
Gil-Alaña, Luis A.

Working Paper

Testing of fractional cointegration in macroeconomic time
series

SFB 373 Discussion Paper, No. 2000,105

Provided in Cooperation with:
Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Gil-Alaña, Luis A. (2000) : Testing of fractional cointegration in macroeconomic
time series, SFB 373 Discussion Paper, No. 2000,105, Humboldt University of Berlin,
Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10048318

This Version is available at:
https://hdl.handle.net/10419/62209

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10048318%0A
https://hdl.handle.net/10419/62209
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 

TESTING OF FRACTIONAL COINTEGRATION IN MACROECONOMIC TIME 
SERIES 

 
 

Luis A. Gil-Alana* 
Humboldt Universität zu Berlin, Institut für Statistik und Ökonometrie, Berlin, Germany 

University of Navarre, Department of Economics, Pamplona, Spain 
 
 
 
 
 

ABSTRACT 

We propose in this article a two-step testing procedure of fractional cointegration in 

macroeconomic time series. It is based on Robinson’s (1994) univariate tests and is similar in 

spirit to the one proposed by Engle and Granger (1987), testing initially the order of 

integration of the individual series and then, testing the degree of integration of the residuals 

from the cointegrating relationship. Finite-sample critical values of the new tests are 

computed and Monte Carlo experiments are conducted to examine the size and the power 

properties of the tests in finite samples. An empirical application, using the same datasets as 

in Engle and Granger (1987) and Campbell and Shiller (1987) is also carried out at the end of 

the article. 
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1. Introduction 

Modelling macroeconomic time series is a matter that still remains controversial. From an 

univariate viewpoint, deterministic models based on linear (or quadratic) functions of time 

were initially proposed. Later on, following the work and ideas of Box and Jenkins (1970), 

stochastic models based on first (or second) differences of the series were considered, and 

they became popular, especially after the seminal paper of Nelson and Plosser (1982). In that 

paper, they showed, using tests of Fuller (1976) and Dickey and Fuller (1979), that many US 

macroeconomic time series contained a unit root. The tests of Dickey and Fuller (1979), 

however, were shown to have very low power against certain types of alternatives and several 

other unit-root tests were proposed in the following years (eg, Said and Dickey, 1984, 1985; 

Phillips, 1987; Phillips and Perron, 1988; Kwiatkowski et al., 1992, etc.). All these unit-root 

tests are nested in autoregressive (AR) alternatives. However, the AR model is merely one of 

the many models that nest a unit root. Robinson (1994) proposes tests for unit roots and other 

hypotheses which are embedded in a fractional model of form 

...,2,1,)1( ==− tuxL tt
d    (1) 

where ut is I(0), (defined for the purpose of the present paper as a covariance stationary 

process with spectral density function which is positive and finite at the zero frequency), and 

where the unit root hypothesis corresponds to the null: Ho: d = 1. Unlike most unit-root tests 

embedded in AR alternatives, Robinson’s (1994) tests have standard null and local limit 

distributions and are easy to implement in raw time series. 

 In a multivariate framework, Engle and Granger (1987) noticed that many time series 

may have a common trend and suggested a technique called cointegration which implies that 

several series which are I(d) may be related in a way such that there exists at least one linear 

combination of them which is I(d-b) with b > 0.  For the case of d = b = 1, they proposed a 

two-step testing strategy based on Dickey and Fuller’s (1979) tests. More robust tests in this 

context of integers d and b were later proposed by Johansen (1988, 1995). 
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 In this article we propose a testing procedure for testing the null hypothesis of no 

cointegration against fractionally cointegrated alternatives. That is, we extend Engle and 

Granger’s (1987) procedure to the case where d and b can be both possible real numbers. The 

outline of the paper is as follows: Section 2 describes the version of the tests of Robinson 

(1994) used in this article. Section 3 presents the procedure for testing fractional cointegration 

as well as finite-sample critical values of the tests obtained by simulation. Section 4 contains 

some Monte Carlo experiments in order to examine the size and the power properties of the 

new tests. Several illustrative examples are carried out in Section 5 while Section 6 contains 

some concluding comments. 

 

2. The tests of Robinson (1994) 

Let’s suppose that {xt, t = 1,2,…, T} is the time series we observe and consider the model 

given by (1) with ut with spectral density function given by 
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where σ2 = V(εt)  and τ are unknown but g is of known form. For example, if ut is white noise, 

(ut = εt), g ≡ 1, and if ut is a stationary AR process of form:  φ(L)ut = εt, g = |φ(eiλ)|-2, so that 

the AR parameters are function of τ. 

 Robinson (1994) proposes a Lagrange Multiplier (LM) test of: 

,: oo ddH =       (2) 

in (1) for any real value do. Specifically, the test statistic is given by 
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where I(λj) is the periodogram of ,)1(ˆ t
d

t xLu o−=  evaluated at λj = 2πj/T, and τ̂   is obtained 

by minimising σ2(τ).  Robinson (1994) showed that under certain regularity conditions: 

   .)1,0(ˆ ∞→→ TasNr d     (4) 

Thus, a one-sided 100α%-level test of (2) against the alternative H1: d > do is given by 

the rule: ‘Reject Ho if  r̂  >  zα’, where the probability that a standard normal variate exceeds 

zα is α, and, conversely, an approximate one-sided 100α%-level test of (2) against the 

alternative H1: d < do is given by the rule: ‘Reject Ho if  r̂  <  -zα’. Furthermore, he shows that 

the above tests are efficient in the Pitman sense, i.e. that against local alternatives of form: Ha: 

d = do + δ T-1/2, for δ ≠ 0, the limit distribution is normal with variance 1 and mean which 

cannot (when ut is Gaussian) be exceeded in absolute value by that of any rival regular 

statistic. This version of the tests of Robinson (1994) was used in several empirical 

applications by Gil-Alana and Robinson (1997) and Gil-Alana (2000a,b). Other versions of 

his tests, based on seasonal (quarterly and monthly) and cyclical models can be found 

respectively in Gil-Alana and Robinson (2000) and Gil-Alana (1999, 2000c). In the following 

section, we present a procedure for testing fractional cointegration which is based on 

Robinson’s (1994) univariate tests described above. 

 

3. Testing of fractional cointegration 

The components of a (nx1) vector Xt are said to be fractionally cointegrated of order d,b, (Xt ∼ 

CI(d,b)) if a): all components of Xt are integrated of order d (Xit ∼ I(d)), and b): there exists a 

vector r (r ≠ 0) such that Nt = r’Xt is integrated of order d-b (Nt∼I(d-b)) with b > 0. The vector 
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r is called the cointegrating vector and r’Xt will represent an equilibrium constraint operating 

on the long-run component of Xt. If Xt has more than two components, then there may be 

more than one cointegrating vector r, though in what follows we will assume that Xt does 

have only two components, so that Xt = (X1t, X2t)’, where X1t and X2t correspond to the 

variables to be analysed later.  

We present here a testing procedure that follows a similar methodology to the one 

proposed by Engle and Granger (1987). First, we test that both individual series are integrated 

of the same order, (let’s say, eg.,d). This can be done using Robinson’s (1994) univariate 

tests described in Section 2. Alternatively, there exists a multivariate version of the tests of 

Robinson (1994), (see, Gil-Alana, 1998), which may also be used for this purpose. Once we 

have checked this, we can estimate the cointegrating parameters from the cointegrating 

regression. Since all the linear combinations of X1t and X2t except the one defined by the 

cointegrating relation will be integrated of orderd, the least squares (LS) estimate from the 

regression of X1t on X2t, under cointegration, will produce a good estimate of it. In standard 

cointegration analysis (in which d =  b = 1), Stock (1987) showed that the LS estimate of the 

cointegrating parameter was consistent and converged in probability at the rate T1-δ for any δ 

> 0, rather than the usual rate T1/2. Cheung and Lai (1993), Robinson and Marinucci (1998) 

and others extended the analysis to the case of fractional cointegration, and showed that the 

LS estimate was also consistent though with possible different convergence rates, according 

to the cointegrating order. Given the consistency of the LS estimate of the cointegrating 

regression, we can use Robinson’s (1994) tests for testing the order of integration in the 

equilibrium errors et, where ,ˆ 21 ttt XXe α−=  with α̂  as the OLS estimate of the 

cointegrating parameter, and the test statistic will still remain with the same standard limit 

distribution. Thus, we could consider the model 

...,2,1,)1( ==− tveL tt
d    (5) 
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with I(0) vt, and test the null hypothesis 

ddHo =:       (6) 

against the alternative: 

,: ddHo <       (7) 

and the test statistic will have an asymptotic null N(0,1) distribution. Rejections of (6) against 

(7) will imply that X1t and X2t are fractionally cointegrated, given that the equilibrium errors 

display a smaller degree of integration than that of the individuals series. However, given that 

the equilibrium errors are not actually observed but obtained from minimizing the residual 

variance of the cointegrating regression, in finite samples, the residual series might be biased 

toward stationarity, and thus, we would expect the null hypothesis to be rejected more often 

than suggested by the nominal size of Robinson’s (1994) tests. A similar problem arises in 

Engle and Granger (1987) and Cheung and Lai (1993) when testing cointegration. In order to 

cope with this problem, the empirical size of Robinson’s (1994) tests for cointegration in 

finite samples is obtained using a simulation approach. 

(Table 1 about here) 

In Table 1 we report finite-sample critical values of Robinson’s (1994) tests for 

cointegration, with T = 50, 100, 200 and 300. We use the Monte Carlo method in 50,000 

replications, assuming that the true system is of two I(d) processes with Gaussian independent 

white noise disturbances that are not cointegrated, and take values of d ranging from 0.6 

through 1.5 with 0.1 increments. For simplicity, we assume that vt in (5) is white noise, 

though we could also have extended the analysis to cover the case of weakly autocorrelated 

disturbances. We see in this table that the critical values are similar across d. They have a 

negative mean and the critical values corresponding to the left-hand side distribution, (which 

is the one required to test (6) against (7)), are smaller than those given by the Normal 

distribution, which is consistent with the earlier discussion that, when testing Ho (6) against 

(7), the use of the standard critical values will result in the cointegration tests rejecting the 
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null hypothesis of no cointegration too often. We also see in this table that the empirical 

distributions are positively skewed with kurtosis greater than 3, though increasing the sample 

size, the three statistics (mean, skewness and kurtosis) approximate to the values 

corresponding to the Normal distribution. 

 

4. The power of the tests in finite samples 

We next examine the power properties of the new tests described in Section 3 relative to the 

ADF and Geweke and Porter-Hudak (GPH, 1983) tests for cointegration. We consider a 

bivariate system, claimed to be non-cointegrated under the null hypothesis. The ADF unit-

root test recommended by Engle and Granger (1987) is given by the usual t-statistic for b0 in 

,)1(....)1()1( 1110 tptpttt eLbeLbebeL ε+−++−+=− −−−  

where et are the equilibrium errors and the lag parameter p can be selected using some model-

selection procedures such as the Akaike and Schwarz information criteria. The GPH test for 

cointegration proposed by Cheung and Lai (1993) is based on the estimation of the fractional 

differencing parameter d, in the linear regression 
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where λj = 2πj/T and I(λj) is the periodogram of et evaluated at the ordinate j. Given that the 

LS estimate of β1 provides a consistent estimate of 1-d (see Robinson, 1995), hypothesis 

testing concerning the value of d is based on the t-statistic of the regression coefficient. 

 Table 2 reports results of the power function of the three tests (ADF, GPH and 

Robinson) for cointegration against fractional and AR alternatives. Results for ADF and GPH 

tests have been taken from Cheung and Lai (1993). The power of a test is measured as the 

percentage of the time the test can reject a false null hypothesis of no cointegration, and the 

Monte Carlo experiment conducted here is described in Appendix I.  We perform Robinson’s 
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(1994) test statistic, assuming that the differenced series are white noise and AR processes of 

orders 1, 2 and 3, for 5% and 10% significance levels. 

(Table 2 about here) 

 When testing against fractional alternatives, Robinson’s (1994) tests perform better 

than the ADF and the GPH tests, and this is observed for white noise disturbances but also if 

they follow AR processes. The highest rejection frequencies are obtained with white noise 

disturbances if the integration order ranges between 0.05 and 0.75. but when this parameter 

approximates to 1, better results are obtained for weakly autocorrelated disturbances. 

 When testing against AR alternatives, again better statistical power properties are 

observed in Robinson (1994) relative to ADF and GPH tests, with higher rejection 

frequencies obtained at all values of the AR parameter.  If this parameter ranges between 0.05 

and 0.55, results are better when the disturbances are white noise, but if it ranges between 

0.55 and 0.95, the tests behave better for weakly parametrically autocorrelated disturbances. 

The relative pronounced difference in power between Robinson’s (1994) and the ADF and 

GPH tests for cointegration should not be surprising given that the ADF test assumes a strict 

I(0) and I(1) distinction and the GPH test requires estimation of the differencing parameter, 

whereas Robinson (1994) tests do allow fractional differencing and do not  require estimation 

of the fractional differencing parameter. The performance of Robinson’s (1994) tests in this 

context of cointegration is examined in the following section. 

 

5. Illustrative examples 

We consider several pairs of variables that have been widely analysed in the literature in order 

to detect the presence of cointegrating relationships.  In particular, we analyse the common 

behaviour between consumption and income, wages and prices, and nominal GNP and 

money, using the same dataset as in Engle and Granger (1987), and the relationship between 

stock prices and dividends, using the data in Campbell and Shiller (1987). All these pairs of 
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variables have been analysed by many authors. Thus, the relationship between consumption 

and income has been studied in Davidson et al. (1978) and also in Hall (1978), Campbell and 

Mankiw (1990), Qin (1991) and Ermisch and Westaway (1994) among others. The relation 

between wages and prices appears in Hall (1988), Mehra (1991) and Darrat (1994). An article 

relating stock prices and dividends is Campbell and Shiller (1987) and those relating nominal 

GNP and money include, amongst others, Hafer (1984) and Sims (1994). All these groups of 

variables were also analysed from a Bayesian viewpoint in DeJong (1992). The description of 

the time series data used in this application is given in Appendix II. 

Table 3 reports the results of Robinson’s (1994) tests for cointegration. The first two 

lines of each pair of variables correspond to the analysis of the individual series while the 

other two lines correspond to the results based on the residuals from the OLS regressions in 

both directions.  We look at r̂  given by (3), testing Ho (2) for values do = 0.6, (0.1), 1.5, with 

white noise disturbances. 

(Table 3 about here) 

 Starting with consumption and income, we observe that for the individual series, Ho 

(2) cannot be rejected when do = 0.9, 1 and 1.1. However, looking at the residuals from the 

OLS regressions, these hypotheses are strongly rejected in favour of alternatives with smaller 

orders of integration. In fact, the null hypothesis cannot be rejected now when do = 0.6, 0.7 

and 0.8, the lowest statistic appearing in both cases when do = 0.7. Thus, we find certain 

evidence of fractional cointegration between consumption and income, with the deviations 

from an equilibrium following a nonstationary fractional process with the order of integration 

smaller than one. Engle and Granger (1987) examined the same data, testing the null 

hypothesis of nonstationarity I(1) in the estimated residuals from the OLS regressions. Using 

the Cointegration Regression Durbin-Watson (CRDW) test, the null was rejected at 5% 

significance level but hardly at 1%, and using the ADF tests, it was rejected for the regression 

of consumption on income but hardly for the reverse even at 5% significance level. As 
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mentioned before, a problem with these testing procedures is that they only concentrate on the 

cases of I(1) and I(0) residuals and do not consider other fractionally integrated possibilities. 

 The results for the relationship between prices and wages clearly indicate a lack of 

cointegration. In fact, Ho (2) cannot be rejected when do = 1 and 1.1 for the individual series, 

and the same result is obtained when testing on the estimated residuals. This result is 

completely in line with the findings in Engle and Granger (1987). They found that the CRDW 

test from the cointegrating regression in either direction was 0.0054, suggesting that it was 

insignificantly different from zero. The ADF test of the regression of prices on wages was –

0.6 and for the reverse regression 0.2. None of these values approximated the critical value of 

3.2 and therefore, their evidence accepted the null hypothesis of no cointegration. 

 The third example illustrates the relation between nominal GNP and nominal money. 

This is upon the quantity theory equation: M ⋅ V = P ⋅ Y, and most empirical applications 

stem from the assumption that velocity is constant or at least stationary. Under this general 

condition, log M, log P and log Y should be cointegrated with known unit parameters, and 

similarly, nominal GNP and nominal money should also be cointegrated. Engle and Granger 

(1987) failed to find evidence of cointegration using M1 as the monetary aggregate.  The 

results in Table 3 show that a certain degree of fractional cointegration may appear, with the 

orders of integration of the individual series ranging between 0.9 and 1.1, but ranging between 

0.7 and 0.9 for the residuals from the OLS regressions. 

 Finally, we examine the relationship between stock prices and dividends, using the 

same dataset as in Campbell and Shiller (1987). They applied the ADF tests on both 

individuals series and their results suggested that both series were integrated of order 1. Using 

DF and  ADF tests on the residuals from the cointegrating regressions, their results were 

mixed: the former test rejected the null hypothesis of no cointegration at the 5% level while 

the latter narrowly failed to reject it at the 10%. The results in Table 3 again indicate that this 

pair of variables may be fractionally cointegrated.  Looking at the individual series, the orders 
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of integration range between 0.9 and 1.1 for the stock prices and between 0.9 and 1.3 for 

dividends, with the lowest statistics appearing in both series at the unit root case (i.e, do =  1). 

However, the results for the estimated residuals suggest that the orders of integration are 

between 0.6 and 0.9, with the lowest statistics appearing in both cases at do = 0.7, and thus, 

implying mean reversion in the long run equilibrium relationship. 

 

6. Concluding comments 

We have presented in this article a procedure for testing the null hypothesis of no 

cointegration against alternatives which are fractionally cointegrated.  It is based on 

Robinson’s (1994) univariate tests and it follows in spirit the same methodology as the one 

proposed by Engle and Granger (1987). Thus, we initially test the order of integration of the 

individual series and, if all them have the same order, we again test the degree of integration 

but this time on the residuals from the cointegrating regression. There will be a cointegrating 

relationship if the order of integration of these residuals is smaller than that of the individual 

series. Finite-sample critical values of the new tests are computed and several experiments 

conducted via Monte Carlo show that they have better power properties against both 

fractional and autoregressive alternatives in relation to other existing tests for cointegration. 

 The tests of Robinson (1994) were employed to analyse the relationship between 

consumption and income, CPI and wages, nominal GNP and money, and stock prices and 

dividends, using the same datasets as in Engle and Granger (1987) and Campbell and Shiller 

(1987). The results indicate that all these variables may be individually I(1), and testing  the 

order of integration of the residuals from the OLS regressions, the results show that all pairs 

of variables (except CPI and wages) may be fractionally cointegrated, with the order of 

integration of the residuals being greater than 0.5 but smaller than 1. Note that (though it is 

not shown in Table 3), the tests of Robinson (1994) rejected Ho (2) with do = 0.5 against d > 

0.5 for all estimated residuals in all series. Thus, the equilibrium errors are nonstationary but 
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display slow mean reversion, unlike the individual series where shocks seems to persist 

forever. These results are interesting in that they seem to overcome the mixing conclusions 

obtained in Engle and Granger (1987) and Campbell and Shiller (1987), the reason being that 

they only concentrated on I(0) and I(1) specifications and did not consider other possible 

fractional possibilities. 

 This article can be extended in several directions. The finite-sample critical values 

obtained in Section 3 can be extended to permit more than two variables and also to allow 

weakly parametrically autocorrelated disturbances. Other semiparametric methods of 

estimating and testing the fractional differencing parameter may also be applied on the 

estimated residuals from the cointegrating regressions. However, these methods may be too 

sensitive to the choice of the bandwidth parameter and, in that respect, a fully parametric 

model like this may be more appropriate. Extensions of the multivariate version of the tests of 

Robinson (1994) which permit us to test fractional cointegration in an unified treatment is 

now under way. 
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Appendix I 

To illustrate the potential difference in power between the tests of Robinson (1994) and the 

GPH and the ADF tests of cointegration, a Monte Carlo experiment, similar to that in Engle 

and Granger (1987) and Cheung and Lai (1993) is conducted. We consider a bivariate system 

where X1t and X2t are given by 

      ...,2,1,121 ==+ tUXX ttt     (A1) 

....2,1,2 221 ==+ tUXX ttt ,   (A2) 

where (1 – L) U1t = ε1t, and U2t is generated, alternatively, as an autoregressive process 

...,2,1,)1( 22 ==− tUL tt ερ    (A3) 

or as a fractional white noise process 

...,2,1,)1( 22 ==− tUL tt
d ε  ,   (A4) 

where the innovations ε1t and ε2t are generated as independent standard normal variates. Thus, 

if ρ = 1 in (A3) or d = 1 in (A4), the two series are I(1) and non-cointegrated; if U2t is 

generated by (A3) and |ρ| < 1, X1t and X2t are cointegrated, and (A2) is their cointegrating 

relationship; alternatively, if U2t is generated by (A4) and d < 1, X1t and X2t are fractionally 

cointegrated. As in Engle and Granger (1987) and Cheung and Lai (1993), we used samples 

os size T = 76, and sample series of X1t and X2t were generated setting the initial values of U1t 

and U2t equal to zero, creating 126 observations, of which the first 50 were discarded to 

reduce the effect of the initial conditions.  
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Appendix II 

Ct:   US quarterly real per capita consumption on non-durables from 1947.I to 1981.II 

Yt:   US quarterly real per capita disposable income from 1947.I to 1981.II. 

CPIt:   Log of the US monthly Consumer Price Index from 1950.1 to 1979.12. 

Wt:   Log of the US monthly production worker wage in manufacturing from 1950.1 to 

1979.12. 

GNPt:  Log of the US quarterly nominal Gross National Product from 1959.I to 1981.II 

M1t: Log of the US quarterly nominal M1 from 1959.I to 1981.II 

SPt: US real annual stock prices from 1871 to 1986. 

Dt: US real annual dividends from 1871 to 1986. 

The first six series has been taken from Engle and Granger (1987) and the remaining two 

from Campbell and Shiller (1987). 
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TABLE 1 
Finite-sample critical values of Robinson (1994) tests for cointegration* 

T  =  50 
Perc ./ d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

0.1% -2.94 -2.94 -2.95 -2.93 -2.93 -2.93 -2.93 -2.92 -2.93 -2.92 
0.5% -2.65 -2.66 -2.66 -2.67 -2.66 -2.66 -2.66 -2.66 -2.65 -2.65 
1% -2.51 -2.52 -2.53 -2.52 -2.52 -2.52 -2.52 -2.51 -2.50 -2.50 

2.5% -2.29 -2.30 -2.31 -2.30 -2.30 -2.30 -2.29 -2.29 -2.28 -2.27 
5% -2.09 -2.10 -2.11 -2.11 -2.10 -2.09 -2.08 -2.08 -2.07 -2.07 

10% -1.84 -1.85 -1.85 -1.84 -1.84 -1.84 -1.83 -1.82 -1.82 -1.81 
Mean  -0.70 -0.72 -0.72 -0.72 -0.71 -0.70 -0.70 -0.69 -0.68 -0.68 

Skewness 0.59 0.59 0.59 0.59 0.58 0.57 0.56 0.56 0.55 0.54 
Kurtosis 3.67 3.68 3.69 3.70 3.68 3.64 3.60 3.59 3.53 3.50 

T  =  100 
Perc ./ d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

0.1% -2.96 -2.95 -2.95 -2.97 -2.96 -2.94 -2.95 -2.96 -2.96 -2.96 
0.5% -2.64 -2.65 -2.64 -2.63 -2.63 -2.62 -2.62 -2.61 -2.60 -2.60 
1% -2.48 -2.49 -2.48 -2.48 -2.47 -2.47 -2.46 -2.45 -2.45 -2.44 

2.5% -2.23 -2.24 -2.24 -2.23 -2.23 -2.22 -2.21 -2.21 -2.20 -2.20 
5% -2.01 -2.00 -2.00 -2.01 -2.00 -2.00 -1.99 -1.99 -1.99 -1.98 

10% -1.74 -1.75 -1.75 -1.74 -1.74 -1.72 -1.71 -1.71 -1.71 -1.70 
Mean  -0.56 -0.57 -0.58 -0.57 -0.56 -0.56 -0.55 -0.54 -0.54 -0.53 

Skewness 0.46 0.46 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.45 
Kurtosis 3.41 3.40 3.39 3.39 3.40 3.40 3.38 3.35 3.34 3.34 

T  =  200 
Perc ./ d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

0.1% -3.04 -3.08 -3.07 -3.14 -3.19 -3.20 -3.12 -3.12 -3.10 -3.06 
0.5% -2..71 -2.73 -2.70 -2.70 -2.66 -2.64 -2.62 -2.61 -2.63 -2.64 
1% -2.50 -2.48 -2.47 -2.46 -2.45 -2.46 -2.45 -2.44 -2.44 -2.43 

2.5% -2.21 -2.20 -2.20 -2.21 -2.20 -2.20 -2.20 -2.19 -2.18 -2.18 
5% -1.95 -1.97 -1.97 -1.97 -1.97 -1.96 -1.94 -1.94 -1.93 -1.93 

10% -1.64 -1.65 -1.67 -1.66 -1.66 -1.65 -1.63 -1.62 -1.62 -1.61 
Mean  -0.44 -0.46 -0.46 -0.46 -0.46 -0.45 -0.44 -0.43 -0.43 -0.42 

Skewness 0.31 0.30 0.30 0.31 0.32 0.32 0.33 0.34 0.35 0.36 
Kurtosis 3.18 3.17 3.18 3.23 3.26 3.27 3.28 3.28 3.30 3.31 

T  =  300 
Perc. / d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

0.1% -2.96 -2.96 -3.04 -3.12 -3.19 -3.22 -3.19 -3.17 -3.17 -3.15 
0.5% -2.52 -2.56 -2.63 -2.61 -2.60 -2.59 -2.60 -2.59 -2.61 -2.61 
1% -2.41 -2.42 -2.44 -2.45 -2.44 -2.44 -2.44 -2.44 -2.44 -2.44 

2.5% -2.17 -2.18 -2.19 -2.20 -2.18 -2.17 -2.16 -2.14 -2.13 -2.13 
5% -1.90 -1.91 -1.92 -1.92 -1.91 -1.90 -1.89 -1.88 -1.87 -1.87 

10% -1.59 -1.60 -1.60 -1.61 -1.60 -1.60 -1.60 -1.59 -1.58 -1.58 
Mean  -0.37 -0.39 -0.39 -0.39 -0.39 -0.38 -0.38 -0.37 -0.37 -0.36 

Skewness 0.31 0.29 0.28 0.28 0.29 0.29 0.30 0.30 0.30 0.30 
Kurtosis 3.07 3.08 3.10 3.13 3.15 3.15 3.15 3.14 3.13 3.13 

*: The empirical distribution has been obtained using 50,000 replications in simulation, assuming that the true 
system is of two non-cointegrated I(d) processes. The test statistic is r̂  in (3). 
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TABLE 2 
Power of the ADF, GDH and Robinson tests for cointegration against fractional alternatives* 

Size Test 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05 
ADF (ρ = 4) 0.06 0.07 0.10 0.14 0.19 0.26 0.36 0.50 0.61 0.73 

GPH (µ = .55) 0.06 0.09 0.15 0.21 0.30 0.37 0.47 0.56 0.61 0.64 
GPH (µ = .575) 0.06 0.10 0.16 0.24 0.33 0.42 0.53 0.62 0.67 0.71 
GPH (µ = .60) 0.06 0.11 0.18 0.28 0.40 0.52 0.63 0.73 0.78 0.81 
ROB (Wh. N) 0.07 0.22 0.50 0.78 0.94 0.99 0.99 1.00 1.00 1.00 
ROB (AR (1) ) 0.15 0.22 0.35 0.52 0.71 0.85 0.94 0.97 0.99 0.99 
ROB (AR (2) ) 0.22 0.26 0.31 0.41 0.54 0.67 0.78 0.86 0.92 0.95 

 
 
 
 

5% 

ROB (AR (3) ) 0.30 0.32 0.35 0.41 0.50 0.59 0.68 0.76 0.82 0.85 
ADF (ρ = 4) 0.11 0.13 0.18 0.24 0.32 0.41 0.53 0.67 0.78 0.87 

GPH (µ = .55) 0.12 0.17 0.26 0.35 0.46 0.56 0.65 0.72 0.76 0.78 
GPH (µ = .575) 0.12 0.18 0.27 0.38 0.50 0.60 0.71 0.77 0.81 0.83 
GPH (µ = .60) 0.12 0.19 0.30 0.43 0.57 0.68 0.79 0.85 0.88 0.90 
ROB (Wh. N) 0.16 0.37 0.66 0.88 0.97 0.99 1.00 1.00 1.00 1.00 
ROB (AR (1) ) 0.26 0.36 0.51 0.69 0.84 0.94 0.98 0.99 0.99 0.99 
ROB (AR (2) ) 0.32 0.37 0.45 0.57 0.69 0.81 0.89 0.94 0.97 0.98 

 
 
 
 

10% 
 

ROB (AR (3) ) 0.40 0.43 0.47 0.55 0.64 0.73 0.81 0.87 0.91 0.94 

Power of the ADF, GDH and Robinson tests for cointegration against autoregressive alternatives 
Size Test 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05 

ADF (ρ = 4) 0.07 0.16 0.29 0.42 0.53 0.61 0.66 0.73 0.75 0.77 
GPH (µ = .55) 0.07 0.17 0.33 0.49 0.59 0.64 0.67 0.69 0.68 0.66 
GPH (µ = .575) 0.07 0.17 0.35 0.52 0.63 0.69 0.73 0.75 0.74 0.72 
GPH (µ = .60) 0.07 0.18 0.37 0.56 0.70 0.76 0.81 0.84 0.83 0.83 
ROB (Wh. N) 0.07 0.21 0.46 0.72 0.90 0.98 0.99 1.00 1.00 1.00 
ROB (AR (1) ) 0.18 0.36 0.59 0.76 0.88 0.94 0.97 0.98 0.99 0.99 
ROB (AR (2) ) 0.27 0.42 0.58 0.70 0.80 0.86 0.90 0.93 0.95 0.96 

 
 
 
 

5% 

ROB (AR (3) ) 0.37 0.49 0.60 0.69 0.75 0.80 0.83 0.86 0.87 0.88 
ADF (ρ = 4) 0.14 0.28 0.46 0.60 0.71 0.78 0.82 0.86 0.88 0.89 

GPH (µ = .55) 0.14 0.29 0.50 0.66 0.75 0.78 0.81 0.82 0.81 0.79 
GPH (µ = .575) 0.14 0.30 0.52 0.69 0.78 0.82 0.85 0.86 0.85 0.84 
GPH (µ = .60) 0.14 0.30 0.54 0.72 0.82 0.87 0.90 0.91 0.92 0.91 
ROB (Wh. N) 0.16 0.38 0.65 0.87 0.97 0.99 0.99 1.00 1.00 1.00 
ROB (AR (1) ) 0.30 0.54 0.76 0.89 0.95 0.98 0.99 0.99 0.99 0.99 
ROB (AR (2) ) 0.39 0.58 0.74 0.84 0.90 0.94 0.96 0.97 0.98 0.98 

 
 
 
 

10% 
 

ROB (AR (3) ) 0.47 0.63 0.74 0.82 0.87 0.90 0.92 0.93 0.94 0.95 
*: ADF is augmented Dickey-Fuller test statistic and p is the lag parameter selected using AIC and SIC criteria. 
GPH is Geweke and Porter-Hudak test statistic and µ is the value used in the sample size function n=Tµ. Results 
for ADF and GPH have been taken from Cheung and Lai (1993), (pages 108 and 109). The critical values of 
Robinson’s (1994) tests with white noise disturbances were taken from Table 1, while those corresponding to AR 
disturbances were obtained by simulation. The power of each test is based on 10,000 replications. 
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TABLE 3 
Testing fractional cointegration with the tests of Robinson (1994)* 

Consumption (Ct)  and  Income (Yt) 
Series / do 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

Ct 7.13 4.81 2.74 1.00’ -0.40’ -1.49’ -2.33 -2.98 -3.50 -3.91 
Yt 6.74 4.40 2.36 0.65’ -0.73’ -1.80’ -2.63 -3.27 -3.77 -4.16 

Ct – 0.52 – 0.23 Yt 0.98’ -0.24’ -1.27’ -2.12 -2.83 -3.40 -3.87 -4.26 -4.58 -4.85 
Yt + 0.22 – 4.30 Ct 0.95’ -0.26’ -1.27’ -2.12 -2.81 -3.39 -3.86 -4.25 -4.57 -4.84 

Consumer Price Index (CPIt)  and  Wages (Wt) 
Series / do 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

CPIt 17.44 11.40 6.41 2.60 -0.17’ -1.16’ -3.60 -4.66 -5.47 -6.10 
Wt 27.84 16.41 8.91 3.93 0.57’ -1.73’ -3.33 -4.47 -5.32 -5.97 

CPIt – 3.91 – 0.70 Wt 35.07 24.95 15.55 8.10 1.53’ -0.68’ -2.97 -4.49 -5.52 -6.26 
Wt + 5.31 – 13.6 CPIt 32.40 22.63 13.86 7.04 1.22’ -1.02’ -3.16 -4.60 -5.60 -6.31 

Gross National Product (GNPt)  and  Money (M1t) 
Series / do 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

GNPt 5.48 3.72 2.10 0.70’ -0.44’ -1.35’ -2.05 -2.60 -3.03 -3.38 
M1t 5.65 3.80 2.13 0.70’ -0.46’ -1.37’ -2.07 -2.62 -3.05 -3.39 

GNPt +12.1–1.54 M1t 3.15 1.26’ -0.22’ -1.32’ -2.13 -2.71 -3.13 -3.44 -3.67 -3.86 
GNPt +12.1–1.54 M1t 3.24 1.31’ -0.19’ -1.31’ -2.12 -2.70 -3.12 -3.43 -3.67 -3.85 

Stock Prices (SPt)  and  Dividends (Dt) 
Series / do 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

SPt 6.02 4.03 2.35 0.95’ -0.19’ -1.10’ -2.03 -2.40 -2.86 -3.23 
Dt 5.41 4.03 2.84 1.79’ 0.86’ -0.94’ -1.08’ -1.30’ -1.96 -2.30 

SPt  +  0.12 -  30.99 Dt 1.48’ 0.21’ -0.79’ -1.58’ -2.20 -2.68 -3.06 -3.37 -3.62 -3.83 
Dt –0.005–0.027 SPt 1.10’ -0.02’ -0.90’ -1.60’ -2.15 -2.60 -2.97 -3.27 -3.52 -3.74 

* ’ and in bold: Non-rejection values at the 95% significance level. The critical values for the cases corresponding to the OLS 
regressions are those given in Table 1. 

 

 

 

 

 

 


