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Abstract

People dislike inflation because inflation erodes the real value of future nominal income
and wealth. Adjustment of future nominal values via a cost of living index is an appropriate
way to handle the problem of real income risk. Nonetheless an important aspect needs more
discussion: If markets existed in which ’real income risks’ could be traded—would a rational
individual always voluntarily purchase protection against such risk? A model is developed to
shed some light on this aspect. It shows that the optimal behaviour depends—as expected—
on the cost of protection and the risk preferences of the individual.

JEL Codes: D11, D8
Keywords: Cost of Living Index, Futures Markets

1 Introduction

There is an ongoing discussion in many OECD countries about the future of public pension

programs. The existing pension arrangements are far too costly in many countries and future

payments of programs seem to be uncertain. There are several proposals under discussion

to reform the current public pension arrangements. A currently widely debated proposal in

Germany picks up the foreseeable financial restrictions of the public pension plan in the future

and wants to encourage greater “Eigenvorsorge” (i.e., private pension schemes). Even though
∗ I would like to thank Stefano G. Athanasoulis, Irwin L. Collier, Franz Hubert, Frank Riedel and Robert J.

Shiller for helpful comments. Financial support from the Deutsche Forschungsgemeinschaft, SFB 373 is gratefully
acknowledged.
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there are differences between the government and the opposition about the details of how to

encourage people to save more for their retirement, the goal as such is undisputed. People should

accumulate funds until the end of their working live. Upon retirement accumulated funds would

be converted into annuity payments. Thus, these private annuities partially take over the role

of social security pensions.

However, such annuities and social security payments are not perfect substitutes. While

the latter are indexed with a Cost of Living Index (COLI)—and thus try to guarantee real

payments—most annuities are nominal. Therefore, private annuities possess real income risk.

Using public survey methods Robert Shiller (1997) has found that people’s main concern about

inflation is the erosion of the real value of future income. Consequently it is conceivable that

people might be interested in financial instruments that would allow them to swap nominal

payments into real payments. Or, more directly, that they are interested in real annuities. For

example, in the Chilean social security system retirees could choose between nominal pension

payments and payments that are adjusted via the Unidad de Fomento (Schulz-Weidner 1999,

Shiller 1998). The Unidad de Formento is in effect a COLI. Thus, we should enlarge the debate

about a reform of public pension programs on the discussion of financial instruments that allow

retirees to choose between real and nominal pension payments.

Nevertheless, there remains a large obstacle to discuss such instruments. This obstacle is the

failure of the CPI futures market that was originated in 1986 at the Coffee, Sugar and Cocoa

Exchange in New York (Horrigan 1987). Economists were convinced that such a contract “would

in a variety of ways help reduce the hardship created by uncertain future purchasing power”

(Lovell and Vogel 1973, p.1010). And Milton Friedman conjectured in 1986 that CPI futures

could become the “largest-volume contract in the country” (cited from Horrigan 1987, p.11).

But they and many others were wrong: the market failed due to a lack of interest and the CPI

futures market closed in 1991 (Wrase 1997). Are there fundamental theoretical reasons for the

failure of the COLI futures market?

I use a simple model to address this question. The purpose of my model is to take a closer look

at the behaviour of risk averse rational individuals under real income risk who have the possibility

of hedging their risk by means of a futures contract. There exists a close relationship between

risk aversion in income and behaviour towards price risk (Hanoch 1977). This is remarkable

because it shows that an individual’s behaviour towards price risk is by no means clear-cut.

Even if an individual loves price risk, it is not certain that he would try to increase the spread

of his standard of living between states. Altogether, I derive the following results: transactions

at a COLI futures market will only occur if risk averse individuals have different degrees of risk

aversion. However, this implies that not all risk averse individuals reduce their real income risk.
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Some of them increase their real income risk. Furthermore, I show that even those individuals

who wish to cancel out any real income risk can do this only if they have homothetic preferences

and if the traded index is exact for their preferences.

The paper is organized as follows: First, I describe the general setup of the model. After

that section, I derive some conclusions for a simple model with two states and proportional

price vectors. The conclusions are valid without any restrictions on the utility functions of the

individuals. In the subsequent section the model is extended to allow for more than two states.

In this framework a complete hedge is generally only possible, when preferences are homothetic

and the traded index is proportional to the true COLI (Konüs index). An intuitive reason for

this result suggests itself immediately: as is well known, the Konüs index is independent of

any reference utility for homothetic preferences. Finally, I show for indirect utility functions

with different degrees of constant relative risk aversion that the futures demand is decreasing

in the futures price, that there exists a price to induce a complete hedge, and that there is a

price at which the futures demand is equal to zero. In the concluding section I give alternative

explanations for the failure of the COLI futures market.

2 The model

2.1 Assumptions

We assume there are just two periods t ∈ {0, 1}. In period 0 a COLI index futures contract is

traded which settles in period 1. The price per contract is f . In period 1 the individual receives

a fixed nominal payment a > 0 (a fixed rent) and the settlement payments from his engagement

at the futures market. With this income the individual can buy in period 1 a consumption

bundle out of L > 2 different goods. However, the prices of these goods—comprised in the

vector p ∈ IRL
++—are uncertain. There are S > 2 different price vectors which could occur

in period 1. These price vectors are collected in P = {p1, ...,pS}. The probability πs for

state s is positive and all S probabilities sum to 1. The COLI—see subsection 2.2 for some

examples—will be calculated in period 1 with the realized price vector ps ∈ P. The formula

of the COLI is common knowledge. Let I(p) denote the COLI and let qf denote the number

of futures contracts. Then the settlement payment in period 1 per contract is (I(ps)− f) for a

long position (qf is positive and the individual buys contracts in period 0) and − (I(ps)− f) for

a short position (qf is negative and the individual sells contracts in period 1). The total income

of the individual in t = 1 in state s is

(1) ys = a + qf
(

I(ps)− f
)

.
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The chronological order of the model can be illustrated as follows:

-

0 1 t
qf , f a, ps ∈ P, I(ps)

To derive meaningful results, we have to restrict the admissible futures prices f . Let Imin denote

the minimal index value and let Imax denote the maximal index value (for all p ∈ P). Then it

must always be the case that

(2) f ∈ (Imin, Imax) .

Otherwise it is possible to earn riskless profits (for example: if f 6 Imin the payment for a long

position is never negative).

Now we can look at the optimal behaviour of the individual in period 0. In this period the

individual decides about his futures demand qf given his expectations about the πs’s and his

utility function. I assume that the expected direct utility is of the following additive form

(3) U ≡
S

∑

s=1

πsu(xs) .

Under this assumption (and some regularity conditions for the direct utility function) the max-

imization problem is easily transformed into the equivalent problem of maximization of the

indirect utility function. To show this equivalence, one writes down the Lagrangian for (3) with

the 2S constraints ys = ps ·xs and ys = a+qf (Is−f). With the help of the first order conditions

it is easily seen that this maximization is in effect a “two stage process”: In every state we divide

given income optimally among the goods (first stage gives the state indirect utility) and then

divide income optimally between states.

So let us assume from now on that the individual has a twice-differentiable indirect (state)

utility function v(p, y). This function is homogeneous of degree zero in p and y together (no

money illusion) and increasing in y. Furthermore we assume

vyy(p, y) 6 0 .(4)

If vyy = 0, the individual is risk neutral, for which case the indirect utility function will be of the

form v(p, y) ≡ ṽ(p)y. If vyy < 0, the individual is risk averse. In that case we further assume

that

(5) lim
y→0

vy(p, y) →∞ .
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This assumption guarantees that the optimal choice of qf always corresponds to ys > 0 for all

states. Now we can put real income risk in concrete terms: such a risk exists if

(6) ∃ ps,ps′ ∈ P : v(ps, a) 6= v(ps′ , a) .

The real value of income a depends on the realization of the price vector. Real income risk is

non-existent if

(7) ∀ ps ∈ P : v(ps, a) = const.

Now we are ready to look on the behaviour of the individual. The individual chooses his

futures demand via the maximization of

(8) U ≡ E
[

v(p, y)
]

=
S

∑

s=1

πsv(ps, ys)

with the income definition (1).

Before we solve this problem explicitly, what should we expect? First of all we might expect

that a risk averse individual tries to minimize his real income risk. But risk averse with respect

to what? What if the individual loves price risk? As Hanoch (1977) has shown, an individual

could be risk averse with respect to income (given prices) and risk loving (given income) with

respect to prices. We can state this more concretely:

Lemma 1. If the indirect utility v(p, y) is convex in p, then for the relative risk aversion (RRA)

(9) RRA(p, y) ≡ −vyy(p, y)y
vy(p, y)

,

RRA(p, y) 6 2 is sufficient for the convexity of v(p, y) in p, only if preferences are homothetic

(Hanoch 1977:419 (Theorem 3)).

A price risk lover is an individual whose indirect utility function is convex in p. He always

prefers an uncertain distribution of price vectors as against the certain average of the prices. Does

this mean that an individual with a convex indirect utility function is not interested in COLI

futures? Intuition suggests the following answer: COLI futures make it possible to reallocate

income between different states. The price vectors in these states remain unaffected by this

reallocation. It is not possible to equalize the price vectors between states. So even price risk

loving individuals might be interested in COLI futures.
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2.2 The COLI

Which are the relevant cost of living indexes? The most prominent one is the Laspeyres price

index

(10) I l ≡
pTxR

pT
RxR

.

xR is a bundle of goods (basket), which represents the consumption pattern of a reference individ-

ual (or household). The CPI and the Deutsche Preisindex für die Lebenshaltung are calculated

in this fashion. It is a well-known result that such indexes overstate the difference between true

costs of living associated with non-proportional vectors pR and p. This overstatement is due

to the fact that substitution effects are neglected. Thus the Laspeyres price index is an upper

bound for the true COLI

(11) Ik ≡ e(p, uR)
e(pR, uR)

,

with e(p, u) as the expenditure function. The index (11)—which we term also as Konüs index—

would be exact for the reference individual. There are many other index formulas. They all

have in common that they are linear homogeneous in prices.

3 First results with simplifying assumptions

Let be P = {p,p} with

p ≡ αp and α > 1 .(12)

Due to p > p there is always—independently of the concrete utility function—a real income risk

in the sense of condition (6). Let π ≡ Prob
(

p
)

∈ (0, 1) denote the probability of the low price

vector. The linear homogeneous COLI can take the two values I ≡ I(p) and I ≡ I(p) with

(13) I = αI > I .

The income in the different states is y ≡ a + qf (I − f) and y ≡ a + qf (I − f). If the individual

chooses qf = a/f his income is y = αy and so his standard of living is constant

(14) v(p, y) = v(αp, αy) .

We see that it is always possible to hedge completely.

The maximization problem is given as

(15) max
qf

U ≡ πv(p, y) + (1− π)v(p, y) .
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The first order condition for a risk averse individual is

(16) −πvy(p, y)(I − f) = (1− π)vy(p, y)(I − f) .

Let us concentrate on only two possible futures prices. In Appendix A.1 we give the reasoning

behind this decision.

The first price we choose is f = E[I]. If we use this price we can transform the first order

condition (16) into

(17) vy(p, y) = vy(p, y) .

Depending on the behaviour of the marginal utility in prices, we can derive with vyy < 0 that

y > y for increasing marginal utility, y = y for constant marginal utility and finally y < y for

decreasing marginal utility. With this result at hand we can easily derive the corresponding

optimal futures demand as q∗f > 0, q∗f = 0 and q∗f < 0. In Appendix A.2 we show that

RRA(p, y)















> 1 ∀ y ∈ [a/α, a] ⇒ q∗f > 0

= 1 ∀ y ∈ [a/α, a] ⇒ q∗f = 0

< 1 ∀ y ∈ [a/α, a] ⇒ q∗f < 0

.(18)

Thus we have seen that: with only two possible proportional price vectors the hedging behaviour

depends directly on the degree of risk aversion in income. Furthermore, we can now answer the

question that we posed at the end of the last section: Even if an individual loves price risk (his

indirect utility function is convex in prices), it is possible for him to reduce his real income risk

(see Lemma 1). The borderline case is RRA equal to one – which is equivalent to constancy of

the marginal utility of income (see Appendix A.2). We see finally that f = E[I] could also be

an equilibrium price for the futures market even if all individuals are risk averse. For this case

it is only necessary that the individuals have different degrees of risk aversion.

The second price of interest is given as

f ch =
(

E[1/I]
)−1

.(19)

It is not difficult to check that f ch ∈ (Imin, Imax) and f ch < E[I]. Under the price (19) every

risk averse individual chooses a complete hedge. This is easy to see: we obtain from the first

order condition (16) αvy(p, y) = vy(p, y). With p = αp and the homogeneity of degree minus

one it follows that

(20) vy(p, y) = vy(p, y/α) ,
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and so y = αy. Thus, the real income is equal in both states. This result is quite easy to

understand when we assume that the two states are equally likely. Applying this assumption

we obtain from (19)

(21) −α(I − f ch) = (I − f ch) .

Hence it is possible to swap real income one-for-one between states. However, at the price

f ch every risk averse individual chooses a complete hedge. Thus, whenever only risk averse

individuals are operating in the futures market, this price will not be an equilibrium price.

Let us summarize our results under the simplifying assumptions: If the futures price is such

that the real income can be exchanged one-for-one between states, a risk averse individual will

hedge completely. In this case the standard of living is equalized across states. If the futures

price is such that the nominal income can be exchanged one for one between states, the result

will no longer be definite. The optimal futures demand then depends on the behaviour of relative

risk aversion along a proportional price ray. It follows that a complete hedging of the standard

of living will never be optimal and indeed there are cases when no hedging whatsoever would

be chosen.

4 The general model with more than two states

4.1 Complete hedge of the standard of living

Now we allow for S > 3 possible states. A complete hedge means

v(ps, ys) = u ∀ ps ∈ P.(22)

We obtain

Proposition 1. A complete hedge is only possible for arbitrary P and S > 3, f > 0 and a > 0

if

(23) qf =
a
f

.

Furthermore, I(p) has to be linear homogeneous, which means that for α > 0

(24) I(αp) = αI(p) .

Finally we must have that

(25) I(p) ∝ e(p, u) .

e(p, u) is the expenditure function that corresponds to v(p, y). All these are necessary conditions.
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Proof. Condition (22) defines implicitly e(p, u). So

a + qf (I(ps)− f) = e(ps, u) ∀ ps ∈ P .(26)

For arbitrary P we must have that qf 6= 0. We obtain with the help of (26)

(a− qff) + qfI(ps) = e(ps, u) ∀ ps ∈ P .(27)

We know that the RHS is linear homogeneous in prices. Because P is arbitrary, the first term

on the LHS (a constant) must be equal to zero and the index must be linear homogeneous. If

follows that

a
f

I(ps) = e(ps, u) ∀ ps ∈ P .(28)

and so the index has to be proportional to the expenditure function. �

With (23) the total nominal income a is swapped into real income. It follows from the

proportionality of the index with the expenditure function that the index is also proportional

to the Konüs index. To make things simple, we assume from now on that the index is equal to

the Konüs index. We obtain

Proposition 2. Even if the traded index is the Konüs index (11) and the necessary conditions

of Proposition 1 are fulfilled, a complete hedge for arbitrary a, f and uR is only feasible, if and

only if preferences are homothetic. Homothetic preferences are given by the following utility

function

H
(

ũ(x)
)

, H ′(·) > 0 ,(29)

where ũ(x) is linear homogeneous.

Proof. With Proposition 1 the income is

ys =
a
f

e(ps, uR)
e(pR, uR)

∀ ps ∈ P .(30)

Define

(31) δ ≡ a
fe(pR, uR)

.

A complete hedge—irrespective of the distribution of the prices, δ and uR—means that

v
(

ps, δe(ps, uR)
)

= f(uR, δ) ∀ps ∈ P .(32)
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For the special case δ = 1 this condition is always fulfilled. Because P is arbitrary, (32) must be

true for every feasible p.

Sufficient condition: Homothetic preferences fulfill (32). To show this, we use the expenditure

function and derive the indirect utility function. For this, we transform the expenditure function

for homothetic preferences to get

e(p, u) ≡ min
x

{

p′x |H(ũ(x)) ≥ u
}

= min
x

{

p′x | ũ(x) ≥ H−1(u)
}

= min
x

{

H−1(u)p′
x

H−1(u)

∣

∣

∣

∣

ũ
(

x
H−1(u)

)

≥ 1
}

(33)

= H−1(u)min
x̂

{

p′x̂ | ũ(x̂) ≥ 1
}

= H−1(u)c(p) .

c(p) is the unit cost function, which is increasing, concave, and linear homogeneous. Invert the

expenditure function to get the indirect utility function

(34) v(p, y) = H
(

y
c(p)

)

.

We receive with (33) and (34)

(35) v
(

p, δe(p, uR)
)

≡ H
(

δH−1(uR)
)

.

and so (32).

Necessary condition: If (32) holds for arbitrary p, we derive after differentiation with respect to

pl

(36) −
vpl

(

p, δe(p, uR)
)

vy
(

p, δe(p, uR)
) = δepl(p, uR) l = 1...L .

We obtain with the help of Roy’s identity, Shepard’s Lemma and hl(p, u) = xl
(

p, e(p, u)
)

(37) xl
(

p, δe(p, uR)
)

= δxl
(

p, e(p, uR)
)

l = 1...L .

Every utility function that fulfills (32) has demand functions that are linear homogeneous in

income. However, this is equivalent to the statement that preferences are homothetic (Lau 1970,

Theorem XI). This result completes our proof. �

Corollar 1. The possibility to hedge completely does not depend on uR. The Konüs index for

homothetic preferences is independent of uR.
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Proof. We obtain immediately for (35) with (31) and (33)

(38) v
(

p, δe(p, uR)
)

= H
(

a
fc(pR)

)

.

We obtain also with (33)

(39) Ik =
c(p)
c(pR)

.

�

This result is not difficult to interpret: to hedge completely means that the real income is

in every possible state identical. To transform the nominal income ys (30) into real income, we

have to discount it with the COLI. For homothetic preferences the COLI is a function only of

prices. ys is proportional to the COLI. Thus, it follows that

yreal
s =

a
f

∀ps ∈ P .(40)

Now we can come back to the question that we asked at the end of the introductory section:

If a COLI is traded, will it be used? It seems quite difficult to answer this question in general

terms. We consider only a particular specification of the utility function that has a prominent

place in the literature.

5 The general case with constant relative risk aversion

We assume that the utility function is of the following form

(41a) v(p, y) ≡ 1
1− r

(

y
c(p)

)1−r

for r > 0, r 6= 1 and

(41b) v(p, y) ≡ ln y − ln c(p)

for r = 1. These functions are generated by homothetic preferences. If r 6 2 the utility function

is convex in p (see Lemma 1 and Appendix A.3). The Konüs index is equal to c(p)/c(pR). The

futures are based on this index. So it is possible—if so desired—to hedge completely.

We can simplify notation by defining cs ≡ c(ps) for all ps ∈ P. All possible S realizations

are comprised in C. We designate the minimal expenditures in C as cmin and the maximal

expenditures as cmax. We write the Konüs index with cR ≡ c(pR) shortly as Ik
s ≡ cs/cR. We

have Ik
min ≡ cmin/cR and Ik

max ≡ cmax/cR. Optimal futures demand q∗f (f, r, a) is derived from
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the problem of maximizing the expected utility (8) given C. The solution to this problem must

satisfy the first order condition

(42) E
[

cr−1y−r(Ik − f)
]

= 0 .

It is easy to check that the marginal utility of income goes towards infinity if ys → 0. Thus,

income in every possible state is therefore non-negative. Let us state some results about the

demand function, which we prove in Appendix A.4:

• Optimal futures demand is linear homogeneous in a, so that

(43) q∗f (f, r, a) = q∗f (f, r)a

with q∗f (f, r) ≡ q∗f (f, r, 1).

• There exists a price

f ch ≡
(

E
[

1/Ik
] )−1

< E
[

Ik
]

and Ik
min < f ch(44)

which induces a complete hedge. This price is independent of r.

• Futures demand is decreasing in f , which means that

(45)
∂q∗f (f, r, a)

∂f
< 0 .

• For every r there exists a price f0(r) for that q∗f = 0. We have

f0(r) = E
[

cr−1

E [cr−1]
Ik

]

with f0(r) T E
[

Ik
]

⇔ r T 1 .(46)

Furthermore we have f0(rh) > f0(rl) for rh > rl and Imin < f0(r) < Imax.

• We can conclude with the last two conditions that

q∗f
(

E[Ik], r
)

T 0 ⇔ r T 1 .(47)

Figure 1 shows three simplified demand functions q∗f (f, r) for individuals with different de-

grees of risk aversion. To make things simple it is supposed that every individual receives a fixed

pension a = 1. At f ch every individual hedges completely.
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0 1/f ch

f

E  I[   ]k

f ch

qf

f*

r<1

r=1

r>1

Figure 1

Futures demand with different degrees of risk aversion

If all individuals are risk averse this price can not be an equilibrium price. At f = E[Ik] the

demand function of an individual with r = 1 cuts the price axis. In that case q∗ = 0. An

individual with r > 1 buys contracts and an individual with r < 1 sells contracts. Finally, the

market clearing price is equal to f∗: The individual with r < 1 supplies at that price a number

of contracts which is equal to the demand of the other two individuals.

It is easy to extend the analysis to I > 2 individuals with different fixed pensions ai and

with different degrees of relative risk aversion ri. The excess demand function at the futures

market is given as

(48) z(f) =
I

∑

i=1

q∗f (f, ri)ai .

The market clearing price is given implicitly by z(f∗) = 0. Due to z′(f) < 0 the market is

stable. If ri = r for all individuals, the only market clearing price is f0(r) and no transactions

happen. Transactions only happen if the individuals have different degrees of relative risk

aversion. Finally, the price f ch can never be market clearing.
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6 Conclusion

Our model shows that there are no fundamental theoretical reasons why a COLI futures market

could not succeed. A market equilibrium is possible even if all individuals are risk averse.

However, one question remains: why did the CPI futures market fail? There exist different

explanations for this fact:

• Existence of substitutional strategies: There were other possible strategies that could

have been used as a hedge against real income risk. Such an alternative is easy to illustrate

in the framework of our model: If we assume that capital markets are complete and short

selling is not restricted, then individuals could borrow in t = 0 the amount a/(1+ i) (with

i as the certain interest rate) and could buy a portfolio of assets, which generates in every

possible state an equal amount of real income. To see this, let πs denote the Arrow-Debreu

prices and Hs the number of assets that pay in state s one unit of money. Thus, we have

a
1 + i

=
S

∑

s

Hsπs and Hs = yrealIk
s for s = 1...S .

yreal > 0 is the real income in state s. These are S +1 variables and equations, so that the

system is solvable. However, this argument is not really a strong one because in reality

one seldom (if ever) observes people borrowing against their future pension payments.

• Failure of retailing: The volume of the CPI futures contract was too large for the

average—potential—user. Furthermore, the time horizon of maximal 3 years was too

short.

• Psychological barriers: The introduction of the CPI futures in 1985 was ill-timed be-

cause most people were inexperienced with indexed financial instruments. Today, such

instruments are perfectly common.

Our main results are: heterogeneous rational individuals are interested to participate in a COLI

futures market. Nevertheless, this does not mean that every individual will reduce his real

income risk with such futures. But even an individual who increases his real income risk does

this to increase his welfare. Furthermore, we have seen that it will be nearly impossible to

construct COLI’s which allow for complete hedges under every conceivable constellation. Indeed

we derived these results only under simplifying assumptions. Nevertheless, if we allow for more

than two periods, the results are easily transferable with the assumptions of additive utility and

separate futures contracts for the different time horizons.
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In the introductory part of this paper we mentioned the currently ongoing debate about

proposals to reform public pension systems. An issue in this debate ought to be financial

instruments that permit individuals to hedge real income risk. We have not yet found theoretical

reasons against such instruments. They would rather extend the individual possibilities to

provide for retirement. However, our model is only a partial equilibrium model. Thus, it is

necessary to extend the framework in the direction of a general equilibrium model in the next

time.
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A Appendix

A.1 Motivation for the prices we chose

f = E[I]. We can motivate this price as an equilibrium price with the following argument: we suppose

that there are—in addition to risk averse individuals—risk neutral individuals active in the futures market.

Furthermore, we assume that the prices which are an argument of the indirect utility function of the risk

neutral individuals are independently distributed of the prices which are used to calculate the price index.

We designate with p′ the prices that influence the indirect utility of a risk neutral individual. P ′ is the

set of all possible price realizations. The expected utility is equal to

(49) U ≡ EP′ [ṽ(p′)]
(

πy + (1− π)y
)

.

For f < E[I] a risk neutral individual puts his whole income into a long position and for f > E[I] into

a short position. So E[I] = f is a plausible equilibrium price if there are many of such risk neutral

individuals or if these individuals have huge income reserves.

f = 1/E[1/I]. We can motivate this price as an equilibrium price with the following argument:

Suppose that risk neutral individuals are active at the futures market. Their real income depends on the

prices in P. With the help of the proportionality assumption we can write the expected utility as

(50) U ≡ ṽ(p)
(

πy + (1− π)y/α
)

.

Such an individual puts all of his income into a long position if f > f ch. For f < f ch he puts all his

income into a short position. Thus f ch is a plausible equilibrium price, if there are many of such risk

neutral individuals or if these individuals have huge incomes.

A.2 Proof of (18)

How does the marginal utility of income change, if prices vary proportionally? The degree of homogeneity

of v is zero. So vy is homogeneous of degree minus one and we obtain with α̃ > 0

(51) vy(α̃p, y) =
1
α̃

vy(p, y/α̃)

and so

dvy(α̃p, y)
dα̃

T 0 ⇔ RRA(p, y/α̃) T 1 .(52)

Now let us use this result: If the degree of relative risk aversion (given p and a) is greater one for all

α̃ ∈ [1, α], then the marginal utility is a strictly increasing function on this support. It follows

(53) vy(p, a) < vy(αp, a)

and due to the decreasing marginal utility of income we obtain q∗f > 0. The argument is analogous for

the other cases.
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Constancy of the marginal utility of income is equivalent with a constant degree of relative risk

aversion equal to one. The explanation is as follows: the form of a cardinal utility function with constant

marginal utility is u(x) ≡ β0 + β1 ln ũ(x) (with β1 > 0, ũ is linear homogeneous and positive (Samuelson

1942:84)). This is a homothetic function and the indirect form is (see (34))

(54) v(p, y) = β0 + β1(ln y − ln c(p)) .

If we integrate RRA(p, y) = 1, we obtain exactly this function (Hanoch 1977, p. 424) (remembering that

Roy’s identity is positive).

A.3 Convexity of the CRRA utility function

We have to prove that the CRRA utility function is convex in p for r 6 2. Thus, in normalized prices

we must have with p′ 6= p′′ and π ∈ (0, 1)

(55a)
1

1− r
(

πc(p′)r−1 + (1− π)c(p′′)r−1) >
1

1− r
c(πp′ + (1− π)p′′)r−1

for r 6= 1 and

(55b) π ln c(p′) + (1− π) ln c(p′′) 6 ln c(πp′ + (1− π)p′′)

for r = 1. We know that c(p) is positive and concave. For r = 1 this function is transformed with

the monotone increasing concave function ln c. Thus it follows that ln c(p) is concave in p (Berck and

Sydsæter 1993, 12.11). So the second inequality (55b) is true. For 1 < r 6 2 we have 1− r < 0. We make

use of this fact and derive from (55a) a concavity condition for the function H(c) ≡ cr−1. This function

is increasing and concave for 1 < r 6 2, so that we can use the above mentioned argument. When we

multiply the whole condition with −1, we derive a concavity condition for the function H̃(c) ≡ −cr−1.

This function is once again monotone increasing and concave for r < 1. Thus we can use the argument

too for all cases with r < 1.

A.4 Characteristics of the futures demand function

The linear homogeneity is shown as follows: write the first order condition (42) as

(56) E
[

cr−1(1 + g(f, r, a)(Ik − f))−r(Ik − f)
]

= 0

with g(f, r, a) ≡ q∗f (f, r, a)/a. It follows from the expression (56) that ∂g/∂a = 0. Thus we obtain

(∂q∗f/∂a)a = q∗f . The solution of this differential equation is given by (43).

For a complete hedge it is necessary that qf = a/f (see Proposition 1). Insert this quantity into the

first order condition (42). Rearranging gives the definition in (44). The inequality follows from Jensen’s

inequality for strictly convex functions.

If we differentiate the first order condition implicitly we obtain

(57)
dq∗f
df

= −
E

[

cr−1y−r
]

rE
[

cr−1y−(1+r)(Ik − f)2
] +

E
[

cr−1y−(1+r)(Ik − f)
]

q∗f
E

[

cr−1y−(1+r)(Ik − f)2
] .
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The first term on the RHS is the substitution effect, which is definitely negative. To derive this effect,

we must compensate individuals with the amount da = q∗fdf . This compensation guarantees that the

expected utility remains constant after a variation in f . The second term is the negative of the income

effect dq∗f/da and is less than or equal to zero. We derive the sign of this effect as follows: we obtain for

the numerator with the help of the first order condition

(58) E
[

cr−1y−r(y−1 − a−1)(Ik − f)
]

q∗f .

This term is zero for q∗f = 0. If q∗f > 0 it follows for all realizations Ik
s − f > 0 that 1/ys < 1/a and thus

(1/ys − 1/a)(Ik
s − f) < 0; corresponding to this it follows for all realizations Ik

s − f < 0 that 1/ys > 1/a

and thus (1/ys − 1/a)(Ik
s − f) < 0. Finally the product is zero for all realizations with Ik

s − f = 0. In all

these cases (58) is less than or equal to zero. One can use the same argument to show that (58) is also

less than or equal to zero for q∗f < 0.

With q∗f = 0 one obtains immediately from the first order condition f0(r). We have to show that

E
[

cr−1

E[cr−1]
Ik

]

T E
[

Ik]

⇔ r T 1 .(59)

This is obvious for r = 1. In order to show this for r 6= 1 we make use of the concept of first order

stochastic dominance. Let f(cs) be the density for the realizations cs ∈ C. Define

(60) g(cs, r) ≡
cr−1
s

E[cr−1]
f(cs) .

This is also a density function, which sums over all realizations to one. For rh > rl > 1 the distribution

under rh dominates the distribution under rl first order, if
∑

cs6ĉ

H(cs)g(cs, rl) 6 0 ∀ ĉ ∈ [cmin, cmax](61a)

with

(61b) H(cs) ≡ crh−rl
s − E

[

crh−1] /

E
[

crl−1] .

We have H ′(cs) > 0. Furthermore we have

H(cmin) < 0 because of E
[

(c/cmin)rl−1] < E
[

(c/cmin)rl−1](62a)

and

H(cmax) > 0 because of E
[

(c/cmax)rl−1] > E
[

(c/cmax)rl−1] .(62b)

Finally,

(63)
∑

cs6ĉ

H(cs)g(cs, rl) 6
∑

cs6cmax

H(cs)g(cs, rl) = 0

with strict inequality for ĉ < cmax. Thus we have shown first order stochastic dominance. It follows from

this that the expected value for Ik with respect to the density g(cs, rh) is greater than the expected value

with respect to the density g(cs, rl). One uses the same steps for rl < rh 6 1.
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