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NONPARAMETRIC ESTIMATION IN A NONLINEAR

COINTEGRATION TYPE MODEL

By Hans ARNFINN KARLSEN, TERJE MYKLEBUST AND DAG Ti@sTHEIM

University of Bergen
Department of Mathematics, Johannes Bruns gt.12, 5008 Bergen, Norway

6th March 2000

Abstract

We derive an asymptotic theory of nonparametric estima-
tion for a nonlinear transfer function model Z; = f(X;)+ W4,
where {X;} and {Z;} are observed nonstationary processes,
and {W;} is a stationary process. In econometrics this can
be interpreted as a nonlinear cointegration type relationship,
but we believe that our result have wider interest. The class
of nonstationary processes allowed for {X;} is a subclass of
the class of null recurrent Markov chains. This subclass con-
tains the random walk model and the unit root processes.
We derive the asymptotics of a nonparametric estimate of
f(z) under two alternative sets of assumptions on {W;}: i)
{W;} is a linear process. i) {W;} is a Markov chain satisfy-
ing some mixing conditions. The latter requires considerably
more work but also holds larger promise for further develop-
ments. The finite sample properties of f(x) are studied via
a set of simulation experiments.

Key words and phrases. Cointegration, Nonstationary
time series models, null recurrent Markov chain, nonpara-
metric kernel estimators, transfer function model.
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1 Introduction

Two time series {X;} and {Z;} are said to be linearly cointegrated if they are both
nonstationary (persistent) of unit root type, and if there exists a linear combination
aX;+ b7, = W; such that {W;} is stationary. This means that the series { X;, Z;} move
together in the long run. The concept of cointegration was introduced by Granger and
further developed by Engle and Granger (1987), and since its introduction there have
been numerous papers in econometrics exploring various aspects of it. Some main result
are given in Johansen (1996).

The long term relationship between two econometric time series may not necessarily
be linear, however, and the processes { X;} and {Z;} may not be linearly generated unit
root processes. This has lead to a search for nonlinear cointegration type relationship
such as Z; = f(X;) + W; for some nonlinear function f and some possibly nonlinearly
generated input process {X;}. Indeed, functional relationship of this type have been
fitted to economic data (see e.g. Granger and Hallman 1991 and Aparicio and Escribano
1997), but to our knowledge the properties of the resulting nonparametric estimates
have not been established. (See Xia 1998 for a consistency property in a simplified
situation, however).

There are at least two difficulties (cf. Granger 1995 and others): which class of
processes should be chosen as a basic class of persistent processes, and how should an
estimation theory for an estimate of f be constructed? The main goal of this paper is to
try to one answer these questions; i.e. we wish to establish a nonparametric estimation
theory for the function f in the nonlinear transfer function model

Z, = [(X;) + W, (1.1)

where {W;} is a non-observed stationary process, and {X;} and {Z;} are observed
processes which are nonstationary in a sense to be made more precise. The connection
to the nonlinear cointegration problem is obvious, but we would like to point out that
the estimation of the transfer function f in the general context we are considering should
also be of interest in other areas. In a traditional transfer function problem some sort
of mixing condition is often assumed for {X;} to obtain a central limit theorem for
f(:x) However, mixing assumptions on {X;} are ruled out in the general situation we
look at. A minimal condition for doing asymptotic analysis for f(:z;) is that, as the
number of observations on {X;} increases, there must be infinitely many observations
in any neighborhood of z. This means {X;} must return to a neighborhood of x
infinitely often, which in turn implies that the framework of a recurrent Markov chain
is especially convenient. Since { X;} may be nonstationary, null recurrent processes have
to be included, and it should be noted that the class of null recurrent processes contain
unit root processes (cf. Myklebust et al 2000). Unlike the parametric situation, where
a unit root speeds up the convergence of (global) estimates due to the large spread of
the observations, in the nonparametric case, which is concerned with local estimates,
the nonstationarity slows down the convergence, because the time until the process
returns to the local neighborhood increases. (The expected time being infinite in the
null recurrent case).

In Karlsen and Tjgstheim (1998) (hereafter referred to as KT) we developed an
asymptotic theory for nonparametric estimation for a nonstationary univariate nonlin-



ear autoregressive model in the framework of so-called #-null recurrent processes. This
is a subclass of the null recurrent processes which contains the random walk. For an
alternative theoretical approach in the random walk case we refer to Phillips and Park
(1998).

We will rely on central parts of the theory of Karlsen and Tjgstheim (1998) for
our derivations in this paper. But a host of new problems emerges in the transfer
function case as will be made clear in the following. We also present several examples
of the theory. In particular it will be seen that the verification of asymptotic theory via
simulation on null recurrent series presents some special difficulties, which are absent
in the ordinary stationary mixing situation.

2 Notation and some basic conditions

We will follow the notation of KT since our proofs and results will be closely based on
that paper. Thus, we denote by {X;,t > 0} a ¢-irreducible Markov chain on a general
state space (F,&) with transition probability P. In this paper we take £ C R, and
we denote the class of non-negative measurable functions with ¢-positive support by
ET. For a set A € £ we write A € ET if the indicator function 14 € £*. The process
{Xi,t > 0} will be assumed to be Harris recurrent. This essentially implies that given
a neighborhood N, of z with ¢(VN,.) > 0, {X;} will return to N, with probability one,
and this is what makes asymptotics for a nonparametric estimation possible. The chain
is positive recurrent if there exists an invariant probability measure such that {X; > 0}
is strictly stationary, and it is null recurrent otherwise. In this paper we are primarily
interested in the null recurrent situation, in which case there exists a (unique up to a
constant, non-probability) invariant measure, which will be denoted by .

We assume aperiodicity and that the transition probability for the X;-process sat-
isfies the so-called minorization inequality

P>sQuvu (2.1)

where s is a small function and v a small measure with v(F) = 1. The pair (s, v) is called
an atom. This is not a strong restriction (c¢f. KT and Nummelin, 1984). Moreover, the
minorization condition may be relaxed. Clearly, (2.1) implies that 0 < s(z) <1 for all
r e L.

If a set C' € ET is such that 1o is a small function, C itself is said to be small.
Under quite wide conditions (cf. KT ) a compact set will be small. From (2.1) we get
the identity

Pz, A) = (1 — s(x)){P(“”?)__S‘ESW(A)}1(S($) < 1)+ La(z)1(s(z) = 1)

= (1 = s(2)Q(z, A) + s(z)v(A)

so that the transition probability P can be thought of as a mixture of the transition
probability () and the small measure v. Since v is independent of z this means that
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the chain regenerates each time v is chosen. This occurs with probability s(z). The
reasoning can be formalized by introducing the split chain {X;,Y;} where the auxiliary
chain, {¥;}, can only take values 0 and 1. Given that X; = z, Y;_; = y;_1, Y; takes the
value one with probability s(z) so that o = F x {1} is a proper atom (cf. Nummelin,
1984, p 51) for the split chain. We denote by

Sy =min{t > 1: Y; =1}

the corresponding recurrence time. We will also make use of the consecutive sequence
of recurrence times starting at time ¢ = 0;

m=min{l > 7_1: Y, =1}, 74 1 fork >0, 7T=7,=1T0 (2.2)
and the number of regenerations in the time interval [0, n], i.e.,

T(n)= m]g"mx{k: 7% <n}VvoO0.

An invariant measure 75 can be defined in terms of the atom (s,v) of (2.1). In fact
(KT , Section 2.3)
s def vGs,, G, def Z(P —s5® 1/)1“] . (2.3)
=0
If the measure 7, is absolutely continuous with respect to Lebesgue measure, we
denote by p, the corresponding density so that ps(z)dz = 7s(dz). Similarly, we define
the density pc(z) = ps(z)/7s(C). For a m-integrable function g on R we use the notation
7sg for

mg = 7l9) = [ gle)m,(d)

Corresponding to T'(n) for a set C' € £, the number of times { X;} is visiting C up
to time n is denoted by

Tc(n) = zi;) 10(Xt)

From KT (Remark 2.7) we have that lim Te(n)/T(n) = msle.
The kernel G, of (2.3) plays an important role in Section 4 and it easily follows
from the above that for a ms-integrable g defined on E,

E, Zj 9(X)) = Gongla) . (2.4)

The minorization condition and the accompanying split chain permit decomposing the
chain into separate and identical parts defined by the regeneration points. We have for

a function g,
n T(n)

Su(9) = D g(X) = U+ > U + Upny (2.5)

t=0 k=1

where

Stk 1 9(Xy), when k > 0;
Uk—{ t=1p_1+1 ( t) (26)

Z?:TT(H)H 9(Xy), when k = (n)



2.1 Basic conditions 5

The sequence {(Ug, (7 — 7k—1)), k > 1} consists of independent identically distributed
(iid) random variables. This partition of the chain is basic for the subsequent asymptotic
analysis.

We have to make a restriction on the way the process regenerates: the chain {X;}
is #-null recurrent if there exists a small non-negative function h, an initial measure A,
a constant 4 € (0,1) and a slowly varying function Lj so that

o [t; B(X)] ~ ﬁnﬁ[/h(n) (2.7)

as n — oo. This condition is equivalent with (cf. KT ) a restriction on the tail
distribution of the recurrence time S, in that

P.(S, > n) = i ﬁ)lnﬁLs(n) (1+o(1)) (2.8)

where L, is a slowly varying function depending on s. In the sequel (2.8) will be referred
to as the tail condition.
A random walk process is S-null recurrent with 5 = 1/2.

2.1 Basic conditions

In all of the proofs we use ¢y, ¢s, . .. as a sequence of generic constants in our proofs, and
if {a,} and {b,} are two real-valued strictly positive sequences, then we write a,, << b,
if a, = o(b,,).

If 5 is a non-negative measurable function and X is a measure, then the kernel n @ A
is defined by
n @Mz, A)=n(x)A(A), (z,A)€(EE).

If H is a general kernel, the function Hn, the measure AH and the number AHn are
defined by

Hy(w) = [ H{a,dy)n(y), MH(A)= [Mda)H(z, A). My = [ Nde)H(z,dy)n(y)

The convolution of two kernels Hy and H; gives another kernel defined by
HiHy(z, A) = /Hl(:r,dy)Hz(y,A) .

Due to associative laws the number AH; Hyn is uniquely defined. If A € € and 14 is
the corresponding indicator variable, then H14(x) = H(x, A). The kernel I, is defined

by I(z, A) = n(z)la(z).

We denote by h = h, the bandwidth used in the nonparametric estimation. It is
assumed to satisfy h, — 0, and with no loss of generality we also assume h,, < 1. Let
K : R — R be a kernel function, and for a fixed z, let K, ,(y) = h"'K((y — z)/h),
No(h) ={y : K;n(y) # 0} and NV, = N,(1). In our context a locally bounded function
will be taken to mean bounded in a neighborhood of x, and a locally continuous function
is continuous at the point z. Without loss of generality we may assume that this
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neighborhood equals N, and that local continuity implies local boundness. This is

since NV;(h) = z & hNo.

In the analysis of a kernel estimator of the transfer function f of (1.1) we will look
at a slight generalization in that we allow an instantaneous transformation of W; as
well, resulting in

Zy = f(Xt) + QW(Wt) . (2-9)

Here, gw is assumed to be known, e.g. gw(w) = w , and f is to be estimated. We
will consider this problem under two sets of conditions on {W;}. In Section 3 {W;}
will essentially be assumed to be a linear process, whereas a Markov assumption will
be adopted in Section 4.

The following set of conditions is always assumed:

Ko: The kernel K is non-negative, [ K(u)du < oo and [ K?*(u)du < oo.
Po:  The {X;} process is a Harris recurrent Markov chain.
Fo:  The transfer function f is continuous at the point .

Subsets of the conditions listed below are used according to need. The concepts of

¢-mixing and a-mixing are defined in Hall & Heyde (1980, p. 277).

K;:  The support Ny of the kernel is contained in a compact set.

K,:  The kernel is bounded and N, is a small set.

Ks:  The kernel is normalized so that [ K(u)du = 1.

K4: The kernel satisfies [ uK (u)du = 0.

P;:  The invariant measure 7, has a locally bounded density p.

P,:  The density p; is locally continuous.

P3:  The density p; possesses locally continuous partial derivatives of a given
specified order.

P4 The density is locally strictly positive, i.e., lim, ., p,(y) > 0.

Ps:  For all A > 0, the function: y ~» P(y,N,(h)) is continuous

Pg: The tail condition, (2.8), holds.

Py: 3 def sup{p > 0: E,S? < oo} A1 >0.

Ty: The set C' in T¢ is a small set.

Fi: The function f possesses locally continuous partial derivatives of a given order.

Wi:  The process {W,} is strictly stationary, Egw (W) = 0, Egq, (W) < oo,

and ¢-mixing with a finite mixing rate; }, qb;/Q < o0

W,: The process {W;} is a strictly stationary linear process, W; = 3", are;_p,

with 34 lax| < 0o, {e:} satisfies Wy and gw(w) = w.



W3: The process {W;} is an irreducible ergodic Markov chain which satisfies (2.1).
W,:  In addition to W3, {W;} is strongly a-mixing with mixing rate

2m
ST oy < oo, mgw = 0 and Wg%{,n(kﬂ) is finite for some k,m > 1,

where 7 is the unique stationary measure of {W;}.
3 Nonparametric estimation of f when {W,} is linear

The kernel estimate of f in (2.9) is given by

oy o Ko n(X4) Zy
) = S R (X

(3.1)

We get a central limit theorem by an adaption of Th. 4.4 in KT and its proof.

Theorem 3.1 Assume that the processes X and W are independent in (2.9) and that
{Xi, t > 0} is started with an arbitrary initial measure A. Moreover, assume that K-
Ky, Py, Py, P4-Ps and Wy hold. Let ajyy = Egiy (Wo), € > 0 and ¢.(y) = f(y) — f(=x).
If bt << nP=¢ with B defined in (2.7), then

{hn ;0 Ko (X0} {7 ) = 1) -

77-5]]&"17;1“ 77/)1‘
stﬁm’hn

b5 N, a8 [ K3 u)du) . (32)

If P3 holds with order 2 and f possesses conlinuous derivalives of second order, then
the bias term WSII{EML/)Z/WSKL}M is negligible when h7' > nPlote,

~

Proof: Denote the left hand side of (3.2) by A,, . Since f(z) is a ratio, we get some
additional bias terms.
Write,

Zy = {Z — [(Xo)} + (f(Xe) = f(z)) + f(=)
Zi Ko 1 (Xy) = gn(Xe, W) + 02 (Xo) Ko n (Xy) + f(2) Ko (X3) (3.3)
(

where gi(z,u) = gw(u) - Ky n(2). In the S,-notation of (2.5) this gives

J(@) = () = 57 (Kap){Sulgn) + Saltbe - Ko }
The last term on the right hand side represents the bias. It contains a stochastic
quantity, and we want to replace it by a deterministic bias term. Let

def 7‘—5]]&"17;1 771}1’

ap .
WS]I{m,h]‘

Then

f(z) = f(z) —an = {l(Km,h){Sn(gh) + Sn(te - Kop) — ahSn(Kr,h)}
= S7N(Ken){Sulgn) + Su(br) },
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where

b = Ir, (e — ar) .
We note that p, = 7,0, = 0. We can write

An,h - An,h + A;’L,h

where

App= STYYHK,, )hl/ZSn(gh)
ALy = {pe@) T P )25, (1)
polz) = Tcl( )Sn(Ke by ),

and where C' is a purely auxiliary set chosen such that Ty holds. In the proof of Th.
4.4. in KT we replace P¢ with f, then using Ky, Ky, Py and Pe,

Al = op(1) (3.4
and by the second part of Th. 4.3 (cf. also the proof of Th 4.4.) in KT ,
Pe(r) = po(x) + op(1) (3.5)

using Ky, Ky, Py, Py, Pg.

It remains to verify that A, ; satisfies the prescribed CLT. We assume first that
W; holds and then generalize to W, towards the end of the proof.

Let ew (k) = Cov(gw (Wo), gw(W4)), o* = ew(0) [ K*(u)du and

WMPK (X)) RY2K(X)

i = __
’ n < /2 1/2 '
[0 Ko (X5)] Sn'"(Kap)

Then

hl/QS gh n
— P (We) . 3.6
Sl/Q(AIh ;ff tgw (W) (3.6)

Let FX be the o-algebra generated by {X;}. It is sufficient to prove that the condi-

tional distribution of A, ;, given F¥X converges in distribution to A'(0,0?) where o is

independent of x. Indeed, let z be fixed. Then if

/
/ 7’L,}L—

P(Ah, < 2| FX) — b(z/0) as. [Pi] (3.7)

it follows from

PA(An,hn § Z) = E,\ [P(An,hn § z | FX)]

and by the dominated convergence theorem that

lim Py(Anp, <2)=Ey[lim P(A,;, <z|F¥)] =a(z/0). (3.8)

n—0od n—00

In order to prove (3.7) we first show that

e li
o2, HEnAz, | FHEE g2 (3.9)



and then verify that conditional on FX, A, ; /0, 1, has an asymptotic standard normal
distribution.

By (3.6),
n nAn—k
Ji,h: CW(O)Ef}ZL,t—I_ E cw (k) Z Entlhtth
=0 0<|k|<n t=—kVO0
= ew(0)pmno+ Do ew(k)napp.  say (3.10)
0<|k|<n
and by K,

by K2,(X)
S K2,(X0)

Hence by the dominated convergence theorem it is enough to prove that

plim [0, for all k£ # 0;
T]”JLnsk - -2
[ K*(u)du, when k=0

Mkl <&, < <sup{K(u)}.
=0 u

n

since Wy implies that

Z lew (k)] < oo .

&
Let C be small. We have

nAn—k

Mok = {Po(@)}H{TZ 1) D haKop (X)) Ko (Xegn) }

t=—kVO0

< {pel2)} {15 (n) Z ha Ko (Xe) Ko (Xesk) }

t=0

< er (o)} T (1) 32 Koo (X0) a1y (Xisi) }

t=0

since by K;-Ks,
Kpn(u) < h_lcllj\/x(h)(u) .

By P; and Pz we have that P*(z,{z}) =0 (cf. the proof of Lemma 4.2 in KT ) for all
k> 1. Hence
lg%lPk(x,Nz(h)) =0. (3.11)

Let hg be fixed and arbitrary and consider n so large that h, < hg. Then

Mgk < C{Pe (@)} O b o,k (3.12)

where

Onnsio e = T (1) D Koo (X)L, (ho) (Xek) -
t=0
Then by extending the proof of Th. 4.2 in KT using Ky, Ky, Py, Ps, Py (which is
implied by Pg)
Bm |0, png k| < caPH (2, No(ho))  aus. (3.13)



10 3 NONPARAMETRIC ESTIMATION OF F WHEN {Wr} IS LINEAR

where ¢, is a constant independent of hg. By (3.11), (3.12) and (3.13) it follows that

Nahn ke = 0(1)  a.s. (3.14)

when k& > 0. Exactly the same arguments can be used to show that (3.14) holds for
k < 0. When k = 0 it follows by KT (Th. 4.1) using K;-Ks, Py, P2, Pg and Bochners

theorem,

Unho—/fﬁ u)du +o(1) a.s.

Thus we have proved (3.9).
To prove (3.7) (and hence (3.8)) it remains to verify that a fourth order Liapunov
condition holds. By W,

ZE fh th Wt) | FX) G Zfén,t
t=0 t=0

hEL Z?:O I(i,hn (Xt)
(8] , 3

{ 1 } { Yo kUKL, (Xy) }
= ¢
Vb i Koo, (X0) || g Kon (X4)

= o(l) as.
since 15 (X)
E?:O n (zh £ 3
1 < Adsup |K(u
S Ko (X)) <{ upl (w)[°}
and

{Tg(n)hn}ﬁc( =h, Z[&hn + T oo aus, because lim Te(n)h, = o0 as.  (3.15)

n—00

Thus the array {7, :}}_, satisfies the conditions in a dependent central limit theorem

(Bergstrgm, 1982, Th. 1., p 161) for given F* where Z,, ; def Enptgw (Wi) /o h, -

It is a standard procedure to generalize from condition W; to condition Wy. The
linear representation is truncated

Wi =W+ W W= Y ajery, m>1,
|7]<m

so that
An,h - An,h,m + A,E;nh) .

It is enough to prove that for all z,
i) Vm>1: PAph,m < 2| .7:X) — ®(z/0,) as. [Py
ii): o2 — o

ifi): TmE[(A7) 1 7] — 0 as [Py

m
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(cf. Billingsley, 1968, Th. 4.2, p 25).

For all fixed m the process W,y = {Wim, k& > 0} satisfies W;. Hence part i)
holds. Let W) denote the covariance function that belongs to {Wj ., k& > 0}. Then
since e and the sequence a = {a;} by assumption W; are summable, it follows that
limy, 3 lew,,, (k) — ew (k)| = 0 which implies that part ii) holds by (3.10). Moreover,
we have that

E[|A i = A P | FX] = E[( A7) 1 7] = 32 e (k)i -

|k|<n
By the above reasoning,

E ey om) (k)N eh, = CW(m)(O)/KQ(u)du a.s.

|k|<n

Since limy, —co Cypm) (0) = 0, we have verified part iii).

The bias term is neglible if h, goes to zero sufficiently fast. This is shown as in

KT (proof of Th. 4.4) . O

The tail condition (2.8) is difficult to verify since it almost requires exact knowledge
of the first order asymptotics of the rate of P"(z, A). We believe that Py is considerable
weaker, and it may be easier to verify than Pg, since it is fulfilled if E, 77 < oc for some
p > 0. It turns out that it is possible to incorporate this modification of the tail
condition in the proof of Theorem 3.1: (Note that we use the notation a, << b, to
denote a,, = o(b,) as n — oo for 2 sequences {a,} and {b,})

Corollary 3.1 Assume that the conditions of Theorem 3.1 hold and that the tail con-
dition, Pg, is replaced by Pg. We also assume Fy of order 1 and for some ¢,6 > 0,

n® <« bl < 0Pl (3.16)
Then the conclusion in Theorem 3.1 still holds.
Proof of Corollary 3.1: We have to prove that (3.4), (3.5) and (3.15) still hold when

we replace Pg by Pi. By KT (Th. 4.1) (3.5) is true using K;-Ks, P1,P,, Py and the
right hand side of (3.16). By KT (Lemma 3.1, second part) ,

nf¢ « T(n)

which entails that (3.15) holds.
It remains to verify (3.4). It is enough to show that

15 ()RS, (b)) 25 0
holds without the tail condition. Recall that

7‘—5]( n¥zr
boly) = Fly) = fla),  ay = 2 Kea¥e

Wsjjg'$7h1

o bu(y) = Kon(y)(Va(y) — an) (3.17)
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so that w6, = 0. Smoothness of order 1 for the function f implies by (3.17)
lan| < cohy o] < e1la,my -
In accordance with (2.5) and (2.6), let

T(n)
Sn(br) = Uop + Vi) in + Um)hns Vo) = 2 Ukhn
k=1

which implies that
|Uk7hn| § Ul?,hn g Ul(c),lv k € {0717"'7007 (n)} (318)

where the U};hn’s are generated by g, = c11,(n) instead of by. We find that
1/2
|U(0n),1| < U%(n)ﬂ,l = Tl/Q(n)FT{n)

where F, &' UZiy1/n. Since E,UZ; < oo then by the strong law of the large numbers
F,=o0(1) as. . Likewise we have that Uy, = O(Tl/Q(n)) a.s. . Let 6 be defined by
(3.16). Then

7)Y V| = [T )} 2T (0) Vg, |0 P = 1/246/2
< {n’h 3 TP (0) Vi) b (3.19)
where, by assumption, n°h, = o(1) a.s. . Rephrasing notation, we
T_p(n)VT(n)JLn =n;’ 1 iy (T'(n),n) = (ny,ns) .
Let a =3 —¢> 0. Then T'(n) > n* a.s. . Hence by (3.19), (3.4) follows if
lim  ny"Vi, p,, =0 as. . (3.20)

[ning|—oco
ny2>ng

By the Borel Cantelli lemma (3.20) is true if for some m > 1

1/a

oo M n1 2m
Z Z Eny™ ) Upn,| <oo.
n1=1ns=1 k=1
Let m > é7'(1 + a™'). Then by (3.18)
ni 2m ni 2m o
E [n? Z Uk, =n"™E nl—l/z Z Uih, < ™, U(?,l‘ < ezn™

where ¢3 is finite since NV, is small (cf. KT , proof of Lemma 4.1).

Remark 3.1 [t is possible to allow for a stochastic bandwidth, i.e., h, is replaced by
4To(n) where the function q is independent of B (c¢f. KT , Th. 3.4 ).
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4 Nonparametric estimation of f when {W,} is Markov
process

In this section the linear process assumption Wy is replaced by the Markov assumption
Wj3. This also makes it possible to relax the ¢-mixing of Wy to a-mixing as in Wy. In
the preceding section we did not directly use a central limit theorem for the X-process.
But now we have to rely on a null recurrent central limit theorem, more precisely
Theorem 4.1 based upon Corollary 3.2, of KT . However, because we cannot in general
restrict gw to be a small function (consider e.g., gw(w) = w), Lemma 4.1 and Lemma
4.2 of KT cannot be used and this complicates matters considerably.

Throughout Sections 4.3 to 4.6 we make the assumption that {X;} and {W;} are
independent. However, we believe that it is possible to avoid this assumption, and that
this type of generalization is easier to achieve in the framework of Markov theory.

Before embarking on a proof of the asymptotic properties of f we need a series of
lemmas on the regeneration structure of the compound Markov process {(X;, W;)}. We
think that these results are of independent interest, and that they are potentially useful
in other situations.

We denote by ¢ a general measurable functions defined on R?, gx, gw are measurable
functions defined on R, and g = gx ® gw means that g(z,w) = gx(z)gw(w).

4.1 A nonparametric CLT for null recurrent processes

Assume that {X;} is a Markov chain which satisfies the minorization condition (2.1)
and the tail condition (2.8). Let

‘/gh = Zgh(Xj)7 Hgp = Eu‘/gh7 U;h = El"/.g?h — /Lzh
7=0

where g, is a real-valued function defined on K for all A > 0, and 7 is defined in (2.2).
Consider the following conditions where —oco < p, p' < 00, 0 < 0,0" < oo, v € [0,1],
m>2,¢>0,0<dp,,d, <oo,is defined in (2.8), X is an initial measure and & | 0.

my Uy

Pgn = I+ 0(1)7 Ky = ;u/ + 0(1) . (4'1)

hath =g’ 4 o(1) . (4.2)

hot, = o +o(1). (4.3)

BV, — i 7 < dh ™28 (1.4)

By Vg, = pigg, | < dp b2 (4.5)
—1

bt < Pl G, = (4.6)
m—v

dgo: hlgn| < go and Py(V,, < o0). (4.7)
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The following theorem is essentially a translation of a CLT-result in KT . It will be
used to prove the main CLT-results of the present paper.

Theorem 4.1 Let C' be a small set. Assume that (4.1) - (4.6) hold for an m > 2 and
av €[0,1]. Then for any initial measure X for Xo so that (4.7) holds,

W27 (10)Su(gn,) = N (0,0%7710) .

Proof of Theorem 4.1: The proof is essentially based upon KT (Th. 3.2) . Since
g is a function in one variable the conditions in that theorem simplifies. Moreover,
(4.1) - (4.3) are conditions implied by the corresponding conditions in Th. 3.2. In the

conditions (4.1) - (4.7) the quantity v is allowed to vary everywhere in the interval [0, 1]
and that represent a minor extension of Th. 3.2. It is permitted by a trivial extension

of the proof of Lemma 3.3 of KT .
O

Before we can put Theorem 4.1 to use we need to analyze the regeneration structure
of { X, Wi} closer. This is done in Sections 4.2 - 4.7. We then state our main result in
Section 4.8.

4.2 Decomposition of S,(g)

We assume that the compound chain, {(X;, W;)} satisfies (2.1), so that it can be ex-
tended by the split chain method, with {(X;, W;,Y;)} being a split chain. Note that if
{X:} and {W;} separately satisfy the minorization inequality condition (2.1), it is not
obvious that the compound chain {(X;, W;)} does. If {X;} and {W;} are independent,
then it is trivial to verify (2.1) as is shown in the beginning of Section 4.3. Let

ng=inf{t >m_1:Y, =1}, k>0, n_y=-1.

Then, the sequence {n;} represents the regeneration times for the compound process.
The basic decomposition, (2.5), gives

T(n)
Su(9) =Vo+ D Vi+ Vi, T(n)=sup{k: n<n}VvO0 (4.8)

k=1

where

Ve — ZZink_ﬁl g( Xy, Wy), for k>0
. Z?ZWT(n)+1 9( Xy, Wy), for k = (n).
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According to the general theory (4.8) represents essentially a decomposition into
independent variables where {(Vi, (nx — ni-1)), k > 1} are iid and where V} has ex-
pectation p,, variance 03, i.e.

py = B, (V0),  of = var, (Vo) = E, (V) -

Hg

where v refers to the compound chain {(X:, W;)}.

Our first problem is to find conditions which ensure that z, and o7 are finite. Again,
by reference to general theory (cf. Appendix A, (A.10)) we have that, with s referring
to the compound chain,

by = Tsg, 092 = 775(92) + 2n1,H Gy, — Ti'?(g) (4.9)
where

H=P-s@v, G,,=> H. (4.10)

The conditions ensuring y, = 0 and 0'g2 < oo are not evident from (4.10) if we want
to avoid the strong restriction that gw is a small function. If gw(w) = w, requiring gw
to be small is equivalent to ¢-mixing which is not satisfied for an autoregressive process,
say. The problem is linked to the term G,. In fact, we also need to show existence of
higher moments and to verify conditions connected to the bandwidth as exemplified in

(4.1) ~(4.7).

In Sections 4.3 - 4.6, we make the assumption that {X;} and {W;} are independent.

4.3 [ null recurrence for the compound process

Let P denote the transition probability for the Markov process {(X;, W;)}. We label
quantities associated with the X-process by one and with the W-process by two. The
transition probability P satisfies (2.1) when P, and P, do, since

P=POP,>(5108)Q(1ndr)=sQv.

Lemma 4.1 Assume that {X;} and {W,} are independent and that the tail condition
(2.8) holds for {X:}. Then the compound process {(X;, Wi)} is B-null recurrent, i.e.

the tail condition holds for the compound process.

Proof: Let C and (5 be small sets and v = 11 ® v,.

Ezn: Loy (X)le, (Ws) = znj[ylpﬂcl} 2 Pi1c, |

n

_ [772102]2[1/1315101] + zn:[mP 101]
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where b, = v, P}1¢, — mlc, and where 7, is the stationary measure for {W;}. Since
{W:} is ergodic by = o(1). Since {X;} is S-null (cf. KT (Lemma 2.2 and (2.31)) ), we
have that

S [ Pi1e] = (rale i)+ an) da(n) = 0L (n),  an = o{1).

t=0

Let ¥ar = sup,cps 91(t), A = sup, |a;|, B = sup, |b;|, BM) = sup,.,; |b:]. Then, for all
M >0, -

\i[ylpflcl]bt\ < B{[r 1o Jom(1 + A} + BM{[m, 16,1 (n) (1 + |aa]) }

t=0

so that

‘Zt o[l/lp 101]615‘
. h1(n)

< hmhm B{{ml ley }

()(1—|—A)}—|—hmhmB H{malo b1+ Jaa)} =0 (4.11)

Hence, >-7_, [leflcl] by = dp,t01(n), d, = o(1), and therefore

E{Zl (X0)le, (W)} = [malclip(n)(1+ ), (n) = g(n)ma(s2) .

4.4 Decomposition structure

In the following H =P —s®@v and H; = P; —s; Q@ v; for y =1,2.

We extend both chains with the split chain method so that we have {(X;,Y;')}
and {(W;,Y;?)}. Due to independence {X;, W;,Y;} is the split chain for the compound
process (X, W) where Y; = Y;'V;2. Thus

Nk = inf{t > nk_l:Ytl = Yt2 = 1}, k>0, ny=-1.

We look at the decomposition structure in a different way where we try to benefit
from the marginal decomposition of the X-process, i.e., the regenerations defined by

{Tk}

m=inf{t>7 : Y'=1}, k>0, 7', =-1.
Let

1
T
J

U=U;= > g(X,W), s>0. (4.12)

—-1
t—T]_1+1
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We note that in general the U;’s are neither unconditionally nor conditionally inde-
pendent. The simultaneous regeneration times are also marginal regeneration times,
le.,

{ne, & >0} C {7}, j >0}

Let 7y = —1 and
T =inf{k>T,: Yi=1}, k>0, T=1T,.

Tk

Then

which gives

Tr T 5 T
Vo=V,=> g(Xe W) =3 > g(Xe,W)=3U; (4.13)
=0 J=0t=r]_ +1 J=0
and in general
Ty
Vi= > U, k>0.
J=Tp_1+1

The following lemma contains necessary information about the process {WT}%, k>0}

Lemma 4.2 The process {Wfi’ k > 0} is a Markov process with transition probabilily
P = P,®, where ®, =32 {viHisi}Pi. Moreover,
pP>s@u (4.14)
with
(5:2) = (2, v2®uy) -

Let X = A\ @ Ay be the initial measure for {(X;, Wi)}. Let W* = {(Wt,yt), t >0}

be the split chain generated by P and (s,v) and let W] = {(WTé,Yfl), k> 0}. Then
~ ~ o~ &

Wi w* (4.15)

when the initial measure for W is \ = Ao®y,. In particular, let T denote the first

0
regeneration time for W*. Then the occupation time formula is given by

Ye 14, in general;

. T ~S U
ExY La(Woa) =Ex Y 1a(W ) = mG 1, if dy =7y (4.16)
k=0 k=0 ~k N£7Z
Tsy LA, if A =v.

=YiZo(P —s®v)".

where G
~3§

AN
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Proof of Lemma 4.2: See Appendix B. O

The following result indicates that the rate of convergence of the transition prob-
ability towards the stationary measure is at least as good for the W-process as for the

W-process.

Lemma 4.3 Suppose that W is geometric ergodic. Then this is also true for W. If
W is strongly mizing with miring rate defined by o = {a;}, then W is strongly mizing

with mixzing rate o which is equal to or faster than a. In particular for k > 0

Ylfay<o = E, 7" <. (4.17)
=1 ~
Proof of Lemma 4.3: See Appendix B. O

4.5 Upper bounds for E|V,|”

In this subsection we assume that (cf. (3.3))

g(z,w) = (gx @ gw)(z,w) = gx(z)gw(w) . (4.18)

In the proof of the CLT we need the moments of V4 of (4.13). The following theorem
is our main result in this direction.

Theorem 4.2 Let m > 1 and Uy is defined by (4.12) and (4.18), then

E{kz_: U™} < {mlow | JEL {0} - (4.19)

We use the notation

Si=r1) =7y, 20, Hj=FIVFELVFVET.

Then U; is measurable H; and {7y > j} € H;_1. By (4.13), Vo = 352, U;1(7 > ) and
form > 1,
B [UU(T > j)] = BA[UFU(T > 5) | Hj]

- EAlI(TZJ')E/\[Ujm|HJ—1” -
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The following technical result, which is the first step in the proof of Theorem 4.2,
use the independence of X and W together with the regeneration property of X.

Lemma 4.4 |[Decoupling|

Let A = X\ ® Ay, Lelt 7 >0 be fized and let {X]} be an independent copy of {X;}
so that { X} is independent of both {X;} and {W,}. Let &w be a real-valued function
defined on R x {0,1} and for fized j let

Qe = €W(WT]1—1+£+17 Yé_l)’ £20, YTQil =Y

and Ue j be an extension of (4.12) given by

71

Usj= > gx(X)ew(Wi, YA ), s>0. (4.20)

-1
t—’T]_l-}-l

Then for m > 1,
Ex 0., forj=0

where U, = 3 7L, 9x(X))as.

Proof of Lemma 4.4:
Let j > 1. By (4.20),

1 1 1

Ui = 2. ox(X)ew(We, Y3 )= > gx(Xo_4)bw(Wo_ 40 Y )
t=r]_ +1 =1

so that
5, -
Ex [Ugm] |7’fj—1] = E, HE QX(XT;_1+£)5W(WTJ1_1+@Yfil_l)} | Hj—l]
/=1

Sk .
= B[ gx(X)ar]
/=1
= B [ gx(X0)ad"
=0
= E, Uf,
where we have used that

L0 X an 108} = LN 1208} =, (X! 0< <)

where £, denote the simultaneous distribution with initial measure A and X" has the
same distribution as X".
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If 5 =0, then

B U7 | Hjma| = EAHiQX(Xt)ﬁw(Wt,y)}m | FYV v FY

= E\U".

Using the previous lemma and a general moment formula given in Corollary A.1 in
Appendix A we obtain a useful exact formula.

Lemma 4.5 Let U, be defined by (4.12). Let m > 1. Then

E, {EU,T} Z > ( ) > {Wslfj)é),g}{ﬁsz)f]%),g} (4.21)

r=14EAm,r ]'(2)@\/:_—1

where N x NT70 = {(j1,....0,) €N, j1 20, jo > 1--- 4, > 1}, Ay, = {L €
NE: St = m), 5D = (jar . j2) and

J2 Jr J2 Jr
f(2)f_]§(1H1 ]‘gﬁ? st Hl ]gﬁg‘:l’ f(g)z—]al/PQ Igé?/ st P2 ]gf}[y}l.

More genemlly we have for arbitrary A = A\ ® Ay with ]-7 = H{l ) and f}% =

J1
P2 (2) L7

E\{ZT: Ui}
o> (1) 5 {a-ause s (adie, mid) . a)

JENXNTT! ~ '~

Remark 4.1 If A = v, then

n oW J1+1 w
)\G P2f]£ =G PPy [y ) = 75, Py f]mz Tso f52) 4

sV NN
N ~ N

and

Z l/1f = 1/1{2 H” }fmg = 7r81f])((2)£

J1=0 J1=0

Thus (4.22) reduces to (4.21) when X = v.
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Proof of Lemma 4.5:
We rewrite the first term on the left hand side of (4.21) using that {7 > k} = {7 >
k—1}yn{Y3 =0}, so that
E—1

EU(ZT:U,T): () —|—ZE [T > k= DE(UFI(YA  =0) | Hes)] -

k=1

Let Ugr be defined by (4.20) where &w(w,y) = gw(w)(1 — y). By Lemma 4.4 and
Corollary A.1 we find that for £ > 1

EUF1(VA = 0) | Hio)

Tk

= Ev(ng | Hk—l)

- i > (TZ) > {Vlfj),(f}{i:]fgg%/(WTk—1+ti+1)}1()/72;_l =0)  (423)

TN JEN XN
where t; = 51+ -+ + ;. Let
G = FIVFE VFIVFY
Then by conditioning with respect to Gx_; we find that
Ev{l(T > k- 1){ﬁlg%(Wm_ﬁtwl)}l(KZlg_l = 0)}
_ =B {UT > k= 1)H [} (W,,_)}. (4.24)

Hence

||M§ ||M

~DE(UF1(Y | = 0) | Hi)]

k=1

W7 >
( ) e l{ulfﬁ}{Ey{il(T > — 1)]{2]%(”/%_1)}
(0

I
||M§

{V1fj),{£}{7rs2H2fﬁ} '

)]ENXNT 1

(4.25)
Similarly, we find that

B{pl =3 Y () S 5 sl (4.26)

r=1£€Am,, JENXNTT!

and combining (4.25), (4.26) and inserting 7, Hy = 7y, — vy we get

A3 X (7)) X

r=1£€Am,, JENXNTT!
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Now

w 194
sy fj,ﬁ = 7‘-82]2’(2)71{ .

o0

X — ]2 jr
S fS ey = Yo H L HE L e H T
J1=0 71=0
— j2 T
— ﬂ-sl]‘gﬁg Hl ]gﬁg . Hl ]gxl
_ X
- 7T81f]‘(2),£

and (4.21) is proved.
The proof of (4.22) is similar. Instead of (4.25) we get

EA{éUﬁ”}: > ¥ (’Z) 2 X {nf g}{EAZHz W)}

r=14EAm,r

-y ¥ ( ) > Anf g}{AG H2f (4.27)

r=14EAm, jENxN_lr__l

and (4.26) is changed to

E{U5} = DS () > et} (4.28)

r=1LeAm,r JENXNTT!
Combining (4.27), (4.28) and inserting that NG  Hy=)G P,— v, weobtain (4.22).
~S.V ~S.V
e 2% 0

Remark 4.2 [f m =1, then by (4.21) we find that

T
=B Y Ui} = {mgx Hmoow)

which is consistent with (4.9).

Remark 4.3 Ifm = 2. Then

T o0
EV{E Uf} = {7, 9% H7ms gt} + 22{71'51] 1}{7r52] P, } :
7=0 =1
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Remark 4.4 By (4.10), (4.13) and (4.22) we find that for general A = A\ @ g, g =
gx & gw,

E\Vo = EAVg = E()‘ - V)(Png & szgw) + E{VIH{QX}{XQS VP5+19W} .

i=0 i=0

~ o~

If gx is small, Ay = w3 and sup; TG Pi™ gw| < oo then E.V, is finite. By Lemma
~S.V

Al takingp =146, [ = Pg+1|gw| and A = w, we have that

1+6 1 _né_ 146
J+1 1476 1476 1426 1416 -
2 (G B |9W|) e < CQ{EW2 T }{7"2 lgw | 7 }

with n € (0,1) and 6 > 0 arbitrary.

Proof of Theorem 4.2: Assume that gy > 0. By Cauchy-Schwartz, recalling that
27:1 gj =m,

|72 fitn o] = |7T2fg§1VP§2fg§zV Pz”fg?ﬂ
Exr,lgw [ (Wo) -+ |gw | (W;,)
m (e
II Egrf”)|gw|(
r=1

= E7r2|gW|m(W0)
Inserting (4.29) into (4.21) we obtain

IA

3

&

A w)

IA

IN

{W52|9W|m}§: > (?) 3 {ml]ggﬂ{é[gﬁ? "'Hfr]gggl}

r=1 feAm,r ](2)EN_|7:_1

= {malow|" E{UT}

from which (4.19) follows trivially.

4.6 Moment bounds of V,, expressed in terms of bandwidth

The following results describe how higher order moments of 1§ behave as a function of

the bandwidth. This is directly related to (4.4) and (4.5).
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Theorem 4.3 Let gx = K, and assume that the conditions Ky, Ky, P1 and (4.18)
hold. Then for all k,m > 1,

Ey|%|2m — Eu|‘/gh|2m S dm,kh_2m+1/(k+1) (430)

where
Ak def 7Tst+1g2m (k+1) }{E k+1 (’]’ T 1) }{d k+1}

and the sequence of constants {d. } is only dependent upon N, and sup, K(u).
First we need the following lemma which gives a more direct upper bound of E|V;?.

Lemma 4.6 For all p> 0 and ¢ € (0,00)

_1 s
BVl < B, T+ B, T4 (T 4 10+

T
> 1P
7=0

Proof of Lemma 4.6: Tet r=1+8and ¢g=1+6""!

E, Vol =
P
< B |mas 10307 + 1)
= F, max U + 1P
0<;<T
1 1
< E,r |max |U;|P"| E, o |T + 17
0<5<T
1
< | B T 1
[
Proof of Theorem 4.3:
By Lemma 4.6 with p = 2m and 6 = k,
+
BVo" < B[S0 02| B, BT 7 4 1Y) (4.31)
7=0
From Theorem 4.2 we have
D) < lgw P OTOIE, (U )] (4.32)
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and by KT (Lemma 4.1 with §, = 1) ,
Ey |UgX|2m(k+1) S d;mh—Zm(k—}—l)—l—l (433)

where it is also shown that the sequence of constants {d/ } is only dependent upon N,
and sup, K (u).
Inserting (4.32) and (4.33) into (4.31) we get (4.30).

4.7 Asymptotic variance

Exact information about the first order properties of the asymptotic variance is im-
portant (cf. (4.2) and (4.3)). This is the content of the next result. Our method of
proof use a truncation technique based on the notion of a generalized autocovariance
function. We believe that the latter concept has some independent interest.

Theorem 4.4 Assume that gx, = K, and that the conditions Ky, K,, P1,P5, and
Wy with m =1 and k > 1 hold. Then, if p,,, =0, ash |0

192 sy = P ()] [ K2 (w)du} {mougi } + o(1)
We also have that

h0-|2£7X,h®gW| = psl /A du {77529w} + 0 . (4.34)

In the proof of Theorem 4.4 we use an extension of the cross covariance function
defined for ergodic processes. Let Z denote set of integers and g, f real valued measur-

able functions defined on £. Then

v () E P, (e Z (4.35)

and v, = 7,,. Note that v,, = {7252} 'ew where ¢ is the covariance function for
the stationary process {gw(W;), t > 0} (cf. Section 3).

Lemma 4.7 Assume that g(x,w) = gx(z)gw(w), gx is small, p,, = 0, and the W-
process satisfies Wy with m =1 and k > 1. Then

Z Yax () Vg (£) - (4.36)

f=—0c0

We also have that

Tl = 2 Vablol=sm (0) — Fslglmslg - | - (4.37)

f=—00
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Proof of LLemma 4.7:
Our proof is based upon Theorem A.2. By (4.31) and (4.32) with m = 1 and the
smallness of ¢y,

2k-|—2
ms(g®) + 2n,1,P G, 9 = E,V} <co772k+1|g |2 k) B, k+1']' < 00 .

To prove that the last term is finite note first that

2k42 2k+2

E T & =EyT % . (4.38)

By (2.1), my > {®289}r2. Hence w3 > ¢1v3 and the right hand side of (4.38) is finite if

2k+2
E.,7T * <oo.

By Lemma 4.3 this is true if
Zz (k+2)/ a < o0 (4.39)

=1

But (4.39) follows from W, and hence (A.14) is fulfilled. Assume that gw,, is defined
by (A.13). Let

g (7, w) = gx () gwm(w)
and &, = gwm — Sofbm With g, = 75, 9w,m. Then, using that for general functions ¢
and ¢’

Vox®gw 9% ®aty = Vax.g% ~ Vow.ghys

we obtain

|7.gm WIm—9x @S2 hm (g) |

"Vgx@gwm ax®ém) (£)

|
= Pox (O] ot (0)]
|

-1 7T2]

Iw,m

= s (O)] {ma(s2)} Pién

< {ma(52)} ™ x (0) | Covay (gwim (Wo), (W) + By [giion (Wo)| Ex, [€6] |
< {ma(52)} % (0) 8 lgwm |12k i jaqeany @’ &
< {ma(s2)} 'vx(0) 16 HQWH1/2 (k1) & k/(k—H) (4.40)

where we have used a strong mixing inequality (cf. Hall & Heyde, 1980, Corollary A.2,
p. 278),

‘COV” (gW’m(WO)’ fm(Wﬁ))‘ < 8H9W|‘1/2(k+1) Hfm”l/Q(}H.l) aif/(k+1)

and that E,, [5m] —0. By W,

S (+/kg, < oo

=1
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Since for p > 0 -2, Pay < oo implies that 3°72, a/p < 00, 1t follows that

o)

/=1

< 0

Together with
i B(41) o N/ (R42)
a, < ZO‘Z < o0
/=1 /=1
this shows that (A.16) holds and (4.36) follows from Theorem A.2.

The last part of the lemma follows in the same way.

Remark 4.5 The formulae (4.36) and (4.37) can be viewed as generalizations of the
formulae Var(n='/? Yio Xj) = 202, Cou( Xy, Xi_p)+o(1) in case { X1} is a stationary

process with an absolutely summable covariance function.

Proof of Theorem 4.4:
By Lemma 4.7

gx h@gw Z Yox, w (O Ygw ()

and for /£ > 0,
hFYgX,h (E) = h7rsl IKLh Pf[(a:,h = 0(1)

by Ps (cf. KT proof of Lemma 4.2). Since
0 (O < [ ol + ) K () P + B, No() )l < o,
we can apply the dominated convergence theorem, i.e.,

1}1{51 hO'gX W@ — {1}1{8 h’ygxh )}’ng(g)
14

_ {hm WY (0) }a0 (0)

— {hm hrs, K. h}{”@g%’}

o[ K¥0rin} i}

The proof of (4.34) is similar since

7(|g|7|g|—8#|g|)(€) = Yox (E)'Vlgwl(g) — Voax.s1 (E)Vlgwl,@ (E){Wﬁ Konims,lgwl

and
Tslglmslg - s| = {msy Ko p H{ms, Ko - $1} {75, [gw [} 75, 9w - 2]} -
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4.8 Main results

Theorem 4.5 Assume that {X;} and {W,;} are independent and thalt Ky, Ky, Ky, Py,
Py, Py, Ps, Pg and Wy hold. Let k > 1 and m > 2. Assume that for some ¢ > 0,

m— 1

B << P 6, = .
nS m—1/(k+1)

Then for all A = M\ ® 7o

Apgin = S P (Ko )2 S (Ko @ gw) == N(0, / K*(u)du}{mgh }) .

Proof of Theorem 4.5: Recall that for C' =Cy x Cy, C; € &, 1= 1,2,

Te(n) = 3 16y (X0)1e, (W)

t=0

represents the number of visits to C' of {(Xt, W;)} up to time n. We choose C; and C;
so that both sets are small. Then by KT (second part of Th. 4.3) using K, Kz, Py,
Py, Py, Pg
N def Sn(Kzp,
Pcl( ) ( )
TO1 XE2( )

with £ = E; X F3, and where p¢, (2) = ps,(2)/75,1¢,. By KT (Corollary 2.1)

Tc(n) . ’R'Slc
TchEQ(n) 71—5101 XE2

= Py (:L’) + OP(l)

+o(1) as. =my(Cy) +o0(l) as.
We can write

N _ Te( 1/2 ¢ _
A = Lo, (2)) ”2{#} {16 RS9} = ALY, say
1X

We have that
A = {pz, (2)72(Ca)} + 0p(1)

Hence, it is enough to prove that

Aghn%./\/@,pgl(;v){/[@ }{’”gw ) (4.41)

7T20

where gi(z,w) = Ky p(2)gw(w).

By P; and P, and Bochner theorem, (4.1) is satisfied. From Theorem 4.3 and
Theorem 4.4 the conditions (4.2) - (4.5) are fulfilled.

It remains to verify (4.7). Let go = coln, |gw| where ¢o is an appropriate constant.
Then |hgn| < go. We have to prove that

P/\(Vgo < OO) =1
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But this is fulfilled if E\V,, < co. By Remark 4.4 this is true if

146

T2 mylgw| 7 < oo (4.42)

E.,
<

for some 6 > 0 and € (0,1). By W4 and Lemma 4.3
2m
7i-2|gW|2m(k+1) < 00, E7r27'2m+T < 00 .

Thus (4.42) holds.
Hence

A2, -5 N(0,02)

and

J%’ = {7751101}_1{7"52102}_1}751 /[ du {T‘-SQgW}
It follows that (4.41) holds.

5 Examples and simulations

The purpose of this section is to illustrate the small sample properties of the estimator
f(;t) defined by (3.1). As can be seen from Myklebust et al (1999) it is not simple to
find examples of null recurrent and F-null recurrent processes. The trivial example is
the random walk given by

Xt = Xt—l + €t (51)

where {e;} consists of independent identical distributed variables with strictly positive
density function with respect to the Lebesgue measure almost everywhere on R. This
process is 3-null recurrent with # = 1/2. Another class of null recurrent processes is
the process given by

Xe = 1(|Xooq| S M)g(Xiq) + 1(| X | > M) X + e

for some finite M > 0 and some measurable function ¢ finite on |z| < M. This process
behaves as a random walk for large X;’s. Other examples of null recurrent processes are
the first order threshold model studied by Meyn and Tweedie (1994) and the exponential
autoregressive process looked at by Cline and Pu (1997).

We will look at some of these examples in the context of (1.1) and (3.1). We
will examine the finite sample properties of our estimators by means of simulations.
A difficult and largely unresolved problem is that of choosing a proper bandwidth.
Theorem 3.1 and Theorem 4.4 of KT only give the allowable rate as n tends to infinity.
It should be noted that these rates are different from the stationary case, n effectively
being replaced by n?. It practice we have found it useful to use cross-validation and to
let the bandwidth & depend on z. In fact we have typically let A, be proportional to
n=%{ps(x)}'/® where p(z) could be thought of as the locally estimated density.

We will look at two aspects of the estimation problem. In Figures 1-4 we concen-
trate on the accuracy of the estimation of the function f(z) for the model (1.1). Only
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single realizations are shown, but they are representative for the quality of the estim-
ates. In Figure 5 we turn to the finite sample approximation of the asymptotic normal
distribution derived in Theorems 3.1 and 4.5.

In the sequence of plots given in Figures 1-3 we look at the estimate of f(x) defined
in (3.1). In all cases X; is the random walk process given in (5.1), with {e;} consisting
of iid standard normal variables. In Figure 2 {W;} has been chosen to be the stationary
Gaussian AR process

Wt = 0.8Wt_1 + &

where {e;} consists of iid standard normal variables independent of {e;}, whereas in
Figures 1 and 3 {W;} is simply identical to {e;}. The function f(z) has taken to be
f(z) =z, f(z) = \/|z|] and f(z) = 2? in Figures 1-3, respectively. Both X; and Z; of
(1.1) have been plotted in the a)-parts of the figures. (The traces are virtually coinciding
in Figure la due to the scale). In all of the cases f(z) is reasonably well estimated for
the region for which we have data — and in all cases with the moderate sample size of
500 (Note that Figure 3¢ gives a magnified picture in the region —10 < z < 10). The
traces of Figures 2a and 3a do not look particularly well cointegrated perhaps, but this
is due to the nonlinear nature of the cointegrating relationship, where {Z; — f(X})} is
stationary, whilst both {X;} and {Z,} are nonstationary. In Figures 2¢ and 2d we have
also included plots of the trace and of the estimated Mw(x) = E(Wt | Wt—l = z) for
the estimated residual process

Wt:Zt_f(Xt)-

It is seen from Figure 2 that the stationary AR behavior of {W;} is well recovered,
and thus gives a very informal verification of the cointegrating property. In a more
stringent approach the properties of Mw(x) would have to be evaluated along the lines
of Theorem 4.4 of KT . The plots of M\W(:l?) for the other two cases were similar.

Our last single realization example is for the same case as for Figure 1, except
that W; is now taken to be a random walk W; = W;_; 4+ &;, which would imply that
{X:} is not cointegrated with {Z;}. It is not difficult to show theoretically that we get
inconsistent estimates of f(z) in this situation, and this is clearly revealed in Figure
4b; it is also seen that the two traces drift apart in Figure 4a.

Estimates similar to those in Figures 1-4 have been presented in the cointegration
literature. Our contribution, which we believe to be new, is that we have singled out
classes of processes and assumptions for which an asymptotic theory of these estimates
can be constructed, such that it should be possible to work out confidence intervals and
bands (and possibly stringent tests of nonlinear cointegration in the sense discussed
in this paper). Our last experiment indicates the finite sample approximation to the
asymptotic distribution of Theorem 3.1.

The quality of the sample approximation has to be judged using a multitude of
realizations. A problem not encountered in the stationary case is that the simulated
realizations may cover very different z-regions. (This is one reason for using only one
realization in Figures 1-4.) Hence, for a fixed x = 2', close to the starting value
Xo = 0, say, of each realization, some realizations may have many observations in
the neighborhood of z/, whereas other realizations may have none observations in the
vicinity of z’ for the sample size we are considering. This kind of behavior does not
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occur in the stationary case, where the expected time until the process reaches z’
is always finite and in practice small, when |z — 2/| is small. This means that in the
verification of Theorem 3.1 we can either keep z fixed and wait until we have sufficiently
many observations close to x; the other realizations being discarded, or we can choose
a central realization-dependent value of z; e.g. the modal value of the sample, for
studying the normalized ratio (3.2) of Theorem 3.1

We have chosen to adopt both procedures, although clearly we introduce some ex-
traneous stochastics into the problem in the latter case. The approximation to normality
as a function of sample size, for the quantity

b 3" Kyh,, /2
W] [f(z) — =]

derived from the simple cointegrated system
Xi=Xio1 + e, Zy = Xy + &4

at the point x = 7.5 is shown in Figure 5a. 1000 realizations have been used, and a
particular realization is admitted into the evaluation as respectively 100, 200, 300, 500
and 800 observations are accumulated in the interval (5,10). For Figure 7b, on the other
hand, a fixed point x has not been used; rather x has been taken to be the modal value
and is thus varying from one realization to another. In this case the length of the time
series has been 500, 1000 and 3000, respectively.

The quality of the approximation seems to be quite good with 500 observations in
the “relevant” region surrounding z.

2x

A Appendix

In this section we assume that {X;} is an aperiodic ¢-irreducible Markov chain with
state space (F,E) where £ is countably generated. We also assume that the transition
probability P satisfies a minorization inequality, i.e., P > s ® v and that {X;} is Harris
recurrent.

A.1 Higher order moments

Theorem A.1 Let g = {g;} be a sequence of real-valued measurable functions defined
on F. Let

Uy =U =2 g;(X;).
7=0
Then

B0t =30 5 () et (A1)

r=14EAm,r
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where A, , = {{ € N7 2=t l; = mj, (T;) = <51!71~€r!)’

Vo= > HM G HPLn oo HOL. 1 (A.2)

jENXNT 1 J1 g]1+]2 9914 - +ar

with H=P —sQv.

Remark A.1 If g; = g then
¢T7£ — Z Hﬁ ]gﬁ Hj2+1]g42 L. er+1]gerl
JENT
= G (I,H) - G5 (I,H)G, 9 -

Hence this result partly generalize Theorem A.1. in KT .

Proof of Theorem A.l:
Let

Sk:jl—I--"—I-jk, kzl,...,r

and

B,=FfVFr,, A, =(1-Y,).
By KT (Lemma A.3) we can write

Z > ( ) wee o= D0 Zjg (A.3)

r=14€8m,r JEN XN
with )
def =
Zip = g (X)) - g0 (Xs) T Aw - (A.4)

It is sufficient to prove that
El"]ﬁf:??bﬁf? {e Amﬂa, r = 1,...,m .

We will prove this by induction on r. When r = 1, then

-1

Jre= 3 g (X)) IT Ax = Zg =)
71=0 k=0 j1=0
and
E.Jis = EE g (X5)1(r > 5)] = ZHﬂ]ghl_@bM.
]1 =0 ]1 =0
Assume that these formulae are correct for r — 1. Let ¢ be fixed, Z; = Z;, and
Iy = (J1s+--5Jr). Then
Z] = Z](T 1)A5T 1DST‘ 1,07
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where 4
def o0 sr_1+ir—1
del Ly .
Dsr—lvj'r‘ - Z gST_1+jT(X5T—1+]T){ H Ak}
Jr=1 k=sr_1+1
so that

Ju= Y Zi A, D

Sr—1 Sr—1,Jr *
JEN XN

Taking conditional expectation with respect to B, _, 41 gives

E Zj('r 1)A5r 1D5r 1,7 |BS7‘—1+1:| = Zj(r 1)A5r 1E[D8r—1,jr Bsr—1+1:|
and
sp—1+gr—1
EI:DST—lsz Bsr—1+1] = E[g§:—1+jr(X5T—1+jT){ H Ak} | BS‘I‘—1+1:|
k=sr_1+1
jir—1
= Ex, 4 [gﬁ:—l‘i']r jr—1) {]H Ak}] (A.5)
so that .
> E[Dsr_m'r Bsr_1+1] = ¢715:’£)1(X5T_1+1) (A.6)
Jr=1
where .
¢15Tr7?l = Z H]T_lgﬁ: 1+Jr
Jr=1
and

o (Xo)E EB[A, ¢ (Xeia1) | Ba_]
= Ex,_, [67° (X1)Y)]
- Hqﬁsr ° (X))

The product (A.4) is reduced from r to r — 1 since

g.i::ll (X,S'r—l) ' H¢i: 1(X5r—1) = [I lT 1H¢1T ]( Sr— 1)

= 9,Z iO(Xsr_l), say . (A7)
Hence, by (A.3), (A.5), (A.6), (A.7) we obtain
Eodri= Y Zig—e Y E[Ds i | Bo ]
j(r—1)eNT—2 Jjr=1
= E{ Y Zipoudh (X))}

J(r=1)eNT—2

= E{ X Zipo)

J(r=1)eNT—2
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where
Sp—1— -1

Z]/'(T—l),ﬁ = gfi (XS1) U gf::z (Xsr 2)95: 10 Sp_ 1 H Ak

By the induction hypotheses we are through since

1 lr—1701( ) = gs: 110( ) =11, [E ergf:—1+]‘r]($) :

sp_1 9sp_q

jrzl
O
Corollary A.1 Let U, = Y7_ya;9(X;). Then E, [Ug] is given by (A.1) with
VA Z divf(x){aﬁafﬁm §I+ Jm} (A.8)
JEN XN
where ‘ '
dj}f = Hﬁ]gel H]T]gerl .
In particular for m = 1,2 we have that
B, |U,| = Edj(:c)aj, d; = H'I,1
E.[Uz] = Z Ja; + QZZCZM Hajaer;}y, dje=HI,H'L,1 . (4.9)
Proof of Corollary A.1:
We obtain (A.8) from (A.2) with g; = a;g. With m = 2 we have
9 2
B U2 = 3 , )+ Y
- LA 1 LEA 2
= P12(x) + 2¢, (1,1)( )
— [Z H s 1) + 2 30 HO L, | [0 H2 L, 1 (2)
n=0 J1=0 J2=1
= Z HigXz)+23 > HI, Hogjps(a) .
7=0 7=0s=1
Hence . o e
B[U2] = X a{vHigy +2 30 3 ajap {vH L, H'g}
7=0 7=0s=1
O

Remark A.2 In particular if a; =1 then (A.9) gives the formulae
E, {Ug] =r.q, E, [Ui] = 7,9° + 21, HG, 9 . (A.10)
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A.2 Moment inequality

Lemma A.1 Assume that (2.1) holds. Let p > 1 and n € (0,1) and f a real-valued
measurable function defined on F. Then for any probability measure A

)\[wa]t < ey EtA/p [7_1+2(p—1)] Sgg )\t/qu|f|q7
J>

t=p/(1+n(p—1)), q=p/nlp-—1),

and where ¢y s a universal constant only dependent upon p and 7.

Proof of Lemma A.1:

Let ¢ =p/(p—1),r=4¢ /(1 —n),w=1/¢,v=1/¢,u=2/¢". Then u =v + w,
ptHqgt+rt=11/t=1/p+1/q, pu=2(p—1) and quv = n~".

From the right hand side of (2.4) and by the Cauchy Schwartz inequality, we get

(Gof] (@) = [ E{1(r = X}

< [PVt = eI}

J

< [P )PP}
= [P = ) P} (7))

J

(S 7Patr 2 )" (Pl se) " ()

J J

t

IN

= VP71 say.

We apply the Cauchy Schwartz inequality with with p; = p/t and ¢; = ¢/t. This
gives

t

/\[GSW] I < e NV gt
< a[prv]|ar]
a3 7P 2 )| [ ]

i=0 i=0

N Sy | e K P e VT Tl K

i=0 i=0

> (e A1t/ :
&[0 2Py (7 > )] sup A7 P

7=0

IN

IN

A7 400 s X
J2Z

and
o0 (o @]

e =[] ]

i=0 i=0
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A.3 Asymptotic formulae

Let k be an integer. Then (cf. (4.35))
Vo1 (k) = 7Ts]gP|k|]f1

and v, (k) = 7y,4(k).

Lemma A.2 Assume that g is a small function in one variable such that p, = 7,9 = 0.

Then .
- E V9 (0)
f=—c0
and when p, = 7,9 # 0, then
o = () Tlg =95+ D Yoamenn(D) (A.11)
I=—c0

Proof of Lemma A.2:
We have by (A.10) that

0l = w9 — wig+ 2n,1,PG, g — 2u,7,(s9)

g

= mg’ + pl+ 2w [, PGy (g — spy) — 2p,m4(sg) -
Let G(") =372 Pi. Then

G =G4 PGy, — G @, . (A.12)

Let A = 7,1, and [ = G, (g — spy). Then [A| = 7,1} (the total variation of ) and
by (A.12),

msly PGy (g — spg) = Zﬂslgpj](g—sug)l TAPYf = 27(979—8;@)(].) + AP S

J=1 J=1

Since g is small, the function f is bounded. By Nummelin(1984, Theorem 6.10, p 112),

AP f] = o(1) .
Hence
27,1, PGy (g — spty) Z Vigrg—sug) (k) — 7sg® + p1g7s(gs) -
f=—o00

Thus (A.11) holds.
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Lemma A.3 Let go,fo > 0 be real-valued functions such that w1, PG, fo <
o0o. Moreover, let {gn} and {f,} be sequences of real-valued functions such that

go — gas. [m, fu — [ as. (1] and sup,, |9, < go, sup, |ful < fo. Then

limngl, PG, f, =x1,PG;,[.

Proof of Lemma A.3: Let ¢, = PG, f, and & = PG, fo so that |€,] < &. We

have to prove that

{n — (= PG, [ as. [7s)

Let D be the set of points where f, fails to converge towards f. Then 7,{G1p > 0} =0
with G = Y32, P’ since 7, is a maximal irreducibel measure. Hence m,{ PG, ,1p >
0} = 0. The rest of the proof follows directly from the standard dominated convergence
theorem since

TS]ngGs,yfn = Trs[gmfn — ﬂ-s(gm . hn),
where |(gm - &) < (g0 - &) and

(gm - &n) — (g-h) a.s. [7s] .

O
A candidate for an approximating sequence {g,,, } is given by
Im = 9glo,, (A.13)

where {C,,} be an increasing sequence of small sets so that C,, T £ and ¢ is bounded
on C,, for all m.

Theorem A.2 Let LP(xy) be the space of LP ws-integrable functions and assume that
g € Ll(ws) N LQ(’/TS), Teq* + 27511y PG ulg] < o0 . (A.14)
Let {g,,} be given by (A.13) and pi,, = pig,,. Then for each {

Vgrm gm—Stim (ﬁ) T Vag—sug (ﬁ) (A-15)

and

EUU; = ﬂ-s(g)ﬂ—s(g - g ' S) —I_ h’nfll'l{ Z ’ygmvgm_S#m (ﬁ)} .

f=—c0

Suppose that for all m > 1 and £ > 0,

Yomgm=sum (O] < @z, Y ar < oo (A.16)
/=1



38 B APPENDIX

Then with absolutely convergence,
B0 = (1) (A7)
/=1
when wsg = 0 and in general

El,Ug2 =ms(g)ms(g —g-s)+ 2797g_5ﬂ(€) )

/=1

Proof of Theorem A.2:
Let fn = gm — $Tsgm, 9o = |g] and fo = |g| + s. By Lemma A.2 and Lemma A.3

BU2 = m,g* + nlg — 2mgmyg - s+ 2m, 0, PGy, (g — sp1)
= 19"+ ng — 2w gmeg - S + lign{QwslngGw(gm — spm)}

= 7592 —I_ Wzg - 27T5g7rsg ] + 1%{[’1{2 Z F}/gmygm_sﬂm (E)}
/=1
= magms(g — g+ 5) Fim{D Vg grmmsin (0)} -
/=1
It is obvious that (A.15) holds and if (A.16) holds then

Z'nggm—snm (ﬁ) e Z'Vg,g—sn(g) (A-18)
/=1 /=1

by the dominated convergence theorem. From (A.14) and (A.18) we can conclude that
(A.17) is true.

O
B Appendix
Proof of Lemma 4.2:
Let W, = {Wfé, k > 0}. Then, we start by showing that
W, 4 \y when )\ = \ (B.1)
where .
A= 0y, Oy = {MH{si}P, P=Po, . (B.2)

£=0

In order to prove (B.1) it is enough to show that for all » > 0 and for all A; € &,

Py(W,1 € Ao,... . Wy € A,) = PX(WO € Aoy, W €A, (B.3)
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Let ko =goand ky =30+ g1+ -+ + g0 for £ =0,...,r. We have
PA(Woy € Ag - Wiy € A,)

— io: i iO:P/b(Wko €Ay - WkrEAT)P/\1<T(}:j0,...,T7,1:jT)

Jjo=071=1 jr=1
=Y el PP LN EP s, - b )
Jo=071=1 jr=1
= Maply e lal (B.4)

where

bg = 1/1Hf_131, { 2 0.
Hence (B.3) holds.

From

p > (52 @v2)®P,, =52 @ 12®,,

we obtain the minorization inequality (4.14). Let H =P — s @ v. Then

~

H=FPd, —s:@1nd, = (PQ — 8 ®1)d, = H9,,, Q=0Q.9,

with Qz(z, A) = (1 — s9(w)) ™ Hay(w, A)1(s2(w) < 1) + 1(s2(w) = 1). The next task is
to prove (4.15), i.e.
W! = (WT,YTZ) 4 PV* when )\ =)

where W* denotes the split chain generated by P and (5 1/) Let P* be the transition
probablhty function for this split chain and let P be the transition probablhty for W'

We have to prove that
P/ — P*

First we recall the structure of a split chain. Suppose that P is a transition prob-
ability which satisfies P > s @ v. Then the corresponding the split chain has transition
probability P which satisfies,

P (20 X yo, dz % y) = yov P"~" (dz) [ys(x) + (1 = y)(1 = s(x))]
+H(1 = yo)QP" (w0, dz)[ys(z) + (1 = y)(1 = s(x))|, n>1 (B.S5)

In our case this gives for n = 1;
P*(wo X yo, dw x y) = yov (dw) [yf(w) + (1 —=y)(1 - f(w))]
+(1 = 50)Q(wo, dw) [ys (w) + (1 = y)(1 = 5(w))|  (B.6)

by definition of the split chain. We look closer at P’ which by (B.2) satisfies

P = bP,
~ /=1
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We replace P4 by the right hand side of the following expression

Pi(wo % yo, dw x y) = yora Py (dw) [ys(w) + (1 = y)(1 = 53(w))]
+(1 = y0)Q2 P53~ (wo, dw) [ys(w)+] (1 — y)(1 — s(w))  (B.7)

and

EbEVQPQZ_l = VZq)lq = g, szszzz_l = Q2q)u1 = Q . (3-8)
=1 =1

~

Then we obtain (4.15) from (B.6) -(B.8). The first equality in (4.16) follows from (4.15)
and the second one is the occupation formulae given by (2.4). When A = A\ X 7y we
get

o0

3 ‘ ‘
)\ = 7T2q))\1 = Z{/\lﬂlSl}ﬂ'QP = 72{)\105171,181} = T2
=0
If \=v=wv; Xvy, then A =v and v(§ = 7y since
~ ~RS Y
Is = s, .

Proof of Lemma 4.3: The waiting times, {6;, 7 > 0} are given by é; = 7']-1 — 7']-1_1.

Let

boy=Plb1+ - 6,=k), k>n
and by ; = by. Then

b — Vlﬂf_lsl, forn=1and k£ >1
k= by", forn>1and k> 1

where “xn 7 denotes n-times convolution. The n-steps transition probability P™ is given

by
P" = {3 bunsi P}, n>1. (B.9)

Since W is geometric ergodic, Nummelin(1984, Th.6.14) thereby there exists a non-
negative function M so that 73(M) < oo and a constant p € (0,1) so that

Py (z, ) —m|| < M(2)p", z€E, n>0.
Thus by (B.9)

P () =7l < D bunsill P () = 7]

i=0

< Z bn,n+jM($)pn
7=0

< M(2)p" D bunsip’
7=0

< M(z)p" . (B.10)
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Hence by (B.10) the W-process is geometric ergodic.

For the ergodic W-process, we have that

Qy = sup Hg(A,B), eg(A,B):ﬂ']AP;]Bl—ﬂ'lAﬂ'lB .
A,BEE

Here,

~7

0 (A,B) = W]AEZIBl —7T1A7T13 = Eb&]‘{]APQjIB —7T1A7T13} = Zb&j(gj(A,B) .

j=£ =L
That is . .
< , , — o < . ]
a < ;b&]{A?EIG)EH](A, B)} ;bgda] < ay (B.11)

By Bolthausen (1982) in general

Zﬁkag<oo — B, <.

/=1
By (B.11) it follows that

Ylfay<oo = Y lra <oo.

=1 =t
Hence (4.17) is true. O
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