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Abstract

Alternative modeling strategies for specifying subset VAR models are considered. It is shown
that under certain conditions a testing procedure based on t-ratios is equivalent to sequen-
tially eliminating lags that lead to the largest improvement in a prespecified model selection
criterion. A Monte Carlo study is used to illustrate the properties of different procedures. It
is found that the differences between alternative strategies are small. In small samples, the
strategies often fail to discover the true model. Nevertheless, using subset strategies results
in models with improved forecast precision. To illustrate how these subset strategies can
improve results from impulse response analysis, a VAR model is used to analyze the effects
of monetary policy shocks for the U.S. economy. While the response patterns from full and
subset VARs are qualitatively identical, confidence bands from the unrestricted model are
considerably wider. We conclude that subset strategies can be useful modeling tools when

forecasting or impulse response analysis is the main objective.
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1 Introduction

As a consequence of Sims’ (1980) critique of classical econometric modeling, empirical
macroeconomic studies are often based on vector autoregressive (VAR) models. In these
models the relations between variables are usually investigated within an impulse response
analysis or innovation accounting. A criticisms that has been raised against this modeling
strategy is that the number of parameters quickly becomes large if a moderate number of
variables is considered and no or only a few restrictions are placed on the parameter ma-
trices. In that case the sampling uncertainty in the estimated models makes it difficult to
discriminate between different theories. Moreover, a theoretical problem related to the in-
ference on impulse responses was pointed out by Benkwitz, Liitkepohl & Neumann (2000)
and Benkwitz, Liitkepohl & Wolters (2000). These authors argue that standard bootstrap
procedures which are often used for setting up confidence intervals for impulse responses may
be grossly distorted if zero coefficients are estimated unrestrictedly. They advocate subset
VAR models where zero restrictions are placed on some of the coefficients.

One possible approach is to decide on the restrictions on the basis of sample information
and exclude, for example, insignificant lags of the variables. Using a statistical procedure
for deciding on possible constraints may be advantageous compared to a procedure which
is based on assumed a priori knowledge if one desires to avoid biasing the results towards a
particular theory at an early stage of an analysis. Therefore, in this study we will compare
alternative statistical procedures that have been proposed and used for lag length selection
in multivariate time series models (see e.g. Liitkepohl (1991, Ch. 5) for a survey of some
procedures). Typically applied researchers use testing procedures or model selection criteria
in placing restrictions on a given VAR model. We will compare both types of procedures in
the following.

A widely used testing procedure eliminates the variables with lowest ¢-ratios sequentially
until all remaining coefficients have t-ratios greater than some threshold value, say 2. We
will discuss under what conditions such a procedure is equivalent to eliminating sequentially
those lags of variables which lead to the largest improvement when the usual model selection
criteria are applied instead of statistical tests. Moreover, we will compare these strategies
with a full search procedure which chooses the restrictions that lead to the best overall
model for a given model selection criterion. These lag selection procedures are discussed
and compared within both a single equation and a systems framework. Their small sample

properties are explored with a Monte Carlo study and their virtue is illustrated by applying



them to a U.S. monetary system which has been analyzed previously on the basis of an
unrestricted VAR model.

A number of other subset methods have been proposed in the literature (see, e.g., Liitkepohl
(1991, Ch. 5)). Some of these methods are not suitable for our purposes. For example, the
methods proposed by Hsiao (1979, 1982) and Penm & Terrell (1984) are not designed for
finding all zero entries in the VAR coefficient matrices but aim at detecting special zero co-
efficients only. Some of the methods presented in Liitkepohl (1991) may be viewed as direct
competitors to the methods considered here, however. Since they are not very popular in
practice, they will not be treated in detail in the following.

The structure of this study is as follows. In the next section the model framework is
presented and some alternative model selection strategies are considered in Sec. 3. In that
section we distinguish between single equation procedures, which treat the individual equa-
tions of a system separately and procedures which consider the full system at once. In
Sec. 4, the results of a small sample comparison based on a Monte Carlo study are reported.
Furthermore, in Sec. 5, U.S. macroeconomic data are used to illustrate the usefulness of
applying variable selection procedures and the effects of restrictions on impulse response

analysis. Conclusions follow in Sec. 6.

2 Vector Autoregressive Models

Given a set of M time series variables y; = (Y1, - . ., yare)’, the basic VAR model considered

in the following has the form

yw=v+Ay 1+ +Au ,+u=v+ AV TP oy, (2.1)
where v is a fixed (M x 1) vector, A = [A; : ---: A,], the A; are (M x M) coefficient matrices,
Vi =y ... ,Yip) and uy = (uy, ... ,upe)' is an unobservable zero mean white noise

process with time invariant positive definite covariance matrix >,,. That is, the u; are serially
uncorrelated or independent. The model (2.1) is briefly referred to as a VAR(p) process. It
is straightforward to introduce further deterministic terms such as seasonal dummy variables
or polynomial trend terms in the model or include further exogenous variables. We use the
simple model form (2.1) mainly for convenience in the following. The process may have unit
roots so that integrated and cointegrated variables are not excluded.

Clearly, the model (2.1) is in reduced form because all right-hand side variables are pre-

determined or deterministic and no instantaneous relations are modeled. Sometimes it is of



interest to model also the instantaneous relations. In that case it may be useful to consider

a structural form model,
Aoyt =V + Alyt—l + ttt + Apyt—p + ut- (22)

In the next section, strategies will be discussed for imposing zero restrictions on a model

such as (2.1) or (2.2).

3 Lag Order Selection Strategies

Because the dimension of the parameter space tends to be large for VAR models if the number
of variables, M, is moderate or large, it is desirable to impose restrictions to improve the
precision of statistical inference. Several statistical procedures are in common use for this
purpose (e.g. Liitkepohl (1991, Ch. 4)). For example, procedures for specifying a suitable lag
order p exist. Moreover, a number of proposals have been made for eliminating individual
lags of variables or complete variables from the equations of a system. These proposals
are typically based on statistical tests or model selection criteria. Furthermore, they either
consider the full system at once or they are based on individual equations. In this section
some procedures will be reviewed and compared on the basis of their theoretical properties.

We begin with methods which consider the equations individually.

3.1 Single Equation Approaches

Cousider the m-th equation of the system (2.1) or (2.2) of the form
Ymt = Vm + T1001 + - + Tl + U, t=1,...,T. (3.1)

Here the right-hand side variables, denoted by x;, may include deterministic variables or
unlagged endogenous variables if the equation belongs to a structural form. We wish to
compare variable elimination strategies for the single equation (3.1). The first procedure
compares all possible sets of zero restrictions for the zy, (K = 1,..., K) and chooses the

model which is optimal according to a given model selection criterion.

Full Search (FS)

Consider a criterion of the form
CR(iy, ..., i,) = log(SSE(i1,...,i,)/T) + ¢n/T, (3.2)
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where SSE(iy, ..., i,) is the sum of squared errors obtained by including z;,4, ..., x;; in the
regression model (3.1) and ¢y is a sequence indexed by the sample size. Choose the regressors

which minimize CR(41, ..., 1i,) for all subsets {iy,...,i,} C {l,...,K}andn=0,..., K. O

Clearly, this procedure involves a substantial computational effort if K is large. More
precisely, the set {1,..., K} has 2K subsets and, hence, there are as many models that have
to be compared. The following elimination procedures proceed sequentially and are com-
putationally less demanding. One variable only is eliminated in each step. For simplicity
we assume that the remaining variables are renumbered after each step so that in step j,

K — 7 + 1 regressors are under consideration.

Sequential Elimination of Regressors (SER)
Sequentially delete those regressors which lead to the largest reduction in a given criterion

of the type (3.2) until no further reduction is possible. Formally:

Step j: Delete xy, if

CR(1,....k—1,k+1,....,K—j+1)= min CRQ,....I—1,1+1,...,K—j+1)
=1, ., K—j+1
and CR(1,....k—1k+1,..., K—j+1)<CR(l,...., K —j+1). O

Although less demanding than a full search, the SER procedure still requires a consid-
erable computational effort because, in each step, as many models have to be compared as
there are regressors. In contrast, the following elimination strategy requires one ordinary
least squares (OLS) regression in each step only. It deletes the regressor with the smallest

t-ratio in each step.

Testing Procedure (TP)

Estimate the model by OLS and delete sequentially those regressors with the smallest abso-
lute values of the corresponding t-ratios until all t-ratios (in absolute value) are greater than
some threshold value . Note that a single regressor is eliminated in each step only. Then
new t-ratios are computed for the reduced model. Formally the procedure may be described

as follows:

Let t,(j ) be the t-ratio from an OLS estimation associated with 0 in the j-th step of the

procedure.



Step j: Delete xy; if |t,(€j)| = mil—1, Kk—j+1 |tl(-j)| and |t,(€j)| < . Stop if all |t,(€j)| > 7. O

The following proposition gives conditions under which the last two lag selection proce-

dures are equivalent.

Proposition 1
For given K and T', TP and SER lead to the same final model if the threshold value ~ in TP
is chosen as a function of the step j as follows: v = ~; = {[exp(cr/T) —1)(T — K +j—1)}/2,

Note that the result in the proposition is purely algebraic and does not involve distribu-
tional assumptions. Of course, the ¢-ratios are not assumed to have actually ¢- or standard
normal distributions. Thus, some or all of the variables may be integrated and the errors
do not have to be white noise. At this stage we do not even assume that all parameters
are identified if (3.1) is a structural form equation. Also the proposition remains true if the
search is refined to a subset of the regressors in the model (3.1). The proposition implies a
computationally efficient way to determine the regressor whose elimination will lead to the
greatest reduction in anyone of the usual model selection criteria. We do not have to esti-
mate all possible models with one coefficient restricted to zero but we just have to estimate

the equation by OLS once and check the t-ratios of the coefficients.

Proof: For simplicity we assume that K — j + 1 = n so that x4, ..., z,; are the regressors
included before the j-th step is performed. We show that both strategies eliminate the same

regressor in that step. The squared t-ratio of the k-th regressor is

9 _ SSE(1,..k—1k+1,..,n)~SSE(L,...n)
ty, = (I'—n) SSE(,...,n)

_ SSE(,...k—1,k+1,...,n)

= (I'=n) < SSE(L,..n) - 1)

(see Judge et al. (1988, Sec. 6.4)). Obviously, ¢3 is minimal if (SSE(1,....k — 1,k +
L,...,n)/T)/(SSE(L,...,n)/T) and, hence,

log(SSE(,....k—1,k+1,....n)/T) — log(SSE(1,...,n)/T)

is minimal. Therefore the two strategies eliminate the same regressor if one is deleted at all



which happens if £ < 7. Choosing v; as in the proposition, this is equivalent to

(T —n) (SSE(l ..... k—Lk+1,...n) 1) < [exp (C?T) _ 1:| (T —n)

SSE(1,...,n)
SSE(L,...k—1,k+1,..n)/T or
— SSEQ,..n)/T < exp (T)

< log(SSE(1,....k—1,k+1,...,n)/T) —log(SSE(1,...,n)/T) < cy/T
<= log(SSE(,....k—=1Lk+1,....n)/T) +F(n—1) < log(SSE( n)/T)+ %
<~ CR(,....k—1k+1,...,n) <CR(1,...,n)

Thereby the proposition is established. 0]

Typical criteria used for time series model selection are
AIC(iy, ..., 4,) = log(SSE(i1,...,1,)/T) + 2n/T,

(see Akaike (1974)),

2loglogT
HQir, ... in) = log(SSE(ir,. ...in)/T) + %n
(see Hannan & Quinn (1979)) and
logT

n

SC(iy, ... in) = 10g(SSE (i, ... ,in)/T) +

(see Schwarz (1978)). Because a time series length between 7" = 50 and 7" = 200 is not
unusual in macroeconomic studies with quarterly data we give some relevant v; obtained
from Proposition 1 for these three model selection criteria in Table 1. Obviously, the «;
are in a range starting roughly at the .70 quantile of the standard normal distribution and
reaching far out in its upper tail. With 7" = 100 and K = 12, for example, choosing a
model by HQ roughly corresponds to eliminating all regressors with ¢-values which are not
significant at a 10% level. Because the t-ratios in the presently considered models with
possibly integrated variables can be far from standard normal, the proposition also shows
that using the SER procedure with standard model selection criteria may be problematic if
a procedure with a typical type I error is desired.

All the lag selection procedures considered so far can be applied directly for choosing the
right-hand side variables in a specific equation of the levels VAR model (2.1) or the structural
form (2.2). In the next subsection procedures will be considered which are based on the full

system.



Table 1: Threshold Values Corresponding to Model Selection Criteria

K T Criterion v Y2 3 V4 V5 V6 Y7 8 Yo 710
12 50 AIC 1.25 1.26 1.28 1.29 1.31 1.32 1.34 1.36 1.37 1.38

HQ 1.46 1.48 1.50 1.52 1.53 1.556 1.57 1.59 1.61 1.62
SC 1.76 1.78 1.80 1.83 1.8 1.87 1.89 191 1.93 1.96
12100 AIC 1.33 134 1.35 1.36 1.36 1.37 1.38 1.39 1.39 1.40
HQ 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.73
SC 2.04 2.05 206 207 2.08 209 210 212 213 214
12200 AIC 1.37 138 1.38 1.39 139 1.39 1.40 140 140 1.41
HQ .78 1.7v8 1.79 1.79 180 1.80 1.81 1.81 1.82 1.82
SC 225 225 226 226 227 228 228 229 229 230

20 50 AIC 1.11 112 1.14 1.16 1.18 1.20 1.21 1.23 1.25 1.26
HQ 1.30 1.32 1.34 1.36 1.38 1.40 1.42 144 1.46 1.48
SC 1.56 1.59 1.61 1.64 166 1.69 1.71 1.74 1.76 1.78
20 100 AIC 1.27 128 1.29 1.29 130 1.31 132 133 1.33 1.34
HQ 1.58 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66
SC 1.94 195 197 1.98 199 2.00 201 202 2.04 2.05
20 200 AIC 1.35 1.35 1.35 1.36 1.36 1.36 1.37 1.37 1.37 1.38
HQ 174 174 1.75 1.75 176 1.76 1.77 1.77 1.78 1.78
SC 220 220 221 222 222 223 223 224 225 225

3.2 Systems Approaches

It is also possible to consider the complete system at once in selecting the lags and variables

to be included. In that case a multivariate model of the type
yt:Xt9—+—ut, tzl,...,T, (33)

is considered. Here X; is a (M x J) regression matrix and 0 is a (J x 1) parameter vector.

Note that X; is usually block-diagonal,

X, 0 --- 0
0 x/ 0
Xt = X . )
| 0 0 Xt ]




where x,,,; is the (J,,, X 1) vector of regressors in the m-th equation and J = J; + - - - + Jy.
For example, if the full model (2.1) is considered, X, = Iy;®[1 : Y], so that J,, = Mp+1
(m=1,...,M). If lags are eliminated in some or all of the equations, the structure of X;
will usually become slightly more complicated with different numbers of regressors in each
equation. In that case, estimation may be done by a GLS or SURE procedure, that is, the
estimator of 6 is
T -1
= (Z X;iu1Xt> > XS s (3.4)
t=1 t=1
where 3, is a consistent estimator of ¥,,. For instance, S may be based on the residuals
from an unrestricted or restricted OLS estimation of each individual equation.
Lag selection may again be based on sequential elimination of coefficients with the smallest
t-ratios. If the procedure is based on the full system we abbreviate it as STP. Alternatively,
model selection criteria may be used in deciding on variables and lags to be eliminated. In

the systems context, criteria of the type
VCOR(j) = logdet(2,()) 4+ ¢ J/T (3.5)

are used, where c7 is as in (3.2), j indicates the restrictions placed on the model and 3, (j)
is a corresponding estimator of ¥,,. For example, starting from a full model such as (2.1),
j may be a ((M?p+ M) x 1) vector of zeros and ones where a one stands for a right-hand
side variable which is included and a zero indicates a variable which is excluded. Ideally,
the maximum likelihood (ML) estimator is used for iu(J) However, for restricted systems
computing the exact Gaussian ML estimator involves computationally demanding iterative

methods in general. Therefore, using
T
S,3) =T iy with day=y,— X0 (t=1,....7) (3.6)
t=1

is a feasible alternative. We will use this estimator in the following in combination with the
FS and SER selection strategies considered in the single equation context. In the systems
context they will be abbreviated as SFS and SSER.

Note that the simple relation between the testing procedure and the sequential elimination
of regressors given in Proposition 1 for the single equation case is no longer available in the
presently considered systems case. The reason is that the Wald and the likelihood ratio (LR)
versions of tests for linear restrictions differ in the multivariate case. The usual t-test may be

viewed as a Wald test whereas the LR version has the direct link to the lag selection criteria



of the type (3.5) (see Liitkepohl (1991, Ch. 4)). Given that the test versions are closely
related, it is of course possible that both strategies lead to the same models in relevant small

sample situations.

4 Simulation Comparison of Lag Selection Strategies

We have considered processes of different orders, dimensions, correlation and integration
characteristics to study the small sample properties of the selection strategies. In the fol-
lowing we will highlight some important findings and illustrate them with results from the
following simple bivariate VAR(2) example process:

ylt _ 02 + 5 1 yl’t—l + O O yl,t72 + Uyt (41)

Yot .03 4 5| |y2-1 25 0] |y2—2 Ust
with covariance matrix

09 0
0 .04

This process was also used in simulations by Liitkepohl (1991). We simulated 1000 sets of
time series and applied the single equation strategies from Section 3 to the generated time
series. To be more precise, we fitted a VAR (4) and then applied the subset strategies. In this
case the coefficient matrices A; and A4 of the true data generating process (DGP) contain
zeros only. For each realization of the DGP we recorded whether the strategies decided
correctly on the zero restrictions of individual coefficients and list the resulting relative
frequencies of correct decisions.

Obviously, the example process is relatively small compared to VAR models that are
found in applied studies. It is still useful to consider such a simple DGP here because the
results for this process can be presented in a lucid way. To obtain a realistic ratio of the
number of parameters and the sample size we present results for a smaller than typical
sample size. More precisely, we show results for 7" = 30 in Table 2. As there is very little
sample information in this case, none of the criteria and strategies detects the zero elements
with high probability. Especially, the small nonzero upper right element of the matrix A; is
set to zero fairly often. Generally there is not much to choose between the different strategies
and the very computer intensive full search strategy, FS, does not perform better than the

more efficient SER/TP strategy.



Table 2: Relative Frequency of Correct Decisions Obtained from 1000 Realizations of Length
T = 30 of VAR(4) Process

Selection Relative Frequency of Correct Decisions
Procedure Criterion A A, As Ay
ALC 756 .240 788 783 795 773 783 772
925 .790 709 .754 741763 738 731
721199 847 832 845 .823 836 .828
Full Search (FS) HQ
897 762 .665 .809 781 .808 795 788
s 638 122 910 .899 919 .889 900 .896
860 .747 H73 869 854 .892 878 870
ALC 774298 748 731 755 731 741740
926 .806 718 721 689 .738 707 .694
736 .259 799 774 7196 7T 798 796
SER/TP HQ
905 781 669 771 37792 763 757
3 652 171 881 .848 880 .852 876 .866
868 743 589  .833 816 .852 833 .824

On average the SC criterion selects models with more zero restrictions than HQ and AIC.
This result is in line with the theoretical properties of these criteria (see Liitkepohl (1991,
Ch. 4)).
equal but close to zero. On the other hand, if the true coefficient is zero, the SC criterion

performs better than AIC and HQ.

In particular, the SC criterion is less successful when the true coefficient is not

In Table 3 the numbers of models with correctly identified zero restrictions, i.e., the
numbers of models that have the same zero restrictions as the coefficient matrices of the true
DGP are given. We call models ‘fully correct’if all zero coefficients are found and none of the
nonzero coefficients is incorrectly restricted. A model is classified as ‘not overly restricted’
if no false zero restrictions are imposed. This implies, of course, that ‘not overly restricted

models’ may include unrestricted coefficients which are actually zero in the true DGP.

10



Table 3: Frequency of ‘fully correct’ and ‘not overly restricted models” Obtained from 1000
Realizations of VAR(4) DGP Based on (4.1)

T =30 T =100

Selection fully  not overly  fully  not overly
Procedure Criterion correct restricted correct restricted

AIC 4 76 46 258

Full Search (FS) HQ 2 51 60 154

SC 0 14 53 82

AIC 2 114 35 297

SER/TP HQ 3 76 53 197

SC 0 26 48 99

Columns 3 and 4 of Table 3 show the frequencies of ‘fully correct’ and ‘not overly restricted’
models for 7" = 30. For all strategies the number of data sets for which all zero coefficients are
found and all restrictions are correct (‘fully correct’) is disappointingly small. This number
ranges from 0 to 4 out of 1000 models. Clearly, none of the strategies is very successful.
Somewhat surprisingly, the very computer intensive full search procedure does not perform
better than the other procedures. In fact, FS specifies more models with false restrictions.

We repeated the Monte Carlo study for 7' = 100. The last two columns of Table 3 provide
information on the number of ‘fully correct’ and ‘not overly restricted’ subset models for this
case. Naturally, the relative frequency of correct decisions increases with the sample size.
Nevertheless, the success rate is still disappointing. At best, around 30% of the models have
no incorrect restrictions. In the majority of cases, however, the statistical procedures end
up with incorrectly restricted models. A test procedure that removes variables with lowest
t-ratios until all remaining variables have t-ratios greater than 2 is often used in applied
work. Such a strategy would be more parsimonious than a SER/TP procedure based on
AIC or HQ and hence will impose more incorrect restrictions.

In general our Monte Carlo experiments show that none of the subset procedures is very
successful in finding the true underlying restricted model in samples of the size typically
available in macroeconometric studies. The overall performance strongly depends on the
structure of the underlying DGP. It is particularly interesting that the computationally
efficient SER/TP strategy performs as well as or even better than a full search procedure.

One may wonder whether some of the other subset methods proposed in the literature

11



Table 4: Forecasting Properties of Subset Models
T =30 T =100

Selection normalized forecast MSE
Procedure Criterion 1-step 5-step 1-step 5-step

AIC  1.375  1.387 1.021 1.019
Full Search (FS) ~ HQ  1.360 1.366 1.004 1.020
SC 1.334  1.314  .993  1.012
AIC  1.397 1.403 1.026 1.018

SER/TP HQ 1.379  1.375 1.009 1.020
SC 1.351 1.331 1.001 1.015
Full VAR(4) 1.422  1.455 1.050 1.028

have more favorable properties in this respect. Therefore it may be worth noting that the
simulation results reported by Liitkepohl (1991, Ch. 5) for some other methods are not unlike
the results in our Table 2. We have also included the top-down strategy of Liitkepohl (1991)
in the present comparison and found that the overall performance is similar to that of the
procedures considered here.

To get a more comprehensive picture of the quality of the models selected, we also com-
puted normalized forecast mean squared errors (MSEs) by adjusting for the theoretical
forecast error covariance matrix. To be more precise, we denote the h-step forecast at time
T of the n-th generated times series by ¢r(h),. Moreover, let ¥,(h) be the forecast error
covariance matrix (see, e.g., Liitkepohl (1991) for precise expressions). Then the normalized

forecast MSEs in Table 4 are computed as

1000

TS W — B ()5 (1) s — 9r(R)) /1000, (12)

where Y5, is the generated vector of the n-th bivariate time series for which the forecast
is made. The normalized MSE relates the forecast MSE of the estimated model based
on the subset strategies to the forecast MSE of the true model and should ideally be 1
because we divide by the dimension of the process M. Note that impulse responses are
forecasts conditional on a specific assumed history of the process. Therefore the forecasting
performance of the models is also an important characteristic if impulse response analysis is
the objective of the analysis.

We show the 1- and 5-step MSEs in the third and fourth column of Table 4. The differences

in forecast performance between the models chosen from alternative subset strategies are

12



small. For T" = 30, the corresponding 1- and 5-step MSEs for the unrestricted model turn
out to be 1.422 and 1.455, respectively. Our results indicate that we can use any of the
proposed strategies in conjunction with any of the criteria to improve the forecast precision
compared to the unrestricted VAR. In other words, despite the fact that the true model is
rarely found, forecast precision tends to increase in the subset models relative to full models.

For T' = 100, according to the normalized MSEs there is very little difference in forecasting
accuracy between models chosen from different strategies. All strategies find models with
MSEs close to one.? Moreover, all subset strategies end up with slightly smaller MSEs than
the unrestricted models, despite the fact that incorrect zero restrictions are imposed quite
often.

We have also applied the systems approaches for choosing the zero restrictions. In that
case the general picture is similar to what is seen in Tables 2, 3, and 4. In other words,
the computationally more demanding system strategies SF'S and SSER do not outperform
their single equation counterparts. This result was also obtained for a model with nondiag-
onal residual covariance matrix ¥,. Overall, the results from our Monte Carlo experiments
indicate no evidence in favor of system strategies. The simple STP with a fixed threshold
often performs worse than the related single equation testing procedure where the threshold
value 7 is chosen as a function of the reduction step and the sample size T'. SFS and SSER
perform very much like their single equation counterparts. Since system procedures involve
feasible GLS estimation in each reduction step they are, of course, computationally more
demanding than the single equation strategies. Taking this fact into account, we recommend
using the single equation strategies in applied work.

In applied time series analysis, researchers often face nonstationary and cointegrated time
series. Despite the fact that cointegration methods have become standard to analyze such
data, it is still popular to estimate VAR models of nonstationary series in levels form. Since
the empirical example in the next section involves nonstationary and possibly cointegrated
time series, we were interested in the performance of the lag selection strategies when the un-
derlying process is integrated but estimated as a VAR in levels. Therefore, we also conducted
a Monte Carlo experiment based on a cointegrated VAR process. The general conclusion
from these simulations is that the overall performance of subset strategies when the time
series are nonstationary and cointegrated is very similar to the one from a stable process.

Therefore we do not present specific results here in order to save space.

2MSE values smaller than one are due to the Monte Carlo variability.

13



In summary, our simulations based on stationary and cointegrated processes indicate
that a single equation strategy based on eliminating regressors with smallest t-ratios is
the preferred procedure. The critical values or, equivalently, the choice of model selection
criterion will have an impact on the final model. Forecasts and, hence, impulse responses

will not be very sensitive to this choice if one of the usual values or criteria is used.

5 Empirical Application

The results from Section 4 suggest that our subset strategies are not very successful in
identifying the true underlying model. Nevertheless, similar strategies are frequently used
in applied work. In this section we illustrate how the use of subset strategies can in fact
improve results of the final modeling objective, e.g., impulse response analysis or forecasting.
We investigate the effects of a monetary policy shock in the U.S. measured as a shock to the
federal funds rate. In the literature, unrestricted VAR models have been extensively used for
analyzing the effects of a monetary policy shock (see for example Christiano, Eichenbaum &
Evans (1996), henceforth CEE). We compare impulse responses from an unrestricted VAR
with results from a subset VAR as specified from the TP/SER procedure. Since impulse
responses are special forecasts, as mentioned earlier, the results of the previous section
indicate that our subset strategy may be useful for specifying suitable models for this kind
of analysis as well. We use single equation strategies because they are considerably faster
and perform as well as systems strategies.

As in the previous literature we identify monetary policy shocks as disturbances of a
central bank’s reaction function. More precisely, the monetary authority is assumed to set
its policy instrument according to a linear feedback rule that can be written in VAR(p) form
as in (2.1), where the vector of variables y; includes the monetary policy instrument and
variables the central bank is looking at when setting the policy instrument. We distinguish
between policy and non-policy variables. Policy variables are influenced immediately by
central bank actions such as the federal funds rate, reserves or monetary aggregates. Non-
policy variables that can only be influenced with a lag by the monetary authority, include the
real GDP and a measure of the price level among others. Within this setup, orthogonalized
responses (see Liitkepohl (1991) for precise formulas) are used to investigate the effects of

an impulse in the monetary policy instrument.
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Following CEE we include the following variables in our analysis for the U.S.:

Yt = (gdptvptapcomta ffe, nbrdg, try, mlt)lv (5-1)

where gdp is the log of real GDP, p the log of the GDP deflator, pcom the log of a commodity
price index, ff the federal funds rate, nbrd the negative log of nonborrowed reserves, tr the
log of total reserves and ml the log of M1. Shocks to ff are regarded as a measure for
monetary policy shocks. We use quarterly seasonally adjusted U.S. data over the period
1960q1-1992q4 (T = 132) as in CEE3. The time series are depicted in Figure 1. Clearly,
all time series used show trending behavior and given the choice of variables, cointegration
between these variables is possible. Since we are also interested in a comparison of our results
to those of CEE, we ignore possible cointegration and proceed by estimating the model in
levels.

We start out with an unrestricted VAR(4) model, i.e., we initially include four lags as in
CEE. In this model, we estimate 203 parameters including the intercept terms. Since we
wish to compare this unrestricted model to the restricted counterpart, we apply the SER/TP
procedure presented in Section 3. We use the AIC criterion, which performed relatively well
in the simulations. The resulting model has 115 zero restrictions leaving 88 parameters
to be estimated. This subset model is then estimated with feasible GLS. We compute
orthogonalized responses to a shock in the federal funds rate from both, the unrestricted
and restricted system. In addition to the point estimates we compute confidence intervals to
account for the fact that impulse responses are nonlinear functions of estimated coefficients
and, hence, estimates. We use Hall’s (1992) percentile bootstrap confidence intervals for the
impulse responses, as recommended by Benkwitz, Liitkepohl & Wolters (2000). They argue
that these intervals are advantageous compared to the standard bootstrap intervals.

Figures 2 and 3 show the responses for all system variables to a monetary shock. The solid
lines represent the point estimates, while the dashed lines are approximate 95% confidence
bands computed from a bootstrap with 1000 draws. The left column shows responses from
the unrestricted VAR(4) model, the right column is based on the subset model.

The results from our impulse response analysis are largely in line with the results of CEE.
While CEE compute confidence bands that approximately correspond to the 90% confidence
level, we draw our conclusions based on results from the subset VAR (restricted model)

and on a 95% level. A positive impulse or shock in the federal funds rate corresponds to a

3Data sources: The original series have been obtained from the Federal Reserve Economic Data (FRED)

database.
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contractionary monetary policy shock. This shock is associated with a persistent fall of real
GDP and a delayed decline in the GDP price deflator. In contrast to CEE, we only find a
small delayed decline in commodity prices.* Moreover, we find that the shock in ff leads to
a rise in the federal funds rate and a decline of nonborrowed and total reserves. In addition,
the contractionary policy shock leads to a persistent decline of nominal money M1. In our
example, the same conclusions can be drawn from the unrestricted model using 90% level
confidence intervals for the impulse responses as in CEF.

The comparison of the unrestricted and the restricted models shows two interesting results:
First, even though the restricted model includes a substantial number of zero coefficients, the
pattern of estimated impulse responses remains basically unchanged. Overall, this indicates
that restrictions from the SER/TP procedure with the AIC criterion seem to be reasonable.
There is no indication of any bias induced by these restrictions. Thus, the potential inference
problems reported by Benkwitz, Liitkepohl & Neumann (2000) may not be present here.

Second and perhaps more important, the subset specification yields confidence bands
that are substantially smaller than in the unrestricted model. Provided the restrictions are
correct, impulse responses can be estimated more precisely. This reduces the uncertainty
when interpreting the results

As mentioned before, impulse responses are conditional forecasts. Therefore, it is espe-
cially interesting to evaluate the forecast performance of the specified subset model. We do
so using the simulation technique presented in Section 4. To begin with, we assume that the
subset specification used above is the true underlying DGP, i.e., we use the restricted EGLS
estimates for the parameter matrices A; and the covariance matrix >,. We use this DGP
and real observations as presample values to generate 1000 time series with length 7" = 137.
Then, we apply the SER/TP procedure to specify subset VARs.5 Table 5 shows normalized
MSEs computed according to (4.2) from both strategies and from the unrestricted model.
When using AIC and HQ models, the subset strategy performs better in forecasting than the
unrestricted model. However, the differences between SER/TP and the full model MSEs are
only small. Given this result, it is not surprising that impulse responses from both models
are very similar. In addition, the SC criterion sometimes leads to models with too many

incorrect zero restrictions and consequently to suboptimal 5-step forecasting properties.

4CEE find a sharp, immediate decline in commodity prices. The different pattern may be due to a

different measure of commodity prices used in our study.
5The full search strategy is clearly infeasible in a large model. With 7 variables and 4 lags FS would have

to compare 228 regressions in each equation.
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Table 5: Normalized MSEs for 7-dimensional VAR

normalized
forecast MSE
Model Criterion 1-step 5-step

Subset AIC 1.35 1.54
SER/TP HQ 1.34 1.54
SC 1.36 1.58

unrestricted - 1.37 1.56

We conclude that using the SC criterion can lead to models with many incorrect zero
restrictions that spoil forecasts and possibly impulse responses. Thus, for impulse response
analysis, AIC and HQ are likely to be the better choice, at least for the present example

model.

6 Conclusions

The present study considers alternative lag selection strategies within the VAR modeling
framework. We present three different single equation model selection procedures: Full
search (F'S), sequential elimination of regressors (SER) and a testing procedure (TP) based
on t-ratios from OLS regressions. It is shown that using the test procedure with critical
values as a function of the elimination step is equivalent to the SER strategy. Furthermore,
we propose systems strategies related to the single equation strategies above.

The small sample properties of single equation and systems strategies are compared with
Monte Carlo experiments. It is found that single equation and systems strategies produce
very similar results. Given that system strategies are computationally more demanding, we
recommend using the single equation procedures.

Our results indicate that none of the strategies specifies the correct model with high
probability. It is particularly interesting that the computationally demanding full search
procedure offers no advantage. The overall performance of the strategies presented strongly
depends on the underlying DGP. We find that the results are sensitive to the absolute size of
the DGP parameters. Therefore, it seems risky to generalize our findings. A comparison of
the forecast precision shows that in many situations the subset VAR models perform better

than the corresponding unrestricted VAR models even if the zero restrictions imposed in
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the subset VAR are not correct. Thus, if a researcher is interested in forecasts or impulse
response analysis, the presented subset modeling strategies may help to improve the results.

In our empirical example, a subset VAR identified from SER/TP results in impulse re-
sponse patterns that are very similar to the ones from the full VAR. The confidence bands
from the subset VAR are smaller, however, indicating that responses are estimated more
precisely.

We conclude that the single equation subset strategies can be useful for forecasting pur-
poses and impulse response analysis. Since they do not find all zero restrictions with high
probability, we recommend to use other modeling tools in addition. To avoid misspecification

a comparison to the full VAR and the application of diagnostic tests is advisable.

References

Akaike, H. (1974), A New Look at the Statistical Model Identification, IEEE Transactions
on Automatic Control, AC-19, 716-723.

Benkwitz, A., H. Liitkepohl & M. H. Neumann (2000), Problems related to confidence
intervals for impulse responses of autoregressive processes, Econometric Reviews, 19,

69-103.

Benkwitz, A., Liitkepohl, H. & Wolters, J. (2000), Comparison of Bootstrap Confidence
Intervals for Impulse Responses of German Monetary Systems, Macroeconomic Dy-

namics, forthcoming.

Christiano, L. J., Eichenbaum, M. & Evans, C. L. (1996), The Effects of Monetary Policy
Shocks: Evidence From the Flow of Funds, Review of Economics and Statistics, 78 (1),
16-34.

Hall, P. (1992), The Bootstrap and Edgeworth Expansion, New York: Springer.

Hannan, E.J. & B.G. Quinn (1979), The Determination of the Order of an Autoregression,
Journal of the Royal Statistical Society, B41, 190-195.

Hsiao, C. (1979), Autoregressive modeling of Canadian money and income data, Journal

of the American Statistical Association, 74, 553-560.

18



Hsiao, C. (1982), Time series modelling and causal ordering of Canadian money, income
and interest rates, in O.D. Anderson (ed.), Time Series Analysis: Theory and Practice

1, Amsterdam: North-Holland, 671-699.

Judge, G.G. et al. (1988), Introduction to the Theory and Practice of Econometrics, New
York: John Wiley.

Liitkepohl, H. (1991), Introduction to Multiple Time Series Analysis, Berlin: Springer-
Verlag.

Penm, JH.W. & R.D. Terrell (1984), Multivariate subset autoregressive modelling with

zero constraints for detecting ‘overall causality’, Journal of Fconometrics, 24, 311-330.
Schwarz, G. (1978), Estimating the Dimension of a Model, Annals of Statistics, 6, 461-464.

Sims, C. A. (1980). Macroeconomics and reality, Fconometrica, 48, 1-48.

19



9 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 72
83 0
o 6.4
84
50
82
56
80
52
18 —gdp -
167560 Toe 1965 192 176 1980 1osb 1@ 192 “STo60 Teeh 198 17 197 1980 196k 1088 1992
46 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.20
iy 0.18
016
42
0.14
40 0.12
38 010
» 0.0
006
34
0.04
i 0.02 —ff
30%g60 1o s 19 1%6 a0 st na 1o “O0Tem ek e 1972 1976 180 19gk 1988 1992
22 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 40
24 38
26 36
28 34
30 52
-32 30
34 28
-36 26
Y —rg Y 24 tr
000 o6 Tees 1o 9% el 1esh s 1o L1960 a6k 198 197 19 1980 19k 0% 1%

Figure 1: Time series analyzed

20



unrestricted model restricted model

op————————————— 0004
0.000 0000
gdp -0.004 -0.00¢
~0.008 -0.008
0012 0012
W62 5 4 5 5 1 8 9 0 0 oy 1 2 3 4 5 5 7 8 9 w0 10
op—————————————— 0004
0.002 ommmmmmmTmees - 0002
] S = —— == ——
D 00 AN -00m RN
~0004 ~. 000 ~<.
~ ~
S o ~
~0.008 ~ -0006
~
S ~
~0.008 -0008
AT 5 4 s 6 7 8 9 0 0o % 1 2 3 4 5 5 7 8 9 w0 10
Do 0006
=" 7T T-~a
0002f 7 Tte—l ooo2f  ______
0 S~ 0002 RN TTe-
NS o - S~ S o
0006 N - -0.006 S~
pcom . .o
-0.010 o -0.010 S~o
~ S~
So S
~0.014 \\\ -0.014
0018 T~ ] oo
VT T s 4 s 6 7 8 9 0 0o M2y o 3 4 s 5 7 8 9 w0 11
OO/‘B T T T T T T T T T T T 0018 T T T T T T T T T T T
0014 0014
0010 0010
ff oo 0005
0.002 0002 el
-0.002 0002 T
5 3 4+ 5 6 7 8 3 10 0 1My 5 3 4 5 § 7 8 9 10 1 1
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(left) and restricted model (right)
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Figure 3: Responses of nbrd, tr and ml to impulse in ff computed from unrestricted (left)

and restricted model (right)
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