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Modeling the U.S. Short-Term Interest Rate by Mixture
Autoregressive Processes™

Markku Lanne
and
Pentti Saikkonen

University of Helsinki

Abstract

A new kind of mixture autoregressive model with GARCH errors is in-
troduced and applied to the U.S. short-term interest rate. According to
the diagnostic tests developed in the paper and further informal checks
the model is capable of capturing both of the typical characteristics of
the short-term interest rate: volatility persistence and the dependence
of volatility on the level of the interest rate. The model also allows for
regime switches whose presence has been a third central result emerging
from the recent empirical literature on the U.S. short-term interest rate.
Realizations generated from the estimated model seem stable and their
properties resemble those of the observed series closely. The drift and
diffusion functions implied by the new model are in accordance with the
results in much of the literature on continuous-time diffusion models for
the short-term interest rate, and the term structure implications agree
with historically observed patterns.
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1 Introduction

The default-free short-term interest rate is a key variable in many economic and
financial models, and much effort has been devoted to building empirical time series
models that satisfactorily describe its dynamic behavior. Most of this work concerns
U.S. interest rates that are characterized by volatility persistence and the dependence
of the volatility on the level of the interest rate (see e.g. Brenner, Harjes and Kroner,
1996). Unfortunately, many models presented in the literature fail to fit both of these
properties. Volatility persistence is adequately modeled by different kinds of GARCH
models, whereas probably the best known model incorporating the latter feature is the
generalized continuous-time model of Chan, Karolyi, Longstaff and Sanders (1992).
Recently Koedijk, Nissen, Schotman and Wolf (1997), and Brenner et al. (1996) have
suggested combined level-GARCH models that to some extent seem to capture both
effects.

Much of the interest in building models of the short-term interest rate stems from
the fact that these models are used in pricing interest-rate sensitive assets and in
risk management. Typically these applications are based on Monte Carlo simulation
where the empirical model of the short-term interest rate is (a part of) the data
generating process (DGP). Another application requiring a model that provides a
close approximation to the true data, is the estimation of continuous-time short-rate
models and stochastic volatility models by simulation-based methods such as the
efficient method of moments (EMM). This was recently emphasized by Andersen and
Lund (1997), who showed that the dynamics of the level-GARCH models mentioned
above are excessively erratic at the estimated parameter values, despite the fact that
they pass most of the conventional diagnostic tests. Therefore, these models may not
serve as good auxiliary models (score generators) in the EMM. Andersen and Lund
(1997) suggested level EGARCH models with Gaussian and Student-¢ distributed
error terms that produce realizations with the range satisfactorily corresponding to
that of the observed series. The recent finite-sample simulation results of Andersen,
Chung and Sgrensen (1999) confirm that a suitable parametric auxiliary model is
critical for the EMM estimation of a stochastic volatility model even though this
parametric model can be augmented with nonparametric terms. They also found
that for the efficiency of the EMM in small samples, parsimony is critical. It can
probably be more easily achieved by having a sufficient parametric model than by
augmenting a poor model with a large number of nonparametric terms.

In addition to volatility persistence and level effects, another feature that has re-
cently been claimed to characterize especially U.S. interest rate data, is the presence
of regime switches which the above mentioned models do not explicitly take into ac-
count. Much of the literature applying regime switching models to U.S. short-term
interest rates has been inspired by the exceptional three-year period (from Novem-
ber 1979 to October 1982) when the Federal Reserve ceased targeting interest rates
causing increases in both the level and volatility. With the exception of Pfann, Schot-
man and Tschernig (1996) who considered threshold autoregressive (TAR) models,



Markov switching (MS) models have typically been fitted to interest rate data. Cai
(1994), Gray (1996), and Ang and Bekaert (1998) present models that are extensions
of Hamilton’s (1989) MS model allowing for autoregressive conditional heteroskedas-
ticity. All of these papers provide convincing evidence for the presence of multiple
regimes in the U.S. interest rates.

While there thus seems to be evidence of regime switching in the U.S. short-
term interest rates, the commonly employed MS specification may not be optimal for
modeling these series. First, as Ang and Bekaert (1998) point out, a usual problem
with such empirical models is the unsatisfactory regime classification. Typically the
ex ante probability of a regime is around one half in a two-regime model. Second,
these models have also found to be difficult to estimate, with problems arising from
nonuniqueness of the maximum of the likelihood function and the unboundedness
problem causing the conditional variance in one regime to approach zero as the con-
ditional variance in the other regime approaches infinity (see Gray, 1995). Finally,
the estimated MS models, as well as all the other models referred to above, have
produced residuals that are either autocorrelated at virtually all lags or condition-
ally heteroskedastic. Moreover, Ang and Bekaert (1998) noticed that the MS models
are rather bad at matching the unconditional moments of the interest rate series.
Probably these problems explain why these models are not more commonly used.

In this paper we provide evidence that the dynamics of the postwar U.S. short-
term interest rate can be captured by a new kind of model which is a mixture of
linear autoregressive models with GARCH errors. This model is an extension of the
recent mixture autoregressive (MAR) models introduced by Le, Martin and Raftery
(1996), and Wong and Li (1999a,b, 2000). In the simple special case of no GARCH
type heteroskedasticity our MAR model can be obtained from the TAR model by
adding an unobservable white noise term to the threshold parameters and thereby
making them time variant. In the same way as the TAR model our MAR model
is therefore capable of allowing for regime switches in the data. However, in this
respect it is considerably more flexible than the TAR model because it is not bound
to fixed threshold parameters, and in this sense it can also be thought of as a smooth
version of the TAR model. In fact, as far as the conditional expectation is concerned,
our MAR model is entirely similar to the smooth transition autoregressive (STAR)
model which has previously been used to introduce smoothness to TAR models. In
general, the conditional distribution of the MAR model is very different from that of
the STAR model or TAR model, however.

Our MAR model also explicitly contains probabilities of regime switches com-
monly referred to as mixing proportions in mixture models. The mixing proportions
are functions of a past value of the process and considerably simpler than the transi-
tion probabilities which are their counterparts in MS models. This feature, which is
perhaps the most distinctive difference between our MAR model and the MS model,
also implies that the MAR model can be readily extended to allow for GARCH type
heteroskedasticity. In our experience this relative simplicity translates into numeri-
cally unproblematic estimation compared to MS models even when no GARCH type
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heteroskedasticity is present.

In Section 5 we present estimation results of different specifications of the MAR
model with weekly postwar U.S. three-month Treasury bill rate data. To be able to
assess the adequacy of a fitted MAR model, diagnostic tests on the conditional mean
and variance, based on the general approach of Wooldridge (1990), are developed.
It turns out that to capture both the volatility persistence and level effects, a MAR
model with GARCH type heteroskedasticity is required. Diagnostic tests reveal no
misspecification of our preferred MAR-GARCH model with the exception of some
unmodeled autocorrelation at higher lags. The model also seems to be economically
tenable in the sense that the ex ante probabilities implied by the model are able
to clearly single out the high volatility periods reported in the previous literature.
Further informal checks based on simulation experiments also lend support to the
model, indicating that it matches the observed data well. Contrary to the results
concerning MS models in the previous literature, our preferred MAR model seems to
provide clear regime classification (according to the regime classification measure of
Ang and Bekaert (1998)). Our model is also more parsimonious than the generalized
regime switching model of Gray (1996) and has superior forecasting performance.

The plan of the paper is as follows. In Section 2 our basic MAR model and some
extensions, including the combination of the MAR model and GARCH model, are
presented. The model is also compared to some other multi-regime models that have
been used to model interest rates in the previous literature. In Section 3 maximum
likelihood (ML) estimation of the the parameters of the model is discussed, and in
Section 4 the diagnostic checks are introduced. Section 5 presents the empirical
results, and Section 6 concludes.

2 Mixture Autoregressive Models

2.1 Special Case

To illustrate the general models to be introduced in this paper, we first consider a
simple special case given by

ye=(vi+biye 1) I (ye1 <c+mn)+ wa+boye 1) I (ye 1 >c+n) +oe (1)

where the random variables 1, and ¢, are independent for all ¢ and s with 1, ~
NID (0,02) and &, ~ NID(0,1), I (-) is the indicator function, and, in addition to
the variance 0727, also v, b; (i=1,2), c and o > 0 are unknown parameters. When
3, = 0 the random variable 7, can be dropped out of (1) and the model becomes
a special case of a homoskedastic TAR model. We refer to Tong (1990) for a
comprehensive account of TAR models. An essential feature of this TAR model is
that it is composed of two AR(1) models with different conditional means depending
on whether y;_; is below or above the value of the threshold parameter ¢ which
divides the sample space into two regimes, the lower regime and the upper regime.
The conditional means in the lower and upper regimes are v, + b1y;_1 and vo+boy;_1,

ag
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respectively, and the change between these two conditional means is abrupt, occurring
always when g;_; crosses the value of the threshold parameter c.

Now suppose that ag > 0. A major difference between this case and the preceding
TAR case is that, even if the value of the threshold parameter ¢ is assumed known,
it is not known which one of the two regimes applies and, given y;_1, switching from
one regime to another is randomized. For instance, if the lower regime has been
in operation for some time until the point of time ¢ — 2 and then y;_; > ¢ occurs
switching to the upper regime does not occur if the random variable 7, takes a value
sufficiently far below zero. Similarly, a sufficiently large value of 7, implies a switch
to the upper regime even when 3, ; < ¢ occurs. Thus, as far as regime switches
are concerned, model (1) is considerably more flexible than the corresponding TAR
model obtained by assuming (7127 = 0. Flexibility of this kind appears useful because in
some cases regime switches based on strict rules can make conventional TAR models
difficult to apply. For instance, the occurrence of a regime switch may also depend on
randomly changing external factors and not only on whether y;_ is strictly below or
above the value of the threshold parameter c. Therefore, it seems reasonable to make
the constant threshold parameter used in conventional threshold models time variant.
The idea used in model (1) provides a way to do this. This kind of flexibility is likely
to be relevant for interest rate applications, as implied by the conclusions of Pfann et
al. (1996) who found the dependence on a single threshold variable triggering regime
switches a major limitation of their TAR models.

The random variable 1, may also be interpreted as representing uncertainty eco-
nomic agents have when they make their decisions which can result in a regime switch.
This uncertainty may reflect the fact that different economic agents have different
views of the state of economy. As a result, realizations of the process y; may vary
above and below the threshold during several points of time before they finally switch
to a new regime or draw away from the threshold without leaving the current regime.

That the regime switches implied by model (1) are not based on a strict rule
can be thought of as a smoothness property. To illustrate this, let E;_; (-) signify the
conditional expectation with respect to the information set {y;_;,j > 1} and conclude
from (1) that

B (ye) = (vn +01ye1) (1= (41 — €) Jon) ]+ (V2 + boye 1) @ (411 — ) [oy) (2)

where @ (-) denotes the cumulative distribution function of the standard normal dis-
tribution. Thus, the conditional expectation depends on the smooth function ® (-)
instead of the (discontinuous) indicator function obtained in the case of the TAR
model. In fact, the conditional expectation is identical to that obtained from the
STAR model with the transition function defined by ® (-). The STAR model corre-
sponding to (1) can be defined by replacing I (y;—1 < ¢+ n,) and I (y;_1 > ¢+ 1) by
1—® (g1 <c)/oy) and @ ((y4—1 < ¢) /oy,), respectively.! In terms of the condi-
tional expectation model (1) introduces a similar smoothing to the TAR model as the

I Although the cumulative distribution function of the normal distribution has also been consid-
ered in STAR models (see Chan and Tong, 1986, and Tong, 1990) the logistic function has been a
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STAR model. However, as will be seen below, the stochastic properties of model (1)
and the STAR model are generally rather different. The same is also true for their
smoothness properties because the regime switches implied by model (1) are abrupt
while those implied by the STAR model are slow unless the transition function ® (-)
increases steeply. As far as our interest rate application is concerned, it is interesting
to note that according to the results of Pfann et al. (1996) the STAR model fails to
provide useful smoothness to the TAR model for the U.S. short-term interest rate.
Their estimated transition function was so steep that the STAR model was virtually
indistinguishable from the corresponding TAR model.

Unless otherwise stated we shall henceforth assume that 0727 > 0. We shall also
assume that equation (1) defines a stationary process. In the case of TAR and STAR
models conditions which ensure stationarity are known (see Meyn and Tweedie, 1993,
Chan and Tong, 1986, and Tong, 1990, p. 183) but for model (1) or its extentions to
be presented below such conditions are not available. Therefore, we suggest taking a
practical approach to this issue and examining the stability of model (1) and its gen-
eralizations by simulation (cf. Gallant, Rossi and Tauchen, 1993, for using simulation
for this purpose).

Given the past values y; ;, 7 > 1, the conditional distributions obtained for y,
from the TAR and STAR models discussed above are normal. The conditional means
were already discussed and the conditional variance is o in both cases. However, in
the case of model (1) a nonnormal conditional distribution with nonconstant variance
is obtained. Let f;_; (-) be the conditional density function of y; given y;_;, j > 1,
and let ¢ (-) signify the density function of the standard normal distribution. Then,
using the independence of 1, and past values of 3, we can write the conditional joint
density of y; and 7, given y_;, j > 1, as the product of the marginal density of 7,
and conditional density of y, given both y_;, 7 > 1, and n,. After this, fi_1 (y) is
obtained by integration and, using the indicator functions in (1) to divide the range
of integration suitably, we find that model (1) implies

fr ) = o [ 6 i bae) /)6 (1/y) d
por [ o= va = by )0 ()
This gives
faw) = ol —vi— b)) - @ (=)o) )

+%¢((?/t v = bay1)/0)® ((ye1 — ) Joy) -

more common choice (see Granger and Terésvirta, 1993, and the references therein). However, as
far as the general ideas of the STAR model are concerned, there is no essential difference between
these two choices.



Thus, the conditional distribution resulting from (1) is a mixture of two normal
distributions which are the same as the conditional distributions obtained from the
two regimes of the corresponding TAR model. To put this another way, (1) defines a
mixture of two AR(1) models. Given the value of y;_1, the AR(1) model of the lower
regime applies with probability 1 — ® ((ys—1 — ¢) /o) and the AR(1) model of the
upper regime applies with probability ® ((y—1 — ¢) /o). If the value of y,_; is close
to the value of the threshold parameter ¢ (as measured by the standard deviation o))
there is a fair probability to end up in any of the two regimes. However, when the
value of y;_; is far from the value of the threshold parameter ¢, the probability of a
regime switch is negligible. This gives a probabilistic description of the flexibility of
model (1) compared to the corresponding TAR model in which these two probabilities
are always zero or one.

Based on the above discussion, we call model (1) a mixture autoregressive model
and use the abbreviation MAR. The probabilities 1-® ((y,—1 — ¢) /o,,) and ® ((ys—1 — ¢) /oy)
are called mixing proportions. Previous published papers on mixture autoregressive
models are Le, Martin and Raftery (1996) and Wong and Li (2000). The models stud-
ied in these papers differ from our model in that the mixing proportions are assumed
invariant in time. A generalization to the case of time variant mixing proportions
is given by Wong and Li (1999b). Our MAR model may also be compared to the
autoregressive MS model discussed for example by Hamilton (1994, Chapter 22.4).
In the first order case corresponding to (1) this model assumes that the parameters
in the conditional mean change according to an unobservable two state Markov chain
independent of the error term &;. Instead of a Markov chain parameter changes in
our MAR model are modeled by a past value of the process y; and the unobservable
white noise process 7,. In the standard MS model the transition probabilities of the
Markov chain are not determined by any observable variables but extensions which
relax this feature are available. From our point of view the most relevant extension
in this direction is due to Gray (1996) whose GRS model is similar to our model in
that the transition probabilities depend on a lagged value of the process. The Markov
chain structure used by Gray (1996) to model parameter changes makes his model
more complicated than ours, however.

As the above discussion has already revealed, the conditional distribution implied
by the MAR model (1) is very different from that obtained from the so far commonly
used TAR and STAR models. In addition to the conditional mean given by (2) the
conditional variance can also be readily obtained from the conditional distribution
(3) or from equation (1). By straightforward calculation it can be seen that the
conditional variance is

Varea (ys) = 0% 4 1 —va + (b1 = ba)ys-1*@ ((ye1 — ©) Joy) [1 = @ (g1 — ©) [oy)].

(4)
Thus, unlike in the previously discussed TAR and STAR models, the MAR model (1)
implies conditional heteroskedasticity even though the innovation ¢; is homoskedastic.
Conditional heteroskedasticity is related to regime switches. It is prominent when the



value of y;_; is close to the value of the threshold parameter ¢ and diminishes when
the distance of y; 1 from c gets large. This reflects the uncertainty in the regime
switches caused by the random external factor 7,.

For most economic time series, including interest rates, the MAR model (1) is
probably not adequate, but various extensions are straightforward to obtain. For
instance, the assumption that two mixtures in (3) have the same variance could be
relaxed so that the parameter o would be replaced by o, in the first component
distribution and by o5 in the second one. Then o2 in the conditional variance (4)
would be 62[1—=® ((y;—1 — ¢) /oy)]+ 03P ((y4—1 — ¢) /o). The number of mixtures can
also be larger than two and more lags can be used in the component autoregressive
models. These extensions are discussed in more detail in the next section. It may
also be worth noting that instead of the normal distribution assumed in (1) other
distributions could in principle be considered without any difficulty.

2.2 Mixture Autoregressive Model

An obvious way to generalize the MAR model of the previous section is to replace
the conditional distribution in (3) by a more general mixture of normal distributions
with each mixture based on a conventional Gaussian autoregressive model. Instead
of y;—1 we now assume that the mixing proportions depend on a general lagged value
Yi—q S0 that, if the number of component distributions is m, the mixing proportions
are given by

1=@((yyqa—c1) /o), i=1
Tit—d = P ((yt—d - Ci—l) /Jn) — ((yt—d - Ci) /UU) , 1=2,...,m—2 (5)
P ((Y1-d — cm—1) [oy), i=m

where d > 1 is a delay parameter and ¢; < --- < ¢,,_1 are threshold parameters. Our
generalization of the conditional distribution in (3) can thus be written as

foa () = %fﬁ((?ﬁ =V — b1 — = bipYe—p) /i) Tit—a- (6)
=1 "¢

Of course, it is also possible to arrive at this conditional distribution by extending
equation (1) to

m

Yo=Y (Vi+tbayr+ -+ bpyp+oie) I (ci+ny <pa < cimi+my) (1)
i=1

where I (¢; + 1, < ypa < ¢;1 + ;) should be interpreted as I (¢; + 1, < y;_q4) fori =
1 and I (ys—q < ¢m_1+ 1) for @ = m. We call this model an m-component mixture
autoregressive model of order p and delay d or a MAR(m, p,d) model. Of course,
an obvious generalization is obtained by letting the orders vary in the component
models which only amounts to replacing p in (6) and (7) by p;. In this case the
abbreviation MAR(m, p1,...Pm,d) is used. On the other hand, various restricted

8



versions of the general MAR(m, p,d) model may be considered. For instance, one
may assume homoskedasticity or that the autoregressive parameters b1, . .., b;, are the
same for all ¢+ = 1,...,m. The latter restriction, which implies that the nonlinearity
in the conditional mean is only due to level shifts, is found to provide an adequate
description for the interest rate data in the application of this paper.

Basically, the discussion given to motivate and interpret the simple MAR model
of the previous section also applies to the general model defined above. In the same
way we can also derive the first and second conditional moments. The conditional

mean is
m

Era(y) =Y (Vi +baye1+ -+ biplie—p) Tip—a (8)
i=1
and, by straightforward calculation, one can see that the conditional variance can be
written as

Vari_q (ye) = i (7227ri,t—d+§: [(Vz —V)+ (bil - 51) Ye—1+ -+ (bip - 6p) ?Jt—p]2 i t—d
i=1 i=1
(9)

where v = 37 vimi g and by = S bmiy—a, (= 1,...,p) . Thus, the conditional
mean is a weighted average of the means of the m component distributions with
weights given by the mixing proportions. A similar weighted average of the condi-
tional variances of the component distributions appears in the conditional variance.
However, this is not the only source of conditional heteroskedasticity. The conditional
variance also contains another component which measures the variability of the con-
ditional means of the composite distributions. This component is due to uncertainty
in regime switches and it is prominent when 1;_4 is close to a threshold.

2.3 Extensions with Autoregressive Conditional Heteroskedasticity

It is plausible that the conditional heteroskedasticity inherent in the MAR model of
the previous section does not adequately describe most financial time series. This
claim is also supported by the fact that the TAR models Pfann et al. (1996) esti-
mated for the three-month U.S. Treasury bill rate, had conditionally heteroskedastic
residuals. It is straightforward to extend the general MAR model of the previous sec-
tion to allow for ARCH type heteroskedasticity in the component models. A simple
way to define such a model is to make the variances of the component distributions
in (6) dependent on t according to an ARCH or GARCH process. Thus, instead of
(6) one might consider

m

fon (ye) =

=1

1
U—cﬁ((yt — Vi — b1 — - — bipYi—p) [ Tit) T t—a (10)
it
where o is obtained from the GARCH(r, q) process
U?t = U? + ﬁz’1012,t—1 +eet /Gira-?,t—r + ail“?,t—1 +oet O‘iq“?,t—q (11)
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where w;; = y¢ — Vi — binyy—1 — -+ - — bipl—p. As an obvious extension of equation (7)
we now have

m

Yo=Y Witbay1— -+ by ptous) I(citn, <yea<cii+n). (12)
i=1
Given the discussion of the previous section, conditional first and second moments
can also be easily obtained in this case. Of course, the conditional mean is still given
by (8) and the conditional variance is obtained from (9) by replacing o? by o%,.

In principle, it would be possible to consider the case where the orders of both
the MAR(m, p,d) model and related GARCH(r, ¢) model dependent on the index
i. However, the resulting model would become rather complex and from a practical
point of view, special cases obtained by parameter restrictions are likely be of greater
interest. For instance, the assumption that the dynamics of the GARCH process (11)
are the same for each regime may often be plausible so that instead of (11) it would
be reasonable to consider its restricted version

2 _ 2 2 2 2 2
O3 =0; + Blai,t—l +eeet ﬁrai,t—r tonuyy g+ Qg . (13)

This model implies that only the sizes of the component variances vary between dif-
ferent regimes but their dynamics do not. This special case is found quite reasonable
in the application of this paper. An even more restricted special case is obtained by
assuming that o2 = ... = 02, so that conditional heteroskedasticity is the same for
all regimes.

Finally, it may be worth noting that, since the conditional variance obtained
from (11) is determined by quantities depending only on the current regime, our
MAR-GARCH model avoids the path dependence problem which makes parameter
estimation in the MS-GARCH models of Cai (1994) and Susmel and Hamilton (1994)
virtually impossible. In this respect our MAR model is similar to the GRS model of
Gray (1996) but, as already discussed, it is simpler and the simplicity is even more
pronounced in models which include a GARCH component.

3 Parameter Estimation

After specifying the orders of the MAR model (including the delay d) and related
GARCH model (if needed) it is in principle straightforward to estimate the param-
eters by ML. For simplicity, we shall assume that these orders are the same for
every component model. Let € be the parameter vector containing the parameters
in the MAR(m, p, d)-GARCH(r, ¢) model defined by the conditional distribution (10)
or some special case thereof obtained by zero restrictions or equality restrictions. In
the most general case considered here the parameter vector # thus contains the pa-
rameters v;, bit, ..., bip, 02, Bits -+ Biry Qity -, 0ug, (i=1,...,m), c1,...,Cm_1 and
0727. A necessary condition for meaningful estimation is that the parameter vector 6 is
identifiable. It is known that in finite mixtures of normal distributions identifiability
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holds unless some of the component distributions are redundant (see e.g. Yakowitz
and Spragins, 1968). Unless otherwise stated, we shall assume that this is not the
case.

Now, suppose we have the observed time series y_;.1, ..., yr where [ = max {p, d}
and y_j4+1,...,Yo are treated as fixed initial values. Making the dependence of the
conditional distribution (10) explicit on the parameter vector § we can write the
(conditional) log-likelihood function of the data as

Ir (0) = Z 10g fi-1 (y1; 0)

where f; 1 (y;6) is obtained from equations (10), (11) and (5). Although the log-
likelihood function looks complicated its value can be computed straightforwardly for
any given value of the parameter vector 8. Thus, numerical methods can be used to
find ML estimates. The likelihood function is clearly twice continuously differentiable
so that, assuming that the observed series is generated by a stationary and ergodic
process, it is reasonable to apply standard large sample results to construct statisti-
cal tests and confidence intervals. In particular, approximate standard errors can be

obtained from the diagonal elements of the matrix — <82ZT(@) / 6980’) ~ where sig-
nifies the ML estimate of 6. More general Wald tests as well as likelihood ratio tests
with conventional asymptotic x? distributions can also be obtained. Of course, these
test procedures cannot be used to test hypotheses which imply that the number of
component models m can be reduced because under such hypotheses unidentifiability
of nuisance parameters makes the testing problem nonstandard (see Davies, 1977).
An explicit example of this is given by the hypothesis 1 = vy and b; = by in (1).
Under this hypothesis the parameters ¢ and 0,27 vanish from the model and therefore
cannot be identified. Note that the related multi-regime models such as MS, TAR
and STAR models also suffer from similar unidentifiability problems. In general, lack
of identifiability makes all standard large sample inference procedures invalid. Thus,
since the number of component models is generally unknown in practice it would be
of great interest to have test procedures which could be used to help finding a correct
number of component models. In particular, it would be of interest to have a test
procedure which could be used to check whether a standard AR(p) model with possi-
bly GARCH errors would be adequate. Attempts to solve these testing problems lies
outside the scope if this paper although significant progress has recently been made
in this area by Andrews (1993), Andrews and Ploberger (1994), and Hansen (1996)
among others. In the application of the paper we shall employ less formal procedures
to choose the number of component models which in most cases is likely to be at most
three.
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4 Diagnostic Checks

After a specified time series model has been fitted to data diagnostic checks should
be applied to reveal possible misspecifications. When parameter estimation can be
carried out by least squares, it is possible to compute the residuals of the fitted model
and investigate whether their properties are similar to those of the corresponding
theoretical errors. In this context, statistical tests and visual inspection of the residual
series are typically employed. In the MAR models introduced in Section 2 the use of
residual based diagnostic checks is less straightforward because it is not quite obvious
how residuals can be obtained. Ideally one would like to have an empirical counterpart
of the error term ¢, in (12). However, even though ; can be easily solved from equation
(12) the solution depends on the process 7, and is therefore not observable. Instead
of trying to base diagnostic checks on an empirical counterpart of the error term &; we
are therefore content with using residuals which can only be used to check whether
the specified model is capable of describing the first two conditional moments of the
observed process. The theoretical counterparts of these residuals, also mentioned by
Wong and Li (2000), are given by

_ Yy — By (yt)
Vari_1 (yt)

€

where the conditional expectation E; ; (y;) and the conditional variance Var;_1 (y;)
are obtained from the MAR model (12) or its relevant special case in the way explained
in Section 2. Thus, e; depends on the parameters of the specified model and, when
there is need to be explicit about this dependence, the notation e; (#) is used. A
correct specification of the model implies that e; is a martingale difference sequence
with unit variance and any significant autocorrelation or heteroskedasticity indicates
inadequacies in the conditional mean or variance of the specified model. It should be
noted, however, that even in the case of a correctly specified model ¢; is not normally
distributed. Since e; is not observable in practice it has to be replaced by an empirical
counterpart. An obvious way to do this is to replace the unknown parameters in
E; 1 (y;) and Var,_4 (y) by their ML estimators discussed in the previous section.
This gives the series & = e(6).

In addition to visual inspection of the series é; misspecification tests for checking
whether a specified MAR model can adequately describe the first two conditional mo-
ments of the process, can be derived by applying the general approach of Wooldridge
(1990). The idea of these tests is to (incorrectly) treat e, as Gaussian white noise
and obtain misspecification tests which are robust to this (incorrect) distributional
assumption. As already indicated in the previous section, standard tests cannot be
obtained for checking the specified number of component models. In what follows we
shall therefore assume that this feature is correctly specified. First, consider testing
the adequacy of the specified lag length p against the alternative p + s where s is
a chosen positive integer. This test is primarily designed to check the adequacy of

12



the conditional mean which in its most general form is specified by (8). It should be
noted, however, that in the MAR-GARCH model the specified lag length also affects
the conditional variance given by (9) with o2 possibly replaced by o2 in (11) or (13).
Other aspects of the conditional variance are here assumed to be correctly specified.
Under the alternative the previous expressions of the conditional mean and variance
are modified in an obvious way. The conditional mean becomes

Et 1 yt Z Vi + bilyt—l + e+ bi,p—l—syt—p—s) Tit—d

i=1
so that, if 91 = [b1pt1 ... biprs - bmpr1 ... bm,pﬂ]' , the null hypothesis is ¥, = 0.
Let 1y, (6,91) = By 1 () and w3, (0,91) = Vary 1 () be the conditional mean and
variance of y; of the unrestricted model and, for convenience, set &7, = w?,(6,0).
Furthermore, define

Pry = W1t18,“1t(91 )/ 96

1 ﬂwlfawlt(H 0)/60’

and

- &1 Oy (,0) /009
1 fwlfawlt(@ 0)/0v]

Explicit expressions of these partial derivatives as well as those required in the test
procedure to be described shortly will not be given because some of them are very
complicated. In the applications of the paper all partial derivatives have been com-
puted numerically. Our test procedure for the specification of the lag length can now
be obtained by following Example 3.3 of Wooldridge (1990). It consists of two least
squares regressions. In the first one Ai¢ is regressed on ¢, to yield the residuals Mt
In the second least squares regression 1 is regressed on { € (1 /2 ) (2 —1) } At
(t=1,...,T) and the uncentered R? is computed. The test statistic with an asymp-
totic x2,, distribution under the null hypothesis is then given by T'R2. We shall also
use this test with the restriction b;; = b; for all ¢ = 1,...,m. In that case the defi-
nitions of the vectors ¢, and A1 are modified in an obvious way and the degrees of
freedom in the limiting x? distribution are replaced by s.

Now consider testing the adequacy of the conditional variance implied by a speci-
fied MAR model. In addition to the number of component models it is here assumed
that the conditional mean is correctly specified. Thus, p., (6) = E;_1 (y:) is given by
(8) whether the null hypothesis holds or not. We shall explicitly only consider the
case where the null hypothesis states that the conditional variance is given by (9)
with o replaced by the restricted GARCH process (13). Under the alternative (13)
is extended to

2 9 2 2 2 2
0y =0; + 5105 1+ + B0, Fanuy, Qg

so that the null hypothesis implies that the parameter vector ¥o = [0gps1 - .. aq+s]'
is zero. Let w3, (6,92) = Vary_; (y;) be the conditional variance of the unrestricted
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model and denote w3, = w%t(é,O). The test procedure can again be obtained by
following Example 3.3 of Wooldridge (1990). Instead of ¢, and A\; we now have

. _[ Wy Oy (0) /06 }
Por =

A

L A_Qawt(ﬁ 0)/06
and
5 0
n w2t28wt (9 0)/00,

respectively. The first step is again to run the least squares regression of Aot on Doy
and obtain the residuals Ay. In the second least squares regression 1 is regressed on
[ 0 (1/\/5) (2 —1) } Aot (t=1,...,T) and the uncentered R? is computed. The
test statistic with an asymptotic x? distribution under the null hypothesis is then
obtained as T'R3. Similarly, the GARCH specification with regime-dependent coeffi-
cients (11) can be tested against the specification with constant coefficients (13). The
test statistic has an asymptotic x?2,. distribution under the null hypothesis.

In the same way as equation (13) is augmented with further lags of uit above,
it can be augmented with other variables that are thought to affect the conditional
variance in order to test for the adequacy of the specification. For instance, an
asymmetric specification allowing the a’s to depend on the signs of the lagged wu;’s
may be relevant in some applications. A test can be derived by adding I(u;;—1 >
0)ugy 1y I (uig—q > 0)u,_, to (13) and testing the null hypothesis that their coeffi-
cients are zero along the lines described above. The test statistic has an asymptotic x?
null distribution with mq and g degrees of freedom in models with regime-dependent
and constant ARCH coefficients, respectively.

Following Example 3.3 of Wooldridge (1990) it is also possible to obtain an overall
test for the lag length and conditional variance but we shall not consider this test. It
may be worth noting that the above tests rely on the consistency of the ML estimator
6 so that violations from the distributional assumption used in the MAR model may
make these tests invalid.

In addition to the diagnostic checks discussed above we shall evaluate the perfor-
mance of a fitted MAR model by using several informal procedures suggested in the
recent literature. First, because the model can be used as a data generating process
in Monte Carlo simulation it is important to check that it is capable of reproducing
realizations close enough to the observed series. To this end we simulate long re-
alizations to find out whether the values typically are in the range observed in the
data as suggested by Andersen and Lund (1997). Furthermore we shall compare the
unconditional moments implied by the different model specifications and the data.
Second, a common problem with multi-regime models is that they do not clearly
classify observations into regimes, but for instance in a two-regime model the con-
ditional probability of each regime stays around a half most of the time. This may
suggest misspecification, and therefore we compute the regime switching performance
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measures recently suggested by Ang and Bekaert (1998). Third, the forecasting per-
formance of the model is examined, not only because in practice this kind of models
are often used for forecasting, but also because bad out-of-sample forecasting perfor-
mance may suggest overparametrization to which multi-regime models are naturally
prone. Finally, because general conditions for stationarity of our MAR models are not
available, stability is checked by means of various Monte Carlo simulation procedures.
Moreover, using the approximations suggested by Stanton (1997) the implications of
the estimated MAR models for continuous-time dynamics are checked and compared
to results in previous literature.

5 Empirical Results

In this section we present an application of the MAR model to the short-term U.S.
Treasury bill rate. More precisely, the data set consists of the weekly three-month
U.S. Treasury bill secondary market rates covering the weeks from the full January
1954 to September 1999 (2386 observations). The data are extracted from the H.15
release of the Federal Reserve System. A somewhat shorter series from the same
source was analyzed by Andersen and Lund (1997). The series is displayed in Figure
1. This is probably the longest weekly series of U.S. risk-free rate available, and using
as long a sample as possible may be important in identifying the regimes of the MAR
model.

5.1 Estimated MAR Models and Diagnostic Checks

We consider three different MAR model specifications. The first is a MAR(2,2,1)
model with no ARCH type heteroskedasticity while the other two are two- and three-
regime MAR models with a GARCH(1,1) component. The delay parameter d is
chosen to be 1 throughout, because with weekly data it is not conceivable that fur-
ther lags would affect the regime classification. In all the models the autoregressive
coefficients are restricted to be constant across the regimes, and this restriction can-
not be rejected at the 5 % significance level for any of the models. It turns out
that the model with no ARCH type component is easily rejected by the diagnostic
tests, whereas discriminating between the other two models is not possible on the
basis of these tests alone, but other (informal) criteria must be considered. These
criteria clearly indicate that the three-regime model is required to adequately model
the interest rate data. The parameter estimates and asymptotic standard errors are
presented in Table 1 and the results of the diagnostic tests in Table 2. All the com-
putations are performed with the GAUSS CML library, using the Berndt, Hall, Hall
and Hausman (1974) algorithm. The standard errors are obtained from the inverse
of the final Hessian matrix.

With the exception of the level parameters p, and pg in all the models, and the
variance parameters o1 and o9 in the MAR(2,2,1)-GARCH(1,1) model, all the pa-



rameters are accurately estimated and significant at the 5 % (assuming asymptotic
normality). Insignificant level parameters were also reported by Gray (1996), and
Ang and Bekaert (1998) in MS specifications of the U.S. short-term interest rate. Al-
though this finding suggests the presence of regime switching only in the conditional
variance, our simulation experiments indicate that models with constant level param-
eters fail to produce realizations resembling the observed series. The insignificance of
the variance parameters in the two-regime MAR-GARCH model suggests that three
regimes are required to adequately model the series. In all the models the sum of
the autoregressive coefficients is almost unity reflecting the high persistence of the
interest rate series. Because of the nonlinearity of the models this does not neces-
sarily indicate that instability is likely to be a problem. The sums of the GARCH
coefficients are 0.995 and 0.963 in the two- and three-regime MAR-GARCH models,
respectively. For the three-regime model this deviates considerably more from unity
than in the GARCH specifications without regime switching in the previous litera-
ture. Employing standard inference the restrictions in both the MAR(2,2,1) and the
two-regime MAR-GARCH model would be rejected against the three-regime MAR-
GARCH model. However, as discussed in Section 3, the standard likelihood ratio
test statistics do not have the usual asymptotic y? null distribution, and hence model
selection has to be based on diagnostic tests and some informal criteria.

The residuals of the MAR(3,2,1)-GARCH(1,1) model are plotted in Figure 2. The
residuals of the two-regime model look the same, while the residuals of the MAR(3,2,1)
model are clearly heteroskedastic. The large negative outlier corresponds to the stock
market crash 1987; the model with a dummy for the week of the crash was also
estimated, but the results were essentially the same. According to the diagnostic
tests in Table 2 higher-order autocorrelation in the series is not adequately modeled
by any of the models. In the previously considered empirical models of the short-term
U.S. interest rates unmodeled low-order autocorrelation has also been a problem.
The MAR(2,2,1) model with no ARCH type heteroskedasticity is clearly misspecified
suggesting that an ARCH component is indeed required to model the persistence in
variance. A GARCH(1,1) specification seems to be sufficient, and the constancy of
the GARCH coefficients across the regimes cannot be rejected at the 5% level.

In addition to the tests for the adequacy of the lag length in the conditional mean
and variance some other diagnostic checks of interest for this particular series were
computed (cf. Brenner et al. (1996)). Whether the models capture the stylized fact of
level effect (conditional variance growing with the level of the interest rate) is tested
by testing the significance of the lagged level in the conditional variance equation, and
all the models clearly pass this test. We also tested for the significance of a dummy
variable for the period of the "new operating procedures” of the Federal Reserve
(November 1979-September 1982) when the volatility of the interest rate series was
considerably higher than in the rest of the sample. Because the simple MAR model
without GARCH type conditional heteroskedasticity does not capture the volatility
persistence in the series, it fails to model this structural break while the other two
models seem to be adequate in this respect. Finally, the adequacy of the GARCH
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specifications against asymmetric alternatives is tested by allowing the coefficient of
the unscaled squared residual u2_; in the conditional variance equation to be different
for positive and negative u;_1. The fact that this kind of constancy of the ARCH
coefficient cannot be rejected in either model lends support to the simple GARCH
specification against asymmetric alternatives such as EGARCH.

5.2 Dynamic Properties

Because there are no results available on the stability of the different MAR models,
the stability of the estimated models is examined by simulation. To this end Gallant
et al. (1993) suggested computing the conditional mean and volatility profiles with
a large range of initial values, each profile obtained by computing the mean at every
point ¢t (t = 1,...,T) of the respective moment from a large number of realizations.
By over-plotting all these profiles we obtain a profile bundle whose shape should
reveal potential excessive dependence on initial conditions. If the bundle retains
its thickness, instability of the model is suspected, while if it gets narrower over
the sequence, this lends support to stability. The conditional moment profiles of
the AR(2)-GARCH(1,1) and the two- and three-regime MAR-GARCH models were
computed based on 100 different sets of consecutive initial values randomly drawn
from the interest rate series. The conditional mean profile bundles of none of the
models indicated instability while the conditional volatility bundles depicted in Figure
3 seem to differ in this respect between the models. The AR-GARCH model is
included to illustrate the profile bundles in a case where instability in the conditional
volatility is known to prevail (the sum of the parameter estimates in the conditional
variance function is unity), and this is indeed confirmed by its conditional volatility
bundle. The volatility bundle of the two-regime MAR-GARCH model does not seem
to get narrower, either, while that of the three-regime model clearly dampens albeit
slowly. Hence these results lend support to the three-regime model against the two-
regime model.

Since the main motivation of building models of the short-term interest rate is the
use of these models as DGPs in Monte Carlo simulation in asset pricing applications,
it is important to check that the models are capable of reproducing realizations re-
sembling the observed series. As was recently demonstrated by Andersen and Lund
(1997), various (level-)-AR-GARCH specifications of the short-term interest rate are
excessively erratic at their estimated parameter values, typically producing realiza-
tions with values far beyond the observed range. Andersen and Lund (1997) checked
their level-EGARCH model for the three-month U.S. Treasury yield by simulating a
long realization of 100,000 observations from the estimated model, dividing this re-
alization into 100 subsamples of 1000 observations each and recording the maximum
of each subsample. For their model the simulated rate never exceeded 75% and only
a single sample had rates higher than 37%. Moreover, the numbers of samples with
the maximum rate over 25% were 7 and 4, respectively, for models with Gaussian
and Student-¢ error terms. For the level-AR-GARCH model, rates in excess of 100%
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were common, and in 17 subsamples the maximum exceeded 1000%. We conducted a
similar experiment, and for the three-regime MAR-GARCH model the maximum rate
never exceeded 35% with only one subsample having rates in excess of 25%, at best.
It must be emphasized, though, that somewhat different results are easily obtained by
repeating this exercise with a different seed for the random number generator. Still,
typically only three or four subsamples had rates in excess of 25% and the rate never
exceeded 60%.

Further evidence on the capability of the different models to match the charac-
teristics of the data is provided in Table 3 which presents unconditional moments.
They are computed as sample moments from simulated realizations of 100,000 obser-
vations. The excess skewness and kurtosis in relation to the normal distribution in
the observed data is best matched by the three-regime MAR-GARCH model, whereas
the two-regime and MAR(3,2,1) model imply much higher values of these moments.
The unconditional variance of the two-regime model is also excessively high.

To get an idea of how well the MAR-GARCH model captures the high volatility
periods reported in the previous literature the time series of conditional volatility
computed as the square root of the conditional variance (9) is plotted in Figure 4.
In accordance with the previous findings, three periods of high volatility stand out,
namely the OPEC oil crisis 1973-1974, the Fed’s policy change 1979-1982 and the
1987 stock market crash. These same periods are also visible in Figure 5 that plots
the ex ante conditional probabilities (5) of the preferred MAR-GARCH model. The
conditional probability of the upper regime deviates considerably from zero only in
the period of the Fed experiment 1979-1982. Thus it seems that the third regime is
required only to model this exceptional period. The plots for the middle and lower
regimes are almost mirror images of each other. The higher conditional probability
of the middle regime and smaller probability of the lower regime at the oil crisis can
clearly be seen. While there are distinct spikes at the 1987 stock market crash, this
period does not stand out in the probability plots as clearly as in Figure 4.

The conditional probabilities can also be used to compute regime classification
measures that give information on the ability of the model to distinguish between
the regimes. A good model would classify regimes such that the conditional ex ante
probabilities were close to zero or one. If the probabilities in a two-regime model
are in general close to a half, the regime classification performance of the model is
inferior, indicating potential misspecification. We computed the RC'M measure of
Ang and Bekaert (1998),

T m
RCM(m) = IOOmQ% Z (H 7Ti’t_d>
i=1

t=1

where m is the number of regimes. This measure can take values between 0 and 100,
with 0 indicating perfect regime classification. For our preferred three-regime MAR-
GARCH model this measure equals 1.62 while for the two-regime MAR-GARCH
model the figure is 15.38. For univariate MS models of the monthly U.S. three-month
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interest rate, covering the period from January 1972 to August 1996, Ang and Bekaert
(1998) got values of the RC'M measure ranging between 23.29 and 37.44. Thus these
measures seem to favor the MAR model, and, in particular, the three-regime MAR-
GARCH specification.

5.3 Forecasting Performance

Because forecasting volatility is one of the main practical uses of the models of the
short-term interest rate, it is important to provide evidence of the forecasting per-
formance. Moreover, out-of-sample forecasting exercises can also be motivated as
complementary checks of potential overparametrization in addition to diagnostic tests
and the informal evaluation procedures. It is conceivable that the relative advantage
of the MAR-GARCH model would be greater at long horizons, but for simplicity, we
concentrate on the one-period horizon where the forecasts from the regime-switching
models can be computed in closed form. Following Gray (1996), we compared the
forecasts from the regime-switching models to those from a constant-variance autore-
gressive model and an AR-GARCH model. The evaluation of volatility forecasts is
difficult because the actual variance is not observable but must also be based on
the estimated model. This complicates the comparison of measures of accuracy such
as the root mean squared error (RMSE). Therefore, we also report the following
commonly used R? measure,

ST (V= Vp)?

RP=1- :
Y V2

~ 2
where V; is the actual variance (given by the model) computed as (yt — Et,lyt)

and KA/t is its forecast. Et_lyt denotes the estimate of the conditional expectation of
the interest rate y; from the estimated model. The numerator of the latter term is
T-MSE, so that of two models having the same M SE the R? is larger for the one that
implies the larger actual variance on average. Hence, this measure relates the forecast
errors to the average magnitude of the variance implied by the model. Notice that
R? can also take a negative value if the unexplained sum of squares in the numerator
is higher than the total sum of squares in the denominator. This could happen, for
instance, in an AR model when the variance in the estimation period is much higher
than in the forecasting period, so that the constant v, always tends to be larger than
V.

In addition to the two- and three-regime MAR-GARCH models, measures of fore-
cast accuracy are provided for the AR, AR-GARCH and the GRS (Gray, 1996)
models. We considered two different estimation periods to highlight the forecast-
ing performance of the models in different kinds of situations. In the first case the
estimation period (January 1954-December 1978) does not include the Fed experi-
ment while it is included in the out-of-sample forecasting period. The expectation
is that multi-regime models do not necessarily perform better out of sample here

19



because the estimation period has no observations of the exceptional regime in the
out-of-sample period. In the second case the estimation period (January 1954-March
1981) includes the first half of the period of the 'new operating procedures’ of the Fed.
Hence one would expect the multi-regime models to perform better both in and out of
sample. The models were estimated with data from the entire estimation period and
all the forecasts were computed keeping these parameter values fixed. The adequacy
of the estimated models was tested using the Ljung-Box test for autocorrelation in
the squared residuals, and apart from the AR model, the null of no autocorrelation
could not be rejected for any of the models at conventional significance levels.?

The root mean squared prediction errors and the R? measures of the one-period
ahead forecasts are presented in Table 4. As far as the RMSE’s are concerned, one
of the MAR-GARCH models is in each case superior, and the differences between
the two- and three-regime models are small. However, as discussed above, the R? is
probably a more sensible measure of forecast accuracy. According to this measure the
differences are minor in the sample but in the out-of-sample period the two-regime
model clearly seems to be superior. Since the RMSE’s of these two models are quite
close to each other, the three-regime model must produce a much smaller conditional
variance, especially in the first experiment. This suggests that at least for forecasting
one period ahead the three-regime model may be overparametrized. Especially in the
first case this observation is not surprising since the estimation period excludes the
exceptional period of the Fed experiment, suggesting that the two-regime model might
be adequate. Still, it is conceivable that the three-regime model would be superior
for forecasting several periods ahead provided the estimation period had observations
of this regime so that its parameters could be properly estimated. According to the
R? measures the GRS and AR-GARCH models are not much inferior, either. The
length of the out-of-sample period may be one explanation for the relatively good
behavior of the AR-GARCH model that does not take regime switching into account.
Although it produces large forecasting errors during the period of the new operating
procedures, their number is negligible in relation to the entire forecasting period.

5.4 Comparison with Continuous-Time Models

Much of the recent empirical literature on the short-term U.S. interest rate deals with
continuous-time models. In order to compare the properties of our MAR-GARCH
model with those of the models presented in this literature, its implications on the
parameters of a typical continuous-time model must first be derived. To this end we
employ Stanton’s (1997) first-order approximations of the drift and diffusion functions
of the following diffusion process,

dys = p(ye)dt + o (ys)dWr,

where W, is a standard Brownian motion. These approximations are based on the con-
ditional expectation and variance conditional on the lagged interest rate y;_;. Stanton

2The estimation and test results are not reported here, but they are available upon request.
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(1997) estimated these nonparametrically. Because for our MAR(3,2,1)-GARCH(1,1)
model the conditional expectation (8), and variance (9) depend also on y; o, yi 3
and 1;_4, these formulas cannot be used directly. Instead, we employed the following
simulation procedure. First, a long realization of the model is simulated. For each
observation, y;_1, in the realization the approximations of the drift and diffusion are
computed and recorded. The values of the lagged interest rates, y; 1, are then di-
vided into bins of width 0.25, and within each bin the average drift and diffusion are
calculated. A realization of length 500,000,000 was needed to obtain smooth plots.

The drift and diffusion functions are plotted in Figure 6. The drift is similar in
shape to those obtained by Ait-Sahalia (1996), Stanton (1997), Jiang (1998) and Ang
and Bekaert (1998)% all using different methods and data sets. At low interest rate
levels the drift is close to zero indicating near unit root behavior, and turns clearly
negative at about 8% with the mean reversion getting stronger with the interest rate
level. In contrast to the results of Stanton (1997) and Jiang (1998), however, there
is no marked abrupt change in the steepness for rates beyond 15%. The diffusion
function is, in general, upward sloping. It bears a close resemblance to those obtained
in the studies mentioned above in that at low levels the curve is almost constant but
gets increasingly steeper with the interest rate level. At low interes rate levels the
estimated diffusion function takes somewhat lower and at high levels somewhat higher
values than Stanton’s (1997). One explanation to this might be the recent observa-
tion of Chapman and Pearson (2000) that Stanton’s (1997) estimator tends to give
too smooth diffusion function estimates, overestimating at low and underestimating
at high interest rate levels. Stanton (1997) also provides 95% bootstrapped confi-
dence bands for the estimated drift and diffusion functions. While such confidence
bands could in principle be obtained for the approximations based on our model, their
computation would be extremely burdensome because for each bootstrap sample the
nonlinear MAR-GARCH model would have to be estimated. Therefore, we must be
content with the observation that the estimated drift in Figure 6 lies clearly within
the 95% confidence band of Stanton’s (1997) drift function estimate, and our para-
metric model is expected to produce a tighter confidence band, provided the model
is adequate. The fact that our diffusion function estimate does not entirely lie within
Stanton’s (1997) 95% confidence band is likely to follow from the results of Chapman
and Pearson (2000) mentioned above.

5.5 Illustration: Bond Pricing

To demonstrate one practical application of the MAR-GARCH model, we show how
it can be used to value zero-coupon bonds with different maturities. This also gives
information on the term structure implications of the model and facilitates comple-

3 Ait-Sahalia (1996) modeled a daily series of the 7-day Eurodollar deposit spot rate covering the
period from 1 June 1973 to 25 February 1995. Stanton (1997) and Jiang (1998) considered a daily
series of the U.S. three-month Treasury bill yield covering the periods from January 1965 to July
1995 and from January 1962 to January 1996, respectively.
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mentary comparisons with the previous literature.

Bond pricing can be based on the risk-neutral valuation principle and in practice
conducted using Monte Carlo simulation. The general idea is to simulate a large
number of realizations of (the discretization of) the risk-adjusted interest rate process

dijy = [1(Fe) — A»e)] dt + o (g:)dW, (14)

over a period starting at y; = yo at date ¢ and finishing at date T', the maturity of
the bond. An estimate of the price of a zero-coupon bond at date ¢ with payoff $1 at

time T,
R(T) - E, [exp (— I gsds)] , (15)

is then obtained as the average of the expression in the brackets in (15) over the
simulated realizations. In addition to the drift and diffusion functions computed in
Section 5.4, this approach requires knowledge of the market price of interest rate
risk A(7;), i.e. the excess return the investor requires to bear each extra unit of
risk. It is well known that with an one-factor interest rate model the absence of
arbitrage requires the risk premium on any asset to be proportional to the standard
deviation of its return. The calculation of the market price of interest rate risk can,
therefore, be based on any two assets, and, following Stanton (1997) we have chosen
to estimate it using data on the three- and six-month interest rates. In order to
apply Stanton’s (1997) approximation (his formula (51)) we need an estimate of the
conditional expectations of the difference of the holding period returns between the
six- and three-month rates and the diffusion function of the six-month rate. These
were computed from separate MAR-GARCH models for these variables with the
lagged three-month rate as the threshold variable 4, using the simulation procedure
described in Section 5.4. The estimated market price of interest rate risk function is
depicted in Figure 7. Although it lies well within the 95% confidence band of Stanton’s
(1997) estimate (except when the short rate is very close to 20%), the shapes of the
two estimates are quite different. Stanton (1997) obtains the result that A(-) is very
close to zero when the short rate is 15% or less and then decreases steeply at high
short-rate levels. A similar conclusion emerges from the study of Jiang (1998) who
also uses nonparametric methods. Our estimate of A(-), on the other hand, does not
show any abrupt change at high short rate levels, and the steepest decline takes place
between 2 and 6% levels of the short rate. Both Stanton’s (1997) and Jiang’s (1998)
estimates are very inaccurate at high short rate levels which makes direct comparisons
difficult. Because of the computational difficulties already discussed in Section 5.4 no
confidence bands are reported in Figure 7.

Table 5 gives the estimated bond prices for maturities of one, two and three years.
In addition to the prices based on the risk-adjusted process (14), those assuming A to

4The results in this section are based on data from the period from January 1959 to September
1999, the availability of data on the six-month rate. The estimated models are not reported to save
space, but the results are available upon request.
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be zero are presented. This allows for direct comparison with the results of Stanton
(1997) who also reported both figures. In each case a rising yield curve is obtained.
When v is 1% the differences between the prices obtained assuming the estimated
A(+) and XA = 0 are minor albeit growing with the maturity. However, when yo equals
5%, the differences are substantial already for the one-year bond. These results agree,
in general, with those of Stanton (1997); the differences are especially small for the
A = 0 case. On the other hand, when the respective estimates of the market price of
risk are included in the valuation, there are differences for maturities over one year.
When 19 = 1% our estimates imply lower and when 3, = 5%, higher interest rates
than Stanton’s (1997). This is due to the fact that our estimate of the market price
of risk starts getting larger (in absolute value) at lower short-rate levels than his.

The term structure implications of the MAR models are further illustrated in
Figure 8 which depicts the simulated yield curves corresponding to some short-rate
levels and up to 15 years of maturity, computed from the bond prices obtained as
describe above. These curves are, in general, consistent with the historical U.S. term
structures in two respects. First, they are steeper at the short end and get flatter
towards the long end of the maturity spectrum. Second, the higher is the short-rate
level, the flatter is the yield curve.

6 Conclusion

The presence of multiple regimes is a central result emerging from the recent empirical
literature on the U.S. short-term interest rate. It can, however, be argued that the
suggested multi-regime MS and TAR models let alone GARCH type models are not
optimal for modelling this time series. In addition to numerical problems in estimation
many of these have been shown to produce excessively erratic realizations which makes
them unsuitable for the typical applications of pricing interest-rate sensitive assets
and continuous-time model estimation by simulation-based methods. In this paper we
introduce a new kind of model which is a mixture of linear autoregressive models with
GARCH errors. It is also shown that robust diagnostic tests can easily be derived
applying the approach of Wooldridge (1990).

The MAR model is applied to weekly data on the U.S. three-month Treasury bill
rate. According to diagnostic tests as well as some informal checks a MAR with
a GARCH component seems to provide a good description of the U.S. short-term
interest rate process. Specifically, the realizations generated from the estimated model
seem stable and their properties resemble those of the observed series closely. The
out-of-sample forecasting performance of the MAR model is also superior compared
to some alternatives in the previous literature. Using the approach of Stanton (1997)
the MAR model can also be used to compute approximations of the parameters of the
continuous-time diffusion model on which much of the interest in the empirical interest
rate literature has recently concentrated. The drift and diffusion functions implied by
the MAR model turned out to be, in general, in accordance with the results in this
literature. Using additional data on the six-month interest rate, an approximation of
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the market price of interest rate risk is also estimated and the implied term structure
patterns are found to accord with those historically observed.
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Figure 1: The weekly observations of the three-month U.S. Treasury bill rate covering
the period from January 1954 to September 1999.
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Figure 2: The residuals of the MAR(3,2,1)-GARCH(1,1) model for the three-month
U.S. Treasury bill rate.
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Figure 3: Profile bundles of the conditional volatility for the AR(2)-GARCH(1,1),
MAR(2,2,1)-GARCH(1,1) and MAR(3,2,1)-GARCH(1,1) models of the three-month
U.S. Treasury bill rate.

29



0.9 | 8
0.8 | 8

0.7 | .

0.6 8

0.4} 1

0.2 |

O'O Il Il Il Il Il Il Il Il Il
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

Figure 4: Conditional volatility of the U.S. three-month interest rate series computed
from the MAR(3,2,1)-GARCH(1,1) model.
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Figure 5: The ex ante conditional probabilities of the upper, middle and lower regimes
implied by the MAR(3,2,1)-GARCH(1,1) model for the three-month U.S. Treasury

bill rate.
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Figure 6: Drift (upper panel) and diffusion functions (lower panel) implied by the
MAR(3,2,1)-GARCH(1,1) model of the three-month U.S. Treasury bill rate.
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Figure 7: Market price of interest rate risk implied by the MAR models.
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Figure 8: Term structures for some short-rate levels.
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Table 1: Estimation results of the different MAR models.

Model
MAR(3,2,1) MAR(2,2,1)- MAR(3,2,1)-
GARCH(1,1) GARCH(1,1)
Iy 0.012 0.012 0.009
(0.005) (0.005) (0.005)
[Lo 0.019 —0.020 0.012
(0.011) (0.057) (0.012)
I3 0.004 —0.093
(0.052) (0.138)
1 5.273 14.920 7.236
(0.446) (2.811) (0.776)
Co 11.551 15.437
(0.413) (1.342)
by 1.213 1.242 1.237
(0.020) (0.022) (0.021)
by -0.215 —0.244 —0.238
(0.020) (0.022) (0.021)
o1 0.004 0.00002 0.00002
(0.001) (0.0002) (0.00001)
o9 0.026 0.019 0.002
(0.004) (0.024) (0.0004)
o3 0.398 0.079
(0.056) (0.030)
o 8.386 22.720 12.950
(1.171) (8.110) (4.100)
oy 0.122 0.115
(0.021) (0.016)
B4 0.873 0.848
(0.022) (0.020)
Log likelihood 1476.073 1720.475 1762.149

inverse of the final Hessian matrix.

The figures in the parentheses are standard errors computed from the



Table 2: Diagnostic checks of the different MAR models.

Model

MAR(3.2,1) MAR(2,2,1)- MAR(3.2,1)-
GARCH(1,1) GARCH(1,1)

Conditional mean

AR(3)" 0.096 0.088 0.082
AR(4) 0.235 0.110 0.135
AR(5) 0.025 0.0003 0.001
General MAR(-GARCH)® 0.149 0.178 0.090
Conditional variance

ARCH(1)° 0.005

GARCH(1,2)* 0.615 0.738
GARCH(1,3) 0.484 0.254
GARCH(1,4) 0.160 0.126
General GARCH(1,1)¢ 0.095 0.102
Level effect/ 0.977 0.426 0.470
Structural Break? 0.002 0.082 0.094
Asymmetry” 0.223 0.194

All figures are marginal significance levels. The numerical derivatives required
in the calculation of the test statistics are computed by the gradp routine in
GAUSS.

°In the tests labeled AR(I) the alternative model is the corresponding MAR
(-GARCH) model with [ lags in the conditional mean equation.

’The alternative model is the MAR (-GARCH) model with regime-dependent
autoregressive coeflicients.

“The alternative model is the MAR-ARCH(1) model.

In the tests labeled GARCH(1,l) the alternative model is the corresponding
MAR-GARCH model with [ lags of the squared error term in the conditional
variance.

“The alternative model is the MAR-GARCH(1,1) model with regime-dependent
GARCH coefficients.

/The alternative model is the MAR(-GARCH) model with the lagged level of
the interest rate entering the conditional variance equation.

9The alternative model is the MAR(-GARCH) model with a dummy variable
for the period of the "new operating procedures" of the Fed (November 1979 —
September 1982) entering the conditional variance equation.

"The alternative model is the MAR-GARCH model with uZ_; in the conditional
variance equation allowed to take a different coefficient when ;1 is positive.
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Table 3: Comparison of unconditional moments.

Population Model

MAR(3,2,1) MAR(2,2,1)- MAR(3,2,1)-

GARCH(1,1) GARCH(1,1)

Mean 5.508 5.669 4.876 5.221
Variance 7.863 6.367 47.755 5.592
Skewness 1.125 2.171 4.467 1.150
Kurtosis 4.745 11.497 40.809 6.777

The moments implied by the different models are computed as sam-
ple moments from a simulated realization of 100,000 observations of the

respective model.
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Table 4: Forecasting performance of different models of the one-month U.S. Treasury

bill rate January 1970-April 1994.

In Sample

Model

January 1954—
December 1978

January 1954—
March 1981

AR(D)
AR(1)-GARCH(1,1)

GRS
MAR(2,2,1)-GARCH(1,1)

MAR(3,2,1)-GARCH(1,1)

0.0877 (0.0660)
0.0971 (-0.1656)
0.0890 (0.1449)
0.0836 (0.1540)

0.0817 (0.1635)

0.1711 (0.0617)
0.1593 (0.1926)
0.1666 (0.2660)
0.1511 (0.2889)

0.1512 (0.2925)

Out of Sample

January 1979-
September 1999

April 1982-
September 1999

AR(1)
AR(1)-GARCH(1,1)

GRS
MAR(2,2,1)-GARCH(1,1)

MAR(3,2,1)-GARCH(1,1)

0.2660 (0.0342)
0.2431 (0.1675)
0.2687 (0.1775)
0.2383 (0.2154)

0.2622 (0.0715)

0.2014 (0.0348)
0.1985 (0.0661)
0.2088 (0.0706)
0.1976 (0.0952)

0.2032 (0.0518)

The figures are root mean squared prediction errors of one period ahead forecasts.
The figures in the parenthesis are the corresponding R? values. The parameters are
estimated using the in-sample period data and held fixed over the out-of-sample period.
GRS is the generalized regime-switching model of Gray (1996).
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Table 5: Bond prices implied by the MAR(3,2,1)-GARCH(1,1) model.

Bond Price

Estimated Market Zero Market

Yo Price of Risk Price of Risk
1% 1 year 0.9876 0.9887

2 years 0.9707 0.9755

3 years 0.9484 0.9610
5% 1 year 0.9436 0.9508

2 years 0.8765 0.9032

3 years 0.8027 0.8575

The figures are prices of a zero-coupon bond with payoff $1 at
maturity. They are obtained as averages of the values of the bond
price (15) based on 1,000 simulated realizations of the risk-adjusted
short-rate process (14) with initial value yo. The discretization uses
500 time periods per week, and the antithetic variate approach is

employed to reduce variability.
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