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ANALYZING MULTIGROUP DATA
WITH STRUCTURAL EQUATION

MODELS

N. Gorz, L. Hildebrandt, D. Annacker

Institut fiir Marketing 11,
Humboldt-Universitdt zu Berlin, D-10178 Berlin, Germany

Abstract: In empirical applications of structural equation modeling researchers
often assume that the sample under investigation is homogenous unless observed
charateristics allow for a division of the sample into mutual exclusive homoge-
nous subgroups. If such information is not available, unobserved heterogeneity
can be taken into account by a finite-mixture approach (Arminger et al. (1998);
Jedidi et al. (1997)). The simulation study presented in this paper reveals that
this approach clearly outperforms a sequential procedure combining cluster and
multigroup analysis.

1 Introduction

Empirical analyses of structural equation models (SEM) in marketing often
assume homogenous samples or form “homogenous” groups a priori based on
theoretical considerations regarded as sufficient to identify the main causes
of differences in the means of the relevant variables and/or the relationships
among them (Hildebrandt, Homburg (1998)). If the sources of heterogene-
ity can be easily observed or if appropriate indicators for latent causes exist
(observed heterogeneity), the proposed model can be estimated by sepa-
rate analyses of the subsamples or by using the multigroup option available
in programs like LISREL (see e.g. Joreskog, Sorbom (1996)). If, however,
indicators for an a-priori segmentation are missing, this unobserved hetero-
geneity poses serious problems, e.g. biased parameter estimates (Jedidi et
al. (1997)). In this article a more sophisticated methodology based on finite
mixtures of mean- and covariance structures will be described, which solves
many of these shortcomings.

2 SEM and Unobserved Heterogeneity

2.1 The traditional approach

Traditionally, unobserved heterogeneity in structural equation modeling was
taken into account by a sequential two-step procedure (Jedidi et al. (1997)):
(1) “homogenous” groups are formed by performing cluster analysis on the



data set (e.g., K-means clustering), and (2) a multigroup SEM based on
separate covariance matrices for each segment is estimated. A major short-
coming of this approach is that it ignores important information about the
data. Although the researcher frequently has specific hypotheses about the
relationships between the analyzed variables, traditional cluster analysis as-
sumes independence among the variables. In the case of highly-correlated
variables data-reduction techniques (e.g., principal component analysis) are
proposed, but also in this case the conceptual flaws are accompanied by

serious statistical problems (Jedidi et al. (1997)).

2.2 Finite Mixtures of Conditional Mean- and Covari-
ance Structure Models

2.2.1 Mixtures of Conditional Normal Densities

Analyses of mixed distributions suppose that the data are a composition of
two or more populations mixed in different proportions (McLachlan, Bas-
ford (1988)). A conditional finite-mixture model for observed continuous
dependent random variables y; and continuous and/or dummy regressors z;

is defined as follows (Arminger, Stein (1997)):
h(yi, xi) = f(yilz:)g(z:) (1)

where h(y;, z;) is a multivariate density function for the identically and in-
dependently distributed data, g(z;) is an arbitrary marginal density of the
regressor variables and the conditional density function f(y;|z;) is specified
as

Flyilzi) = wy fy(wil ). (2)

The mixing components are denoted as g, where the number of components
is usually unknown. For the mixing probabilities w, the following restrictions

apply:

ng =1 (3)

w20 (g=1,..,G). (4)

A multivariate normal density f,(vi|z:) = ®(y;; piy, X,) with expectation
pig and covariance matrix X, is assumed for the group-specific conditional
densities. The conditional mean for the different groups is parameterized as
a reduced form regression model

E(yilai g) = pig = 75 + Hyas. (5)
The vector 7, including regression constants, the matrix II, of regression
coefficients and the covariance matrix ¥, are parameterized in a vector v €
O C R4, which leads to specific structures for the moments.



2.2.2 Mean- and Covariance Structure Models and Conditional
Mixtures

A number of articles contributed to the development of finite-mixture mod-
els in SEM (DeSarbo and Cron (1988); Jones and McLachlan (1992); Yung
(1997); Jedidi et al. (1997); Arminger et al. (1998)). Because the model
by Arminger et al. is the most general we restrict our presentation to this
approach.

Finite mixtures of conditional mean- and covariance structures extend the
general theory on mixed distributions in two directions: (1) the set of ob-
served variables is divided into dependent variables y and independent re-
gressors x for which no distributional assumptions are made, and (2) the
group specific expectations and covariances can be arbitrarily parameter-
ized, e.g. as factor-analytic models or SEM with and without latent vari-
ables. A general conditional LISREL model for a latent variable vector n;
can be specified as (Arminger et al. (1998)):

nil(zi,g9) = Byni + Tyx; + Q(g) (6)

where Q(g) ~ N(0,V,). Assuming a specific measurement model for the
vector of dependent variables y; results in a conditional expected value

E(y¢|$¢,g) =V, + Ag([ - Bg)_lrgmi =7 + Uz, (7)
and a conditional covariance matrix
V(yilwi,g) = Ag(T — By) ™' W,(T — By)™"A, + 0, = 5, (8)

An example for the general model is depicted in figure 1. As can be seen,
two sources of heterogeneity are distinguished: the regressor variables z
represent known causes of differences between the groups (dashed arrows).
Unobserved latent causes of heterogeneity are partly modeled by v, (dotted
arrows). In many cases, however, the sources of heterogeneity are unknown,
and the general model reduces to an unconditional finite-mixture model.
This special case of the model by Arminger et al. (1998) corresponds with
the finite-mixture LISREL-type model described in Jedidi et al. (1997).

2.2.3 Identifiability and Estimation

Suppose a specified model is identifiable for a single group, or identifia-
bility can be established by parameter restrictions across groups, then the
finite-mixture SEM is identified if the variables follow a multivariate normal
distribution in the unknown groups (for a proof see Jedidi et al. (1997); see

also Titterington et al. (1985); McLachlan, Basford (1988)).

Arminger et al. (1998) present three different procedures for the parame-
ter estimation: (1) a two-stage estimation procedure, (2) a direct algorithm,
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Figure 1: Representation of a Finite Mixture SEM

and (3) a gradient algorithm. The two-stage procedure starts with an EM
estimation of the reduced-form parameters ~,, I, and ¥, and their asymp-
totic covariance matrix (Jones, McLachlan (1992)). In the second stage, the
parameters of the structural model are estimated using minimum distance
estimation (Arminger (1995)). In contrast to the two-stage approach, in the
direct estimation procedure the model restrictions are taken into account at
the level of the fuzzy group formation. Because reduced-form parameters
(e.g., the covariance matrix X,) are not provided, model specification only
relies on theoretical considerations. Also, computation time is considerably
higher but can be reduced by applying the gradient EM algorithm, where
only one iteration is performed in each M-step (Becker et al. (1997)).

3 A Simulation Study

3.1 The Concept of the Simulation Study

The aim of this simulation study is to assess the performance of both the
traditional approach and the finite-mixture methodology when the sample
analyzed is heterogeneous. A heterogenous sample (n = 20,000) has been
created by merging simulated data for two different groups, each of sample
size 10,000. Both data sets have been generated by the software TETRAD
IT (Scheines et al. (1994)). The data for the two groups were simulated
according to the path diagrams in figure 2. Both groups differ in their
causal structures as well as in the structural parameters but have the same
measurement models (parameter sets conform to typical values in empirical
research). In addition, particular group means were specified (see table 1).
All variables follow a multivariate normal distribution within the groups. We
assume that no information about the sources of heterogeneity is available.

The data set has been analyzed using different approaches under specific
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Figure 2: Path Diagrams for the Simulated Data Sets

Parameters | Group 1 | Group 2 || Means | Group 1 [ Group 2

T 0.70 0.20 [ per 0.00 1.00
Y12 0.60 -0.30 || jee2 0.00 1.00
Va1 0.00 0.80 || i1 0.00 1.00
Ba1 0.60 0.30 || pin2 0.00 1.00
Aot 1.00 1.00 || fia1 0.00 1.00
Aua 0.90 0.90 || pu2 0.00 1.00
A3 0.80 0.80 || jtas 0.00 1.00
A 1.00 1.00 || fiza 0.00 1.00
Ars 0.90 0.90 || pos 0.00 1.00
Ayt 1.00 1.00 || 21 0.00 1.00
Ay 0.90 0.90 || 12 0.00 1.00
Ays 1.00 1.00 || 23 0.00 1.00
Aya 0.80 0.80 || jiya 0.00 1.00

Table 1: Parameters for the Simulated Models

heterogeneity assumptions (see table 2). As a benchmark for both the finite-
mixture and the traditional approach we estimated a multigroup SEM based



on the covariance matrices for the original groups. In addition, a common
SEM was estimated under the assumption of homogeneity.

Multigroup SEM is performed by the standard SEM software AMOS 3.6
(Arbuckle (1997)). The program MECOSA 3.01 (Arminger et al. (1996))
was applied for the finite-mixture model. K-means cluster analysis in SPSS
8.0 was used to form groups according to the traditional approach.

| Approach | Assumption |
SEM Homogeneity
Multigroup SEM Observed heterogenity

Traditional Approach | Unobserved
Finite-mixture SEM | heterogeneity

Table 2: Heterogeneity Assumptions of the Applied Approaches

3.2 Results of the Simulation Study

In order to assess the performance of the different procedures, both the
recovery of the parameters and measures of overall fit (y*, AIC, RMSEA,
AGFTI) were used (see table 3). The y* test statistic and the AIC indicate
an acceptable fit for the multigroup and the finite-mixture SEM, whereas
the model for the traditional approach is just rejected, as is the common
SEM under a homogeneity assumption. With respect to RMSEA and AGFI
the picture is more ambiguous. Although both measures show that the
multigroup SEM and the finite-mixture model are preferable, the two other
models are not strictly rejected. The low RMSEA for the traditional ap-
proach even indicates a good fit (Browne, Cudeck (1993)). These results
support the view that some of the widely-used fit measures are not sensitive
enough to detect heterogeneity problems and that information criteria like

AIC, CAIC, or BIC should be used instead (Jedidi et al. (1997)).

Because the original measurement models did not differ across groups, we
obtained similar results for all procedures and factor loadings were well re-
produced (we therefore do not report these results, however, they are avail-
able upon request). With respect to the structural parameters, the most
biased estimates resulted for the common SEM as one would expect (see
especially the parameter estimates for y12 and ~21). Even the traditional
approach produced poor results compared to the finite-mixture model. For
group 1 a significant parameter v,; was estimated, even though the original
value is zero. The estimation of the finite-mixture SEM led to parameters
that were similar to those from the multigroup SEM, with only negligible
deviations from the original values.



Multigroup | Traditional Finite
SEM SEM Approach | Mixture SEM

Model fit
AlIC
- estimated

model 1,434.06 126.20 837.79 125.40
- saturated

model 90.00 180.00 180.00 180.00
- independence

model 144,245.45 86,623.66 73,350.96 86,656.23
1% 1,388.06 44.20 755.59 43.40
- df 22 49 49 49
-p 0.00 0.67 0.00 0.70
RMSEA 0.06 0.00 0.03 0.00
AGFI 0.97 1.00 0.98 1.00
Parameter
estimates
group proportions
- Wy 0.3684 0.5011
- wy 0.6316 0.4989
structural parameter
group 1
- 11 0.56 0.69 0.64 0.69
- Y12 0.30 0.59 0.54 0.59
- Yo1 0.72 | -0.01 (n.s.g -0.08 -0.01 (n.s.g
- %21 0.55 0.5¢ 0.42 0.5¢
structural parameter
group 2
- Y11 0.19 0.27 0.18
- 712 -0.31 -0.06 -0.31
- Y21 0.79 0.85 0.79
- gm 0.30 0.39 0.31

Table 3: Simulation Results

4 Summary

The results of the simulation study clearly show that the finite-mixture ap-
proach outperforms the traditional sequential procedure in the case of un-
observed heterogeneity. Therefore, finite-mixture SEM offer a promising
methodology for segmentation tasks in market research. In practice, how-
ever, data requirements are formidable. In order to get consistent estimates,
relatively large data sets are necessary (at least 1000 observations for mod-
erately complex models; see Jedidi et al. (1997)). With the exception of
consumer panel data, survey samples are normally relatively small. Fur-
ther simulation studies should examine the properties of the finite-mixture
approach in small samples. In addition, deviations from the normality as-
sumption should be analyzed, with and without exogenous regressors.
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