7‘52) in (A.1) to see that

{log n}?n?/m
nb2s

1< 2)/ 2 m
> L Via)r <nl*2m0,(ch) = 0,
i=1
Also use the second result of Lemma B.1 to obtain

|ZZ]1wUm]|<BZZw”| ”|3<c{n1/m0 n) ZZwm

i=1 j=1 =1 j=1 i=1 j=1
3
{log n}3/?nm
\/nb3s

The conclusion follows by simplifying the terms inside the O, symbols. [J

= 0¥/ 0, () n = O,

Lemma A.2. nb?* T, = lC2( JE[I{z; € S. }zl e ))21] +0p(1).

Proof of Lemma A.2. Since V(xz) converges element by element in prob-
ability to V (z;), h(x;) 2 h(xi), and h is bounded above zero on S,

. Yai)z
ZH {Zu 1’Czu}2 - n2b23 ZH

ZL 2L H ™ (2;) + Rem;} 2,

n2b2$

where Rem,; represents a matrix of remainder terms which are asymptoti-
cally negligible in probability. Because each element of Rem; is 0,(1) and
the components of z; are bounded in probability,

ICQ(O) _ 1
Tt =" {E[liz1H (21)21] Fop(L)}+op(050)

by an application of the WLLN. U

Lemma A 3. Let E||z1||"™ < oo for some m > 2, and choose by, = n~% for
0<a<i(l—2). Then under Hy,

1
Tio = by {AR(C) v0l(S.) + Oply |~ +82)}.
Proof of Lemma A.3. Set § = 0 in the proof of Lemma A.9. ([l

Lemma A.4. Let IEHlem < oo for some m > 2 and choose b, = n~% for

0<a<min{i(1—2), L} Then under Hy, T, op(\/%).
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Proof of Lemma A.4. Let F(%)(z;) (resp. va)(xi)) denote the (lv)t

{EQ(zy)} !

element of H~!(x;) (resp. o)

). From Lemma B.11 we know that

sup |F0) (@) — GV ()] = Oplen),

s €Sy
logn
nbg,

This result will be used later in the proof. Notice that since

Tn’3 = ]C(O) Z Z Hizz{ﬁ_l(xi)zjl@j

and ¢, — 0 on choosing b, =n" for 0 < o < %(1 -2,

where ¢, = P

So write P, = P,(ll) + P,SQ) where

n n3/2bs Z Z Liz; Z)G(lv (xi)z (U)sz

" i=1 j=1,j7#i

1 = l v v 1 = v
P = %Zﬂzzf NEOW @) = G @) Quis Qua=— > 2K
i=1 noi=1,j#i

We look at P and P{? one by one. First note that by (D.2) and the
Cauchy-Schwarz inequality

E{PV) 3b252 Z E{z G (2:)2\" i},

=1 =1,

where any remaining cross terms vanish since the random variables
Hizgl)Gg”)(xi)zj(v)lCij and I Z( )G(l”) (xi)z,gv)Kik

are uncorrelated for i # j # k. Therefore, keeping in mind that G\ (x4)
is uniformly bounded in z; € S, for large enough n (see the proof of
Lemma B.11), it is straightforward to show that

E{P 3b2s Z Z E{Z Z ij}Z = O(TLZS );

i=1 j=1,j#1i n
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ie. PV = O,(—2—=). Next, by the Cauchy-Schwarz inequality we have

\/ b3,
1 n ! ~ n
PR32 < = (D121 fo(1v) D) — GO ()2 2
Ind _n;[zz][ (i) — Gy ()] ;Qn,z
ot ) 1 n . n
< {sup [P (wg) = G @l 3 D Qs
FiCox i=1 i=1
= Op(ci) Z Q?”
i=1
But as zj(v)lCij and Z,iv)Kik are uncorrelated for ¢ # j # k, we can show
1 v 1 . o
E iz = Z E{z]( )ICZ-]-}2 = O(W) (uniformly in i € {1,...,n}),
=1, n
which yields that Q%ﬂ- = Op(4) for all i. Therefore

n 2
C’I’L
PR = 0p(c2) Y0 Q2 = Oy(52),
=1 n

which implies P,?) = Op(cnbn s/ 2). Hence recalling that ¢, = 4/ IZ%sn,

1 _ 1 [logn
Pn = — nb s/2 = T o
Op( ﬁnb;"’l) + Op(enb,*7) = Oy( nb;‘ib) + Op( nb2s )

logn
= Op( ’I’lb%s ) = Op(l)‘
The last equality follows if b, = n™® for 0 < o < min{2(1 — 2), 1 }. O

Lemma A.5. Let E||z1||™ < oo for some m > 2 and choose b, = n~% for
O<a< min{%(l - %), 21—8} Then under Hy, Ty 4 = op(#).

\/nb2s
Proof of Lemma A.5. Same as the proof of Lemma A.4. O
Lemma A.6. Let E||z1]|™ < oo for some m > 4 and choose b, = n™% for
0<a<g(l—2). Then under H, bfL/ZTnﬁ 4 N(0,2dK**vol(Sx)).
Proof of Lemma A.6 Write T, 5 =T}, 5 + (Tps — T;kz,5) where

T* 5 ~ n n n
(A2) Tos= e Ts=2 2. ). LKymH ' (w)aka.
n i=1 j=1,57#1 t=1,t#j#i

As bfL/Q{Tnﬁ — T} 5} = 0p(1) from Lemma B.2 provided that b, = n~ for
0<a<i(1-2) it suffices to show that under Hy

b2 T 5 L N(0, 2dKC* vol (S.)).
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To do so we will use a CLT for generalized quadratic forms due to de Jong
(1987). First notice that since the only restriction on the summation signs
in (A.2) is that t # j # i, we can change the order of summation in (A.2)
to write

n n n
ns = Z Z Z LiKij 2 H ™ (24) 24 /Cay
=1 jol £t i=1ifjt
n

=Y. D> #Aynz,  Agn= ) LKyH Hx)Ka

t=1 j=1j#t i=1,ij#t

Next define Wyjn, = 21 Atjnzj + zg-Atjnzt = 22{A¢jnzj, and use Lemma B.3

to verify that Wy, is clean”. Using de Jong’s notation we can then write

T n—1 n . 2 : T
Ths = 22121 2 j—t+1 Wijn- Let us now find sj, the variance of T}, 5. So

using (D.3) we can write

n—1 n n—1 n
2 _ T 2 I'A . 2
sy, = varTy 5 = g E EW, = 4 E g E{z Ajnz;}*,
t=1 j=t+1 t=1 j=t+1

where any cross terms vanish due to the orthogonality of W, and Wy, for
t # j # k (see Remark B.1). Then using Lemma B.4 it follows that

s2 =n(n—1)(n—2)(n — 3)2db>K*vol (S,){1 + o(1)}.

n =

Next, as in de Jong (1987, Page 266), define the following terms:

n—1 n
— E E 4
GI — EWthL’
t=1 j=t+1
n—2 n—1 n

Grr = Z Z Z (EWt%nWt%cn + EW]%nWJan + EW]gthk?Jn)’
t=1 j=t+1k=j+1

n—3 n—2 n-—1 n

Grv = Z Z Z Z (EWeinWeken Wiin Wikn + EWein Witn Wiejin Wian
t=1 jmtt1 hmjt1 I=k+1

+ EWtknthnijnlen)'
From Lemmas B.5, B.6, and B.7, we can see that:
Gr O™ in) o 1 G OTEE) o1
si o nspbsO(1) n4—%b%s Tost o ndBsO(1) n3—%b%s ’
G]V . O(TLGJ'_%b%S) . ( 1
st pdpbsO(1) n2 mbds”

"According to de Jong (1987, Page 263), Wi, is said to be “clean” if E(Wijn|2:, 2¢) =
E(Wijn|zj,2;) =0 as. forall1 <t,j <n.
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If we let b, = n™%, where 0 < a < 2—18(1 — 4 we get G1,Gr1,Gry =

m
o(s}). Hence, from de Jong (1987, Proposition 3.2, Page 267), we have
ST ﬁ N(0,1). So using Slutsky’s lemma we obtain
’ z|lx)=0
/2m* T;(L5 d Kk
by “Ty 5 = : N(0, 2dK** vol(Sy)). O

n2b3%/2 E(z|z)=0

Lemma A.7. Let E||z1||™ < oo for some m > 2 and choose b, = n=% for
0<a<i(1-2). ThenSELR "2 T 0,({ 1% }2)+0,({ 25— }7/2).
n m by

mbfl n3

Proof of Lemma A.7. Following the details in the first half of the proof
of Lemma A.1, we can write

Ai = nV L (z) Z wijzj + Vﬁl(mi)rgl)(Hln),
j=1
(1) n  wijz;(Nzj/n)? . . .
where ;" (Hin) = n) 04 W Getting this far only required al-
gebraic manipulations; i.e. we did not use the fact that E(z|x) o €n0(x),

where €, def -1/ b, $/* for convenience. We do so now. Using the algebra
that led to (B.2), we can see that

n
1
1M ( )l < n7p; > wigélz,
j=1

where we have followed the notation of Lemma B.1 to write \; = p;€ for
pi > 0and & € S. Now let ¢, def \/ IZ%!L, and observe that ¢, — 0 on letting

by =n"%for 0 < a < 1(1—2). From Newey (1994, Lemma B.1, Page 250)
we know that

1 — elt. by elt.
D Kijzi —B{ D Kzt ™ = Oplen),
i= n =1

sup |h(z;) — Eﬁ(mz)‘ = Op(cn),

sup [Eh(w;) — h(zi)| = Op(b7,).
T, ESx

As h is bounded away from zero on Sy, the last result implies that Eﬁ(xz)
is also bounded away from zero on S, for large enough n. Therefore, using
Lemma C.1 and the first two results,

g E{ ;s Y51 Kijzi}

sup |Zw--z-— |elt.tiyelt,
o Eh(z;)

Op(cn).
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But following Assumption 5.1, it is straightforward to see that under Hy,,

ol

n

j R €n
s > Kijz} = E{— > Kid(xs)}

=€y K(u)d(x; — bpu)h(x; — byu) du
Sk

elt. by elt. O(ep) (uniformly in x; € S,),

which implies that

(A.3) Zwijflzj Hir Op(max{e,, cn}) = Op(c,) (uniformly in z; € Sy).
j=1

Hence ||r§1)(H1n)H < n'™p;0p(cy), which is identical to the result in (B.3)
obtained under Hy. Furthermore, because ||V~ (z;)|| is uniformly bounded
in probability on Sy, we can use the approach described in the latter half of
Lemma B.1 to show that max;er, p; = nOp(cn). Thus we obtain

ARV @) Y wygzy 4P (Hi), max | ()| = 0t Tm0,().
j=1 ’

This approximation for )\; is identical to the one obtained in (A.1) under
the null hypothesis. In a similar manner we can use (A.3) to show that all
remaining approximations in the proof of Lemma A.1 stay unchanged even

under Hy,,. The desired result follows. O
Lemma A.8. nb2 T, i K2(0)E[I{z; € S} Vh;ia(:f;)zl] + 0p(1).
Proof of Lemma A.8. Same as Lemma A.2. O

Lemma A.9. Let E||Z1||™ < oo for some m > 2 and choose b, = n~% for
0<a< %(1 — %) Then under Hy,,

Tpa = b {dR(K) vol(S,) + O
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Proof of Lemma A.9. For notational convenience define €, = n=/2b,, s/4,

Now write Ty, 2 = (A1) + (A2) + (A3) + (A4), where

Z Z wajzgv i)Zj

=1 j= 1,3#@

(A2) —enz Z Hw?]zgv x;)0(x;)

i=1 j= 1,]#1

(As) —enz Z Lws o' (2,)V " (2:) %

i=1 j=1,57#1
(A =e > Y Lwid @)V (wi)d(x;).
i=1 j=1,j7#i

Let us first look at (A;). So begin by observing that

(A1) = n2b2sz Z ]“szg Z; xz) = (A1)a + (A1)p, where
"=l j= 1737&1

(A1)a = n2b2s Z Z H’ng “j )3

on i=1 j= LJ#@
(A1) = o755 Z Z LK {H ™ () — H N (24)} 3.
n =1 j=1,j#i

Next note that

S {H ™ (@) — H™ (@) Y2 < KGNZ P 1H () — HH aa)l.

But letting 7, def 10g”

+ b2, from Lemma B.10 we know that

sup |£[—1($1) B H_I(SCZ)| elt. b:y elt.
T, €Sy

Op(Tn),

and 7, — 0 on choosing b, =n"% for 0 < a < %(1 - %) Therefore, since

(A1) < QbQSZ Z KEIZIPIE (@) — H ' ()]

"= 1J 1,j7#i

< £ Z K3i11%511%}
nb T j=1,j#i
0] (Tn) Tn

=== opu):op(@,
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we get (A1) = (A1)q + Op(%). Now write

Z’C2~~/ (1)

" =1,

E(zZ'|ei)h(zi) + R (i)} H (),

where R (z;) elt- by et O, (b2) follows from the consistency of kernel es-

timators. Because E(Z;Z[|z;) = V(x;) and V~!(x;) is element by element
uniformly bounded on S*, the previous equation reduces to

(A IX + LR™ (2) H ()}

(
zn: L1 zn:HitrR(A)(xi)H_l(z:i)
nbs P h(xz nbj, =
U 0,(b2)
nbs ;h(x, bs

—_

By the CLT we know that

1/2(1Zz 1 Lih™ ( i) — E{Hl (xl)}
\/var{]h x1)}

) = Op(1);
ie.
—Z]I hY(z;) = vol(S.) + Op(n~1/?).
Using this approx1matlon we have
(A1) = bl%{di)‘i(lC)vol(S*) +0p(n™Y2) + 0,(82)}.
Combining the results for (A;), and (A1), we get that
)

= é{dm(K)Uol(S*) +0,(nY2) + 0,(02) + Op(10)}

(A1) = - AdR(K)vo0l(S.) + Op(n ™) + 0,(12)) +0 G
- bis{dm(n)vous*) L Oy (m)}

Now let us look at (Az). Observe that we can write

(42) = L tr 31 LSk ().

" j=1,5#1
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But fince (7) #ZJ 13;&2’C O(x )2; — Ogxq because E(Z;|z;) = 0, and
(1) H~'(z;) is element by element O,(1) on S, we get

(42) = 5 oplm) = 035

Similarly, we can also show that (A3z) = op(—s). Finally, observe that

nbS

Z K30(5)0 ()} H™ ().
" =15
But H~!(z;) is element by element O,(1) on S,, and from Assumption 5.1
we know that —— > 1HQIC (xj)0'(x;) is also element by element O,(1)
on S,. This yields

62 62
(Ag) = =5 Op(n) = Op(37).

n
Combining the results for (A;)—(A4) we get that under Hy,,

2
Top = AR UOOI(S) + Oplr)} +0p(2) + 0p(32) + Oy (2

n

ie. Tpo = b, *{dR(K)vol(Ss) + Op(1h)}. O

Lemma A.10. Let E||Z||™ < oo for some m > 2 and choose by, =n~% for

0<a< min{%(l — %), 21—8} Then under Hy,, Ty 3 = Op(\/%).
NOn

Proof of Lemma A.10. Define ¢, = n*1/2bgs/4. Under Hy,, we can write
Tp3 = (B1) + (B2) + (B3) + (Ba), where

KO) &« & 1, -
(B1) = 52 D LKyEHH ()%

noi=1 j*Ljséi

(BZ) TL2 25 Z Z ]IK:UZz )(S(l‘])

b i= 1] 17#%

(B3) = n2b25 Z Z 1iKC50" (i) H ( i)

11] 1]#1

(By) = 2b25 Z Z K0 () H ()0 ().

=1 j=1,j#i

In Lemma A.4 we had shown that under Hy

Z Z Lz H ™t (g )2iCi; = op(nS/Qbf;),

i=1 j=1,j#i

provided we chose b, = n=® for 0 < o < min{2(1 — 2),.L}. The only
properties we had used to obtain this result were that E(zz|xl) = 0 and that
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the z;’s were iid. Since the same properties hold for Z; under Hy,, we also
have (B7) o 0p(—~=) if the bandwidth is chosen as described. Next write

\/nbZs

~/H

Z Kijo(x;)} bs —=0p(n),
" =157 n

: . It. by elt.
where the second equality follows because: (i) —= Dt i Ko (25) olt- Dy elt

0,(1), (i) E||Z||? < oo, and (iii) H~'(z;) is element by element uniformly
bounded in probability on S,. Since €, def -1/ Qb,:S/ 4, we obtain that
(By) OP(W). Similarly, we can show that (Bj) =" op(W).

Finally, we have

( nbs Z]I(sl Ai Z Kljé $] b Op( )7

" j=1,5#1
where the second equality follows from (i) and (iii) as listed above and the
fact that d(x;) is element by element O,(1). Therefore, (By) L) ( o — )

and the lemma stands proved upon combining the results for (31)7(34) "and
using the chosen bandwidth. ([

Lemma A.11. Let ]E\|21||m < oo for some m > 2 and choose b, = n~% for

0<a<min{i(1-2), L} Then under Hy,, Ty = Op(ﬁ).
NOn

Proof of Lemma A.11. Same as the proof of Lemma A.10. O

Lemma A.12. Let E||Z;||™ < oo for some m > 4 and choose b, = n™®

for0 <o < (1= Also let p = E[Il{zy € S.}8' (z1)V ~1(z1)0(21)] and
02 = 2dK**vol(S,). Then under Hy,, b,sn/QTn,g) 4 N(p, 0?).

Proof of Lemma A.12. Define ¢, = n*1/2bgs/4. Under Hy,, we can write
Ths = (C1)+ (C2) + (C3) 4+ (C4), where

(Ch) = nQbQSZ Z Z ]IICZ]zJH Ya) 2K

noi=1 j= l,j;ézt 1t;£j;£z

2 zsz Z Z LikCii 25 H " (a04)6 (a00) it

n =1 j= l,j;élt 1t;£j7$z

n2b2s 2s Z Z Z LikCij6' (i) H ™ (25) 2Kt

n =1 j= 1,]7511‘, 1t;éj7$z

(Cy) = 2b2sz Z Z LKCi;8 () H ()6 () K

Ni=1 j=1,j#i t=1t#j#i
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Note that (C1) would be identical to T}, 5 (which is defined in Lemma A.6)
were it not for the fact that the former is a function of Z instead of z.
Therefore, we can once again use Lemma A.6 to show that bf/ 2(01) 4
N(0,0?) provided b, = n™® for 0 < a < 5(1 — %) Next write (C2) =
(C2)q + (C2)p, where

(Ca)a = 2282 Z Z LiKii 2/ H Y ()8 (24) K,

n i=1 j= l,j;ézt lt;éjyéz

(Ca)y = 2252 Z Z LKz {H " (i) — H™ (23)}6(24) K

n i=1 j=1,j#i t=1,t#j#i

From Lemmas B.8 and B.9 it follows that both bf/z(C’g)a and b;i/Q(Cg)b

are asymptotically negligible in probability. Therefore, bi/ 2(02) o op(1).

Similarly, we can show that b/ (Cs) Hin op(1). To analyze (Cy) recall that

def _1/9,—s/4
lef 1/2bn8/

€n and write
. 1 n n . 1 n
b3/2(Cy) = 2 > > LKyd(z)H 1(%){% > Sz}
noi=1 j—l JFi T ot=1,t#j#i
n2b5 Z Z KCi;6" (2 ) H ™~ (i) {6 (i) b () + rl(a)},
=1 j=1,j#
where r(a) et by elt. 0p(1), and the second equality follows from the consis-

tency of kernel estimators. Hence let b/ 2(Cy) = (Cy)a + (C4)p, where

nst S W8 ) )6 ()

b i=1 j= 1,#%
Cop= o 3o D0 ey e
=1 j=1,5#

Once again, use the consistency of kernel estimators to see that

n

<c4>a=12m- LS Ky () M ()0 ()
= " =1

. Z]I {5/ xz z Tz(m/}ﬁil(l‘l)(x.rl)h(l‘l),

(B) elt. by elt.

op(1). Similarly, letting rl@) &f 1 > =12 Kijd' ()

S
nbg

1< i o
== Z]Iirlh)/H_l(xi)rl( ),
i

where 7,
we have
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So we can write b2/2(04) =(I)+ (II)+ (I1I), where

S L )5,
=1

SO S (B O g )
II) = n ;Hﬂ“i H™ ()0 (zi)h(z;), (11) ZH T Z) i

Therefore, using the facts that: (7) r,ga) and rg ) are asymptotically negligible
element by element, (i7) the components of §(z;) and rlh) are Op(1), and

(i4i) H(z;) is element by element uniformly bounded in probability on S,,
it is easy to see that (1), (III) = op(1). So it only remains to look at (I).
Write (I) = (I)q + (I)p, where

= %Zﬂiél(xi)ﬂ )6 (i) b2 (z;) = % S LS (@) V (20)d(xi),
=1 i=1

_ % SOLS () (B @) — B @) Yo (o) B ().
i=1

Then by the weak law of large numbers, (I), = p1+0p(1). From Lemma B.10
we know that H~'(x;) & H~'(x;) element by element under our choice of
b,. Hence we get (I), = o,(1). Therefore, (I) = p + 0,(1) which implies

that bf/2(C’4) = p + 0p(1). Combining the results for (C1)—(Cy) we obtain
the desired conclusion. O

APPENDIX B. PROOFS OF AUXILIARY RESULTS

Lemma B.1. Let b, =n" for 0 < a < (1 - 2) and ¢, Aot Jlogn - qpen,

nbs
under Hy,
_ 141 2 _ 141
max V]| = 0! Ym0, (ch) and | max Xzl = 0TV "0,(e,).

Proof of Lemma B.1 w;; > 0 from Assumption 3.4, and n + )\;zj >0
holds because the estimated probabilities are nonnegative. Hence

1 w;j(Niz)) " w;j(Nz)?
H?“PH_Z#HZJH_ D Pciai

/ /
o ont Az Snt Az
where 2z = max{||z1||,...,||zn]|}. Furthermore, multiplying both sides of

(2.6) by A, we get

n n
Wi N2 Wis (/\{Zl)Q )
0= E W E ;J{A;zj—iz 21, e
=1

/.. /.
ot iz n+ Az

n

wij( Nz
(B.1) wig(Xiz)” Wi Ni 24
z; n—i—)\’zj Z I

j= j=1
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Plugging this result in the above inequality we have

n
V<28 > wiizg.

j=1
Now use Lemma C.3 to assume w.l.o.g that n is large enough so that 2z <
n'/™ holds almost surely. Thus the previous inequality reduces to

(B.2) I < ™S wy Nz
j=1

L E?:l K:iij} = 0 when E(Zj’.%‘j) =0

S
nbs

Therefore, we can use Newey (1994, Lemma B.1, Page 250) to show

for large enough n. Notice that E{

elt. by elt.
SUP | b Z’Cw 7] Op(cn),

> Kij - E{W Z’Cij}’ = Op(cn),
i=1 n =1

and ¢, | 0 on letting b, = n™® for 0 < o < (1 — 2). But since h

m
is bounded away from zero on S, which means that for large enough n
the term E{— > j=1Kij} is bounded away from zero on S., we can use
Lemma C.2 to see that

It. by elt.
sup |wazj| T2 Op(cn).
T;ESx j=1

Hence if we can determine a bound for the \;’s, we can bound 1"1(1). So let
us obtain the bound for A;. First, w.l.o.g let \; = p;&;, where p; > 0 and
& €S;ie. ||&| = 1. Therefore, (B.2) reduces to

(B.3) V| < n2m pi0p (cn).
Next, use the fact that
0 <n+ Nz <n+pillzll <n+pizy <n+pm'/™

to see that

n+pi1nl/m < nJJ\;Zj. But this implies that (B.1) becomes

l/m Z w’L] é-zzj < Z wljgzz‘ﬁ

i.e. using the nonnegativity of IC;; we can write (uniformly in ¢ € I,)

pi 2=z Op(cn)
n+pnt/m TGV (2)g &V (@i)&i + 0p(1)

n+pn

= Op(cn)’
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where the last equality follows from the fact that V(x,) converges in proba-
bility to V'(z;) uniformly on S, and that sup,, c g, &V (2:)& < oo. Therefore,
solving for p; we have

nOp(cp)
1 —nl/m0,(cy)

pi = |\l = =n0p(cy) (uniformly in i € 1),

because n'/™¢, | 0 under our choice of b,. Substituting this in (B.3), we
get
||r(1)|| = n!t/mo (2) (uniformly iniel).

7

Moreover, since |X;z;| < ||Xi|||z;]| < piz;;, we also have

|Nz;| = an/mOp(cn) (uniformly ini € I, and 1 < j <n). O

s/2

Lemma B.2. b/ {Ty5— T} 5} = 0y(1) if by =n"* and 0 < a < (1 - 2).

m

Proof of Lemma B.2. Throughout this proof let
U={yeR:|y| <1} and T,(z;) = H Y(z;) — H  (x).

Changing the order of summation write

b3/ {T, 5 — Ths) = 38/2 Z Z Z LiKCij 25 () 2 it

i=1 j= 1,]7£zt lt;éj;éz

= 35/22 Z Z LKCij 25 () 26 it

t=1 j= 1,]7$t i=1,i#£j#t
= 35/2 Z Z % Bjt(Tn)zt,
t=1 j=1,j#t

where Bj(T',) = Zzn:l,i#j# L;/Ci;Tr () ICit. Note that since

d
=30 A B

=1 v=1

it suffices to show that

n

ZEZ U Bju(L{)2f" = 0p(n?62).
t=1 I,J#

Before we present the details showing A(ng)) = op(nQbis/ 2)

useful facts. The first one follows from Lemma B.10; namely,

e 1
sup [T07()| = Op(ra), 7 4 [2E2 402,
;€S n n

, we need two
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and 7, | 0 on choosing b, = n" for 0 < a < %(1 — %) Hereafter, for v € U
we will also use the following notation:

. n . n n l . v
Bym = Y LKk A=Y Y 2UBim:".
i=1,i#j# t=1 j=1,j#t

The second useful fact, which is easily verified, is that the random variables
zj(-l)B;ft (v)zt(v) and z,(gl)B;t(v)zlgv) are uncorrelated for j # k # t when v € U.
See, for example, Remark B.1 in the proof of Lemma B.3. Let us continue
with the proof. So pick any ¢ > 0, and let M, denote a positive number
which may depend upon e. Observe that

(B.4)  Pr{|A(r; 2T > M.}

= Pr{|A(r,, 'PT"))| > M, sup 7,"*|T{") ()| < 1}
T;ESx

+ Pr{|A(r; V220N | > M., sup ;Y200 ()] > 1}

IZES*
Since sup,, g, 7 _1/2]ng) (x;)| <1 implies that
o 2rW e e U, w20 (2,1, € U,

the first term on the RHS of (B.4) is majorized by Pr{sup.¢;, [A*(7)| > Me}.
Moreover, from the first useful fact, the second term on the RHS of (B.4) is
o(1). Therefore, we have

Pr{|A(r, PI{{")| > M} < Pr{Slelg [A*()] > Me} + o(1).
Y

Because A*(v) is linearly homogeneous in v, sup,gy [A*(7)] < [A*(D)].
Hence by Chebychev, the previous inequality reduces to

(B.5) Pr{|A(r; 120U > M.} < E|A*(1)|/M, + o(1).

Now using (D.2) along with the second useful fact, we can see that

{E|A*(1)|}2 < E{A*(1) —QZ Z E{=\" B} (1)2"}2.

t=1 j=1,j#t
Because
{B;t(l)}Q = Z ]IZ'ICl-ZjICZ-Qt + Z Z ]IiICileitICuleut,

i=1,i#j#t i=1,i#j#t u=1utitj#t

we have
l * v - l v
BBy (A" = Y E{LV2 [ PREKE
i=1,i#j#t
n n l v
+ Y S EILEP PC Ciui Ka }

i=1iAjAt u=1utitj#t
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It is straightforward (the details being very similar to the method used in
the proof of Lemma B.4) to see that

E{Lilz [ PKEKE} = O7).
Similarly, we can show that
(il (1P KKK} = O03).

Therefore, using the above results we have

E{z B} (1)) = 0(n’by).
Hence E{A*(1)}? = O(nb3*), which implies that E|A*(1)| = O(n2b?).
Thus (B.5) reduces to

Pr{|A(r,, /P TU)| > M} < O(n*b)/?) /M + o(1).

So choosing M, appropriately, we obtain

A(r, 1P = 0y (n?672).
But since 7, | 0, we conclude that A(ng)) = op(nQbis/Q). O
Lemma B.3. Wy, is clean; i.e. E(Wyjp|ze,2¢) = 0 a.s. foralll <t,j <n.
Proof of Lemma B.3 Since

E(Wjnlxe, z¢) = QE(zzAtjnzﬂxt, 2t) = 22£E(Atjn2j\xt, 2t),
use iterated expectations to see that
E(A¢jnzjlae, ze) = B{E(Agjnzj|oe, 20)| X, 20} = E{AyjnE(25| X, 2¢) |24, 26}
But as we are dealing with independent observations, under Hy
E(zj|X, 2t) = E(z|z;) = 0;

i.e. E(Wijn|xt, 2¢) = 0. Similarly, we can show that E(Wyy|z;, 2;) = 0.

Remark B.1. We can use a similar approach to show that Wy;, and Wy,
are uncorrelated for t # j # k. To see this, note that

E{WijaWikn} = 4E{2 Atjnzj 2, Atkn 2t}
= AE{2 Atjn 2z E(2,| X, 21, 2) Atk 2t }
= 4E{Z£AtjanE(Z]/€|$k)Atant} = 0;
i.e. Wijp and Wy, are uncorrelated if a free® index is present. O
Lemma B.4. E{z]A;;,,z;}? = (n — 2)(n — 3)2db3*K**vol(S,){1 + o(1)}.

8An index is “free” if it occurs only once (de Jong 1987, Lemma 2.1, Page 263).
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Proof of Lemma B.4. Using iterated expectations and the independence
of observations, we can write

]E{ngtjnzj}Q = ]E{ngtjnzjngtjnzt} = ]E{ngtjnIE[zjzﬂX, 2t) Ajnzt }
= E{z1AyjnElz2}|zj] Ayjnzit = E{zjAynV (25) Atjna}
=Etr {z;AijnV (2;)Atjnz} = tr E{AyjnV (x) Arjnzizt }
= tr E{AyjnV (x;) ArjnEl2e2| X]}
= tr E{A¢jnV (2;) ApjnE[ze2; 2] }
=trE{Ay;nV(z;)AnV (z1)}.

But as AV (25)AtjnV (24) is equal to

{ Z ]IZICUH*I(xl)V(x])ICn} X { Z ]IulCuijl(xu)V(:ct)lCut},

i=1,iAj £t u=1,uztj£t
we get that
]E{ngtjnzj}Q = Z tr P + Z Z tr P,, where
i=1,i£j £t i=1,iAj At u=1,utitj#t
LIC2ICEV Y2V (2)V )V (x
Ple{ ij" vt ( ) (j) ( ) (t)7
h(;)
]IiHuICijICithujICutV*l(xi)V(xj)V’l(xu)V(wt)
2= W) 12(z) .

Let us look at P, and P, one by one. By iterated expectations and the
independence of observations we can write

Hi’CinV_l (xZ)V(:c])V_l(xl)
h4(l‘l)

Py =E{ E[KZV (z)|xi]}.

But using Assumption 3.3(¢7) and the fact that z; € S,, we can show
(B.6) E[KZV (z¢)|2:] = byR(K)V (z5)h(;) + b5 RP) (),

R®)(2;)|| < co. Hence substituting (B.6) in the expression

where sup, cg,
for P, we have

LAV (22)V (2)
Hi’C?jvfl (.T}Z')V(.Z'j)vfl (xz)R(B) (J}Z) }
h4<1'z) '

Py = BER(K)E]

+ b3TE{
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But note that

L2V~ (2)V (x5 V(s
A
) V(2 R® (z;
:b;m(/C)E{h;i;i)}IdxﬁszE{Lv /(13()95) N

where ||R®(z;)|| < oo uniformly in z; € S,, and the last equality follows
from a result similar to the one obtained in (B.6). Hence using the facts:
(1) sup,, e, ||V Ha:)|| < oo, (i1) R™W(z;) is element by element uniformly
bounded on S, and (éii) h is bounded away from zero on S,, we have

]IiICZ-QjV‘l z;)V T; i
bER(K)tr E{ 3 ((xi)) () } = db*R*(K)E{ hQ]ngi)}
= m<ic>b?f+2trE{HiVléﬁ?gim =
— AR (KBS h;ﬁ; SO,

Similarly, we can show that

]IiIC%V*l (.’L‘Z')V({L'j)vfl (mZ)R(?’) (.%'Z)

b2t B B () }
= b2 BV @ BIKEY (o eV (@) R ()
= sy ()
4 ey gV @) B %‘;—%xim@ ()

= 0(;" ) + O(b"™) = O(b;"+2),

where the last line follows from the observation that R®)(z;), R®)(z;), and
V~Y(z;) are element by element uniformly bounded on S, and h is bounded
away from zero on S,. Therefore, we have

I
tr P = dbp*R*(K)E{ -5 —
rIri nm (IC) {h2(3§'1)

Now let us look at P,. Once again, using iterated expectations and the
independence of observations, we can write

LK Ky V() V () V™~ a)
h2(z;)h?(xy)

Next, using Assumption 3.3(i7) and keeping in mind that z;,z, € S, we
can show that

B{KitKutV (20) @i, 20} = b3KE,V (20 h(xy) + b5 RO (24, 24,),

1+ O(b,)]-

Py = E{ E[Icztlcutv(xt”mu xu]}
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where K, = K*(¥3%) and sup,, , cs, RW (x4, 2,,)|| < oo. Using this

result, the expression for P, reduces to

HiHuKij/Cuj]C;uV_l (l’Z)V(l’])
Rah@)
]Ii]IulCileujV_l (Ii)V(I‘j)V_I (xu)f%(l) (24, xy)
W@ h2(z) .

Py = bSE{

+b5HE{
But once again we can show that

LI Ko K, V1 () V (25)

E{ ¥

h2(x;)h(zy)
= B B, v o)
- E{Hi%;(%)‘z;i?) b3 K5V (i) h(xi) + b5 R (2, 24)]}
_ bSE{m}IdXd LR HiHuKZ‘u‘;;(;(Sih)gf; (2, ;) s

for some R (x,,x;) such that SUD,., 4.eS, |R® (2, ;)| < co. Further-
more, after some tedious algebra we can also show the following results:

LLCE Y

tr E{W}Idxd dby, K vol (S,),
i WV R(2) Lays Ty
o E{Hzﬂulc ‘22(;1) )(iu)( )} _ O(brsz)a
1KoK VL () V (2 DR (21, 20
tr B (h2)(zz-()f52)(‘;u)( MLty - o)+ 00+,

Therefore, combining these results we get
tr Py = db>* K" vol (S,){1 + O(by)}.

The desired result follows. O
Lemma B.5. G| = O(n4+%b72f).

Proof of Lemma B.5. Since

n—1 n n=1 n
Gr=> Y EW:, =163 3 E{zAyuz)

t=1 j=t+1 t=1 j=t+1
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use the summation identity in (D.4) to see that
IE'{ZziAtjnZj}4 = Z E{LKij2 H (xl)z’] lt}
i=1,1#j#t

+3 > > B{LKizH Nw) 2K} {TeKn 20 H () 2K } .
i=1,i£j#t k=1 k#itjt

Now |z H (x;)zj] < Iz ||ZJ}'L|LPX)_1(%)H. Therefore, by Assumption 3.3(i4i)

and the result of Lemma C.3, |z/H '(z;)z;] < cn%h_Q(xi) holds almost
surely for large enough n. Thus
LKCHICH
“)
( i)

also holds for large enough n. Next, a little algebra reveals that

LKL K
{ 17 zt}
h?(x;)

BALKC: 20 H * (24) 2 /Cig } <cnmE{

= O(b%).
But this means that
BALKC:j 2, H  (24) 2K} = O(nmeS)
The result now follows from another application of Cauchy-Schwarz. O
Lemma B.6. G = O(n5+%b7215).

Proof of Lemma B.6. Follows by using the Cauchy-Schwarz inequality

and the result that EWén = O(n“gb?f) (see proof of Lemma B.5). O

Lemma B.7. Gy = O(n6+%b$f).
Proof of Lemma B.7. Same as the proof of Lemma B.6. U
Lemma B.8. bS/Q(CQ)a = 0p(1).

Proof of Lemma B.8. Change the order of summation to write

n

(C2) n2b25 Z Z &' () AtjnZj, At = Z LikCoj H " (a04) Kt

ot=1 j=15#t i=1,i#j#t
For notational convenience let by; = 6'(x)A¢jnZ; and note that by # by,
E{bbji} = 0 if t # j, and E{b;bymu} = 0 if w # j. Then using the

summation identity in (D.2), we have

E{b3/*(Ca)a}? = 4b35{z Z EbtJJrZ Z Z Ebt;bims }-

t=1 j=1,7#t t=1 j=1,j#t m=1,m#j#t
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Recall that {Z;}? ; is a random sample and E(Z;|z;) = 0. Therefore, as in
the proof of Lemma B.4, we can show that Ebfj = O(n?b3%). So it remains
to calculate Eb;jb,,;. Using iterated expectations,

E{bijbm;} = B{' (21) AtjnE(ZZ}]x5) Amjnd (2m) }
= B{0' (w) AtjnE(2 2} |2;) Amjnd (xm) }
= E{é'(:nt)AtjnV(:z:j)Amjné(ajm)},
where the second equality follows because E(éjéﬂxj) = V(x;). But as
ApinV (25)Amjn is equal to

{ Z LiKitKiy H ™ ()} V (25) x { Z LK umKui H ™ (24)},
i=1,iF£j#t u=1,u#j#m
we get that E{b;jb,,;} = E{(IV) x (V)} where
(IV) = Z ]IilCithijé’(xt)Hfl(mi)V(a;j),
i=1,iA

n

V)= > LKunKyH '(xu)6(zm).
u=1l,u#j#m

So we can write

n

E{btjbm;} = Z (VI), + Z Z (VI)y,
i=1i£j#t i=1i£j#t u=1utj#m
where

(V1) = B{LiK:tkKim 6 (xe) H () V () H ()6 (2m) }
(VD) = B{LLKCit Kij Kum Ko 6 () H () V () H ™ (2) 8 (m) }-

We now sketch out the argument which shows that (VI), = O(b>*) and

(VI), = O(bl¥). First, using iterated expectations and the independence of

observations, we can show that (VI), is equal to

E{LE[S (w0)Kielars] H™H () B[V (a7) K ars] H ™ (0) B[S (m) i |i]}-

Then, keeping in mind the discussion after Assumption 5.1, we can show
that (element by element) the following results hold uniformly for x; € S,:

E[0' () Kitlai] = O(b;), E[V (2))K5lai] = O(b;), Elb(2m)Kimlzi] = O®}).
Therefore, since H ! (x;) is element by element uniformly bounded on S, we

get that (VI), = O(b3%). Next we look at (VI);. Using iterated expectations
once again, we can show that

(Vf)b = E{LHUE[(S/(JZt)Knml] Hil(xi) E[V(:ZJ])’CUICW|CC“ LL’U] Hil(xu)
X E[6(@m) Cum|2u] }-
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But since the maps

K:z— sup K(z; +u), x; — sup h(x; + byu), z; — sup ||V (z; + byu)||
uESK uESK u€SK

are continuous on .S, we can write
elt. by elt. i — T

LLEV (2)K K|z, 7] < BLLK(E -

where M* is a matrix of constants which does not depend upon (z;, ).
Moreover, as pointed out earlier, we can also show that element by element

E{d'(z)Kit|zi} = O(br,),  E{d(zm)Kuml|za} = O(b7)

hold uniformly in x;,z, € Si. Therefore, since H~!(z;) and H !(z,) are
element by element uniformly bounded on Sy, we get that

)

However, using the facts that (i) K is bounded on [—2,2]%, and (ii) z; —
SUP,e 5, h(acZ + byu) and x; — h(x;) are bounded on S, it is easy to show
that E{H,Huﬁ(%)} = O(b3). Therefore, (VI), = O(b2%), and we get

)M

— Ty

(VI)p < cbBB{LLK(E

1
E{bisbug} = O(b) + O(n*b) = O(n*bi){1 + O(—)} = O(n*b),

Combining the results for ]Ethj and Eb;by,j, it follows that

E{b;/(Ca)a}* = 4235{0(?%45%3) +0(n’b;)}
- 0w = O
ie. E{bf/ 2(02)a}2 = 0(1). The desired conclusion follows. O

Lemma B.9. bfL/z(C’g)b = o0p(1).

Proof of Lemma B.9. Since the details here are very similar to the ones
in the proof of Lemma B.2, we provide only the barest outline. So write

s/2 A
o (Co 2b38/2 Z Z Z LiKij2 g (2i)6(xe) Kt
i=1 j=1,j#i t=1,t#j#i
Hence it suffices to show that €, A(ng)) = op(nQbf’f/Q), where

z": f: 2”: H"Cij2§l>r$f“> (967;)(5(”) (z0)Kit.

i=1 j=1,j#i t=1t#j#i

But this can be shown almost exactly as in the proof of Lemma B.2. O
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—2/mys . .
Lemma B.10. Let nlljgnb” — o0 and suppose that the assumptions in
Newey (1994, Lemma B.3, Page 252) are satisfied. Then

elt. by elt. logn

sup [H~"(zi) — H™' ()] Op(

+ b2).
;€S ’I’Lb% TL)

Proof of Lemma B.10. Define 7, = /% 4+ p2. From Newey (1994,

S
nbs

Lemma B.3, Page 252) we have

1 n
bs ZICiijzg — V(a:z)h(xl)|

elt. k&/ elt.

sup |

Pl Op(7s), and
Ti€ES«

sup |h(z;) — h(z;)| = Op(Ta).
T, €Sy

Since h is bounded away from zero on S,, we can use Lemma C.1 to show

Op(Tn)-

~ 1t. by elt.

sup [V (z;) = V()| = 2°
T, ESx

Furthermore, as (§,z) — &'V (x)¢ is bounded away from zero on S x S,

Lemma C.2 implies that
o _ 1t. by elt.
sup |V (@) =V (2a)| T 2T Op(ma).
;€5

Therefore, applying Lemma C.1 twice, we get

A ~_ _ _ elt. by elt.
Sup [V @a)h 2 (2) =V @)h 2 (@) T =T Oplm);
T, €%
. N _ elt. by elt.
i.e. sup,,eg, |HY(z;) — H ()] = Op(Tn). O

1-2/myps . .
Lemma B.11. Let ” lognb” — 00 and suppose that the assumptions in

Newey (1994, Lemma B.1, Lemma B.2) are satisfied. Then

o EQ(2)} 1 clt. by elt. logn
sup |H Yz;) — {Ai = O — ),
xeg | (#) Eh(x;) | 4 nb;, )

Proof. Let ¢, & /1962 Newey (1994, Lemmas B.1 and B.2) shows that

nbs,
~ A elt. by elt.
sup |Q(z;) — EQ(z;)] = Op(cn),
J’JiES*
sup |h(z;) — Eh(z;)| = Op(cn),

T;E€Sx

sup [Bh(z;) — h(x:)| = Op(b7).
z;ESx
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Because h is bounded away from zero on Sy, the last result implies that
Eh(x;) is also bounded away from zero on S, for large enough n. Therefore,
using Lemma C.1 and the first two results, we get

~ EQ(xl) elt. by elt.
sup |V(xz;) — — = O,(cn).
Iieg*! (i) Eh(xi)\ p(Cn)

In a similar manner we can show that for large enough n the map (&, z;) —
E'EQ(z;)€ is bounded away from zero on S x S,. Therefore, we can use
Lemma C.2 to show that

N EQSEl _1, elt. by elt.
sup [V () — U)ot by et

O,(cp).
;8. Eh(z;) (cn)

Finally, two successive applications of Lemma C.1 lead to

Vlx) EQax),_; 1 et byelt.
sup | — { Sl (),
w8, h2(x;) Eh(z;) " E2h(z;)
. =1y {Eﬂ(zz)}_l elt. by elt. O
Le. sup,.cg, [H™ (i) — W' = p(cn). O

APPENDIX C. SOME USEFUL RESULTS

Lemma C.1. Let a,, and b, be sequences of positive numbers such that
an, by, | 0. Also let m, be a sequence of functions such that sup, |r,(z) —
r(z)| = Op(an) and sup, |r(z)| < oo. Furthermore, sy is a sequence of
functions such that sup,, |s,(xz) — s(z)| = Op(b,) and inf, |s(x)| > 0. Then

sup, |24 — Z8| = Op(max{ay, by }).

Proof of Lemma C.1. Let inf, [s(z)] = m, sup, |r(z)] = M, and no-
tice that |inf, |s,(z)| — inf, |s(2)|| < sup, |sn(z) — s(z)|. Therefore, since
sup, |sp(z) — s(x)| = op(1) by assumption, infy |s,(z)] > % holds with

probability approaching one as n | oo. Hence we can use the identity

T=c- @ — 7‘1(%;;)2 to show that
ral@) (), supylra(e) = r@)] b, [sa(e) = s2)]
@ @ =T @ @R
()] {sup, [sa(@) — 5(2)])?
T Jsa@) [s(@)P
S Sup, ‘rn(;;) - 7’(1’)’ + |rn($)|supx ‘Sn,'(j;g) - S(.%')‘
su S ) — S\T 2

m3
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holds with probability approaching one. Because |r,(z)| < M +sup,, |r(x)—
r(z)|, and sup, |s,(x) — s(x)| = 0p(1) by assumption, we get that

,Tn(x) _ 7‘(9«")| < SUPg [ (x) — ()] b1 2P [sn(z) = 5(2)|

sp(z)  s(z)' — m m m2
1 2R rale) = @) s fsn(w) = )]
m m
holds with probability approaching one. The desired result follows. O

Lemma C.2. Let a, be a sequence of positive numbers such that a, — 0.
Also, let V(x) be a sequence of dx d symmetric positive semidefinite matrices
such that sup,cg. ||V (2) =V (2)|| = Op(an), and (€, ) — &'V ()€ is bounded
away from zero on'S x S,. Then sup,eg. ||V~ z) — V=1z)|| = Op(an).

Proof of Lemma C.2. Pick any a € S. Clearly,

sup |V (z)a — 'V(z)a| = Opy(ay).
(a,x)ESX S«
Since oV (x)a is bounded away from zero on S x Sy, we can use Lemma C.1

to see that sup(q ;)esx s, |a,vl(x)a — a,vl(x)a| = Op(ay). This means that for

any £ € S, we can write

(0'¢)? (0'¢)?

Sup ~ - = Op(an
(a,2)ESX S. ‘a’V(:c)a a V(m)a| p(an)
In particular, this implies that
1¢)2 7¢N\2
sup |sup (6}75) — sup ﬂ] = Op(an),

veS. aes &'V(z)a aes @'V (z)a

which, for large enough n, reduces to

sup |E'V 1 (2)E — €V (2)€| = Op(an).

TESK
As £ € S was arbitrary we obtain the required result. O
Lemma C.3. Let z1,...,z, be a sequence of iid random vectors such that
E|lz1||™ < oo for some m > 0, and let z; = max{||z1],...,||znl|}. Then

Pr{z: < n'/™} =1 for large enough n.

Proof of Lemma C.3. For the reader’s convenience we repeat the argu-
ment in Owen (1988, Page 241). Since > .7, Pr{[|z1]|™ > n} < E|jz1 (™,
we have > > Pr{||z1]|" > n} < oo. But because zi,...,z, are identi-
cally distributed, Y 7, Pr{|z,||™ > n} < oco. Therefore, by the Borel-

Cantelli lemma Pr{A,, i.0.} =0, where A, © {||zn]|™ > n}. Thus the event
{llznll < m*™} happens for all but finitely many n with probability one.
Since n!/™ will eventually exceed the largest element in the finite collection
of ||zx’s that exceed kY™, we get Pr{z: < n'/™} = 1 when n is large
enough. O



46 TRIPATHI AND KITAMURA

APPENDIX D. SOME USEFUL SUMMATION IDENTITIES

The following identities have been used throughout the paper.

n

n n n n n n n
(D.1) Z ajj Z b, = Z a;;bi; + Z Z ai;jbi; + Z Z ai;bit
i=1 j=1 k=1 i=1 i=1 j=1,j7#i i=1 t=1,t4i
n n n n
+ Z Z a;ibi; + Z Z Z a;kbit
i=1 k=1 ki i=1 k=1 ki t=1,12kAi

COI DI SIEHED SIb SIS DI SR SR

t=1 j=1,j#4t t=1 j=1,7#t t=1 j=1,5#t k=1,k#j#t
n n n n n n n
PIED DED DELIUED DED DI DED DENND DRI
=1 jo 1At u=l,utj At =1 j=1,jt =1 j=1 At m=1,mjAt
n

t=1 j=1j#t m=1,m#j#t t=1 j=1,j#t m=1,m#£j#t u=1,um#j#t

n—-1 n n—-1 n n—2 n n
(D.3) {Z Z atj}z = Z Z afj + Z Z Z atjatk
t=1 j=t+1 t=1 j=t+1 t=1 j=t+1 k=t+1,k#j
n—1 n n—1 n
+Z Z Z Z At Amay

t=1 j=t+1 m=1,m#t u=m+1

(D.4) {Z:ai}4 Za —1—42 Z a;a; +3Z Z ajaz+

i=1 j=1,j#i i=1 k= 1k7$z

n n
DD SRS SRNTESES SIb SRS DENND SRR TS
i=1 j=1,j#i m=1,m=£j#i i=1 j=1,ji I=1,l#4j#i m=1,m£l£j#i
O



APPENDIX E. SIMULATION RESULTS

TABLE 1. 2z = c(1 4+ 22)/2 4 ¢(1 + 2?)1/?

n = 100

Size

1%

Corrected

5%  10%

Size Uncorrected

1%

5%

10%

c=20.0

SELR
ABS,w
Zheng
SELR
ABS,w
Zheng
SELR
ABSw
Zheng
SELR
ABSuw
Zheng
SELR
ABS,w
Zheng
SELR
ABS.w
Zheng

0.007
0.006
0.008
0.026
0.030
0.024
0.141
0.122
0.099
0.430
0.387
0.318
0.738
0.707
0.639
0.941
0.928
0.881

0.049 0.103
0.056 0.098
0.049 0.091
0.103 0.174
0.093 0.162
0.082 0.154
0.311 0.423
0.290 0.399
0.242 0.369
0.639 0.728
0.614 0.716
0.552 0.682
0.879 0.936
0.864 0.927
0.825 0.895
0.979 0.990
0.974 0.986
0.963 0.979

0.019
0.010
0.024
0.052
0.038
0.045
0.207
0.144
0.171
0.520
0.422
0.450
0.815
0.733
0.753
0.963
0.937
0.942

0.063
0.048
0.066
0.120
0.089
0.109
0.348
0.263
0.294
0.664
0.577
0.598
0.895
0.851
0.861
0.982
0.971
0.970

0.103
0.073
0.104
0.176
0.126
0.164
0.428
0.359
0.383
0.729
0.672
0.694
0.937
0.901
0.901
0.990
0.982
0.981

Size

1%

Corrected
5% 10%

Size Uncorrected

1%

5%

10%

SELR
ABS.w
Zheng
SELR
ABS,w
Zheng
SELR
ABS.w
Zheng
SELR
ABSuw
Zheng
SELR
ABSuw
Zheng
SELR
ABSuw
Zheng

0.013
0.009
0.010
0.063
0.062
0.050
0.433
0.407
0.346
0.889
0.871
0.831
0.994
0.994
0.989
1.000
1.000
1.000

0.055 0.097
0.049 0.093
0.052 0.096
0.186 0.298
0.190 0.297
0.161 0.265
0.645 0.756
0.640 0.753
0.592 0.701
0.970 0.989
0.966 0.985
0.947 0.969
0.997 0.999
0.998 0.998
0.998 1.000
1.000 1.000
1.000 1.000
1.000 1.000

0.026
0.026
0.028
0.126
0.094
0.096
0.567
0.504
0.494
0.943
0.928
0.910
0.997
0.996
0.997
1.000
1.000
1.000

0.068
0.053
0.072
0.234
0.199
0.208
0.689
0.655
0.637
0.980
0.969
0.952
0.998
0.998
0.998
1.000
1.000
1.000

0.101
0.085
0.102
0.301
0.273
0.278
0.762
0.726
0.715
0.990
0.982
0.971
0.999
0.998
1.000
1.000
1.000
1.000
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TABLE 2. z = c(1 + x2) + (1 + 22)1/2

n = 100

Size

1%

Corrected
5% 10%

Size Uncorrected

1%

5%

10%

c=0.0

SELR
ABS,w
Zheng
SELR
ABS.w
Zheng
SELR
ABSuw
Zheng
SELR
ABS,uw
Zheng
SELR
ABSuw
Zheng
SELR
ABS,w
Zheng

0.007
0.006
0.008
0.034
0.041
0.028
0.210
0.195
0.151
0.579
0.545
0.484
0.885
0.866
0.831
0.986
0.983
0.973

0.049 0.103
0.056 0.098
0.049 0.091
0.126 0.204
0.106 0.196
0.103 0.176
0.405 0.527
0.395 0.513
0.344 0.475
0.752 0.838
0.751 0.832
0.700 0.809
0.959 0.975
0.949 0.976
0.932 0.961
0.999 0.999
0.998 0.999
0.993 0.999

0.019
0.010
0.024
0.069
0.048
0.058
0.297
0.223
0.257
0.674
0.588
0.606
0.922
0.885
0.892
0.993
0.986
0.988

0.063
0.048
0.066
0.148
0.098
0.134
0.443
0.365
0.398
0.778
0.731
0.749
0.962
0.945
0.952
0.999
0.998
0.995

0.103
0.073
0.104
0.206
0.157
0.188
0.529
0.462
0.497
0.839
0.792
0.820
0.975
0.964
0.964
0.999
0.999
0.999

Size

1%

Corrected

5% 10%

Size Uncorrected

1%

5%

10%

SELR
ABSuw
Zheng
SELR
ABS.w
Zheng
SELR
ABS,w
Zheng
SELR
ABS.w
Zheng
SELR
ABS.w
Zheng
SELR
ABS.w
Zheng

0.013
0.009
0.010
0.096
0.084
0.069
0.599
0.579
0.534
0.975
0.970
0.953
0.999
0.999
1.000
1.000
1.000
1.000

0.055 0.097
0.049 0.093
0.052 0.096
0.244 0.354
0.245 0.362
0.224 0.327
0.788 0.872
0.804 0.882
0.754 0.834
0.994 0.995
0.994 0.996
0.987 0.994
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000

0.026
0.026
0.028
0.169
0.145
0.146
0.709
0.677
0.663
0.989
0.980
0.977
1.000
0.999
1.000
1.000
1.000
1.000

0.068
0.053
0.072
0.284
0.257
0.264
0.819
0.809
0.790
0.995
0.994
0.989
1.000
1.000
1.000
1.000
1.000
1.000

0.101
0.085
0.102
0.366
0.339
0.346
0.879
0.866
0.850
0.995
0.996
0.994
1.000
1.000
1.000
1.000
1.000
1.000




TABLE 3. z = cxl/? + ex1/?

n = 100

Size

1%

Corrected

5%  10%

Size Uncorrected

1%

5%

10%

c=0.0

SELR
ABSuw
Zheng
SELR
ABS,w
Zheng
SELR
ABS,w
Zheng
SELR
ABS.w
Zheng
SELR
ABS,w
Zheng
SELR
ABS.w
Zheng

0.008
0.007
0.006
0.026
0.025
0.020
0.129
0.090
0.078
0.392
0.288
0.245
0.710
0.598
0.536
0.921
0.850
0.802

0.054 0.104
0.053 0.095
0.047 0.091
0.099 0.174
0.081 0.159
0.073 0.140
0.298 0.409
0.249 0.375
0.202 0.325
0.610 0.706
0.529 0.669
0.470 0.609
0.867 0.926
0.802 0.877
0.751 0.846
0.974 0.985
0.949 0.976
0.918 0.964

0.013
0.016
0.030
0.037
0.037
0.046
0.158
0.132
0.152
0.438
0.367
0.389
0.752
0.670
0.686
0.940
0.880
0.895

0.047
0.050
0.068
0.089
0.077
0.098
0.282
0.236
0.249
0.588
0.516
0.542
0.856
0.791
0.813
0.970
0.945
0.944

0.078
0.077
0.100
0.140
0.124
0.153
0.363
0.316
0.344
0.671
0.616
0.626
0.903
0.851
0.857
0.980
0.971
0.966

Size

1%

Corrected
5% 10%

Size Uncorrected

1%

5%

10%

SELR
ABS.w
Zheng
SELR
ABSuw
Zheng
SELR
ABSuw
Zheng
SELR
ABS,w
Zheng
SELR
ABS,w
Zheng
SELR
ABS,w
Zheng

0.013
0.011
0.010
0.059
0.052
0.043
0.415
0.334
0.264
0.877
0.810
0.739
0.994
0.989
0.978
1.000
0.999
1.000

0.054 0.092
0.049 0.093
0.044 0.096
0.191 0.287
0.169 0.273
0.137 0.237
0.641 0.746
0.590 0.701
0.509 0.648
0.969 0.987
0.944 0.972
0.909 0.950
0.998 0.999
0.996 0.998
0.993 0.998
1.000 1.000
1.000 1.000
1.000 1.000

0.021
0.027
0.028
0.096
0.081
0.090
0.500
0.440
0.421
0.917
0.891
0.864
0.996
0.992
0.989
1.000
0.999
1.000

0.053
0.052
0.062
0.188
0.175
0.179
0.639
0.598
0.575
0.969
0.951
0.929
0.998
0.996
0.996
1.000
1.000
1.000

0.074
0.084
0.104
0.263
0.243
0.250
0.716
0.683
0.658
0.983
0.967
0.958
0.998
0.997
0.998
1.000
1.000
1.000
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TABLE 4. z = cx + ext/

2

n = 100

Size

1%

Corrected

5%  10%

Size Uncorrected

1%

5%

10%

c=0.0

SELR
ABSuw
Zheng
SELR
ABS,w
Zheng
SELR
ABS,w
Zheng
SELR
ABS.w
Zheng
SELR
ABS,w
Zheng
SELR
ABS,w
Zheng

0.008
0.007
0.006
0.013
0.021
0.016
0.067
0.063
0.046
0.182
0.155
0.130
0.368
0.348
0.303
0.609
0.573
0.530

0.054 0.104
0.053 0.095
0.047 0.091
0.074 0.144
0.071 0.134
0.059 0.126
0.176 0.275
0.170 0.270
0.141 0.233
0.361 0.475
0.346 0.472
0.304 0.435
0.599 0.691
0.581 0.703
0.529 0.659
0.797 0.868
0.788 0.865
0.750 0.833

0.013
0.016
0.030
0.024
0.031
0.041
0.083
0.075
0.095
0.225
0.202
0.235
0.432
0.414
0.444
0.658
0.638
0.677

0.047
0.050
0.068
0.069
0.065
0.080
0.167
0.161
0.187
0.343
0.327
0.360
0.574
0.560
0.589
0.785
0.779
0.797

0.078
0.077
0.100
0.107
0.094
0.137
0.234
0.225
0.244
0.429
0.423
0.452
0.649
0.650
0.673
0.837
0.828
0.839

Size

1%

Corrected
5% 10%

Size Uncorrected

1%

5%

10%

SELR
ABS.w
Zheng
SELR
ABSw
Zheng
SELR
ABSw
Zheng
SELR
ABSuw
Zheng
SELR
ABSuw
Zheng
SELR
ABS.w
Zheng

0.013
0.011
0.010
0.037
0.039
0.030
0.182
0.187
0.156
0.519
0.517
0.460
0.856
0.863
0.820
0.982
0.982
0.971

0.054 0.092
0.049 0.093
0.044 0.096
0.115 0.201
0.123 0.197
0.106 0.189
0.384 0.506
0.394 0.505
0.346 0.459
0.730 0.825
0.742 0.851
0.693 0.810
0.958 0.973
0.960 0.980
0.939 0.971
0.995 0.996
0.994 0.997
0.993 0.997

0.021
0.027
0.028
0.054
0.062
0.071
0.232
0.261
0.255
0.596
0.620
0.609
0.907
0.921
0.908
0.990
0.991
0.990

0.053
0.052
0.062
0.115
0.128
0.137
0.379
0.400
0.406
0.727
0.758
0.749
0.958
0.961
0.956
0.995
0.994
0.994

0.074
0.082
0.104
0.173
0.176
0.201
0.480
0.480
0.478
0.803
0.836
0.816
0.971
0.976
0.972
0.996
0.995
0.998




TABLE 5. z = ¢(0.5+ I{z > 0.5})Y/2 +£(0.5 + I{x > 0.5})'/2

n = 100

Size

1%

Corrected
5% 10%

Size Uncorrected

1%

5%

10%

c=0.0

SELR
ABS,w
Zheng
SELR
ABS.w
Zheng
SELR
ABSuw
Zheng
SELR
ABSuw
Zheng
SELR
ABSuw
Zheng
SELR
ABSuw
Zheng

0.011
0.009
0.008
0.026
0.026
0.021
0.125
0.093
0.082
0.385
0.309
0.257
0.709
0.613
0.574
0.918
0.865
0.824

0.047 0.100
0.050 0.097
0.047 0.094
0.103 0.174
0.087 0.160
0.069 0.145
0.305 0.415
0.248 0.383
0.212 0.334
0.617 0.724
0.540 0.668
0.500 0.632
0.872 0.929
0.810 0.893
0.773 0.864
0.976 0.993
0.954 0.984
0.932 0.968

0.016
0.014
0.030
0.044
0.033
0.044
0.171
0.131
0.162
0.463
0.369
0.413
0.782
0.679
0.700
0.947
0.890
0.903

0.044
0.047
0.062
0.101
0.084
0.104
0.303
0.238
0.267
0.613
0.528
0.566
0.871
0.798
0.824
0.976
0.950
0.954

0.088
0.074
0.100
0.147
0.127
0.161
0.372
0.328
0.351
0.699
0.622
0.645
0.914
0.867
0.868
0.988
0.974
0.968

Size

1%

Corrected

5% 10%

Size Uncorrected

1%

5%

10%

SELR
ABS,w
Zheng
SELR
ABS,w
Zheng
SELR
ABS,w
Zheng
SELR
ABS.w
Zheng
SELR
ABS,w
Zheng
SELR
ABS,w
Zheng

0.014
0.010
0.009
0.060
0.051
0.046
0.420
0.327
0.289
0.884
0.815
0.766
0.995
0.985
0.980
1.000
0.999
1.000

0.054 0.095
0.049 0.098
0.047 0.093
0.187 0.292
0.164 0.257
0.143 0.229
0.641 0.747
0.586 0.697
0.538 0.652
0.969 0.985
0.948 0.971
0.916 0.953
0.998 0.999
0.996 0.998
0.992 0.998
1.000 1.000
1.000 1.000
1.000 1.000

0.020
0.023
0.021
0.095
0.087
0.093
0.515
0.455
0.452
0.925
0.891
0.873
0.996
0.991
0.989
1.000
0.999
1.000

0.058
0.053
0.068
0.199
0.171
0.180
0.655
0.592
0.594
0.971
0.949
0.936
0.998
0.996
0.996
1.000
1.000
1.000

0.082
0.088
0.105
0.270
0.235
0.239
0.732
0.676
0.667
0.982
0.969
0.958
0.999
0.998
0.998
1.000
1.000
1.000
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TABLE 6. z = ¢(0.5+ I{z > 0.5}) + (0.5 + I{z > 0.5})!/2

n = 100

Size

1%

Corrected
5% 10%

Size Uncorrected

1%

5%

10%

c=0.0

SELR
ABS,w
Zheng
SELR
ABS.w
Zheng
SELR
ABSuw
Zheng
SELR
ABS,uw
Zheng
SELR
ABSuw
Zheng
SELR
ABS,w
Zheng

0.011
0.009
0.008
0.028
0.031
0.025
0.142
0.129
0.111
0.421
0.394
0.358
0.735
0.704
0.676
0.932
0.913
0.888

0.047 0.100
0.050 0.097
0.047 0.094
0.115 0.181
0.092 0.180
0.082 0.158
0.329 0.429
0.304 0.445
0.255 0.402
0.640 0.737
0.622 0.726
0.576 0.710
0.893 0.930
0.874 0.922
0.847 0.898
0.982 0.995
0.978 0.994
0.965 0.984

0.016
0.014
0.030
0.048
0.044
0.054
0.193
0.173
0.198
0.492
0.467
0.494
0.805
0.753
0.787
0.958
0.931
0.940

0.044
0.047
0.062
0.114
0.088
0.121
0.327
0.297
0.322
0.637
0.611
0.638
0.890
0.866
0.874
0.982
0.978
0.980

0.088
0.074
0.100
0.157
0.135
0.166
0.397
0.385
0.425
0.708
0.695
0.720
0.918
0.904
0.905
0.992
0.987
0.987

Size

1%

Corrected

5% 10%

Size Uncorrected

1%

5%

10%

SELR
ABSuw
Zheng
SELR
ABS.w
Zheng
SELR
ABS,w
Zheng
SELR
ABS.w
Zheng
SELR
ABS.w
Zheng
SELR
ABS.w
Zheng

0.014
0.010
0.009
0.066
0.069
0.060
0.458
0.427
0.399
0.909
0.895
0.872
0.995
0.992
0.991
1.000
0.999
1.000

0.054 0.095
0.049 0.098
0.047 0.093
0.188 0.297
0.192 0.294
0.173 0.272
0.660 0.780
0.686 0.778
0.627 0.744
0.972 0.985
0.974 0.983
0.960 0.978
0.999 0.999
0.999 0.999
0.999 1.000
1.000 1.000
1.000 1.000
1.000 1.000

0.020
0.023
0.021
0.104
0.120
0.114
0.533
0.551
0.543
0.945
0.940
0.925
0.997
0.996
0.997
1.000
1.000
1.000

0.058
0.053
0.068
0.203
0.206
0.213
0.677
0.697
0.684
0.974
0.975
0.969
0.999
0.999
0.999
1.000
1.000
1.000

0.082
0.088
0.105
0.274
0.280
0.289
0.754
0.771
0.759
0.982
0.982
0.981
0.999
0.999
1.000
1.000
1.000
1.000
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