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QUANTIFYING THE VALUE
OF INITTAL INVESTMENT INFORMATION*
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April 7, 2000
(submitted for publication)

We consider an investor maximizing his expected utility from terminal wealth with
portfolio decisions based on the available information flow. This investor faces the
opportunity to acquire some additional initial information G. The subjective fair
value of this information for the investor is defined as the amount of money that he
can pay for G such that this cost is balanced out by the informational advantage
in terms of maximal expected utility. We calculate this value for common utility
functions in the setting of a complete market modeled by general semimartingales.
The main tools are results of independent interest, namely a martingale preserving
change of measure and a martingale representation thorem for initially enlarged

filtrations.
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JEL Classification: G10, G14
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martingale preserving measure, predictable representation property.

1 Introduction

In this paper we consider an investor who trades in a financial market so as to maximize his
expected utility of wealth at a prespecified time. The investor faces the opportunity to acquire,
in addition to the common information flow IF, some extra information G at a certain cost,

e.g. by hiring a good analyst or by doing more research about companies that he can invest
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tifikation und Simulation Gkonomischer Prozesse” and through the Graduiertenkolleg “Stochastische Prozesse
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in. Acquiring the information G reduces the initial capital but at the same time enlarges the
information flow to & = IF'V G on which the investor can then base his portfolio decisions. Our
basic question is then: At what cost is the reduction of the investor’s initial wealth offset by the
increase in the set of available portfolio strategies? To be more precise, let v (y) and u%(y)
be the maximal expected utility of terminal wealth that can be obtained with initial capital
y and portfolio decisions based on the information flow IF' and @&, respectively. Suppose our
investor has initial capital z. In this paper we concentrate on the utility indifference value 7 of
the additional information G, defined as the solution 7 = m(x) of the equation

( Claz—m).

u' (z) =u

7 can be interpreted as the investor’s subjective fair (purchase) value of the additional informa-
tion G. Our aim is to calculate 7 for common utility functions in the situation of a complete
market and to study the dependence of 7 on G, £ and on the utility function.

The first rigorous mathematical study of the utility maximization problem under additional
initial information is the article of Pikovsky and Karatzas (1996). Subsequent works include
Elliott, Geman and Korkie (1997), Amendinger, Imkeller and Schweizer (1998), Grorud and
Pontier (1998) and Amendinger (2000). They examined the maximal expected utility under
additional information u%(z) or the expected utility gain from additional information u%(x) —
u¥(z). In comparison to this, the present indifference approach quantifies the informational
advantage in terms of money, not utility. Similar methods have been previously applied by
various authors to the valuation of options instead of information: Hodges and Neuberger (1989)
and Davis, Panas and Zariphopoulou (1993) used utility indifference arguments for the pricing of
options in the presence of transaction costs. Indifference arguments based on quadratic criteria
were applied by Mercurio (1996), Schweizer (1997) and Mgller (1999) to pricing problems in
incomplete markets.

The outline of the paper is as follows. In Section 2 we provide the basic notation and the central
assumptions underlying this article. Basically, we need the existence of the so-called martingale
preserving probability measure (MPPM) P corresponding to the original probability P. This
measure was introduced by Follmer and Imkeller (1993) and extensively used by Amendinger,
Imkeller and Schweizer (1998), Grorud and Pontier (1998) and Amendinger (2000). The main
property of the MPPM is that it decouples IF' and G in such a way that JF-martingales under
P remain @-martingales under P: Hence the martingale property is preserved under an initial
enlargement and a simultaneous change of measure. Section 3 is exclusively concerned with
the theory of initial enlargements of filtrations. We show first that our assumptions guarantee
the existence of the MPPM. By means of the MPPM we then transfer the strong predictable
representation property for general local martingales from I to the initially enlarged filtration
@. This extends prior work of Grorud and Pontier (1998) and Amendinger (2000). In Section 4
we solve the utility maximization problem in a complete general semimartingale model for the
case that the initial information is non-trivial. We then combine this in Section 5 with the

results of Section 3 to calculate the utility indifference value for some common utility functions.
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Finally, we compute closed form solutions for this value in a diffusion model if the additional

information basically consists of a noisy signal about the terminal stock price.

2 General framework and preliminaries

Let (€2, A, P) be a complete probability space with a filtration IF' = (F)cpo,7] satisfying the
usual conditions and let T > 0 be a finite time horizon. For simplicity we assume Fy to be
trivial. The expectation of a random variable Y with respect to a measure ) on F is denoted
by EQ[Y]. If H is a sub-o-field of A, the usual conditional expectation E?[Y|#] is well-defined
whenever YT or Y~ are Q-integrable. As in Jacod and Shiryaev (1987) we use a generalized

notion of conditional expectations which is defined for all real-valued variables Y and by

EQ[Y*+|H] — EQ[Y |H] on the set where E?[|Y||H] < oo,

(2.1)
400 elsewhere.

EC[Y|H] = {

All semimartingales adapted to a complete and right-continuous filtration are taken to have
right-continuous paths with left limits. For unexplained terminology from stochastic calculus
we refer to Dellacherie and Meyer (1980) or He, Wang and Yan (1992).

Let & = (Gt)cjo,r) be a filtration initially enlarging IF' by some o-algebra G C A, i.e.

G:=F VG, te [O,T] (22)

We assume that G is generated by some random variable G taking values in a general measurable
space (X, X), i.e. G = o(G). This causes no loss of generality since we could always choose
(X,X) = (2,G) and take G : (2, A) — (2,0), w — w. In comparison to related work by
Amendinger et al. (1998,1999,2000) and Grorud and Pontier (1998), we do not assume that G is
generated by a random variable G taking values in a Polish space. In most parts of this article

we shall assume that G satisfies the following decoupling condition.

Assumption 2.1 (D):
There ezists a probability measure R ~ P such that Fp and G = o(G) are R-independent.

As the following lemma shows, this assumption implies that & satisfies the usual conditions.

Lemma 2.2 Suppose Assumption 2.1 (D) is satisfied. Then & satisfies under P the usual

conditions of completeness and right-continuity.

Proof:

Theorem 1 in He, Wang and Yan (1982) shows that if (F}),cio,r] and (F7).ecpo,r) are mutually
independent filtrations satisfying the usual conditions then also (F} Vv ff)te[o,T] satisfies these
conditions. Assumption 2.1 (D) implies that IF' and the constant filtration given by the P-

completion of G are independent under some R ~ P. Hence the claim follows. (|

We shall see that Assumption 2.1 (D) implies the existence of a regular conditional distribution

of G given Fr. Moreover, Corollary 3.5 will even show that Assumption 2.1 (D) is equivalent to
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Assumption 2.3 (E):
The regular conditional distribution of G given Fr exists and is P-a.s. equivalent to the law of
G, i.e.

P[G € -|Fr](w) ~P[G € -] for P-a.a. w€ .

Assumption 2.3 (E) implies by Théoréme V.58 in Dellacherie and Meyer (1980) the existence of
a strictly positive X ® Fr-measurable function p : X x Q@ — (0, 00) such that for P-a.a. w and
forall Be X
PG € B | Frlw) = / p(@,w)P[C € da]. (2.3)
B
We define p%(w) := p(G(w),w) and p*(w) := p(z,w) for w € Q, z € X. Note that each p® is

Fr-measurable and p© is Gr-measurable.

3 Results on initially enlarged filtrations

This section contains results on initially enlarged filtrations that satisfy Assumption 2.1 (D)
or Assumption 2.3 (E). In Section 3.1 we show that Assumption 2.1 (D) and Assumption 2.3
(E) are equivalent. Furthermore we introduce the martingale preserving measure which plays
a key role in the sequel. Section 3.2 shows that the strong predictable representation property
with respect to the filtration IF' implies the same property with respect to the initially enlarged

filtration & and the corresponding martingale preserving measure.

3.1 The martingale preserving measure

Proposition 3.1 Let Q be a probability measure equivalent to P. If Assumption 2.1 (D) is
satisfied then there is a probability measure @ ~ P, called martingale preserving probability

measure (corresponding to @), with the following properties:
1. @ = Q on Fr,
2. Q=P on G =0(G),

3. Fr and G = o(Q) are Q-independent.

It is clear that these three properties uniquely determine a probability measure @ on gr =
FrVo(G). In the sequel the term “martingale preserving measure” refers to this unique measure

on QT.

Proof:

By Assumption 2.1 (D) there exists R ~ P such that Fr and G are R-independent. Denote by
Z7 the density of @ with respect to R on (€2, Fr) and by f the density of P[G € -] with respect
to R[G € -] on (X, X). Zrf(G) is then strictly positive and independence gives ER[Zrf(G)] =
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ER[Zp)ER[f(G)] = 1. Hence dQ := Zpf(G)dR defines a probability measure Q ~ P. By the
R-independence of Fr and G we obtain for A € Fp and B € X that

E®Laligeny) = B¥(Zr1alE¥f(G)igem)] = QIAIP[G € B].

Properties 1 and 2 follow by choosing B = X and A = () respectively, and then we obtain
property 3. O

An immediate consequence of the equality ) = @ on Fr is that any integrability property of
an Fpr-measurable random variable with respect to ) is inherited by @ In particular, (Q, IF)-
martingales remain (@, IF)-martingales. But more importantly, the martingale property is even
preserved under @ in @, i.e., under an initial enlargement of the filtration and a simultaneous
change to Q. This result was extensively exploited in Amendinger, Imkeller and Schweizer (1998)
and motivated the terminology martingale preserving probability measure. We now build on

results from Amendinger, Imkeller and Schweizer (1998) to show

Corollary 3.2 Suppose Assumption 2.1 (D) is satisfied. Let Q be any probability measure

equivalent to P and denote by Q the corresponding martingale preserving measure. Then

1. We have
M(loc)(QaF) = M(loc)(@a F) - M(loc)(éam) : (3'1)

2. Any IF-adapted process L has the same distribution under é and Q. If L has (Q,TF)-
independent increments, i.e. Ly — Lg is Q-independent of F, for 0 < s <t < T, then L has
also (Q, ®)-independent increments and the characteristics of L are the same for (Q, IF)
and (@, ®). In particular, a (Q,IF)-Brownian motion (Poisson process) is a (@, E)-

Brownian motion (Poisson process).

3. Every (Q, IF)-semimartingale is a (Q, ®)-semimartingale.

Proof:

1.: This was shown in Amendinger, Imkeller and Schweizer (1998) (proof of Theorem 2.5).

2.: The first statement is clear since @ = @ on Fr by part 1 of Proposition 3.1. If the Fp-
measurable random variable L; — L is Q-independent from Fg, it is by part 1 of Proposition 3.1
@—independent from F; and thus part 3 of Proposition 3.1 implies that it is also @—independent
from G; = Fs V G. The distribution of a process with independent increments is determined by
its characteristics which are unique and non-random (Jacod and Shiryaev (1987), Th. I1.5.2).
Hence these characteristics remain unaltered if we go from (Q,FF) to (@, &). This implies
in particular that a (Q,JF)-Brownian motion (Poisson process) is a (Q, ®)-Brownian motion

(Poisson process) since these processes are uniquely characterized by their characteristics (Jacod
and Shiryaev (1987), Theorems I11.5.10, I1.4.4 and I1.4.5).
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3.: This follows from (3.1) and Q ~ Q. O

A priori the definition of the stochastic integral involves the filtration. However, the following re-
sult shows that we don’t have to differentiate between stochastic integrals with respect to IF' and
@ in our setting. The proof of Corollary 3.3 is based on (3.1), Théoréme 7 in Jacod (1980) and
Corollaire 9.21 in Jacod (1979) and was given in Amendinger (2000) (proof of Proposition 3.4).

Corollary 3.3 Let S be a multidimensional (P, IF)-semimartingale and suppose Assumption
2.1 (D) is satisfied. Then an IF-predictable process H is S-integrable with respect to IF' if and
only if H is S-integrable with respect to &. Moreover, the stochastic integrals of H with respect
to S coincide for both filtrations.

In comparison with part 3 of Corollary 3.2, Théoreme 2.5 of Jacod (1985) shows that if the
range (X, X) of G is a Borel space, the absolute continuity

PG € - | Fr](w) < P[G € -] (3.2)

for P-a.a. w € Q implies that every (P, IF')-semimartingale on [0, 7] is a (P, &)-semimartingale on
[0,T] and explicitly gives its canonical decomposition by means of a conditional density process
(¢f (w))yepo,r)- The relation to our setup is given by p%(w) = qg(w) (w) /qu @) (w). (Actually,
Jacod works on the open intervall [0,7') and therefore assumes that (3.2) holds P-a.s. not with
T, but for every ¢t € [0,7"). We use here the closed interval [0,7"] and one can show that if (3.2)
holds P-a.s. with 7', then (3.2) also holds P-a.s. simultaneously for all ¢t € [0, 7] instead of T'.)

Provided the stronger equivalence Assumption 2.3 (E) is satisfied, Amendinger, Imkeller and
Schweizer (1998) showed by extending arguments of Follmer and Imkeller (1993) that a change

to the martingale preserving measure can be defined via 1/p%.

Theorem 3.4 Let () be a probability measure equivalent to P and denote by Zr its Fr-density
with respect to P. If Assumption 2.3 (E) is satisfied then

~ Zr
p
defines the martingale preserving probability measure corresponding to Q.

The proof of this result uses (2.3) to show that Zr/p® is a density with respect to P. Then
one can argue almost exactly as in the proof of Proposition 2.3 in Amendinger, Imkeller and
Schweizer (1998), just replacing p{* there by p®. In comparison to Amendinger et al. (1998,2000)
and Grorud and Pontier (1998) this construction via p® is simpler since it avoids the use of
Jacod’s conditional density process (gf). The decoupling property of Q defined by (3.3) was
obtained independently by Jeulin (see Lemma 3.1 in Grorud and Pontier (1998)).

Theorem 3.4 allows us to clarify the relation between Assumption 2.1 (D) and Assumption 2.3
(E) as follows:
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Corollary 3.5 Assumption 2.1 (D) and Assumption 2.3 (E) are equivalent.

A version of this result was proved by Grorud and Pontier (1998) (Lemmata 3.1 and 3.4). For

the reader’s convenience we give the proof in our general framework.

Proof:

By choosing R = P as the martingale preserving measure corresponding to P, ie. dR :=
1/p% dP, Theorem 3.4 yields that Assumption 2.3 (E) implies Assumption 2.1 (D). Conversely,
assume that there exists a measure R ~ P such that Fr and § = o(G) are R-independent.
Since the distributions of (w,G) on Fr ® X under P and R are equivalent, there is a strictly
positive Radon-Nikodym derivative f of Po(w,G)™}|£,gx with respect to Ro (w, G) ™} £rex =
R|7, ® R[G € -]; the last equality uses the decoupling property of R. The function

- f(w,z) . "
f(zlw) := [ fw) RG € ds]’ eX, we,

is strictly positive and it is straightforward to verify that for A € Fr and B € X
EP 14P[G € B|Fr]] = E¥ [1aligepy) = EF [1A /B f(z]) R[G € dx]
Hence a regular conditional distribution of G under P given Fr exists and is given by
PG € B|Fr](w) = /Bf(ac|w) RlGeds], BeX,weq.
This implies that for P-a.a. w we have

P[G € - |Fr](w) ~ R[G € -]~ P|G € -].

3.2 Strong predictable representation property

Throughout this section let S = (S',...,8%)" be a d-dimensional JF-semimartingale. Our
aim is to show that under Assumption 2.1 (D) the martingale representation property of S
with respect to IF' and some measure () implies the same property with respect to the initially
enlarged filtration & and the corresponding martingale preserving measure @ For this we first
recall a version of a classical martingale representation result. For d = 1 this is almost Theorem
13.9 in He, Wang and Yan (1992); the multidimensional case can be proved as in Jacod (1979),

XI.1.a, with obvious modifications for the situation of a non-trivial initial o-field.

Proposition 3.6 Suppose the filtration IH satisfies the usual conditions and there is a proba-
bility measure Q™ ~ P such that S € Myoo(Q¥ , IH). Denote

e .— {Q ~ QIH ‘di)%l is Hp-measurable, Q) = QIH on Hy, S € M]OC(Q,H)} . (3.4)

Then the following statements are equivalent:
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1. If Q e TH then Q = Q™.
2. The set Mo oc(QM, H) of local (Q™,H) martingales null at 0 is equal to the set
{ 0-S ‘ 6 is S-integrable w.r.t. (Q™ ,IH) in the sense of local martingales }

of stochastic integrals with respect to S.

We say that S has the strong predictable representation property with respect to (Q™ , H) ( for
short (Q¥ , IH)-PRP) if one of these statements is valid.

Lemma 3.7 Suppose R is a probability measure such that Fr and G = o(G) are R-independent.
Let f: Q x X — IR be Fr ® X-measurable. If f(-,G) is R-integrable or nonnegative then
EMf(,G) | Fiv Gl = BYf(.2) | A _ 5 t€[0,T]. (3:5)

r=

Proof:

First we show (3.5) for functions of the form f(w,z) = 14(w)lp(z) where A € Fr and B € X.
The R-independence of Fr and o(G) implies that Fr and o(G) are conditionally R-independent
given F;. We therefore obtain

ER[1415(G) | Fi Vo(G)] = 1(G)EE[14 | FVo(Q)]
= 1p(@)| _ Bf[La| 7]
= E™Las@) | A __ -
By monotone class arguments it follows that (3.5) is valid for all bounded Fr ® X-measurable
functions f. The dominated (monotone) convergence theorem for conditional expectations then

yields the claim for R-integrable (nonnegative) f(-, G). 0

Now we are ready to prove

Theorem 3.8 Suppose Assumption 2.1 (D) is satisfied and S has the strong predictable repre-
sentation property with respect to (Q¥, IF) for some QT ~ P. Let Q¥ = EQF denote the mar-
tingale preserving probability measure corresponding to QY. Then S has the strong predictable
representation property with respect to (Q¥,®). For short: TF = {QF} implies T¢ = {QG},

or
(QF,IF)-PRP implies (Q%,®)-PRP. (3.6)

Proof:

Let Q' € T%. Without loss of generality we can assume that dQ'/dQ% € L>°(Q%) (see He, Wang
and Yan (1992), Th. 13.9). We prove that Q' = Q% and thus show the claim by Proposition 3.6.
Define 7] := (dQ'/dQ%) |Qt’ t € [0,T]. For all ¢t € [0,T] the density Z; is F; V o(G)-measurable
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and thus of the form Zj(-) = z(:, G(:)) for an F; ® X-measurable function z;(w, z). If v denotes
the distribution of G under Q%, the process (2t(+,7))1epo,r) s RCLL in ¢ for v-a.a. z because
(Zi(-,G))iefo,r] 18 an RCLL-process. Since S € Mioe(QF, IF) there is a localizing sequence
(Tn)nemv of IF-stopping times such that for all n the stopped process S™ is a uniformly integrable
(Q¥, IF)-martingale, hence also a uniformly integrable (Q%,@)-martingale by Corollary 3.2.
Because Z’' is bounded we conclude that the local (Q¥, &)-martingale Z'S™ is also uniformly
integrable and therefore a uniformly integrable (Q%, @)-martingale. Expectations with respect
to Q% are denoted by E¥[-]. Lemma 3.7 then implies for ¢ € [0,7] and n € IV

(-GS = E% [or(,G)SE | F Vo(G)]

= B [or(2) 87 | F]|,_g -

Since z/(-,-) is F; ® X-measurable and Fr and o(G) are Q%-independent this implies that
(QF ® v)-ae.

2w, )ST (@) = B [20(,) S} | ) (@). (37)
Analogously we obtain for each ¢ € [0,7] that (Q%¥ ® v) -a.e.
z(w,z) = EC[2r (-, z) | Fi)(w) - (3.8)

Thus (3.7) and (3.8) hold (Q% ® v)-a.e. simultaneously for all rational ¢ € [0,7] and then by
right-continuity in ¢ of z(-,z) and z(-,2)S;™ even simultaneously for all ¢ € [0,T]. Hence both
(2(+s2))seo,r) and (2¢(+,2)S™ )sefo,r) are (Q%, IF)-martingales and thus (QT', IF)-martingales
by Corollary 3.2 for v-a.a. z and n € IN. But now (QY', IF)-PRP implies by Proposition 3.6
for v-a.a. = that zr(-,z) = 1 Q%-a.s. and the Q%-independence of Fr and o(G) then yields
Zh = zr(-,G(-)) = 1. O

The preceding theorem is a generalization of Theorem 4.7 in Amendinger (2000), where S is
assumed to be locally in H2(QY', IF). But the proof is different: In Amendinger (2000) an L?-
approximation argument shows that any (local) (Q%, &)-martingale null at 0 can be represented
as a stochastic integral of a @-predictable integrand with respect to S if this is possible for (local)
(QF, IF)-martingales and IF-predictable integrands. Our argument proves that the uniqueness of
the equivalent IF-martingale measure for S implies the uniqueness of the equivalent -martingale
measure in the sense of Proposition 3.6. So the result is obtained by working in Proposition 3.6

on part 1 instead of part 2.

4 Utility maximization with non-trivial initial information

In this section let JH = (H);c[0,7] be a generic filtration describing the information flow of an
investor who maximizes his expected utility by dynamically trading in a complete continuous-

time security market with several risky assets. We assume that IH satisfies the usual conditions
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and emphasize that 7y need not be trivial. The results are applied in Section 5 to the ordi-
nary information flow IF' and the initially enlarged information flow & in order to quantify the
informational advantage that the investor receives from the additional information G.

Let the discounted price process of the risky assets be given by a d-dimensional IH-semimartingale
S =(S',...,8%". We assume throughout this section that the financial market given by S is

IH-complete and free of arbitrage in the following sense:

Assumption 4.1 (IH-C): There is a unique probability measure Q™ ~ P with dQ™ /dP € Hr
and Q¥ = P on Hy such that S € Mio(QH, H).

We denote by ZH = (Z,fH)te[O,T] the IH-density process of Q¥ with respect to P and by E¥[]
the expectation with respect to Q™.

A measure @ is called equivalent local martingale measure for S if S € Myoc(Q,IH) and Q ~ P.
The existence of an equivalent local martingale measure for the discounted asset price process
is related to the absence of arbitrage (see Delbaen and Schachermayer (1998)). Furthermore,
Proposition 3.6 shows that under Assumption 4.1 S has the predictable representation property
with respect to (QH ,IH ) Such a financial market is called IH -complete because every contingent
future payoff can be replicated in the following sense: For every H € L! (QIH , HT) there is a
process ¥ in the space L(S, IH) of IR%valued IH-predictable processes integrable with respect to
S, such that ¢ - S is a (Q’H ,IH )—martingale and

H:E’H[H|’Ho]+(19.S)T=E’H[H|H0]+/0T19d5. (4.1)

Remark 4.2 For the informed reader, we mention here that our results could also be proved
under the more general assumption that S satisfies NFLVR and that there is an equivalent o-
martingale measure for S that is unique in the sense of Assumption 4.1. Since this only involves
rewriting some arguments without providing additional insight, we stick with Assumption 4.1

here.
To define the investor’s optimization problem we first introduce admissible trading strategies.
Definition 4.3 ¢ € L(S,H) is called an admissible strategy if

(@-8), = BX [(«9 : S)T‘Ht] for all t € [0,T]. (4.2)
The set of admissible strategies is denoted by Adm™ .

Note that (4.2) requires that the right-hand side is well-defined and finite; this is satisfied for
any t € [0,T)] if and only if EH[|(9 - S)r||Ho] < co. This property is part of the definition.
However, our use of generalized conditional expectations as in (2.1) means that (¢ - S)r need
not be Q™ -integrable. We will discuss Definition 4.3 in more detail after Lemma 4.4.
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Intuitively, 9% represents the number of shares of risky asset i held by an investor at time ¢. The

wealth process of a strategy ¥ € Adm™ with initial capital z is then given by
t
V}:w-l-(ﬁ-S)t:x-l-/ 9dS, 0<t<T.
0

In particular, strategies are self-financing. A wtility function is a strictly increasing, strictly
concave and continuously differentiable function U : (a,00) — IR, a € [—00,0], which satisfies
limgto, U'(z) = 0 and limg |, U'(z) = +00. We use the convention that U(z) := —oo for z < a.
Observe that this setting covers utility functions both on all of IR and on (0, 00).

An investor with information flow IH and initial capital + > @ who wants to maximize his

expected utility from terminal wealth has to solve the optimization problem

u™(z) := sup EF[UV7)] (4.3)
VeVH (1)
on the set
VH(z) = {V‘ V=s+9-5, 9€Adm!, U~(Vp) e I'(P)}.
uw is called indirect utility function. We also consider the related optimization problem
esssup EX[U(Vr)|Hol- (4.4)
VeVH (z)

If this supremum is attained by some element of V¥ (z) then this w-wise optimum is also a

solution to the optimization problem (4.3).

Our goal in the next result is to show that our definition of admissibility is quite natural in the

present general context.

Lemma 4.4 1. A measure Q ~ P 1is a local martingale measure for S if and only if its
aQ

density with respect to P on Hr is of the form 5 " -Z%H.
0
2. A process V satisfies Vy = EH[Vp|Hy] for all t € [0, T] if and only if V is a martingale with
respect to some equivalent local martingale measure Q for S. In particular, ¥ € L(S,IH)
is an admissible strategy if and only if there exists an equivalent local martingale measure
Q for S such that ¥ - S is a (Q, H)-martingale.

3. If the lower bound a for the domain of the utility function U is finite, we could replace
Adm™ by {9 € L(S,H)|9 -8 > c for some c € R} without changing the supremum in
(4.3) (or (4.4)) and the optimal solution, if this exists.

Proof:

1: The product Y M of a (local) (P, IH)-martingale M and a finite Hy-measurable random vari-
able Y is a local (P, IH)-martingale. To see this, note that with M € M(P,IH) 1" := Tliy<p)
is a sequence of localizing stopping times such that 1;n50Y M ™ is a (P, H)-martingale. This
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will be used in the sequel. The “if”-part then follows from the observation that dQ/dP|y, ZX is
a P-density and dQ/dP|3, Z™ S is a local (P, IH)-martingale. For the “only if”-part let Q ~ P
with S € Mjoc(Q,IH). Let Z denote the IH-density process of @) with respect to P. From
ZOZ%S € Moe(P, H) follows Z%S € Moe(P, H). By Proposition 3.6, Assumption 4.1 (IH-C)
then implies 2 = Z", ie. 93 = ZyZH.

2: For the “only if”-part assumeT Vi = EH[Vp|H,), t € [0,T], and recall (2.1). Tt follows that
EH[|Vr||[Ho] < 00, Y := 1A1/EH[|Vr| |Ho] is Q¥ -integrable and dQ := Y/EH[Y]dQ™ defines
a measure ) equivalent to P. By part 1 we obtain S € M,(Q,H). For the converse let
V € M(Q, H) for some equivalent local martingale measure @ for S. Let Z denote the IH-
density process of Q with respect to P. Then part 1 implies Z/Zy = Z™ and Bayes’ formula
leads to EH[Vp|Hy] = ER[Vr|Hy = Vi, t € [0,T). By applying this result to V := ¢ - S with
¥ € L(S,H) we obtain the second part of the claim.

3: We first show that for any ¢ € L(S,IH) with % - S uniformly bounded from below, there
exists 9 € Adm™ such that (9 - S)7 > (- S)7: By Corollaire 3 in Ansel and Stricker (1994)
(which is also valid for non-trivial initial o-algebras) - S is a local (Q*, IH)-martingale. Hence
¢ - Sis a (Q™, H)-supermartingale and E™[(y - S)7 | Ho] < 0. Assumption 4.1 implies the
existence of some 9 € Adm™ such that

- S)y=E"[(4- S)r | Hi) — EM[(- S)r | Ho], t€[0,T]. (4.5)

It follows that ¢ - S is uniformly bounded from below and satisfies (¢ - S)p > (¢ - S)7. In the
case (9 - S)r = (¢ - )7 we obtain that 1 - S =19 -5 and so ¢ € Adm™.
The claim now easily follows from the observation that by our conventions on U, every wealth

process in V¥ (z) is uniformly bounded from below by a. 0

We now discuss Definition 4.3 in more detail: If # is not trivial, there is no unique equivalent
local martingale measure for S on Hp since there is complete freedom in the choice of such
a measure on the initial o-algebra Hg. At first sight, our definition of admissibility seems to
involve the particular measure Q¥ via (4.2) in a crucial way. But part 2 of Lemma 4.4 shows
that that we could equally well require (4.2) with any equivalent local martingale measure @
for S. In the usual setting of utility maximization (see e.g. Cox and Huang (1989), Karatzas,
Lehoczky and Shreve (1987) or Kramkov and Schachermayer (1999)) the domain of the utility
function is bounded from below and ¥ € L(S, IH) is defined as admissible if ¢ - S is uniformly
bounded from below. Although our definition differs from this approach, part 3 of Lemma 4.4
shows that it is consistent with the usual setting. For these reasons our concept of admissibility
is quite natural in the context of a general complete market and a utility function whose domain
might be unbounded from below. For an alternative definition of admissibility and of the set
of random variables over which the optimization problem is formulated we refer the interested
reader to Schachermayer (1999).

To solve the optimization problem (4.4) we introduce the (continuous, strictly decreasing) inverse
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I of the derivative U’. I maps (0,00) onto (a,o0) and satisfies

limI(y) = 4o, (4.6)
y30

limI(y) = a.

ytoo

Theorem 4.5 Suppose Assumption 4.1 (IH-C) is satisfied and there exists an Ho-measurable
random variable A (z) : Q — (0, 00) with

B [1 (A" (2) 74" ‘7{0] - (4.7)
and such that
VI = BT [1 (AT (2) Zf) ‘Ht] , telo,1],
satisfies U~ (V) € LY(P). Then VH s the solution to the optimization problem (4.4), i.e.

VH ¢ VH () and EY [U (V) ‘?—lo] = ‘fsiill(p) EP[U(Vr)|[Ho) .-
€ T

Proof:

By part 2 of Lemma 4.4 we obtain that V¥ is an JH-martingale with respect to some equiv-
alent local martingale measure ) for S. Assumption 4.1 (IH-C) implies that there is no other
equivalent local martingale measure for S that coincides with @) on Hy. Hence S has the strong
predictable representation property with respect to (Q, IH) and this yields V# ¢ V¥ (z). Since

U is concave we have
Uly) 2U(z) + U'(y)(y — =), =,y € (a,00).
Since V¥ = I(A" (z)Z!), the above inequality implies
UVE) > U(Vp) + A () ZE(VE —Vr), V eVE(z). (4.8)

Even if A (2)ZH (VT{H — VT) is not integrable, we can take generalized conditional expectations
to obtain
P [AM () 28 (V' — Vr)[Ho| = A (2) B™ [V — V|| =0,

since A (z) is Ho-measurable by assumption. In combination with (4.8) this yields
BP [0 (Vi) | #o] > BY U (Vi) |Ho], V€ VM (). (4.9)

Note that both conditional expectations in (4.9) are well-defined in the usual sense due to the
definition of V¥ (z) and the assumption that U~ (VH) € L1(P). 0

Remark 4.6 1. If supycypm(y) EFP[U(Vr)] is finite then the strict concavity of U implies that
the solution VH is unique if it exists.
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2. For a trivial initial o-algebra Hy we recover the classical problem of a small investor
maximizing his expected utility from terminal wealth in a complete and arbitrage free
market; see Karatzas, Lehoczky and Shreve (1987) or Cox and Huang (1989) and the

remarks following Lemma 4.4.

For specific utility functions, A and V¥ can often be calculated explicitly in terms of ZH
and z. The following result provides such formulae for common utility functions. The relative
entropy of P with respect to Q¥ is denoted by H (P|Q]H )

Corollary 4.7 Suppose Assumption 4.1 (IH-C) is satisfied. Then the optimal wealth process

VH (z) and the indirect utility function u™ for the utility functions U below are given as follows:

1. Logarithmic utility U : (0,00) — IR, z — logx: We have

x
%IH(‘I) = Z—H, LIS [OaT]a
t
1
uf(z) = logz + EF [logZ—lH] :10ga:—|—H(P|Q1H).
T

u™ is finite if and only if H (P|Q™) is finite.

e
2. Power utility U : (0,00) = IR, z +— z7 /v, v € (0,1): If E? [(ZJIH) 71 ’Ho] < oo then
1
VH(z) = ° EH [(Z’H)v1 Ht] , telfo,1],
t B [(78) 1 o] '
1—
uM(z) = %EP [EP [(Zng)ﬁj Hol 7]

1—
and u™ is finite if EY [(Z]H)% ?—[0] ! is P-integrable.

3. Exponential utility U : IR - IR, t — —e **, a > 0: If H (QIH|P) is finite then u™ s

finite and we have
H _ 1 pl, m H 1oy H
Vi'(z) = z+ aE Z7' log Z7" |Ho aE log Zy' |He| , te€]0,T],

u(z) = —%EF [Z%qexp (—EP [Zf‘fllongﬂw]‘Ho])] .
Proof:

In order to apply Theorem 4.5 we first calculate A™ and verify the required assumptions. Note
that a solution A" to (4.7) is unique if it exists. Theorem 4.5 yields the formulae for the
optimal wealth process V¥ and the formulae for u/ then follow by straightforward calculations
of EF[U(V#)] which are left to the reader.

1: I(y) = 1/y and A¥(z) = 1/z is the solution to (4.7). Obviously z/Z¥ is a (QH, H)-
martingale. ET [log (1/Z1H3’)} = EH [(1/Z1H3’) log (1/Z71H)] is the relative entropy of P with
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respect to Q™ on Hr and thus ET [log (1/ZH)] is well-defined with values in [0,00]. By
Theorem 4.5 we then obtain the formula for V# and thus u®.

2 I(y) =y, B [(2F)77 [Ho| = BP [(2F)7
solution to (4.7) is given by

7—[0] is finite by assumption and the

271

A (z) =

o 1 y-1-
B |75

n

By Theorem 4.5 we obtain the formula for V¥ and thus u®.

3: I(y) = —1log L, EF [ZH log ZH]| < oo by assumption and the solution to (4.7) is given by
A (1) = acexp (—aw - EF [ZIEJ log ZZ@‘HO]) .

By Theorem 4.5 we obtain the formula for V# and thus u®. v is finite since E¥ [Zjlfl log ZH |’H0]

is bounded from below. O

The following lemma provides sufficient conditions for the existence of an Hg-measurable random
variable A¥ (1) satisfying (4.7). For this we fix one version of the regular conditional distribution
QY[ZH € dz|Ho] and define for each w € Q the function ¥y, : (0,00) — (a, 0] by

T, = / I(02) Q" [2H € dz| Ho] ()

whenever this integral is finite and ¥, (\) := 400 otherwise. Note that the integral is al-
ways well-defined in (—oo0,00] if @ > —oo since I(:) > a and that w — ¥, (\) is a version of
EM[I(A\ZE)| Ho] for all X by (2.1).

Lemma 4.8 There exists an Ho-measurable A™ taking values in (0,00) that satisfies (4.7) if

one of the following conditions is valid:
1. For P-a.a. w there are A1, A2 € (0,00) such that ¥, (A1) <z < Tyu(A2) < 0.
2. For P-a.a. w the functions ¥, are finite on (0,00).

Note that the second condition is in particular satisfied if B [|[I(AZ™)|] < oo for all X € IR.
The latter one is a classical condition in the theory of utility maximization, see (5.6) in Karatzas,
Lehoczky and Shreve (1987).

Proof:

1: Let domV¥,, denote the subset of (0,00) where ¥, is finite. As I is decreasing on (0,00) it
follows that V¥, is decreasing on domV¥,, and domV¥, is an interval. Furthermore, dominated
convergence implies that ¥, is continuous on dom¥,.

By assumption there is N C  with P[N] = 0 such that for each w € Q \ N there are \1, A2 €
domVY,, such that ¥, (A1) <z < ¥, (A2); hence continuity of ¥, implies that there is A € (0, 00)
such that ¥, ()\) = z. The set

B = {(w,)\) € Q x (0, 00) ‘ T,(\) = x}
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is Ho®B((0, 00))-measurable and if we denote by I' the projection of B onto 2, we have Q\N C I
By the measurable selection theorem (see e.g. Dellacherie and Meyer (1980), I111.44-45), B admits
a measurable selector, i.e. there exists a #o-measurable mapping A® : Q — (0, 00) such that
(w, A (w)) € B for all w € T'. Hence B [I (A ZH) | Hy] (w) = U, (A (w)) = z for P-a.a.
w.

2: We can choose a version of Q¥ [ZH € -|7{;] such that U, is finite for all w. Then I(Az)
is decreasing in A and Q¥ [ZH € dz | H| (w)-integrable for all A and w. In combination with
(4.6), monotone convergence and dominated convergence imply for all w

Iim¥,(A) =
lim @, () +00,
lim ¥,(A) = a.
MR = a
Since a < z < 0o, part 1 implies the claim. O

5 Utility indifference value of initial information in a complete
market

We now consider an investor with information flow F' trading in a complete financial mar-
ket where the discounted prices of the risky assets are given by an IF-semimartingale S =
(S1,...,8%%. The aim of Section 5.1 is to introduce and study the subjective monetary value
of the additional initial information G for the investor. Section 5.2 provides explicit calculations
of this value in a diffusion model where the additional information basically consists of a noisy

signal about the terminal stock price.

5.1 Utility indifference value

We impose the following assumption throughout this section.

Assumption 5.1 Suppose Assumption 2.1 (D) is satisfied and Assumption 4.1(IF-C) is satis-
fied with respect to IF.

It follows by Theorem 3.8 that Assumption 4.1(@-C) is also satisfied with respect to & and
the martingale preserving measure Q% corresponding to Q¥. We denote by ZE and ng the
densities of QT and Q% with respect to P. Recall from Theorem 3.4 that we have the relation
ZE /7% = pY since Assumption 2.3 (E) holds by Corollary 3.5. For both filtrations we are
therefore within the complete market framework of the previous section with IH € {IF, &} and

can use the corresponding results and notations.

Definition 5.2 The utility indifference value of the additional initial information G = o(QG) is

defined as a solution m = w(x) of the equation

uF(z) =u¥(z — 7). (5.1)
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Equation (5.1) means that the investor with the goal to maximize his expected utility from

terminal wealth is indifferent between the alternatives:
1. Invest the initial capital £ optimally by using the information flow IF'.

2. Acquire the additional information G by paying m and then invest the remaining capital

z — 7 optimally with the help of the enlarged information flow &.

If the indirect utility functions u® and u% are finite, continuous, strictly increasing and satisfy
lim,, u¥(y) < uwf'(z), then the utility indifference value exists and is unique: Corollary 3.3
and Q¥ = Q¥ on Fr imply that Adm™ C Adm®. Thus, u¥ is dominated by u%. From
limy, u¥(y) < uf'(z) < u¥(z) we then obtain the existence of a nonnegative solution 7 for
(5.1) by the continuity of u%. The strict monotonicity of u% implies the uniqueness of this
solution. We note that these conditions are satisfied in all subsequent examples.

The following theorem provides explicit expressions for 7 for common utility functions.

Theorem 5.3 Suppose Assumption 5.1 is satisfied. Then the utility indifference value w for the

respective utility functions below is given as follows.

1. Logarithmic utility U : (0,00) = R, x — logx: If H (P|QG) = FEFf [log 71@] < oo then
T

T=1 (1 — exp (—EP [log %D) : (5.2)

2. Power utility U : (0,00) = R, x — 27 /v, v € (0,1): If E [(Z%)‘V_Z_l] < oo then

1
B* | (28)71] 7

r=z|1- : (5.3)

Lt

B [E [(28)7 |q] ] '
3. Ezxponential utility U : R — R, z — —e~ %%, a > 0: If H(Q¥|P) = E¥ [Zf log Zf] < 0

then
r = —logBP (2% exp (EP |28 1og£‘go (5.4)
a T T Z% - .

Note that we can replace ZE |Z% with p©.

Proof:

By Theorem 3.8, Assumption 5.1 implies Assumption 4.1 (@&-C). For each part we show also
that the integrability assumptions from Corollary 4.7 are satisfied in both & and IF. Then uf
and u? are given explicitly by Corollary 4.7 and we just have to verify (5.1). Since u% is strictly

increasing, the solution 7 is unique.
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1.: Jensen’s inequality yields E¥ [log ZLIF] = EF [log W] < EFf [log ZI—G] < oo. Part 1
T 7!/ T T

of Corollary 4.7 implies
F

Z
ub(z —n) —uf(z) = log(z —m)+ EF {log Z—%] — log(z), (5.5)
and inserting 7 given by (5.2) gives (5.1).
2.: From E” [(Zf)‘f%l] < oo follows EF [(Zf)‘f%l
by Jensen’s inequality we obtain

BP [(2F)7| = BF [BT [2§|Fr] 77| < BY [(2§)77] < co.

1—y
go] ]
and solving for 7 leads to (5.3).
3.: Again Jensen’s inequality shows E¥ [Zjﬂf log ZX' ] < EF [Z% log ng] < o0o. The martingale

preserving measure Q¥ has properties as stated in Proposition 3.1. Using these we calculate

1—y
go] € L' (P) since v € (0,1). Moreover,

Thus part 2 of Corollary 4.7 shows that (5.1) is equivalent to

‘leEP [EP [(Z{‘?)fl]u] Gl _f)yEP [EP [(zgr‘)ffl

L
_EP [zg:’ log Z& ‘go] = B%|log T ~log 2 ‘go]
L T

& [ Z’%Ij‘ & IF
= E% |log ﬁ‘go —F [log Zq ‘go]
L T

_ S
— EP|Z%1og Z—ygo] — EP [2F log Z¥] .
In combination with part 3 of Corollary 4.7 we get
uby) = —e WEC [exp (—EP [Z%‘ log zﬁ‘go] )] (5.6)
ZF
= —exp ( —ay — EY [ZF log ZF ] )EG [exp (EP [Z%’ log Z—@‘go] )]
T
for y € IR. For y = z — w with 7 given by (5.4) this leads to
u¥(z —7) = —exp (—az — E? [ZJIE log Z{‘F]) = uf(z)

by part 3 of Corollary 4.7. O

Remark 5.4 We emphasize that our results are derived under the assumption of a small
investor since asset prices are exogenously given and not affected by the investor’s trading
strategy. This assumption is quite usual in the literature on utility maximization but becomes
questionable if the optimal strategy takes very large positions in the available securities. In our
situation, this might happen in particular for a @-investor who receives some highly relevant
additional information. A prime example discussed in more detail in Section 5.2 is a signal about
the terminal stock price distorted by only very small noise. However a systematic analysis of
large investor effects and equilibrium questions is beyond the scope of this paper and left to

future research.
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5.2 Examples

We now calculate closed form expressions for the utility indifference value for logarithmic and
exponential utility functions when the financial market is given by the standard complete dif-
fusion model and the additional initial information consists as in Amendinger, Imkeller and
Schweizer (1998), Section 4.3, of a noisy signal about the terminal value of the Brownian motion
driving the asset prices. We have not yet found a closed form solution in the power utility case
where an explicit computation of (5.3) appears more difficult.

Let the (discounted) prices of the risky assets be given by the stochastic differential equations

ds;
St

d
= pidt +3 o) dW], S§>0 fori=1,...,d, (5.7)
7j=1

where W = (W7);—; . 4 is a d-dimensional Brownian motion and IF = (Ft)iejo,r is the P-
augmentation of the filtration generated by W. The excess return vector y = (ui)izl,m,d and
the volatility matrix o = (0%); j—1,.. 4 are assumed predictable with fOT (Jjpe| + |o¢]?) dt < oo P-
a.s. and oy has full rank P-a.s. for all ¢ € [0, T"]. The relative risk process is given by A\ := o} Ly
and we suppose that fOT |\¢|? dt is finite and the stochastic exponential Z¥ := £(— [AdW) is a
(P, IF)-martingale. Then dQ¥ := Z:;If dP is the unique equivalent local martingale measure for
S on Fr so that Assumption 4.1(FF-C) is satisfied.

Suppose the additional information is a noisy signal about the outcome of Wr, i.e., G = o(G)
with

G := (6;Wh+ (1 — 6)ei)ic1,.. a»

where the ¢; are i.i.d. (0, 1)-distributed and independent of F;- and the d; are constant numbers

in [0,1). If all §; are strictly positive, the additional information is also generated by

~ ) 1—=3J;
G .= (W% + 0 ez-)
0i i=1,...,d

)

which is an unbiased signal for Wp. The regular conditional distribution of G given F; exists

for all ¢ € [0,T] and is multivariate normal with mean vector ((5in)1.:1 4 and covariance

matrix diag (53(T —t)+ (1 51-)2). - Hence the conditional distribution of G given F is
i=1,...,
a.s. equivalent to the distribution of G which is also normal. Assumption 2.3 (E) is therefore

satisfied and a straightforward computation gives

52T+ 1—5-) 1 G? (Gi — §;Wi)?
H e (3 (62T+<1—5> ) 69

As in previous sections we denote by Q% the martingale preserving measure corresponding to
Q" and by Z% its density with respect to P. We recall the relation Z& = zZxr /p%.
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5.2.1 Logarithmic utility indifference value

Let the utility function of the investor be given by U(x) = log z and assume E¥ [ fOT |A¢|? dt] < 00
so that H (P|Q¥) = EF [log(1/ZE)] = EF [fOT |)\t|2dt] < 00. In combination with

d
1Z 82T + (1 — 6;)?

E” [logp“] = 05

=1

this leads to EF [log ﬁ] = EF [log ﬁ] + EP [logp®] < oo. By (5.2) we obtain that the
logarithmic utility indifference value is given by

W_m(l_H\/VTir_lé—é )

and we can analyze the behavior of this quantity as the parameters vary. If all §; converge to

zero, then 7 tends to zero and in particular # = 0 if §; = 0 for all 4. Intuitively this shows
that the information delivered by G becomes useless when increasing noise hides all information
about Wy. Furthermore 7 is increasing in T', increasing in each ¢; and converges to x if §; T 1 for
one i with all other parameters fixed. For very small noise, the insider information intuitively
almost offers an arbitrage opportunity; this is best seen in the case of constant coefficients y and
o where St is a function of Wrp. In fact, the value of the information for the ordinary investor
then comes close to his total initial capital z and the investor can not pay more than z since
the logarithmic utility function enforces an strictly positive remaining initial capital £ — 7 by
requiring an a.s. strictly positive final wealth. Note that the limiting case §; = 1 is not included

in our framework since it would violate Assumption 2.3 (E).

5.2.2 Exponential utility indifference value

Now consider the case where the investor’s utility function is given by U(z) = — exp(—az) with
a > 0 and assume H(Q¥|P) < co. By Girsanov’s theorem, W =W+ [Aedt is a (QF, IF)-
Brownian motion. The relative entropy H(Q¥'|P) is given by

EY [Zf'1og Z'] = E* [—/ At AWy + 5/ |)\t|2dt] = 5E’F [/ |)\t|2dt]
0 0 0

) 2 .
and finite by assumption. From ET [( Jy Xids) ] < BT [ [} |Ai[2ds| < o0 we conclude that

Wi is in L2(QY') and hence in L2(Q%) for alli = 1,... ,d. Since Q¥ = P on o(G), the random
variables G;, i = 1,... ,d are independent and normally distributed under Q%. By (5.8) we
obtain logp® € L*(Q%) and

zr zr
BP [_g log _g] — B [2F log ZF] + E° [logp®] < oo
p p
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Straightforward calculation yields

exp (EG [long‘go]) = exp (EG [log p?] ‘g:G) (5.9)

ﬁex 1 o 82T + (1 —6;)? N G? B E% [(9i — 6:W3)?] ‘g:G
e S 2 N R A E R 7 AN (R AT (1—0,)2 '

As Q% = Q¥ on Fr, we obtain

B [(gi— W3], = G?—26,E" [Wi]Gi+ 2B" |(Wh)’] (5.10)
Further calculation yields
—52 BT Wi S2EF [(Wi)2
E% |exp L G?+6E (W7 Z._M
2(07T +(1-6;)) (1 - 6;)? (1—d)? 2(1 - 4;)?
_ (1—6i)° —47
= \/51.2T Th-5)? exp 20 = 5,2 VarQF[WT] . (5.11)

The d factors in the product from (5.9) are Q¥-independent since Q¥ = P on o(G). Hence
E% [exp (E%[log p©|Go])] is equal to the product of the Q%-expectations of the single d factors;
computing E¥ [(g; — 6;Wi)?] ‘g:G by (5.10) and using (5.11) then leads to

E% [exp (E¥ [log p©|Go])] H exp ( ) 5 Vargr [WT]> :

y (5.4) we obtain that the exponential utility indifference value is given by

d

T = %0 Zz:; 1— 6 aer [WT]
d

_ 1 ~ (T T
— % 2 1 — 6 (T QCOVQF |:W73/(; AS d3:| +VarQF [A AS dS i

1
If the relative risk process A is deterministic this simplifies to

d
T d @
W_%iz_;(l—&')r

7 is decreasing in the risk-aversion coefficient «, increasing in §; and tends to zero if all §;
converge to zero. 7 tends to infinity if §; 1T 1 for one ¢ with all other parameters being fixed.

Again this is precisely what intuition suggests should happen.
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