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Generalized Partial Linear Models

Marlene Miiller

A generalized linear model (GLM) is a regression model of the form
BE(Y|X) = G(X"B),

where Y is the dependent variable Y, X is a vector of explanatory variables,
B an unknown parameter vector and G(e) a known link function. The gener-
alized partial linear model (GPLM) extends the GLM by a nonparametric
component:

E(Y|X,T) = G{XTB +m(T)}.

In the following we describe how to use the XploRe gplm quantlib for estimating
generalized partial linear models. The gplm quantlib is highly related to the
glm quantlib for GLM in XploRe. Names of routines and the functionality in
both quantlibs correspond to each other. It is recommended to start reading
with the GLM tutorial (Hardle, Klinke, and Miiller 2000, Chapter 7). Parts of
the features which are also available in GLM are not explained in detail here.

1 Estimating GPLMs

As mentioned above, a GPLM has the form
E(Y|X,T)=G{X"8+m(T)},

where E(Y'|X,T) denotes the expected value of the dependent variable Y given
X, T which are vectors of explanatory variables. The index X783 + m(T) is
linked to the dependent variable Y via a known function G(e) which is called the
link function in analogy to generalized linear models (GLM). The parameter
vector 8 and the function m(e) need to be estimated. Typically, generalized
partial linear models are considered for Y from an exponential family. We
therefore assume for the variance Var(Y|X,T) = o?V[G{XT8 + m(T)}], i.e.
a dependence on the index X738 +m(T) and on a dispersion parameter o2.



1.1 Models

It is easy to see that GPLM covers a range of semiparametric models, as for
example:

e Partial linear regression
The model Y = X1 B8+ m(T) + ¢ with e ~ N(0,0?) implies E(Y|X,T) =
G{XTB + m(T)} and Var(Y|X,T) = o>. This gives a GPLM with
identity link function G(e) = e and variance function V(e) = 1.

e Generalized additive model (GAM) with linear and nonpara-
metric component
This is commonly written as E(Y|X,T) = G{c + XT8 + f(T)} where
Ef(T) = 0 is assumed. By defining m(t) = ¢ + f(t) we arrive at the
above GPLM.

1.2 Semiparametric Likelihood

The estimation methods for the GPLM are based on the idea that an estimate E
can be found for known m(e), and an estimate 7i(e) can be found for known 3.
The gplm quantlib implements profile likelihood estimation and backfitting.
Details on the estimation procedure can be found in Hastie and Tibshirani
(1990), Severini and Staniswalis (1994), Hardle, Mammen and Miiller (1998),
Miiller (1997).

The default numerical algorithm for likelihood maximization is the Newton-
Raphson iteration. Optionally, a Fisher scoring can be chosen.

Profile Likelihood Denote by L(u,y) the individual log-likelihood or (if the
distribution of ¥ does not belong to an exponential family) quasi-likelihood

function .
8_
L(u,y)Z/( b) g,
w

V(s)

The profile likelihood method considered in Severini and Wong (1992) and
Severini and Staniswalis (1994) is based on the fact, that the conditional distri-
bution of Y given X and T is parametric. The essential method for estimation
is to fix the parameter § and to estimate the least favorable nonparametric



function in dependence of this fixed §. The resulting estimate for mg(e) is
then used to construct the profile likelihood for 5.

Suppose, we have observations {y;,z;,t;}, % = 1,... ,n. Denote the individual
log- or quasi-likelihood in y; by

Li(n) = L{G(n), yi}-

In the following, ¢; and ¢ denote the derivatives of ¢;(n) with respect to 7.
Abbreviate now m; = mg(t;) and define S¥ the smoother matrix with elements
Sf; _ néél(m;t”ﬂ—i—mj)KH(ti—tj) (1)

> K;I(l'zT,B + mj)KH(ti - tj)

=1

and let X be the design matrix with rows zJ. Denote further by I the identity
matrix, by v the vector and by W the diagonal matrix containing the first (£})
and second (£) derivatives of £;(x] 8 4+ m;), respectively.

The Newton-Raphson estimation algorithm (see Severini and Staniswalis 1994)
is then as follows.

Profile Likelihood Algorithm

o updating step for B

prew = (XTWX)' XTWz

with
X = (I-8Px,
Z = Xp-Wlo,
o updating step for m;
n
> Gl B+my) Kn(ti - t;)
m?ew — m] _ Zil

S 0T B +my) Kn(ti — t;)

i=1

The variable z is a sort of adjusted dependent variable. From the formula for



8" it becomes clear, that the parametric part of the model is updated by a
parametric method (with a nonparametrically modified design matrix X).

Alternatively, the functions £ can be replaced by their expectations (w.r.t. to
;) to obtain a Fisher scoring type procedure.

Generalized Speckman Estimator The profile likelihood estimator is par-
ticularly easy to derive in case of a model with identity link and normally dis-
tributed y;. Here, ¢, = y; — 278 — m; and ¢/ = —1. The latter yields the
smoother matrix S with elements

KH(ti — tj)

Sij = & . (2)
> Ku(ti —t;)
i=1
Moreover, the update for m; simplifies to
m"e = S(y — Xp)
using the vector notation y = (y1,... ,yn)", m™® = (mpev, ... ,mge’”)T. The

parametric component is determined by
IBnew — (XTX)fljo{yv

with X = (I — §)X and § = (I — S)y. These estimators for the partial linear
model were proposed by Speckman (1988).

Recall that each iteration step of a GLM is a weighted least squares regression
on an adjusted dependent variable (McCullagh and Nelder 1989). Hence, in
the partial linear model the weighted least squares regression could be replaced
by an partial linear fit on the adjusted dependent variable

z=XB+m-W tu. (3)

Again, denote v a vector and W a diagonal matrix containing the first (£})
and second (£!') derivatives of ¢;(zT 8 + m;), respectively. Then, the Newton-
Raphson type Speckman estimator (see Miiller 1997) for the GPLM can be
written as:



Generalized Speckman Algorithm

e updating step for B
grev = (XTWX)T'XTWE,

o updating step for m

using the notations

X = (I-9)X,
7 = I-8)2=XB-W v

The basic simplification of this approach consists in using the smoothing matrix
S with elements
Sij — nﬁ;'(x?ﬂ + mi)KH(ti - tj) (4)
> 0 (al B+ mi) Kt —t;)

i=1

instead of the matrix S¥ from (1). As before, a Fisher scoring type procedure
is obtained by replacing £ by their expectations.

Backfitting The backfitting method was suggested as an iterative algorithm
to fit an additive model (Hastie and Tibshirani 1990). The key idea is to regress
the additive components separately on partial residuals. The ordinary partial
linear model (with identity link function)

E(Y|X,T)=XTB+m(T)

is a special case, consisting of only two additive functions. Denote P the
projection matrix P = X(X7X)"'XT and S a smoother matrix. Abbreviate

m=(my,...,mp)" = (m(t1),...,m(ts))’. Then backfitting means to solve

XB = Ply-m)
m = S(y—Xp).



For a GPLM, backfitting means now to perform an additive fit on the adjusted
dependent variable z which was defined in (3), see Hastie and Tibshirani (1990).
We use again the kernel smoother matrix S from (4).

Backfitting Algorithm

e updating step for B
Brew — (XTWX)leTW%/,

e updating step for m

using the notations

X = (I-9)X,
7 = (I=-8)z2=XB-W v

As for profile likelihood and Speckman estimation, we obtain a Newton-Raphson
or Fisher scoring type algorithm by using £ or E(¢}'), respectively.

2 Data Preparation

2.1 General

All estimation quantlets in the gplm quantlib have as input parameters:

X
A n x p matrix containing observations of explanatory variables for the
linear part,

t
A n x ¢ matrix containing observations of explanatory variables for the
nonparametric part,

y

A n x 1 vector containing the observed responses.



There should be no vector of 1 concatenated to the matrix x. A constant is
contained automatically in the nonparametric estimate for m(e). Neither the
matrices x, t nor the vector y should contain missing values (NaN) or infinite
values (Inf,-Inf).

2.2 Credit Scoring Example

In the following, we will use credit scoring data to illustrate the GPLM estima-
tion. For details on the file kredit see Fahrmeir and Tutz (1994) or Fahrmeir
and Hamerle (1984). We use a subsample on loans for cars and furniture, which
has a sample size of n = 564 out of 1000.

Yes No (in %)
Y  credit worthy 75.7 24.3
X, previous credits o.k. | 36.2 63.8
X, employed 77.0 23.0

Min  Max Mean S.D.
X3 duration (months) 4 72 20.90 11.41
T, amount (DM) 338 15653 3200.00 2467.30
T, age (years) 19 75 34.46 10.96

Table 1: Descriptive statistics for credit data.

Descriptive statistics for this subsample and a selection of covariates can be
found in Table 1. The covariate previous credit o.k. indicates that previous
loans were repaid without problems. The variable employed means that the
person taking the loan has been employed by the same employer for at least
one year.

The following XploRe code creates matrices x, t and y

library("stats")
file=read("kredit")
file=paf (file, (file[,5]1>=1)&&(file[,5]1<=3))
; purpose=car/furniture

y=filel[,1]
x=(file[,4]>2) ; previous loans o.k.
x=x"(file[,8]1>2) ; employed (>=1 year)



x=x"(file[,3]) ; duration of loan
t=(file[,6]) ; amount of loan
t=t~(file[,14]) ; age of client
xvars="previous"|"employed" | "duration"
tvars="amount" | "age"

summarize(y~x~t,"y" |xvars|tvars)

Q gplm0O1.xpl

and produces the summary statistics:

[ 2,] Minimum  Maximum Mean Median  Std.Error
[ 3,] - - -

[4,]y 0 1 0.75709 1 0.42922
[ 5,] previous 0 1 0.3617 0 0.48092
[ 6,1 employed 0 1 0.7695 1 0.42152
[ 7,] duration 4 72 20.902 18 11.407
[ 8,] amount 338 15653 3200 2406 2467.3
[ 9,] age 19 75 34.463 32 10.964

Note that in the following statistical analysis we took logarithms of amount
and age and transformed these values linearly to the interval [0, 1].

3 Computing GPLM Estimates

Currently six types of distributions are supported by the gplm quantlib: Bi-
nomial, Normal (Gaussian), Poisson, Gamma (includes Exponential), Inverse
Gaussian and Negative Binomial (includes Geometric). Table 2 summarizes
the models which are available.

The quantlet in the gplm quantlib which is mainly responsible for GPLM esti-
mation is gplmest.

3.1 Estimation

g = gplmest (code, x, t, y, h {, opt})
estimates a GPLM




Distribution Model Code Link Function

Gaussian "noid" identity link (canonical)
"nopow" power link

Binomial "bilo" Logistic link (Logit, canonical)
"bipro" Gaussian link (Probit)
"bicll" complementary log-log link

Poisson "polog" logarithmic link (canonical)
"popow" power link

Gamma "gacl" reciprocal link (canonical)
"gapow" power link

Inv. Gaussian "igcl" squared reciprocal link (canonical)
"igpow" power link

Neg. Binomial '"nbcl" canonical link
"igpow" power link

Table 2: Supported models.

The quantlet gplmest provides a convenient way to estimate a GPLM. The
standard call is quite simple, for example

g=gplmest ("bipro",x,t,y,h)

estimates a probit model (binomial with Gaussian cdf link). For gplmest the
short code of the model (here "bipro" ) needs to be given, this is the same
short code as for the glm quantlib. Additionally to the data, a bandwidth
parameter h needs to be given (a vector corresponding to the dimension of t
or just a scalar).

The result of the estimation is assigned to the variable g which is a list con-
taining the following output:

g.b
the estimated parameter vector

g.bv
the estimated covariance of g.b

g.m
the estimated nonparametric function



g.stat
contains the statistics (see Section 5).

Recalling our credit scoring example from Subsection 2.2, the estimation—using
a logit link—would be done as follows:

t=log(t) ; logs of amount and age
trange=max (t)-min(t)
t=(t-min(t))./trange ; transformation to [0,1]

library("gplm")

h=0.4
g=gplmest ("bilo",x,t,y,h)
g.b
Q gplm02.xpl

Now we can inspect the estimated coefficients in g.b

Contents of b
[1,] 0.96516
[2,] 0.74628
[3,] -0.049835

A graphical output can be created by calling

gplmout ("bilo",x,t,y,h,g.b,g.bv,g.m,g.stat)
QgplmOQ.xpl

for the current example (cf. Figure 1). For more features of gplmout see Sub-
sections 4.7 and 5.2.

Optional parameters must be given to gplmest in a list of optional parameters.
A detailed description of what is possible can be found in Section 4, which deals
with the quantlet gplmopt. Set:

opt=gplmopt ("meth",1,"shf",1)
opt=gplmopt ("xvars",xvars,opt)
opt=gplmopt ("tg",grid(0/0,0.05/0.05,21(21) ,opt)

Q gplm03.xpl

This will create a list opt of optional parameters. In the first call, opt is

10



H 1 H t) a—
GPLMfit, 'bilo, n=564 GPLM flt, bilo , N=564
L L L L L

= H# - -+
hl = 0.4
h2 = 0.4

o L
Estimates (b, s.e., t-value) ©
b[1]  0.965158 0.2486 3.88
b[2]  0.746277 0.2372 3.15 § ©
b[3] -0.0498345 0.01154 -4.32 < o] i
Statistics 0:'}

£
~ < L
df 555. 7452 £ <
Devi ance 555. 2931
Log- Li kel i hood -277. 6466
Pear son 555. 8648 ~
R*2 0.1121 ST B
adj. R'2 0.1005
AC 571. 8028
BIC 607. 5880
iterations 4 ks '!' i .. ll.."ll.-' l. t 'IH' N
-1 0 1 2 3
Index eta

Figure 1: GPLM output display.

created with the first component meth (estimation method) containing the
value 1 (profile likelihood algorithm) and the second component shf (show
iteration) set to 1 (“true”). In the second call, the variable names for the
linear part of the model are appended to opt. Finally, a grid component tg
(for the estimation of the nonparametric part) is defined.

We repeat the estimation with these settings:

g=gplmest ("bilo",x,t,y,h,opt)
Q gplm03.xpl

This instruction now computes using profile likelihood algorithm (in contrast
to the default Speckman algorithm used in example @ gplm02.xpl), shows the
iteration in the output window and estimates the function m(e) on the grid tg.
The output g contains one more element now:

11



g.mg
the estimated nonparametric function on the grid

Since the nonparametric function m(e) is estimated on two-dimensional data,
we can display a surface plot using the estimated function on the grid:

library("plot")
mg=setmask (sort (tg~g.mg) , "surface")
Q gplm03.xpl

Figure 2 shows this surface together with a scatterplot of amount and age.
The scatterplot shows that the big peak of m(e) is caused by only a few
observations. For the complete XploRe code of this example check the file

Q gplm03.xpl.

Amount vs. Age Amount & Age -> Credit
] —
+ +
s .
+ + 7t +
L L P
4+ ) + o+
+ + + +H
+ P o+ Y
+ Al R T T
I +
R A T LR
e T
+ o+ +j% A +
+ ot it ++
P Fra S +
Byt rp FR R e vy
+7% £+ 4+
- 5 e O
L s rJr#Jr
+ +ﬁ# L
T L
P s e L
T HE £ B+
b A HE ok
o HE A
B R A T =
T bk kR M F+
+ A
o+ b bR + o+
++ B
+

Figure 2: Scatterplot for amount and age (left). Estimate m (right).

The estimated coefficients are slightly different here, since we used the profile
likelihood instead of the Speckman algorithm in this case. Figure 3 shows the
output window for the second estimation.
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3.2 Estimation in Expert Mode

g = gplmcore(code, x, t, y, h, wx, wt, wc, b0, mO0,
off, ctrl{, upb, tg, mOg})
estimates a GPLM in expert mode

The gplmcore quantlet is the most inner “kernel” of the GPLM estimation.
It does not provide optional parameters in the usual form of an option list as
described in Section 4. Also, no check is done for erroneous input. Hence, this
routine can be considered to use in expert mode. It speeds up computations
and might be useful in simulations, pilot estimation for other procedures or
Monte Carlo methods.

The following lines show how gplmcore could be used in our running example.
Note that all data needs to be sorted by the first column of t.

n=rows (x)
p=cols(x)
g=cols(t)

tmp=sort (t~y~x) ; sort data by first column of t
t=tmp[, (1:q9)]

y=tmp[, (q+1)]

x=tmp[, (q+2) : cols(tmp)]

shf = 1 ; show iteration (1="true")
miter = 10 ; maximal number of iterations
.0001 ; convergence criterion

; Fisher scoring (1="true")

cnv = 0
0

pow = 0 ; power for power link (if useful)
1
0

fscor =

nbk = ; k for neg. binomial (if useful)
meth = ; algorithm ( -1 = backfitting,

; 0 = Speckman

; 1 = profile likelihood )
ctrl=shf |miter|cnv|fscor|pow|nbk|meth

WX =1 ; prior or frequency weights
wt =1 ; trimming weights for estimation of b
wC =1 ; weights for the convergence criterion

13



off =0 ; offset

1=glmcore("bilo" ,x"t"matrix(n),y,wx,off,ctrl[1:6])
b0=1.b[1:p]
m0=1.b[p+q+1]+t*x1.b[(p+1) : (p+q)]

h=0.4]0.4
g=gplmcore("bilo",x,t,y,h,wx,wt,wc,b0,m0,off,ctrl)

Q gplmO4.xpl

Optionally, gplmcore can estimate the function m(e) on a grid, if tg and
mOg are given. In addition, gplmcore can be also used to compute the biased
parametric estimate which is needed for the specification test in Subsection 5.3.
In this case the optional parameter upb should be set to 0 (default is 1).

4 Options

opt = gplmopt (stringl, valuel, ...{, opt})
creates a list of options for GPLM estimation or appends options
to an existing list

All options for the algorithm and optional parameters need to be collected in
a list object. This allows just to set or to modify only those options which
are necessary. All quantlets in the gplm quantlib (except for gplmcore) allow
options. It is possible to give the same list of options to different routines. For
example,

opt=gplmopt ("miter",20,"name","MyDisplay")

will set the maximal number of iterations to 20 and the name of the output
display to MyDisplay. Option lists used for the glm quantlib can be used as
well.

With the above option settings, one can call first gplmest and then gplmout:

l=gplmest("bilo",x,y,opt)
glpmout ("bilo",x,y,opt)

14



Both quantlets only consider those optional parameters which are intended for
them. Hence gplmest will only care about miter whereas gplmout will only
use the parameter name to present a display named MyDisplay.

4.1 Setting Options

As for the glm quantlib, it is recommended to use gplmopt to set the options.
gplmopt is used in the same way as glmopt. Essentially, the possible options in
the gplm quantlib are a superset of those in the glm quantlib. A list of options
created with glmopt can hence be used or extended with gplmopt.

4.2 Grid and Starting Values

As shown in Subsection 3.1, it can be useful to estimate the nonparametric
function m(e) not only on the observations t, but also on a grid tg. The
optional parameter is:

tg
grid values (on the same scale as t)

This parameter can also be used to compute predictions for m(e) on other
values than those given in t.

All presented algorithms for GPLM are iterative and require first an initializa-
tion step. Different strategies to initialize the iterative algorithm are possible:

e Start with 3, m(e) from a parametric (GLM) fit.

e Alternatively, start with 2 = 0 and m(t;) = G=*(y;) (for example with
the adjustment m; = G~'{(y; + 0.5)/2} for binary responses).

o Backfitting procedures often use 8 = 0 and m(t;) = G (7).

The gplm quantlib uses the first method by default. If a different method is to
be used, the necessary starting values can be given as optional input:

b0
initial values for the estimation of b.

15



mO
initial values for the estimation of m.

m0g
initial values for the estimation of mg.

4.3 Weights and Offsets

The estimation quantlet gplmest is able to handle special cases as weights
and constraints on parameters (fix parameters). Setting weights and offsets is
done in the same way as in the glm quantlib. Please consult the corresponding
subsections of the GLM tutorial (Hardle, Klinke, and Miiller 2000, Chapter 7).

Weights and offsets can always be given as a optional parameter. The corre-
sponding components of the list of optional parameters are

weights
type of weights, either "frequency" for replication counts or "prior" for
prior weights in weighted regression.

WX
weights, n X 1 vector or scalar.
wt
trimming weights for estimation of the linear part, n x 1 vector or scalar.
wC
weights to be used in the convergence criterion, n x 1 vector or scalar.
wr
weights to be used in the modified LR test statistics, n x 1 vector or
scalar.
off

offset, n x 1 vector or scalar.

None of these parameters should contains missing or infinity values. Defaults
are weights="prior", wx=1, wt=1, we=1, wr=1, and off=0.

16



4.4 Control Parameters

There is a number of control parameters which modify the used algorithm.

meth
method to be used for GPLM estimation: -1 for backfitting, 0 for gener-
alized Speckman estimator and 1 for profile likelihood. The default value
is meth=0 for the Speckman algorithm.

fscor
indicator for Fisher scoring (instead of Newton-Raphson optimization).
fscor=1 means that the Fisher scoring is used. Default is fscor=0 for
Newton-Raphson. This parameter is ignored for canonical link functions.

cnv
convergence criterion. The iteration stops when the relative change of
the coefficients vector b, the estimated curve m and the deviance are less
than cnv. Default is cnv=0.0001.

miter
maximal number of iterations.The iteration stops when this maximal
number of iterations is reached. Default is miter=10.

nosort
nosort=0 forces not to sort the data by the first column of t (and tg, if
the optional grid tg is given). Default is nosort=0, i.e., to sort.

The following parameter switches on/off information during the computation.

shf
shows how the iteration is going on, if shf=1 is set. Default is shf=0.

4.5 Model Parameters

These two parameters are only relevant for power link and negative binomial
models, respectively:

pow
power for the power link function, default is pow=0 (logarithmic link).

17



nbk
parameter k for the negative binomial distribution, the default is nbk=1
(geometric distribution).

4.6 Specification Test

The modified LR test implemented in gplmbootstraptest (see Subsection 5.3)
allows the following options:

wr
weights to be used in the modified LR test statistics, n x 1 vector or
scalar. The default value is wr=1.

tdesign

design matrix (in t) for the GLM hypothesis, n x r matrix. The default
design is matrix(n) “t.

4.7 Output Modification

The gplmout routine which shows the output display provides some special
possibilities to modify the output:

nopic
suppresses the output display if nopic=1. Default is nopic=0.

xXvars
string vector, p x 1, containing variable names for the columns of x.

name
single string, name for output and prefix for output displays from gplmout.

title
single string, title to be used in gplmout.

18



5 Statistical Evaluation and Presentation

5.1 Statistical Characteristics

stat = gplmstat (code, x, t, y, h, b, bv, m, df{, opt})
computes statistical characteristics for an estimated GPLM

gplmest provides a number of statistical characteristics of the estimated model
in the output component stat. The quantlet gplmstat can be used to create
the above mentioned statistics by hand. Suppose we have input x, y and have
estimated the vector of coefficients b (with covariance bv) and the nonpara-
metric curve m by model "nopow". Then the list of statistics can be found
from

stat=gplmstat ("nopow",x,y,b,bv,m,df)
Of course, an list of options opt can be added at the end. If options from opt
have been used for the estimation, these should be included for gplmstat, too.
The following characteristics are contained in the output stat. This itself is a

list and covers the components

df
approximate degrees of freedom according to Hastie and Tibshirani (1990).

deviance
the deviance of the estimated model.

pearson
the Pearson statistic.

loglik
the log-likelihood of the estimated model, using the estimated dispersion
parameter.

dispersion
an estimate for the dispersion parameter (deviance/df).

aic, bic
Akaike’s AIC and Schwarz’ BIC criterion, respectively.

19



r2, adr2
the (pseudo) coefficient of determination and its adjusted version, respec-
tively.
it
the number of iterations needed.
ret
the return code, which is 0 if everything went without problems, 1 if the

maximal number of iterations was reached, and negative if missing values
have been encountered.

Sometimes, one or the other statistic may not be available, when it was not
applicable. This can always be checked by searching for the components in
stat:

names (stat)

The quantlet names will report all components of the list stat.

5.2 Output Display

gplmout (code, x, t, y, h, b, bv, m, stat{, opt})
creates a nice output display for an estimated GPLM

An output display containing statistical characteristics and a plot of the fitted
link function can be obtained by gplmout.

Recall our example from Section 3:
opt=gplmopt ("meth",1,"shf",1)
opt=gplmopt ("xvars",xvars,opt)

opt=gplmopt ("tg",grid(0/0,0.05/0.05,21(21) ,0opt)
g=gplmest("bilo",x,t,y,h,opt)
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The optional component xvars will be used in the output display:

gplmout ("bilo",x,t,y,h,g.b,g.bv,g.m,g.stat,opt)

produces the output given in Figure 3.

Q gp1lm03

.xpl

GPLM fit, 'bilo, n=564

hli =10.4

h2 = 0.4
Estimates (b, s.e., t-value)
previ ous 0. 973995 0. 2498 3.90
enpl oyed 0. 753538 0. 2375 3.17
duration -0.0503313 0.01156 -4.35
Statistics

df 555. 8397

Devi ance 555. 3878

Log- Li kel i hood -277. 6939

Pear son 560. 3674

Rr2 0.1119

adj. R'2 0. 1005

A C 571. 7085

BIC 607. 0840
iterations 3

Link mu, Responsesy

0.4

GPLM fit, "bilo’, n=564

0.8
i

0.6

0.2
i

B S O 11

I |

-1 0 1 2 3
Index eta

Figure 3: GPLM output display.

The optional parameters that can be used to modify the result from gplmout

can be found in Subsection 4.7.

5.3 Model selection

g = gplmbootstraptest (code, x, t, y, h, nboot{, opt})
tests a GLM against the GPLM
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To assess the estimated model it might be useful to check significance of single
parameter values, or of linear combinations of parameters. To compare two
different, nested models a sort of likelihood ratio (LR) test can be performed
using the test statistic

n

R=2)" L(fis,y:) — L(fui, yi)- ()

=1

Here we denote the GLM fit by & and the GPLM fit by zi. This approach corre-
sponds fully to the parametric case, except that for the GPLM the approximate
degrees of freedom have to be used. Please consult the corresponding subsec-
tions of the GLM tutorial (Hardle, Klinke, and Miiller 2000, Chapter 7) for
more information on the LR test.

A modified likelihood ratio test for testing Hy : G(XT3 + Ty + ¢) (GLM)
against Hy : G{XT8 + m(T)} (GPLM) was introduced by Hirdle, Mammen,
and Miiller (1998). They propose to use a “biased” parametric estimate 77 (t)
instead of 75 + ¢ and the test statistic

n
R* =2 L, fis) — L(Ti;, i) (6)
i=1
Asymptotically, this test statistic is equivalent to

n

= 3w {al @ =B+ i) -G} @
and _

RY = 2} wi {2l (B—B) +i(ts) ~m(t)} (8)
with }

w. = [GeT B + it}
VIG{] B +m(t:)}]

All three test statistics are asymptotically equivalent and have an asymptotic
normal distribution. However, since the convergence to the limiting normal
distribution is slow, it is recommended to determine the critical values of the
test by bootstrap. The quantlet gplmbootstraptest performs this bootstrap
test.
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Let us continue with our credit scoring example and test whether the correct
specification of the model is G(XTB+TTy+c) or G{XTB+m(T)}. The follow-
ing code computes first the GLM and applies the quantlet gplmbootstraptest
to estimate the GPLM and perform the bootstrap test.

library("glm") ; GLM estimation

n=rows (x)

opt=glmopt ("xvars" ,xvars|tvars|"constant")
l=glmest("bilo",x "t matrix(n),y,opt)

glmout ("bilo",x"t"matrix(n),y,1.b,1.bv,1l.stat,opt)

library("gplm") ; GPLM estimation and test

h=0.4

nboot=10

randomize (742742)

opt=gplmopt ("meth",1,"shf",1,"xvars",xvars)
opt=gplmopt ("wr" ,prod((abs(t-0.5) < 0.40*trange),2),opt)
g=gplmbootstraptest("bilo",x,t,y,h,nboot,opt)

gplmout ("bilo",x,t,y,h,g.b,g.bv,g.m,g.stat,opt)

Q gplm05.xpl

Note the optional weight vector wr which defines weights for the test statistics.
All observations outside a radius of 0.4 around the center of t are excluded.
This is to ensure that the test result is not disturbed by outliers and boundary
effects. Table 3 summarizes the coefficients from the output windows for the
GLM (left column) and the GPLM (right) column.

The obtained significance levels for the test (computed for all three test statis-
tics R¥, R* and éfj) can be found in the component alpha of the result g.
Note that the approximations R* and éfj (the latter in particular) may give
bad results when the sample size n is small. If we run the test with random
seed 742742 and nboot=250 we get:

Contents of alpha
[1,] 0.035857
[2,] 0.035857
[3,1 0.043825

The hypothesis GLM can hence be rejected (at 5% level for R*, R¥, RM).
It is also possible to test more complicated GLMs against the GPLM. For
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Coeft. Coefl. Coeft.
previous 0.974 ( 3.99) 0.954 (3.91)| 0.974 (3.90)
employed | 0.783 ( 3.34) 0.765 (3.26) | 0.753 ( 3.17)
duration |-0.048 (-4.04) -0.050 (-4.15) | -0.050 (-4.35)
amount 0.092 (-0.12) 1.405 (-1.09)| — —
age 0.989 (1.93) 2.785 (1.82)| — —
interaction | — — -3.355 (-1.26)| — —
constant 0.916 ( 2.40) 0.275 (0.44)| — —

GLM GLM (interaction) GPLM

Table 3: Coefficients from GLM (with and without interaction term) and
GPLM, t-values in parentheses.

example, the nonlinear influence of amount and age could be caused by
an interaction of these two variables. Consider now the GLM hypothesis
G(XTB +TT~y + 6t1-ty + ¢). The code for this test needs to define an op-
tional design matrix tdesign which is used instead of the default t"matrix(n)
in the previous test. The essential changes are as follows:

tdesign=t~prod(t,2) “matrix(n)
opt=gplmopt ("tdesign",tdesign,opt)
g=gplmbootstraptest("bilo",x,t,y,h,nboot,opt)

Q gplm06.xpl

The resulting coefficients for the GLM can be found in the middle column of
Table 3. Performing the test with random seed 742742 and nboot=250 yields:

Contents of alpha
[1,] 0.052
[2,] 0.056
[3,] 0.064

The hypothesis, that the correct specification is a GLM with interaction term,
can hence be rejected as well (now at 10% level for R*, R*, R¥).

Note that gplmbootstraptest also prints a warning, if missing values occurred
in the bootstrap procedure. In our last example we have:
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[1,] =====
[2,] WARNING!
[3,] =====

[4,] Missing values in bootstrap encountered!

[5,]1 The actually used bootstrap sample sizes are:
[6,] nboot[1] = 249 ( 99.60%)
7,1 nboot [2] 249 ( 99.60%)
[8,1] nboot [3] 249 ( 99.60%)
[9,]

Missing values are mostly due to numerical errors when the sample size is small
or the dataset contains outliers.
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