A Service of

[) [J
(] [)
J ﬂ Leibniz-Informationszentrum
° Wirtschaft
o Leibniz Information Centre
h for Economics

Make Your Publications Visible.

Ruckdeschel, Peter

Working Paper
Robust Kalman filtering

SFB 373 Discussion Paper, No. 2000,59

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,

Humboldt University Berlin

Suggested Citation: Ruckdeschel, Peter (2000) : Robust Kalman filtering, SFB 373 Discussion Paper,
No. 2000,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification

and Simulation of Economic Processes, Berlin,

https://nbn-resolving.de/urn:nbn:de:kobv:11-10047853

This Version is available at:
https://hdl.handle.net/10419/62190

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10047853%0A
https://hdl.handle.net/10419/62190
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Robust Kalman Filtering
Peter Ruckdeschel

As already pointed out in Hérdle, Klinke, and Miiller (2000, Chapter 10), state-
space models are very useful and flexible in the sense that various recursive
methods for time-dependent situations can be formulated as general solutions
of filtering, smoothing and prediction problems in state-space models.

The classically optimal solutions to these problems, the Kalman-type filters,
smoothers and predictors are all based on second moments of the underlying
distributions, however. This is clearly a robustness problem, i.e. small devi-
ations from the model assumptions will cause large effects on the quality of
the filter/smoother/predictor. As a way out for the filtering problem—at least
for one type of “danger”—we suggest instead using robust Kalman filtering
methods such as described in this tutorial.

All routines for robust Kalman filtering, which will be explained in the follow-
ing, are part of the kalman quantlib. Notice that the quantlets for Kalman
filtering explained in Hardle, Klinke, and Miiller (2000, Chapter 10) are part
of quantlib times.

1 State-Space Models and Outliers

{X, Y} = kemitor2(T, x0, H, F, ErrY, ErrX)
simulates observations and states of a time-invariant state-space
model

For the definition and notation of a state-space model we refer to Hérdle,
Klinke, and Miiller (2000, Section 10.1); we, too, will confine ourselves to dis-
crete time; in particular we make the same assumptions on the vectors v; and
wy and the initial state o given in equations (2) and (3) there.

For our purposes, however, also the state is interesting, so we modified the
quantlet kemitor by just adding an extra output X for it. This means that
whenever you have used the command line

y = kemitor(T, x0, H, F, ey, ex)
you may as well use

erg = kemitor2(T, x0, H, F, ey, ex)
y=erg.Y

and additionally, you get the simulated states as a T' X n matrix x, using
x=erg.X

With these slight modifications, the examples to kemitor stay valid. An ex-
ample also using the state-simulations will be presented in the Subsection 1.2.

1.1 Outliers and Robustness Problems

{X, Ind} = epscontnorm(T, eps, mid, Cid, mcont, Ccont,
DirNorm)
simulates observations from an g-contaminated multivariate nor-
mal distribution

A complication of the state-space model and the classical Kalman filter enters
if we allow for deviations from the model assumptions. In the i.i.d. situation,
this led to the development of robustness theory, for which we refer the reader
e.g. to Huber (1981), Hampel et al. (1986) , Rieder (1994).

A common way to model this deviation are e-contaminations used by the fa-
mous Huber (1964). The considered variable X no longer always comes from
a fixed distribution Pi9°3! but rather from a neighborhood around this fixed
central/ideal distribution P4¢3! and X ~ preal

Preal — (1 _ E)Pideal +eK (1)

for some arbitrary distribution K.

In our context we will consider only multivariate normal distributions as central
distributions, i.e. P9 = A5 (u;q,Ciq). As contaminating distributions we
allow for Dirac-distributions, symmetric Dirac-distributions and again normal.
This is done using the quantlet epscontnorm.

1.1.1 Example 1

How it works may be seen by the following example where we generate 500
observations from

oo (().(3 1)) +om((2)(3 o))

and then plot them, in green those coming from the ideal, in red those from
the contaminating distribution, see Figure 1.

library("xplore")

library("plot")

library("kalman")

randomize (0)

T = 500

eps = 0.1

mid=#(0,0)

Cid = #(2,1)"#(1,1)

mcont=#(3,3)

Ccont = #(3,0)~#(0,0.2)

erg=epscontnorm(T,eps,mid,Cid,mcont,Ccont,0)

color=2%*erg.Ind+2
; sets color to 2 (green) for "clean" data
; and 4 (red) for contaminated data

data=erg.X

setmaskp(data,color, 3, 8)

disp = createdisplay(1,1)

show(disp,1,1,data)

QrkalmOl.xpl

In the situation of state-space models deviations can have quite different effects,
depending on where they enter. In the time-series context there is a common

Figure 1: 500 observations from e-contaminated Normal distribution; ideal
observations are green squares, contaminated observations are red triangles.

terminology due to Fox (1972) distinguishing between additive outliers (AO)
and innovation outliers (10).

1.1.2 Additive Outliers

AOQ’s enter in the observation-equation y; = Hx;+wvy, that is v; is contaminated.
As a consequence, singular observations will be erroneously large, but note that
only a single observation is affected, as the error does not enter the state of the
model.

An example for this can be seen in satellite navigation. The state of the system
is the 3 dimensions of the satellite in space, whereas ground control receives a
possibly noisy signal about this state. An AO could now be caused by a short
defect in the observation device.

So the task of the estimator is to down-weight the influence of large obesrvations
for the state estimation. This is what our robust Kalman filters rL.S and rIC
are designed for.

1.1.3 Innovation Outliers

Contrary to AQ’s, I0’s enter in the state-equation x; = Fx; 1 + wg, where wy
is contaminated. Here an outlier will have effect also for the subsequent states
and hence for the observations, too.

To return to our example from the AQ’s, an IO could be caused by an asteroid
hitting the the satellite and thereby deviating it from its “should-be” track.

This time the task of the estimator is to realize this and to adapt itself as fast
as possible to the new situation. Of course, down-weighting the observations’
influence will make detecting state deviations even harder, so simultaneous
treatment of AO’s and IO’s will in general be less effective than either of the
two alone. Additionally, for detecting a deviation from the “should-be” track,
a single observation plus the estimation of the state based on the observations
up to then is generally not sufficient. So for this task, it is better to drop strict
recursivity in the sense that in stead of just one observation plus the estimation
of the state based on the observations up to then one should rather base the
estimation on the last p observations and smoothed/filtered/predicted values
Ty_jj¢, ¢ = —1,...,p — 2. Simultaneous robust smoothers/filters designed for
that purpose have not yet been implementated into XploRe up to now.

1.1.4 Other Types of Outliers

This distinction between AQ and IO is by no means the only possible one—
other types have been considered such as patchy outliers (PO) and substi-
tutive outliers (SO) which will be mentioned later in this chapter.

1.2 Examples of AO’s and 10’s in XploRe

To give you an impression of how AQ’s and 10’s affect data in state space mod-
els, we have simulated data from 10%-A0O/IO-contaminated, normal setups.

1.2.1 Example 2

We realize AO-contamination by simulating v; coming from an e-contaminated
N (0,Q). An example of the effects of an AO-contaminated model is generated
by the following XploRe instructions using the quantlets epscontnorm and
kemitor2 which generate a simulation of length 100 of a steady state model (i.e.
H =R =@ = F =1) under a convex contaminated v;, with contamination-
radius 0.1 and K = N(10,0.1);

First we set the system parameters:

library("xplore")
library("plot")
library("kalman")
randomize (0)

T = 100

mu=0

H=1

F=1

mid=0

Cid=1

mcont=10
Ccont=0.1
eps=0.1

Then we simulate data from this situation and apply the Kalman filter to this
data.

ErrX = normal(T)
ErrY = epscontnorm(T,eps,mid,Cid,mcont,Ccont,0)
sim = kemitor2(T,mu,H,F,ErrY,ErrX)

state = (1:100)~ (sim.X)
obs= (1:100) " (sim.Y)
ind = ErrY.Ind

Flags are set for the instances where we have contamination.

ind=(1:100) ~“ind
ind=paf (ind, ind[,2]==1)

Finally we plot the path of the state (blue) and the corresponding observations
(green) and set red flags at the instances where we have contamination, see
Figure 2.

setmaskp(ind,4, 3, 8)

state=setmask(state,"line","blue","thin")
obs=setmask(obs,"line","green","thin")

disp = createdisplay(1,1)

show(disp,1,1,state,obs,ind)*0

setgopt(disp,1,1, "title", "1-dim Steady State Model under AQ")
setgopt(disp,1,1, "xlabel", "t")

setgopt(disp,1,1, "ylabel", "x, y")

QrkalmOQ.xpl

1.2.2 Example 3

IO-contamination is realized by simulating w; coming from an e-contaminated
N,(0,R). The effects of an I0-contaminated model may be seen by just in-
terchanging the role of w; and v; in the first example. They will generate a
simulation of length 100 of a steady state model (i.e. H=R=Q = F = 1)
under a convex contaminated wy, with radius 0.1, and K = N(10,0.1).

ErrY
ErrX

normal (T)
epscontnorm(T,eps,mid,Cid,mcont,Ccont,0)

sim = kemitor2(T,mu,H,F,ErrY,ErrX)

state = (1:100) " (sim.X)
obs= (1:100) " (sim.Y)
ind = ErrX.Ind

QrkalmOB.xpl

1.3 Problem Setup

To summarize we want to solve the following problem. In a given ideal normal
state-space model, that is zg ~ Np(u,X), vy ~ Np(0,Q), wy ~ N,(0,R) all
stochastically independent, with F', H, (), R known and in “correct” dimen-
sions, we want to find recursive estimates for x; based on y; and a preliminary
estimate x;;_; for 7; based on all observations y;_;,i =1,... ,t—1. The qual-
ity of this estimator is measured in terms of the mean squared error (MSE)
El|lz: — f(ys, a:t‘t,l)|2]. For robustness reasons we want the influence of y; on
f(yt, T¢¢—1) to be bounded in order to protect it from AO outliers.

Of course for this robustness, we pay a price, namely we cannot in general
achieve the optimal MSE which is attained by the classical Kalman filter
ar?‘ ;- This price will be measured by the relative efficiency loss [MSE(f) —

MSE(z),)]/MSE(z),).

2 Classical Method: Kalman Filter

{filtX, KG, PreviousPs} = kfilter2(y, mu, Sig, H, F, Q, R)
calculates the classical Kalman filter z;, for a (multivariate)
time series

For the definition and notation of the Kalman filter we refer to Hardle, Klinke,
and Miiller (2000, Section 10.2). As for our purposes, the state is more inter-
esting, we have modified the quantlet kfilter by changing the output.

Btate Space Model (1 - dim steady state) ideal Modeptate Space Model (1 - dim steady state) ideal Modd

ik

TE
=

A,

‘W *Wl\b

_$: .
I\ ”y“‘v‘ | o
SN | Ty

State Space Model (1 - dim steady state) under AO| State Space Model (1 - dim steady state) under IO

i ﬁ@o 0o 0o T NJ« AT
o ‘ L [~ |

-15
I

Xy
10
y
5
=
=
-

-20
i

s g- E
> g \‘ L > .':"Mif’
™ m\\\j")&\!m\ - ‘\"po (@) O O

T T T T T
0 50 100 0 50 100
t t

Figure 2: Examples 2 ,3 displayed simultaneously: AQO’s cause single peaks,
I0’s result in a level change

2.1 Features of the Classical Kalman Filter

At this point, we only recall the features that are—in our point of view—central
for the Kalman filter:

e an easy, understandable structure with an initialization step, a prediction
step and a correction step,

e the correction step is an easily evaluable function—it is linear !

e all information from the past useful for the future is captured in the value
of Z't‘t,]_ .

e the correction step is linear and thus not robust, as y enters unbounded;

These features—except for the last one—are to be preserved in our filtering
procedures.

2.2 Optimality of the Kalman Filter

The classical Kalman filter is characterized by an optimality property that
coincides with various different notions of optimality in the case of a normal
state-space model.

best linear filter:
The Kalman filter is obtained as the linear filter minimizing the mean
squared error (MSE). This is shown with Hilbert space theory, con-
sidering the closed linear spaces generated by the observations y; :=

(s y1,--- ,u:)T and orthogonal decompositions as follows:
lin(g;) = lin(gs1) @ lin(Ay;), Ayr =y — Hryp o (2)
Ty = OP(x4|Fi—1) + oP (24| Ayy)
= g1 +OP(Ax|Ays), Azy =24 — Ty, (3)

where oP(-|Z) denotes the orthogonal projection onto the closed linear
space generated by Z and Ay, is called the innovation induced by ;.
This decomposition will be the basis for the quantlet r1sfil.

conditional expectation (under normality assumptions):
A very nice property is that under normality, classical Kalman filter and
conditional expectation z;; = E[x;|g;] coincide, so that z; is not only
optimal among all linear filters based on g, but among all g;-measurable
filters.

10

posterior mode (under normality):
Again under normality, x|, coincides with the posterior mode of L(z¢|7:),
which is the basis for robustifications done by Fahrmeir and Kiinstler
(1999).

ML-Estimator in a Regression Model (under normality):
Finally, under normality the Kalman filter is also the maximum likelihood
estimator (MLE) for a certain regression model with random parameter
which is the basis for the rICfil.

3 Robustifying Least Squares: the rLS filter

{filtX, KG, PreviousPs, clipInd}
= rl1sfil(y, mu, Sig, H, F, Q, R, bs, b)
calculates the rLS filter for a (multivariate) time series

{b, ctrl} = calibrLS(T, Sig, H, F, Q, R, e, N,
eps, itmax, aus)
calibrates the rLS filter to a given efficiency loss in the ideal
model.

3.1 Derivation

Instead of M Ay we use a huberized version of it, that is

b
Hy(MAy) = MAymin{l, ——1 4

so that the correction is just as in the Kalman filter if it is not too large in
absolute value, and if it is too large, the direction remains unchanged and it is
projected to the ball with radius b in n dimensions.

This gives us

Tojo = M ()
Tig—1 = Fxt71|t71 (6)
Typ = Ty + Hy(My(ye — Hayp—q)), (7)

11

where we have not yet specified how to choose M and b, but (c.f. Ruckdeschel
(1999))

e under strict normality the optimal M is M (Kalman gain);

e under strict normality rLS is SO-optimal; SO stands for substitutive
outlier, and means that instead of corrupting v;, contamination effects y;
directly, replacing it by an arbitrarily distributed variable §; with some
low probability.

e strict normality of all zy;, T4 1, Az, gets lost during the history of zy
for growing t;

o Az is “nearly” normal and M cannot be improved significantly;

We already note at this point that the rLS has preserved the crucial features
from of the Kalman filter

e an easy, understandable structure with an initialization step, a prediction
step and a correction step,
e the correction step is an easily evaluable function—it is “almost linear” !

e all information from the past useful for the future is captured in the value
of a:t|t_1 .

e and: the correction step is now bounded in influence, as Ay enters
bounded;

So in the implementation, we use M.

3.2 Calibration

As to the choice of b we propose an assurance criterion: How much efficiency
in the ideal model relative to the optimal procedure ,i.e. the Kalman filter, am I
ready to pay in order to get robustness under deviations from the ideal model?
This efficiency loss is quantified as the relative degradation in MSE in the ideal
model one obtains if one uses robust versions instead of the classical Kalman
filter.

12

Of course the lower the clipping b, the higher the relative efficiency loss, so due
to this monoticity we may solve

E Az — Hy(MAy)|[* = (1+8) tr Sy (8)

in b, uniquely for a given efficiency loss 4.

We note here that

e Calibration, that is finding b to a given §, can be done beforehand. So this
relatively time-expansive step is not really a hindrance to the application.

e Assumptions in our implementation:

— We are assuming strict normality, which is not quite the case, but
using exact terms makes things more complicated and do not really
improve the quality, c.f. Ruckdeschel (1999)

— for n = 1 we solve (8) using analytic terms,
— for n > 1 we use MC-Simulation.
e In most time-invariant situations, the sequence of ¥;;_; (and hence also
¥1—1) stabilizes due to asymptotic stationarity. Thus, once X;;_; do
not change for more than eps, we can stop calibration and use the last

calibrated b for all subsequent times ¢. For details as to this stabilization
we refer to Anderson and Moore (1979) and Moore and Anderson (1980).

3.3 Examples
All examples stem—at least for the state space model specification—from Petr

Franék (see Hérdle, Klinke, and Miiller 2000, Chapter 10). They have been
slightly modified to better demonstrate the features of our methods.

3.3.1 Example 5
As first example we have taken Petr Franék’s data kalman together with his

specifications for the system matrices and by manipulating observations 50, 60,
90 entered three artificial outliers; the result is saved in kalmanao.

13

library("xplore")
library("plot")
library("kalman")

serie = read("kalmanao.dat")
y = seriel[,2]

The rLS filter is then calibrated to an efficiency loss of 5%

erglS=calibrLS(T,Sig,H,F,Q,R,e,N,eps,itmax,aus)
b=ergLS.b

Next we filter the data with the Kalman filter and the rLS filter.

res = kfilter2(y,mu,Sig, H,F,Q,R)
fx = res.filtX

res= rlsfil(y,mu,Sig, H,F,Q,R,b)
frx = res.filtX

The results are then displayed, the classical Kalman filter in red, the rLS filter
in green and the observations from kalmanao in blue. Additionally we set flags
on the time instances where the rLS filter clips MyAy;.

origy= serie[,1] serie[,2]

origy= setmask(origy, "line", "blue", "thin")
fx = seriel[,1]7fx

14

fx = setmask(fx, "line", "red", "thin")

frx = serie[,1] frx

frx = setmask(frx, "line", "green", "thin")
clip=serie[,1]"(res.clipInd)

clip=paf (clip,clip[,2]==1)

clip[,2]=0

setmaskp(clip,4, 3, 4)

disp = createdisplay(1,1)

show(disp,1,1, origy,fx,frx,clip)

setgopt(disp,1,1, "title", "KalmanDatal + A0’s in t=50,60,90")
setgopt(disp,1,1, "xlabel", "t")

setgopt(disp,1,1, "ylabel", "y, rLS, Kalman")

Qrkalm04.xp1

The graphical result of this example is displayed in Figure 3.

3.3.2 Example 5

As a second example we took the state-space model underlying Petr Franék’s
Example 2.

library("xplore")
library("plot")
library("kalman")

mu = #(20,0)
Sig = #(0,0)~#(0,0)

H = #(0.3,-0.3)"#(1,1)
F = #(1,0)"#(1,0)
R = #(0,0)7#(0,9)

mid=#(0,0)
Qid= #(9,0)"#(0,9)

According to this model we simulated 50 states and observations from a 10%-
AO-contamination using quantlets epscontnorm and kemitor2. The contami-

nating distribution is Ny ((gg) , (0(']9 009)) .

15

KamanDatal + AO’sin t=50,60,90

y, rLS, Kalman* E2
3
1
T

oA -
N : -
/Aﬂ¢wJN°~VM?ﬁmJ[>M“~” -
o_ W @ [elNe) o [eees) o W -
T T T
0 50 100

Figure 3: Actual observations = solid line, classical Kalman filter = dashed
and a bit lighter line, the rLS filter = dotted line; clipped instances = circles
on top of the graphic.

mcont=#(25,30)
Qcont=0.1.*Qid
A0r=0.1

16

randomize (0)

ErrX = epscontnorm(T,0,mid,R,mcont,Qcont,0)
ErrY = epscontnorm(T,AOr,mid,Qid,mcont,Qcont,0)
sim = kemitor2(T,mu,H,F, (ErrY.X), (ErrX.X))
y=sim.Y

Xact=sim.X

The rLS filter is then calibrated to an efficiency loss of 10%.

N=10000
eps=0.01
itmax=15
aus=4

erglS=calibrLS(T,Sig,H,F,Qid,R,e,N,eps, itmax,aus)
b=ergLS.b
The simulated data are filtered by the classical Kalman filter and the rLS filter

res = kfilter2(y,mu,Sig, H,F,Qid,R)
fx = res.filtX
res= rlsfil(y,mu,Sig, H,F,Qid,R,b)
frx = res.filtX

Next, the filtered values are prepared for graphical output: the classical Kalman
filter is to be displayed in red, the rLS filter in green and the actual simulated
states in blue.

i=(1:T)

Xactl = i~ (Xact[,1])

Xactl = setmask(Xactl, "line", "blue", "thin")
fx1 = i"(fx[,1]1)

fx1 = setmask(fxl, "line", "red", "thin")

frxi= i~ (frx[,1])

frxl = setmask(frxl, "line", "green", "thin")

Additionally we set green flags on the time instances where the rLS filter clips
M;Ay; on bottom of the graphics and red ones on top where an AO-outlier
occurred.

17

yml=max (vec((Xact[,1])~ (£x[,1]1)~ (frx[,1]1))) ;top of graphics
ym2=min(vec((Xact[,1])~ (£x[,1]1)~ (frx[,1]))) ;bottom of graphics
flagInd=i~(ErrY.Ind)

flagInd=paf (flagInd,flagInd[,2]==1)
flagInd[,2]=ym1*((ym1>0)*1.1+(ym1<0)*0.9)
flagclip=i~(res.clipInd)

flagclip=paf (flagclip,flagclip[,2]==1)

flagclip[,2]= ym2* ((ym2<0)*1.1+(ym2>0)*0.9)

setmaskp(flaglnd,4, 3, 4)

setmaskp (flagclip,2, 4, 4)

Finally, all the results of the 1-st coordinate are displayed in the left half of a
graphic window.

disp = createdisplay(1,2)
show(disp,1,1,Xactl,fx1,frx1,flaglnd,flagclip)
setgopt(disp,1,1, "title", "simulated Model under AO

-- 1st coord.")
setgopt(disp,1,1, "xlabel", "t")
setgopt(disp,1,1, "ylabel", "x, rLS, Kalman")

2] rkalm05.xpl

Then the same is done for the second coordinate, replacing [,1] by [,2] on
all instances, and the results are then plotted on the right half of the graphic-
window. All the program may be seen in @ rkalm05.xpl.

3.3.3 Example 6

To show that robustification does not go for free, we have taken Petr Franék’s
data set kalman?2 as it was, together with his specification of the state space
model. So the data stems from the ideal situation and the classical Kalman
filter in this case should do better than the rLS.

library("xplore")
library("plot")
library("kalman")

serie = read("kalman2.dat")
y = seriel[,2]

18

simulated Model under AO -- 1st coord. simulated Model under AO -- 2nd coord.

N 3 I =t

40
0 15

X, ILS, Kaman
EY

X, rLS, Kaman

2

10

Figure 4: Simulated data according to model from Example 2: actual states
solid line, the classical Kalman filter = dashed / a bit lighter, the rLS filter
dotted line; clipped instances are marked by circles on bottom of the graphic,
the AO-instances by circles on top.

mu = #(0,0)

ig = #(0,0)~#(0,0)
= #(1,0)°
#(0.5,1)"#(-0.3,0)
#(1,0)"#(0,0)
= 4

O X T W
]

eps=0.01
itmax=15
aus=4

Here the rLS filter is calibrated to an efficiency loss of 5%.

erglS=calibrLS(T,Sig,H,F,Q,R,e,N,eps,itmax,aus)
b=erglLS.b

res= kfilter2(y,mu,Sig, H,F,Q,R)
fx = res.filtX

19

fy=(Hxfx’)’

res= rlsfil(y,mu,Sig, H,F,Q,R,b)
frx = res.filtX

fry=(Hxfrx’)’

As we do not have any information about the actual states in this example,
we examine the filtered observations y;; generated by the Kalman filter and
the rLS filter and compare them to the actual observations y;. The filtered
observations are simply calculated as yy; = H®xy-

These filtered observations are then displayed, as usual.

origy = seriel[,1] seriel[,2]
origy = setmask(origy, "line", "blue", "thin")

fy = seriel[,1] fy

fy = setmask(fy, "line", "red", "thin")

fry = serie[,1] fry

fry = setmask(fry, "line", "green", "thin")
flags = serie[,1] " (res.clipInd)

flags=paf (flags,flags[,2]==1)
setmaskp(flags,4, 3, 4)

disp = createdisplay(1,1)

show(disp,1,1,origy,fy,fry,flags)

setgopt(disp,1,1, "title", "KalmanData2 in Observation Space")
setgopt(disp,1,1, "xlabel", "t")

setgopt(disp,1,1, "ylabel", "y, y-rLS, y-Kalman")

QrkalmOG.xpl

The graphical result of this example is displayed in Figure 5.

3.4 Possible Extensions

Alternatively to using rlsbnorm and rlsbnormi although the assumption of
normality cannot be exactly met, one could use

Simulation of a bundle of paths and then MC-Integration:
One can quite easily replace the routines rlsbnorm and rlsbnormil by

20

KamanData2 in Observation Space

Yy, y-rLS, y-Kalman
0

Figure 5: actual observations = solid line, the classical Kalman filter dashed
and a bit lighter line, the rLS filter = dotted line; the clipped instances are
marked by circles.

21

MC-Routines calculating E ||Az — Hy (M Ay)||? ob basis of a large sample
of (Ayy, Axy), that is evolving according to recursions (2), simultaneously
to Ty)4-

Numerical Integration:
Even keeping the normality assumption, in order to speed up the calibra-
tion step, one could try and evaluate E || Az — H, (M Ay)||? for low dimen-
sion n by numerical integration routines instead of using MC-integration.

4 Robustified Regression: the rIC filter

{filtX, KG, PreviousPs, clipInd}
= rICfil(y, mu, Sig, H, F, Q, R, cliptyp, As, bs)
calculates the rIC filter for a (multivariate) time series

{A, b, ctrl} = calibrIC(T, Sig, H, F, Q, R,
typ, A0, b0, e, N, eps, itmax, expl, factO, aus)
calibrates the rIC filter to a given efficiency loss in the ideal model.

The idea to think of the filter problem as a “regression” problem stems from
Boncelet and Dickinson (1984) and Cipra and Romera (1991), where we write
“regression” because the parameter in this model is stochastic, whereas one
component of the observation is deterministic, and thus this regression is not
covered by the robustness theory for common regression. The robustification
however then uses techniques of optimal influence curves for regression to be
found in chapter VII in Rieder (1994); instead of taking M-estimators to get a
robust regression estimator with a prescribed influence curve, we use a one-step
procedure corresponding to a Hampel-Krasker influence curve.

22

4.1 Filtering Problem as a Regression Problem

The model suggested by Boncelet and Dickinson (1984) and Cipra and Romera
(1991) uses the innovational representation (2) and reads

0
:L.tltfl _ ITL é-t ft ~ 0 Etlt—l 0
(Ye)_(H>mt+(vt>’ (vt mtmi\\o/°\ 0 @Q))°
9)
where x?l ;1 denotes the classical Kalman filter, which in this procedure has to

be calculated aside, too. As already indicated, assuming normality, the classical
Kalman filter is the ML-Estimator for this model, with scores function

A, (x?ﬁ—l) —A ($?|t—1 _33)
Yt yr — Hz

S — —
A (u> =M +A =% s+ HQ 'u (10)

with

and Fisher information

I =E[AN] =%, (11)

4.2 Robust Regression Estimates

To get a robust estimator for model (9) we use an influence curve (IC) of
Hampel-Krasker form:

. b
¥(s,u) = AA(s,u) mln{lam} (12)

where A is a Lagrange multiplyer guaranteeing that the coorelation condition
E[¢A'] =1, is fullfilled; due to symmetry of L£(A), ¢ of form (12) is centered
automatically; furthermore b bounds the influence of y; on zy;.

The reader not familiar to the notion of influence curve may recur to section 5
and look up some of the references given there.

23

Instead of replacing the ML-equation by an M-Equation to be solved for 1) < 0,
we use a one-step with same asymptotic properties:

20
Ty = Ty +¢zt|t_1(tgl/ttl> = (13)
20— Zyt
= g+ [Ttlem1 T) 14

et ¢(ys — Hxyp o (14)

We note the following properties:

e Setting b= o0, ¥ = 1/3 = %); A reproduces the classical Kalman filter.

e There is quite a numerical problem determining A, which will be roughly
explained in Section 5.

e As in the rLS the time expensive calibration step—here to find (4, b)—
can be done beforehand.

e We calibrate the IC at the ideal model, so whenever we have a situation,
where the sequence of ¥;;_, stabilizes, we may, after a sufficient stabi-
lization, stop calibration and use the last calibrated A, b for all subsequent
times t. For details as to this stabilization we again refer to Anderson
and Moore (1979) and Moore and Anderson (1980).

and again we already note that the rIC has preserved the crucial features from
of the Kalman filter

e an easy, understandable structure with an initialization step, a prediction
step and a correction step,

e the correction step is an easily evaluable function—it is “almost linear” !

e all information from the past useful for the future is captured in the values
of 24,1 and x?‘t_l.

e and: the correction step is now bounded in influence, as Ay enters
bounded.

24

4.3 Variants: Separate Clipping

As already seen in (10), A is decomposed into a sum of two independent vari-
ables A; and As. They may be interpreted as estimating v; and &, thus they
represent in some sense the sensitive point to AO and IO respectively. Instead
of simultaneous clipping of both summands, just clipping the “IO-part”, i.e.
A1, or “AO-part”, i.e. Ay, separately will therefore lead to a robustified version
specialized to I0’s or AO’s. For the AO-specialization we get

D(s,u) = A (Al + As(s,u) min {1, m}) (15)

As to the I0-variant we have to admit that the robustification against I0’s that
is possible with rIC-sep-I0 is limited. Here you should better take into account
more information on the process history up to that point. Encouraging results
however have been obtained in a situation with an unfavorable signal-to-noise
ratio—in one dimension the quotient of R/(Q.

4.4 Criterion for the Choice of b

As in the rLS case, we propose the assurance criterium for the choice of b: We
adjust the procedure to a given relative efficiency loss in the ideal model. This
loss is quantified in this case as the relative degradation of the “asymptotic”
variance of our estimator which is in our situation just E|¢||?, which in the
ideal model gives again the MSE.

Of course the lower the clipping b, the higher the relative efficiency loss, so that
we may solve

E|[¢l2 = (1+6) tr Sy, = (14 6) E [(16)

in b for a given efficiency loss d, which is monotonous in 4.

4.5 Examples
For better comparability the examples for the rIC will use the same setups as

those for rLS. So we just write down the modifications necessary to get from
the rLS- to the rIC-example.

25

4.5.1 Example 7

As the first example is one-dimensional, calibrIC uses a simultaneous Newton
procedure to determine A, b, so neither a number of grid points nor a MC-
sample size is needed and parameter N is without meaning, as well as fact and
expl. Nevertheless you are to transmit them to calibrIC and, beside the rLS
setting we write

fact=1.2

expl=2

A0=0

b0=-1

typ= 0 ; rIC-sim

Next we calibrate the influence curve v to e = 0.05.

ergIC=calibrIC(T,Sig,H,F,Q,R,typ,A0,b0,e,N,eps,itmax,
expl,fact,aus)

A=ergIC.A
b=ergIC.b

Calling rICfil is then very much as calling rlsfil—just with some extra
parameters:

res= rICfil(y,mu,Sig,H,F,Q,R,typ,A,b)
frx = res.filtX

Qrka1m07.xpl
The graphical output is then done just as in Example 4.
4.5.2 Example 8

The second example goes through analogously with the following modifications
with respect to Example 5:

N=300

eps=0.01
itmax=15

26

KamanDatal + AO’sin t=50,60,90

y, rIC-sim, Kalman* E2

TN ’ Lf/*/\“\ﬂ' “
O—\/{::» oo Mom [eecseccee] OOOCDO:OO:;YOOOOO o
T T
0 50

100

t

Figure 6: Actual observations = solid line, the classical Kalman filter = dashed
/ abit lighter line, the rIC filter = dotted line; the clipped instances are marked
by circles on top of the graphic.

aus=4

fact=1.2

expl=2

A0=0

b0=-1

typ= 0 ; rIC-sim

27

Note that as we are in 2 dimensions, integration along the directions is 1-
dimensional and is done by a Romberg procedure; so the N might even be a bit
too large. The next modifications are straightforward:

ergIC=calibrIC(T,Sig,H,F,Qid,R,typ,A0,b0,e,N,eps,itmax,

A=ergIC.A
b=ergIC.b

expl,fact,aus)

res = kfilter2(y,mu,Sig, H,F,Qid,R)

fx

res.filtX

res= rICfil(y,mu,Sig,H,F,Qid,R,typ,A,b)

frx

= res.filtX

@ 1kalmo8 .xpl

The graphical result is displayed in Figure 7.

X, riC-sim, Kalman

50

20

10

simulated Model under AO -- 1st coord.

&

X, riC-sim, Kalman

simulated Model under AO -- 2nd coord.

5 oo

Figure 7:

Simulated data according to Example 2 from Petr Franék: The

actual states = solid line, the classical Kalman filter = dashed / a bit lighter
line, the rIC filter = dotted line; the clipped instances are marked by circles on
bottom of the graphic, the AO-instances by circles on top.

28

4.5.3 Example 9

Again, as in the third rLS-example, it is shown in the next example that we
really loose some efficiency in the ideal model, using the rIC filter instead of
the Kalman filter; the following modifications are to be done with respect to
Example 6:

e=0.05

N=300

eps=0.01

itmax=15

aus=4

fact=1.2

expl=2

A0=0

bO=-1

typ= 1 ; rIC-sep-AD

ergIC=calibrIC(T,Sig,H,F,Q,R,typ,A0,b0,e,N,eps,itmax,
expl,fact,aus)

A=ergIC.A
b=ergIC.b

res = kfilter2(y,mu,Sig, H,F,Q,R)

fx = res.filtX

res= rICfil(y,mu,Sig,H,F,Q,R,typ,A,b)
frx = res.filtX

fry=(Hxfrx’)’

QrkalmOQ.xpl

All this produces the graphics in Figure 8.

4.6 Possible Extensions

As sort of an outlook, we only want to mention here the possibility of using
different norms to assess the quality of our procedures. The most important
norms besides the euclidean are in our context those derived from the Fisher in-
formation of the ideal model (information-standardization) and the asymptotic

29

KamanData2 in Observation Space

<t 00000 O OO COOO0COO0 0O 00 0O O G 00O 0C00 OO 00O 0D O |-

y, y-rIC, y-Kaman
0

0 50 100

Figure 8: Actual observations = solid line, the classical Kalman filter = dashed
/ abit lighter line, the rIC filter = dotted line; the clipped instances are marked
by circles.

Covariance of 1) itself (self-standardization). Generally speaking these two have
some nice properties compared to the euclidean norm; so among others, opti-
mal influence curves in this norm stay invariant under smooth transformation
in the parameter space, c.f. Rieder (1994). In the context of normal scores,
they even lead to a drastic simplification of the calibration problem even in
higher dimensions, c¢.f. Ruckdeschel (1999). Nevertheless the use of this norm

30

has to be justified by the application, and in the XploRe quantlib kalman, they
have not yet been included.

5 Excursion: Generating Multivariate Robust
Influence Curves for Normal Scores

{4, b, V, ctrl} = ICerz(e, FI, A0, b0, N, eps, itmax,
expl, fact0, aus)
generates—if possible—a (simultaneously clipped) IC to a given
efficiency loss for normal scores

{4, b, V, ctrl} = ICerzsep(e, S1, S2, A0, b0, N, eps,
itmax, expl, factO, aus)
generates—if possible—a (separately clipped) IC to a given effi-
ciency loss for normal scores, with the same output list as ICerz.

Coming from the local i.i.d. asymptotic setup, we have applied estimators to
the regression model (9) that have proven to be optimal there; so at this point
we want to give a short abridge of the theory behind it and of how these optimal
IC’s may be obtained, numerically.

5.1 Definition of IC

In the local i.i.d. asymptotic setup, we consider a parametric family {Py, 6 €
O} and want to estimate the true 6 based on observations z1, . ..z,. To do so
we only allow for asymptotically linear estimators S,, for this parameter 0, i.e.,

(S, —0) = % S (1) + o, (1) (17)
=1

for some L,-Variable 1. As is shown in Rieder (1994), to get local Fisher
consistency of S,—i.e. Sy has to converge to 6o+h//n in Py, 1, /m-probability
for all h—we must necessarily have

Eg[¢s] = 0, Eg[toAy] = 1,. (18)

Optimality results also to be looked up in Rieder (1994) show that for the i.i.d.
setup,

31

o the IC minimizing the trace of the covariance in the ideal model subject
to a bias bound in a neighbourhood around the ideal situation is just of
Hampel-Kraker form; [in short this is min E ||¢||? subject to [[2|| < b[P]].

e for b not too small, there exists exactly one Hampel-Krasker IC 1) and as
L(A) is continuous, A also is unique.

e to each 0 not too big there is exactly one pair (A,b) fullfilling (16) and
(18).

5.2 General Algorithm

In general, for b given, A is determined by the implicite equation

A1 LE [AA’ min {1, ”A—"A”H . (19)

5.2.1 Arbitrary Dimension n

As clipping is done continuously, and by the integration E[-], we achieve an
arbitrary smoothness of (19) in A and b.

As we know that for b = oo, A = 771, for b not too small we can use Z~! as a
starting value for the fixed point iteration

AL =E [[AA’ min {1, HTbAHH : (20)

Proofs for local convergence may be found in Ruckdeschel (1999).

For smaller b, we first solve (19) for a larger b’ and then take A(b') as a start-
ing value for (20); as a criterium whether (20) converges or not we take the
development of the size of A which is controlled by the parameter expl, the
stepsize from b to b’ is controlled by fact.

Once we have determined for given b A(b), we control whether E ||¢||? is smaller
or larger than (1 + &)trZ—!. To determine the pair (b, A(b)) for given &, we
use a bisection algorithm, as E||¢||? is strictly dicreasing in b.

32

5.2.2 One Dimension

In dimension n = 1, the problem is only 2-dimensional, so it pays off, using
a simultaneous Newton procedure to determine (b, A(b)). This is done by the
auxiliary routines abinfonewton and absepnewton for the simultaneously and
the separately clipped case, respectively.

5.3 Polar Representation and Explicite Calculations

In the case of A ~ N, (0,7), n > 1, we have some nice properties, which make
calculations in (20) easier.

5.3.1 Polar Representation

We write A as
A=T3A=T3Yu (21)

with A ~ N,(0,1,), u = ||A||, Y = A/u. Then Y ~ ufo(Sn_1), u> ~ x2 and u,
Y independent.

Now we have to solve

IT72A7'77% < E[YY'r(Y)] (22)
(1+68)trSy, = trATZE[YY's(Y)ZT:4 (23)
with
rY) = E [u min {u, m} |Y] (24)
2
s(Y) = E [min {uQ, IVAIbiYW} |Y] (25)

5.3.2 Explicit Calculations for the Absolute Value
For given Y, ¢ = b/||AZ2Y]| is constant, and calculation of r, s using the

proposition that clipped moments of u can be calculated by means of (higher)
clipped moments of the standard normal—c.f. Ruckdeschel (1999).

33

5.4 Integrating along the Directions

For the remaining integration along the directions Y we do

e n = 1: nothing has to be done; (A4, b) are calculated simultaneously by a
Newton procedure.

e 1 = 2: 2 X 2-valued integration along the unit-circle; done by a Romberg
procedure.

e 11 > 2: 1 X n-valued integration along the surface of the n-dim unit ball;
done by MC-integration.

For simultaneous clipping we additionally have (c.f. Ruckdeschel (1999)) the
interesting proposition that clipping only effects the spectrum of Z but not the
invariant spaces. This is used to transform integration from YY'r, YY"'s to
Y'Yr, Y'Ys, thus reducing the problem from n? to n dimensions.

5.5 Short Description of the Auxiliary Routines Used

The further quantlets in the quantlib kalman just being auxiliary routines for
the ones described up to now, we confine ourselves to shortly giving a survey
of these routines in form of a table; note that in the table, ATh=A7 %, and u,
stand for random variables, u? ~ x2 and z ~ N(0,1).

34

quantlet input output function
itera (A0,FI,Db,N, (A,V,ctrl) Fixed-Point-Iteration (20)
eps,itmax, for sim. clipping; also decides
expl) if there was convergence or not
iteras (A0,S1,52,b, (A,V,ctrl) Fixed-Point-Iteration (20)
N,eps,itmax, for sep. clipping; also decides
expl) if there was convergence or not
numint?2 (alh, b, N) (r,s) n = 2: (reduced problem)
Romberg-integration
numint2m (aIh, b, N) (r,s) n = 2: (full problem)
Romberg-integration
stointp (aTh, b, N) (r,s) n > 2: (reduced problem)
MC-integration
stointpm (alh, b, N) (r,s) n > 2: (full problem)
MC-integration
ewinn (c,n) y calculates r(c)
ew2inn (c,n) y calculates s(c)
betrnormF (t,n) y calculates E[(u < #)].
betrnormE (t,n) y calculates E[u(u < t)].
betrnormV (t,n) y calculates E[u®(u < t)].
nmomnorm (t,n) y calculates E[z" (z < t)].
References

Anderson, B. D. O. and Moore, J. B. (1979). Optimal filtering, Prentice-Hall,
Inc. Englewood Cliffs, NJ.

Boncelet, C. G. jun. and Dickinson, B. W. (1984). A variant of Huber robust
regression, SIAM J. Sci. Stat. Comput. 5: 720-734.

Cipra, T. and Romera, R. (1991). Robust Kalman filter and its application in
time series analysis, Kybernetika 27: 481-494.

Fahrmeir, L. and Kiinstler R. (1999). Penalized Likelihood Smoothing in Ro-
bust State Space Models Metrika 49: 173-191.

Fox, A. J. (1972). Outliers in Time Series, Journal of the Royal Statistical
Society, Series B 43: 350-363.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986).
Robust statistics, The approach based on influence functions, Wiley, New
York.

Hardle, W., Klinke, S., and Miiller, M. (2000).
Springer.

XploRe Learning Guide,

35

Huber, P. J. (1964). Robust estimation of a location parameter, Annals of
Statistics 35: 73-101.

Huber, P. J. (1981). Robust statistics, Wiley, New York.

Moore, J. B. and Anderson, B. D. O. (1980). Coping with singular transition
matrices in estimation and control stability theory, Int. J. Control 31: 571-
586.

Rieder, H. (1994). Robust asymptotic statistics, Springer, New York.

Ruckdeschel, P. (1999). Algorithms for Robust Kalman Filtering, PHD-thesis,
unpublished manuscript.

36

