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Abstract

For univariate time series we suggest a new variant of efficient score
tests against fractional alternatives. This test has three important
merits. First, by means of simulations we observe that it is superior
in terms of size and power in some situations of practical interest.
Second, it is easily understood and implemented as a slight modifica-
tion of the Dickey-Fuller test, although our score test has a limiting
normal distribution. Third and most important, our test generalizes
to multivariate cointegration tests just as the Dickey-Fuller test does.
Thus it allows to determine the cointegration rank of fractionally in-
tegrated time series. It does so by solving a generalized eigenvalue
problem of the type proposed by Johansen (1988). However, the li-
miting distribution of the corresponding trace statistic is y2, where
the degrees of freedom depend only on the cointegration rank under
the null hypothesis. The usefulness of the asymptotic theory for finite
samples is established in a Monte Carlo experiment.

* The first author gratefully acknowledge financial support from the Sonderforschungs-
bereich 373 of the DFG. We thank Luis Gil-Alana for helpful comments.



1 Introduction

With his seminal paper introducing fractional integration and cointegration
Granger (1981) opened a productive research avenue. Since then cointe-
gration techniques have become standard in the econometrician’s tool kit.
Fractional cointegration techniques, however, are still to be developed, see
Robinson (1994a) and Baillie (1996) for overviews on fractional integration
in econometrics. A vector of time series variables is called fractionally coin-
tegrated if the variables are integrated of order d > 0.5 and there exists
a linear combination of the variables with a smaller degree of integration
d* < d. The properties of fractionally cointegrated systems are analyzed by
Cheung and Lai (1993), Jeganathan (1999), Robinson and Marinucci (1998),
and Tsay (2000). Empirical applications can be found in, e.g., Cheung and
Lai (1993), Booth and Tse (1995) and Masih and Masih (1995, 1998), Bail-
lie and Bollerslev (1994) and Dueker and Startz (1998). Recently, Anders-
son and Gredenhoff (1999) investigated experimentally the behaviour of the
likelihood ratio statistic suggested by Johansen (1988). Given observations
integrated of order one and fractional cointegration they observe that the
likelihood ratio test has a fairly high power. In contrast, Gonzalo and Lee
(1998) show that the true null of no cointegration will be rejected spuriously
more often than the nominal level given the observed series are fractionally
integrated of order d # 1. This is one motivation for our present paper.
The starting point of our analysis is a univariate score test for integration
against fractional alternatives. We propose a regression variant of the score
statistic suggested by Robinson (1991, 1994b), Agiakloglou and Newbold
(1994), and Tanaka (1999). This test can be understood and implemented
as a slight modification of the Dickey-Fuller test (Dickey and Fuller (1979)),
although it has a limiting normal distribution. To test against fractional
cointegration we generalize the test in the same manner as Johansen’s like-
lihood ratio test for the cointegration rank can be seen as a generalisation
of the Dickey-Fuller test. By solving a generalized eigenvalue problem ana-
logous to that by Johansen (1988) we suggest to determine the cointegration



rank of fractionally integrated time series. The limiting distribution depends
neither on the order of integration of the series nor on the order of integration
of the deviations from the long-run relationships. Instead, the asymptotic
distribution is x?, where the degrees of freedom depend on the cointegration
rank under the null hypothesis. This result is also valid in case of classi-
cal cointegration where the series are integrated of order d = 1 with linear
combinations integrated of order d* = 0.

The rest of this paper is organized as follows. Section 2 introduces our
variant of the univariate score statistic that can be implemented as a modifi-
cation of the Dickey-Fuller test. Section 3 extends the analysis to multivariate
processes to obtain a test for the fractional cointegration rank. The fourth
section presents some Monte Carlo evidence on the performance of our tests
in finite samples relative to competing procedures. Concluding remarks are
found in the final section, and proofs are relegated to the Appendix.

2 Testing against fractional alternatives

Assume that we want to test the hypothesis that a univariate time series is a
Gaussian I(d) process, (1 — L)%y; = &4, t = 1,2,...,T, where ; is Gaussian
white noise with F(g;) = 0 and E(e?) = 02, against the alternative that y; is
I(d—b). This test is equivalent to a test of the hypothesis that z; = (1— L)%,
is white noise against the alternative that x; is I(—b) with b # 0.

Robinson (1991, 1994b) and Tanaka (1999) derive score statistics for this
test problem. Assuming y;, = 0 for s < 0 and normally distributed errors
¢, the derivative of the log-likelihood function of z; evaluated at b = 0 is
obtained as

OL(b,0)
ob

b=0

1 T t—1
= B (Zﬂ'_lxtﬂ')
t=2 j=1

1 T
= ;thﬂﬁf—u (1)
t=2



where
11
Ty = Zjﬂa:t—j . (2)
=1
Using limg_, E(2%)% = 0?72 /6, Tanaka (1999) obtains the test statistic
T-1 2
> 2]

where p; = ZtT:j 1 TeTe—j/ S 7, x2. The same statistic has been proposed

by Robinson (1991) to test for no serial correlation against fractionally in-
tegrated noise, while Robinson (1994b) favours a frequency domain approx-
imation.

Following Agiakloglou and Newbold (1994) we consider the corresponding
regression statistic that is obtained as the squared t-statistic for ¢ = 0 in the
regression’

Ty = QT+ e, (3)

that is, the test statistic is obtained by using the outer product of gradients
as an estimate of the information matrix:

T 2
(Z .1‘#?_1)
=t (4)

T

~9 *2

O¢ > T~y
t=2

where G2 is the usual estimate for the variance of e;.

It is interesting to compare the test statistic 77, with the well known
Dickey-Fuller test. If d = 1 define z; = y; — ;1 and Zy_1 = y4_1 = T4_1 +
Ty_9++--+x1, and the Dickey-Fuller regression corresponding to (3) is given
by

Ty = QT + e .

(m

1 Agiakloglou and Newbold (1994) suggest to use #™ = >y wij instead of z7_y,
where m is some pre-specified truncation parameter. In our test we choose m =t—1 to be
time dependent which gives a test statistic that is asymptotically equivalent to the tests
suggested by Robinson (1994b) and Tanaka (1999).
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The only difference between our statistic in (4) and the Dickey-Fuller statistic
is the introduction of the weights 57! in (2). A similar generalization of the
Dickey-Fuller test to a fractional framework has recently been proposed by
Dolado, Gonzalo and Mayoral (1999). Let d* = d — b* be some prespecified
value for the fractional parameter. Then Dolado et al. (1999) define z; =
(1 — L)y, and ; 1 = (1 — L)%y, 1, where the latter is given by expansion
of the fractional filter. The Dickey-Fuller test results as a special case with
d =1and d* = 0. For 0 < d* < 0.5 the test has a nonstandard limiting
distribution (cf. Dolado et al. 1999). In contrast, as implied by the following
lemma, the score statistic (4) is asymptotically x? distributed with one degree
of freedom.

Lemma 1: Let x; be white noise with E(x;) = 0 and E(z}) = o?. If z}_, is
generated as in (2) then

T
@) T2 wai, -5 N(0,07/6)
t=2
T
(i) T (a7,) 2 o*n°/6
t=2
as T — oo.

A similar result was already obtained in Robinson (1994b) and Tanaka (1999)
but it is restated here for later reference.

To allow for short memory autocorrelation of z; we adopt the approach of
the REG test suggested by Agiakloglou and Newbold (1994). Assume that x;
is a stable AR(p) process. Then the test statistic builds on residuals &; from a
regression of x; on z;_1,..., %, instead of the original series. Furthermore,
x;_, is replaced by €;_; computed like in (2) and by lagged values of z;, that
is, xj_, is replaced by &;_, = [€]_1, Ti—1, ..., Z1—p)'. The use of £; and €;_; in
(4) results again in a limiting x? distribution with one degree of freedom.

Furthermore, the series z; can be demeaned or detrended prior to com-
puting 7. Following Robinson (1994b) this does not affect the limiting
distribution.



As Johansen’s (1988) test for the cointegration rank can be seen as the
multivariate extension of the Dickey-Fuller test, a multivariate version of the
score test given in (4) can be constructed to test for the cointegration rank

of a vector of time series.

3 Testing hypotheses on the cointegration rank

First, we neglect the possibility of a cointegration relationship. Assume that
y¢ is an n x 1 vector of I(d) components and under the alternative hypothesis
it is assumed that all components of y; are I(d — b). The assumption that
d and b are the same for all components of y; is made to keep the notation
reasonably simple and will be relaxed below (see Remark C).

As in the univariate case the score is obtained as

OLLY)|  _ N~ po ( )
b |, tz_;t JZ_;] b=
T
= Zx;E_lx:_I,
t=2
or
dL(b, %)

—Z\0 = = tr[3-t
ab b0 tr[ SIO] 7 (5)

where z; = (1 — L)dyt, ¥ = E(z42}), and

T t—1
S = Zac:_la:; with  z} | = Zj’lxt_j : (6)
t=2 =1

If ¥ is unknown, it is replaced by a consistent estimate denoted as S, This
gives rise to the multivariate score test statistic

Ao(d) = tr[S181,55 0] (7)
where

T T

3 _ -1 ! _ * *!

xX=T g Xy, S = g Ty 1Ty 4 -
t=1 t=2
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Since the trace is the sum of eigenvalues it is useful to consider the eigenvalues
of the problem
A — 81,57 S10| = 0

that are given by

1 Ql -1

= j=1...,n,
I .
vjEvJ

Aj
where v; is the corresponding eigenvector. It turns out that A; is the test
statistic for ¢ = 0 in the auxiliary regression

(U;xt) =¢'z; +e.

Using a multivariate version of Lemma 1, it is straightforward to show that
A; is asymptotically x? distributed with n degrees of freedom. Furthermore,

since the eigenvalues are asymptotically uncorrelated, we obtain
d
Ag(d) — x*(n?) .

So far we have considered the hypothesis that all possible linear combinations
of y; have the same fractional parameter d. In what follows we consider the
hypothesis that v, is fractionally cointegrated as specified in the following
definition, which is adapted from Engle and Granger (1987).

Definition 1: The n x 1 vector y; is cointegrated of order CI(d,b) and rank
0 < r < n if there exist a n X r cointegration matriz 3 of full rank and a
linearly independent n x (n — r) matriz v such that

Yy ~ I(d)
By ~ I(d_ b)

where d > 0.5 and b > 0.

This definition is similar to the concept used by Cheung and Lai (1993) and
Dueker and Startz (1998), for example. In what follows we assume that the
fractional parameter d is given, while b is assumed to be unknown.

7



For the ease of exposition we first make the following assumption.

Assumption 1: Let y, = (1 — L)%z, be CI(d,b) and

_ vz
U = |: (1 _ L)_tbﬂ,xt :|

is white noise with E(ug|u;_1,us_a,...) = 0 and a positive definite covariance
matriz Q = E(uwu}).

The assumption that u; is white noise is made to facilitate the proof of the
main result, and it will be relaxed below (see Remark B). For d = 1 and
b = 1 this assumption is equivalent to assuming that 3; can be represented
by a VAR(1) system.

Following Johansen (1995) we test hypotheses on the cointegration rank
based on the sum of the n — r smallest eigenvalues of the problem:

‘/\Sll - Sloiilsio‘ = 0 ,

or, equivalently,
A — 51655 S0l =0, (8)

where f], Sio and Sy; are defined as in (7). As in the univariate case, we
replace the partial sum y;_; = 21 +...+ ;1 used in Johansen (1988) by the
weighted sum z;_; = Z;;ll j~'z; ;. Furthermore, for the special case r = 0
the corresponding trace statistic turns out to be identical to the multivariate
score statistic Ag(d) defined in (7).

In the following theorem, the null distribution of the test statistic for the

cointegration rank is given.
Theorem 1: Let y; be CI(d,b) with d > 0.5 and b > 0. Under Assumption
1 and the hypothesis r = rq the test statistic

n—ro

Aro(d) = Z Aj
7j=1



where Ay < --- < A, are the ordered eigenvalues of problem (8), has an
asymptotic x> distribution with (n — ro)? degrees of freedom. Under the al-
ternative Hy : o < r the test statistic diverges to infinity at rate T.

REMARK A: To allow for a non-zero mean we assume F(z;) = 6'd;, where
d; is a k x 1 vector of deterministic functions like a constant, a time trend or
dummy variables, and @ is a k x n matrix of parameters. Since z; = (1— L)%y,
is assumed to be stationary, the least-squares regression of z; on d; yields a
VT —consistent estimate of §. The test statistic can be constructed by using
the adjusted series 7; = z; — é\’dt instead of the original observations x;.
Following Robinson (1994b) it can be shown that the limiting distribution is
not affected when the time series is adjusted for deterministic terms like a

constant or a linear time trend.

REMARK B: To allow for possible short run dynamics, the approach of
Agiakloglou and Newbold (1994) can be adapted. Assume that +'z; has
a VAR(p) representation.? In this case the test statistic is constructed by
using the prewhitened series, i.e., the residuals £; from a regression of z; on
T4—1,-..,T—p instead of the original series. Furthermore, the vector zj_; is
replaced by &;_; and lagged values of z;, where £;_;, computed like in (2).
More precisely, =7, is replaced by &, = [, 2}_,,... ,Ty_p|". Using &; and
£;_, when computing the matrices in (8), the resulting test statistic given in
Theorem 1 has the same asymptotic x? distribution with (n —r)? degrees of
freedom.

REMARK C: The test procedure can be straightforwardly extended to allow
for different values of di,...,d, and by,...,b,. In this case we define coin-
tegration among the vector y; if there exist » > 0 linear combinations that
are integrated of order [min(dy,...,d,) —bg], where by > 0and k=1,...,7.
This definition may appear inappropriate as one usually assumes that the

2In the proof of Theorem 1 it is shown that asymptotically the test statistic does
not depend on the component §'xz;. Therefore, we do not need to specify the short run
dynamics for 3'z;.



variables in a cointegration relationship have the same order of integration.
However, from the literature on I(2) cointegrated variables it is known that
series with a different order of integration may constitute a cointegration re-
lationship whenever the higher order integrated components cancel out. For
example assume that the first variable yy; is 1(0.8), the second variable ya;
is 1(0.6) and the third variable is given by y3; = y1; + yor + 1y, where uy is
1(0.2). Then ys; is 1(0.8) and the vector § = [—1,—1, 1] yields a cointegra-
tion relation ship with b; = 0.4.

To apply the test procedure to this case, we construct the components
of the vector z; as xx = (1 — L)dkykt and the vector zj_; is computed as
in (6). Since the null distribution of the test statistic does not depend on
bi,...,b,, the results of Theorem 1 are also valid for the case of different
values of by, ...,0b,.

4 Finite sample properties

Since our multivariate test is based on a generalization of the regression
variant of the score statistic, it is interesting to compare the performance
of our variant to other univariate tests against fractional alternatives. We
consider the two-sided test problem with the null hypothesis d = 1 against
the alternative dy =d — b # 1.

For our Monte Carlo experiments we simulated fractionally integrated
noise according to Hosking (1984),

(1—-L)Y" %z, =g, & ~iidN(0,1), and 0.5<d; <1.5. 9)

The final series are obtained by computing the partial sum y; = Z;Zl

The Monte Carlo comparison includes Robinson’s (1994b) frequency do-

l‘j.

main score statistic Ry, Tanaka’s (1999) time domain statistic 7, the REG(m)
statistic by Agiakloglou and Newbold (1994) relying on Z\™) = PR
instead of z}_;, and our variant 7. defined in (4). With the REG test we tried
m = 10 and m = 20 and observed only marginal differences. Here, only the
slightly more powerful case m = 10 is reported. Furthermore, the fractional

10



Dickey-Fuller (FDF) test suggested by Dolado, Gonzalo and Mayoral (1999)
is applied using d* = d; under the alternative, and d* = 0.9 under the null
hypothesis. All tests are computed by using demeand series x;.

For the two-sided test problem all statistics are asymptotically x? dis-
tributed with one degree of freedom. In Table 1 we report the rejection
frequencies using a nominal significance level of 0.05. All results rely on 5000
Monte Carlo replications.

The results presented in Table 1 can be summarized as follows. The
actual sizes of Ry and 7r are slightly below the nominal size, while the other
tests are only slightly above. For T' = 250, REG(10) and 7. are closest to
the nominal level. Our findings with respect to the power are as follows.
For T' = 100 and d; < 1 our Dickey-Fuller type score test dominates all
other tests. The REG(10) test is only slightly less powerful. For 7" = 100
and d; > 1, Tanaka’s (1999) test performs best, the other score tests behave
more or less the same, and the FDF test of Dolado et al. (1999) has slightly
less power (except for d; = 1.1). For T = 250 and d; < 1, 7} outperforms
again all other tests, for 7" = 250 and d; > 1, the performance of all score
type tests is very similar. The fact that 7} from (4) is most powerful against
dy < 1 makes our test a promising candidate for testing against cointegration.

Next, in a bivariate framework the performance of the test against frac-
tional alternatives is compared to the LR test statistic suggested by Johansen
(1988). The data is generated according to the model

Yir =Ygt U, W= pu-r tEn, |pl <1 (10)

Yot = Yur + U, (1= L) "oy = ey
where £1; and e9; are uncorrelated white noise processes distributed as N (0, 1).
If « =1 and b > 0, then the process has a cointegration relationship with
cointegration vector [1, —1]. If & = 0, then yy, is stationary and if in addition
b = 0, then the cointegration rank is one with the “cointegration vector”
[1,0], whereas for b > 0 the cointegration rank r = 2 results. Furthermore,
for p = 0 the process has a VAR(1) representation, whereas for p # 0 a
VAR(2) representation is required. In the latter case Johansen’s LR test

includes a lagged difference and the statistic A.(1) from Theorem 1 against

11



fractional alternatives (FRAC) is based on the prewhitened series resulting
from the residuals of a VAR(1) model for the first differences (see Remark
B). The sample size is T = 100 and 5000 Monte Carlo replications are used
to compute the rejection frequencies. A nominal significance level of 0.05 is
used for all experiments.

Table 2 presents the results of the Monte Carlo simulations. It turns out
that for all tests the actual sizes are close to the nominal ones. Under the
alternative (0 < b < 0.5) the FRAC test outperforms Johansen’s LR test
against b = 1. However the gain in power seems to depend on the short-run
dynamics. If r =1 and p = 0.5, then the power of the FRAC test is roughly
similar to Johansen’s test, whereas for p = 0 and p = —0.5 the FRAC test is
clearly superior.

5 Concluding remarks

We modified the efficient score tests by Robinson (1991, 1994b), Agiakloglou
and Newbold (1994) and Tanaka (1999) for the fractional order of integration
of univariate time series in such a way that the statistic can be computed from
a Dickey-Fuller type regression. The test relies on a limiting x? distribution
with one degree of freedom.

In this paper we suggest a straightforward extension of the univariate
test to a multivariate setup. It allows to determine the cointegration rank of
possibly fractionally integrated series, where the cointegrated linear combina-
tions may be fractionally integrated as well. Just like Johansen’s (1988) LR
test statistic can be seen as a generalization of the univariate Dickey-Fuller
test, our test is a multivariate version of the regression based score statistic.

In the multivariate framework the statistic builds on eigenvalues from
a generalized eigenvalue problem, however, under the null hypothesis of r
linearly independent cointegrating vectors the limiting distribution is 2.
The degrees of freedom depend only on the cointegration rank under the
null hypothesis and are affected neither by the potentially fractional order
of integration of the series nor by the possibly fractional order of integration

12



for the deviations of the long-run relationship.

Although the new procedure is quite general in that it allows for frac-
tional integration and cointegration, our test is based on a severe restriction.
Our test requires that all series are integrated of some known order d. One
possibility to relax this assumption is to compute the test statistic with an
estimated order d and use bootstrap critical values (see Davidson 2000).

13



Appendix

Proof of Lemma 1:
Using > 772 = 72/6 we have

Jj=1

lim E(z})* = 07 /6 .

t—o0

Furthermore, v; = z;x;_; is a martingale difference sequence with E(v;|z;_1
, Tt 9,...) = 0 and E(v?) < o*7?/6. Using the central limit theorem for
martingale difference sequences (e.g. White, 1984), it follows that T-/2 3" v,
converges to a normal distributed random variable with expectation zero and
variance o?r2/6. Under similar conditions, the law of large number implies
that T~' S, (z;_,)? converge in probability to o?7%/6. B

Proof of Theorem 1:

Let v be a n x (n — r) matrix such that 7'z, is white noise. Furthermore
we multiply 'z, by the Choleski factor of the inverse of 7'y such that
21y = (7'27)~24/2, has a unit covariance matrix. Under the null hypothesis,
there exists a matrix 3 such that §'z, is I(—b). We define

Zop = ﬂ'l“t - 5'27(’7/2’7)_17'%

so that zo; is uncorrelated with z;;. Furthermore, we multiply zo; by the
Choleski factor of the inverse of Yo = F(z2},) so that zoy = 35 1/ %% has a

unit covariance matrix.

It is convenient to define the matrices Z; = [z19, - -, 217|’, Z2 = [222, - -, 207,
Zy =l 25 =251, -+, 250 4|, and Z = [ 7, Z5], where
-1
ZZt - Zj_lzk,t_j for k = 1, 2.
j=1

The following Lemma presents some asymptotic properties of the moments
that will be used in what follows.

14



Lemma A.1: Let Zy; and Z}; denote the i’th columns of Zy and Z; (k =
1,2). As T — oo we have
(1) T7Y2ZuZy; = N(0,7%/6) (ii) T Y2ZZ,; = N(0,1)
(id) TV2Z,Z5; = NO,vy) () T7'ZyZ5 = 73
() T7'Z;'Z5 2 7%/6 (vi) T7Z4Z5 2 py
(i) T173' 75 2 vy (viii) T'Z5'Z35 2 ¢y
where Ti;, pij, vi; and ci; are the (i,7) elements of the matrices E(za27,),
E(z0123,), E(25,25,) and E(2},23,'), respectively.

ProoOF: (i) follows directly from Lemma 1. (ii) follows from the fact that zy,
is white noise and uncorrelated with zo. (iii) and (iv) can be shown by using
an appropriate version of the central limit theorem. Since the asymptotic
normality of these terms is not important for our results we do not give the
results for the asymptotic variances. (v) follows from Lemma 1 and (vi) -
(viii) can be shown by using the law of large numbers.

Now consider the eigenvalue problem (8) which is equivalent to
NT'2'Z - Z7'7*(Z2¥' 72" 72" Z| =0
Using the results of Lemma A.1 it is not difficult to verify that

Op(1) — Op(T?)
Op(TY/%)  Op(T)

It follows from rule (6) of Sec. 5.3.1 in Liitkepohl (1996) that n—r eigenvalues
are O,(1) and the other r eigenvalues are O,(T). Let v* = [v],...,v}]

ZIZ*(Z*IZ*)—lz*IZ —

[I,, @] denote the re-normalized eigenvectors resulting from v* = v(vq)) 7,
where v(y) is the upper 7 X r block of the original matrix of eigenvectors v. As

the original eigenvectors, the re-normalized eigenvectors fulfill the equation
\NT'Z'7 — Z’Z*(Z*'Z*)_IZ*’Z]U;.‘ =0

where v} = [1}, ¢}]' and 1; is the j’th column of /, and ¢; is the j’th column
of ®. From the lower n — r equations we obtain

NI ZY(Zgy — Zoy) — 2425 (ZM' 2% 2 (Z ) — Zagps) =0, (11)

15



where Z(;) denotes the j’th column of Z. Since for j = 1,...,n — r the first
term in (11) is O,(1) and the second term is O,(T), it follows that

Z,2°(27'27)7 27 (Z) — Zas) = Op(1) -
Hence,
¢; = [Z425( 2" Z*) ¥ Zo) T 2L 2 (2 )T 2 Zgy + Op(T7)
It follows that ¢; is asymptotically equivalent to a 25LS estimator of ¢ in
the equation Z(j) = Z»¢] + e; using the instrumental matrix Z*. Define
€ = 2Z4) = 2295
then the respective eigenvalue results as

VAL VA /Al SR
j = ! ( A/)A ’ op(l) .
T—lejej

This shows that the eigenvalue is asymptotically equivalent to Sargan’s (1958)
test of over-identifying restrictions. It follows that the denominator can be
re-written as
Zéj)MEZ(j)

where
ML = {24272 'z

g (Z*'Z*)_lz*IZQ[ZQZ*(Z*'Z*)_IZ*IZQ]_IZQZ*(Z*'Z*)_lz*'} '
Since the elements of Z(;) are assumed to be uncorrelated with unit vari-
ance and M7 is an idempotent matrix with rank n — r, it follows that JA; is
asymptotically x? distributed with n—r degrees of freedom (see also Hansen,
1982).

Furthermore, since €; is asymptotically independent of e, the eigenvalues
are independently distributed as T' — oo and, thus, Z?;lr Aj is asymptoti-
cally x? distributed with (n — r)? degrees of freedom.

Under the alternative €¢; and Z* are correlated so that

lim E(T™'€;2*) =y, #0 .

T—00

Thus, the test statistic is O,(T") under the alternative. H
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Table 1: Size and power of the univariate tests

T =100
d1 RT T Reg(l()) 77; FDF
0.7 0.536 0.771 0.886 0.937 0.879
0.8 0.304 0.417 0.603 0.695 0.532
0.9 0.098 0.109 0.221 0.275 0.169
1.0 0.033 0.024 0.057 0.066 0.068
1.1 0.133 0.141 0.132 0.116 0.144
1.2 0.485 0.515 0.475 0.456 0.429
1.3 0.810 0.835 0.801 0.797 0.711

T = 250
dy Ry T REG (10) = FDF
0.7 0.998 0.999 0.999 1.000 0.999
0.8 0.903 0.932 0.955 0.974 0.910
0.9 0.345 0.373 0.470 0.533 0.351
1.0 0.042 0.038 0.052 0.053 0.065
1.1 0.401 0.407 0.400 0.353 0.317
1.2 0.925 0.929 0.922 0.914 0.815
1.3 0.999 0.999 0.999 0.999 0.982

Note: Two-sided tests for the null hypothesis d = 1. The rejection frequencies
are based on 5000 replications of the model (9). Ry is Robinson’s (1994b)
frequency domain statistic, 7r denotes Tanaka’s score statistic, REG(10) de-
notes the regression test of Agiakloglou and Newbold (1994) with truncation
lag m = 10, 7} is the score statistic given in (4), and FDF denotes the statistic
suggested by Dolado et al. (1999). The nominal size for all tests is 0.05.
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Table 2: Size and power against fractional alternatives

Hy:r=0 (a=1)

p=0 p=0.5 p=—0.5

b | FRAC| LR | FRAC| LR | FRAC LR

0.0 || 0.045 | 0.041 | 0.065 | 0.050 | 0.056 0.045
0.1 ] 0.108 | 0.065 | 0.095 | 0.063 | 0.085 0.056
0.2 0.349 | 0.159 | 0.176 | 0.109 | 0.169 0.099
0.3 || 0.695 | 0.400 | 0.322 | 0.318 | 0.323 0.206
0.5 0.985 | 0.909 | 0.731 | 0.657 | 0.999 0.983

Hy:r=1 (a=0)

p=0 p=0.5 p=—0.5

b || FRAC| LR |FRAC | LR | FRAC LR

0.0 || 0.044 | 0.054 | 0.044 | 0.061 | 0.050 0.060
0.1 0.191 | 0.150 | 0.109 | 0.108 | 0.124 0.109
0.2 | 0.594 | 0.347 | 0.280 | 0.245 | 0.307 0.245
0.3 | 0.909 | 0.622 | 0.525 | 0.434 | 0.577 0.419
0.5 0.999 |0.982 | 0.886 | 0.873 | 0.935 0.879

Note: Entries of the table report the rejection frequencies of the
tests for the null hypothesis 7 = ro (b = 0). FRAC is the test
suggested in Theorem 1 and LR denotes Johansen’s trace statistic.
The results are based on 5000 replications of model (10) with
T = 100. The nominal size is 0.05. For p = 0 the test are based
on a VAR(1) model and for p # 0 on a VAR(2) representation.
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