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Optimal smoothing in semiparametric index
approximation of regression functions

M. Delecroix!, M. Hristache! and V. Patilea?

'ENSAI and CREST, Campus de Ker Lann, 35170 Bruz, France
2Université d’Orléans, Rue de Blois, BP 6739, 45067 Orléans Cedex 2, France

Abstract

The problem of approximating a general regression function m(z) = E (Y |X = z)
is addressed. As in the case of the classical La—type projection pursuit regression
considered by Hall (1989), we propose to approximate m(z) through a regression of
Y given an index, that is a unidimensional projection of X. The orientation vector
defining the projection of X is taken to be the optimum of a Kullback-Leibler type
criterion. The first step of the classical projection pursuit regression and the single-
index models (SIM) are obtained as particular cases. We define a kernel-based
estimator of the ’optimal’ orientation vector and we suggest a simple empirical
bandwidth selection rule. Finally, the true regression function m(-) is approximated
through a kernel regression of Y given the estimated index. Our procedure extends
the idea of Hardle, Hall and Ichimura (1993) which propose, in the case of SIM, to
minimize an empirical Ly—type criterion simultaneously with respect to the orien-
tation vector and the bandwidth. We show that a same bandwidth of order n~'/%
can be used for the root-n estimation of the orientation and for the kernel approxi-
mation of the true regression function. Our methodology could be extended to more
accurate multi-index approximations.

1 Introduction

The statistical problem of estimating a regression function m(z) = E(Y|X = z) from
independent copies (Y1, X1),..., (Y, X,) of a random vector (Y, X) € IR x IR¢ has been
extensively studied. The classical approach remains the linear regression model which
assumes that the conditional law of Y given X = z is normal of mean m (z) = x6,,
6y € IR?, and variance o2 (herein xf denotes the usual inner product of z and 6 in IR?).
This model is a particular case of the generalized linear models (GLM) as considered,

e.g., in McCullagh and Nelder (1989). GLM are defined by :

1. m(z) = ro (x6y) with ry known (rg is the inverse of the so-called link function);

2. the conditional density fy|x—, of ¥ given X = z belongs to the linear exponential
family, i.e.,

fyix=z (y) = exp [B (ro (z6o)) + C (ro (z60)) y + D (y)],
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where B, C and D are known functions.

A natural extension of GLM is provided by the semiparametric single-index models
(SIM), where one only assumes that there exists some 6, € IR? such that

E(Y]X) = E(Y[X6), (1)

that is m () = 7o (26p), with unknown ry. In this framework, both 6y and 7, are to
be estimated. Root-n-consistent estimation of 6y has been obtained, for example, by
Ichimura (1993), Sherman (1994b), Delecroix and Hristache (1999). The M-estimators of
6y proposed by these authors can be written as

~ 1<
f = argmax — Y, mon (X;0)), 2
g max n;dJ( o,n (Xif)) (2)

where 75, (t) is a kernel estimator (with bandwidth k) of ry (t) = E (Y |X6 =t¢) and —¢
a contrast function. When exp ¢ is linear exponential, that is

Y(y,r) = B(r) + C(r)y + D(y), (3)

such semiparametric M —estimators are justified by the fact that 6, of the SIM assumption
verifies

o = arg;nax Ey (Y, E(Y|X0))] (4)

(see Delecroix and Hristache (1999); see also Gouriéroux, Monfort and Trognon (1984)).
Finally, the regression function m (z) is estimated by 75, (a;@) :

When the SIM condition does not seem to be valid, one may nevertheless approx-
imate m (z) by 7, (m@) defined above. This is an extension of the first step of the

so-called projection pursuit method, as considered by Hall (1989); see also Friedman and
Stuetzle (1981). Hall suggested to approximate E (Y| X) by the unidimensional regression
re, (-01) = E (Y|X6; = -6;), with 6; an orientation vector. The vector 6, also called the
first projective direction, is defined as the minimizer of a Lo—type distance :

0, = arggmin E{[E(Y|X) - E(Y|X0)]*}. (5)

More generally, herein we propose to approximate m(-) = E (Y|X = -) by an unidimen-
sional regression

ro, (-0y) = E (Y|X0y = -0y) = E(m(X)[ X0y = -0y), (6)
where 6, that we call the first 1)—projective direction, is defined by
0y = argmax E[¢ (E(V|X), E(Y[X0))], (7)
0

with ¢ as in (3). The vector 6, and the function ry, are to be estimated. Note that 6y

is determined only up to a scaling factor. When ¢ (y,r) = — (y — 7“)2, we recover the
framework considered by Hall (1989). Moreover, if exp 1 is linear exponential, 8, is also
the maximizer of E [¢ (Y, E (Y|X#))] since in this case

Ely(E(Y]X), E(Y[X0))] = E[p(Y, E(Y]|X0))]. (8)
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If, in addition, the SIM assumption (1) holds, 6, coincides with 6, since they are both the
maximizers with respect to 6 of the same quantity (see (4)). In other cases, approximating
the regression function m (-) by 4, (- 6y) rather than rg, (- 6,) is a well-adapted statistical
solution when, for instance, some information on the conditional distribution of Y given
X is available. As an example, let us consider the case where the conditional distribution
of Y given X = z is Bernoulli of parameter m (z). It seems natural to choose 6, by
minimizing with respect to  the Kullback-Leibler contrast between the Bernoulli laws of
parameters m (X) and E (Y| X#), respectively :

m (X)" (

og m (X))
E(Y|X0)" (

E 1-Y
E(Y|X9))

1—
1—
This leads to take ¢(y,r) = ylogr + (1 — y)log(l — r) in (7).

In order to estimate 7y, (-0y), two bandwidths seem to be necessary. First, after
choosing a primary bandwidth A, the estimator 6 is computed as in (2). Afterwards,
T, (70y) is estimated by ?E,h* (x/é) , a kernel estimator, with bandwidth A*, of the ex-

pectation of Y given z8. The rates of decay for the two bandwidths should verify some
conditions. In a SIM framework, Hardle, Hall and Ichimura (1993) defined more directly

~ 1 <&

7, h) — argmax — Y, 7y (X0 9

( gmax =3 (¥ Fos (X40) )
for ¢ (y,7) = — (y — 7")2. In this paper we extend their idea to more general 1) and we

A~

estimate g, (-0y) by 754 (5) . Asymptotic properties of (5, 71) and 77 ( 0) are obtained

without necessarily assuming the SIM condition. For 5, the estimator of 6, we prove

convergence and asymptotic normality, while for h we obtain an asymptotic equivalence
with the theoretical optimal bandwidth minimizing what we call the ¥»—MISE. When
¥ (y,r) = — (y —r)? our »—MISE coincides with the usual MISE from nonparametric
smoothing. The asymptotic normality of ?E,E <5) is easily obtained after proving its
asymptotic equivalence with a classic kernel estimator of ry, (-0y) .

Since the ’optimal’ bandwidth selection rule we propose herein is applicable whether
the SIM condition is verified or not, our findings contradict an intuitive argument provided
by Hall (1989), page 583, who suggests that two quite different bandwidths may be
necessary in order to construct good estimators of #; and ry, in the case of the classical
projection pursuit regression.

Our methodology could be extended to a multi-index framework. More precisely,
consider a semiparametric multi-index model, where it is assumed that there exists p > 1,
but smaller than d, the dimension of X, and 9(1), ...,0h € IR such that

E(Y|X)=E (Y|X6,..., X6%) . (10)

Under suitable identification conditions (see Ichimura and Lee (1991)), the estimation
methodology that we propose herein could be applied to such multi-index models. That
is, for ¢ as in (3), we may follow (9) and define

n

(51, ...,5”,3) = argmax 1 Zv,b (K,?(al,_"ﬂp)’h (X:6", ...,Xzﬂp)) (11)

mn
0,...,0° h 1



with ?(01 wor (t1, ..., tp) a kernel estimator of F (Y | X0 =t,,..., X0 = tp) . Moreover,

let us note that even if (10) is not verified, one may still want to approximate the regression
function m () by a multi-index regression more accurate than a single-index regression.
A multi-index (XHilp, v Xﬁf})) can be defined through

(6y; -, 0%) = argmax E [¢ (E(Y|X), E (Y|X0',...,X6))]. (12)
(6',...,67)

The regression m (-) is then approximated by

1 1 1 1
E (Y|X6¢ = Oy, .., X0, = -05}) =F (m(X)\X% = Oy, e, X0, = -05}) ,

which, in turn, is estimated through a kernel smoother ?(»0\1 ap) n (-51, ey /O\p) , with

(51, ...,5p,71) defined as in (11). Asymptotic results for the parametric and the non-

parametric parts of the semiparametric multi-index regression could be obtained without
assuming condition (10). The arguments are similar to those used in the unidimensional
case. For the sake of simplicity, herein we confine ourselves to the case p = 1.

Section 2 states the assumptions and gives the simultaneous definition of 5, the esti-
mator of 8, and of the ‘optimal’ bandwidth A. Section 3 contains the asymptotic results :
convergence and asymptotic normality for 5, asymptotic rate for h and asymptotic normal-
ity of ?gﬁ (5) The first part of the appendix recalls definitions and results of Sherman
(1994a) on rates of convergence of degenerate U —statistics. Sherman’s results represent
main tools for our proofs presented in the second part of the appendix.

2 Definitions and assumptions

2.1 Model assumptions

As announced in the introduction, the observations (Y3, X;), ..., (Yo, X,) are n indepen-
dent copies of a random vector (Y, X) € IR x IR%. In order to define and estimate By, we
consider a criterion

Y(y,r)=B(r)+C(r)y,

where :

1. B,C : I C IR — IR are twice differentiable, with B"” and C" Lipschitzian on any
compact subset of I;

2. B'(r)+C"(r)r =0;
3. C'(r) > 0.

For the sake of brevity we finally omit the D function in the definition of 1) since D has
no influence in the optimization problem (7). The last two conditions above simply mean
that exp ) is proportional to a linear exponential density of expectation r and variance
[C ()]

In order to ensure the identifiability of the d—dimensional parameter 6, we have to
impose some restrictions on its components. Two approaches has been usually used :
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either the norm of # and the sign of one of its components are fixed (see, e.g. Hardle,
Hall and Ichimura (1993) and Hall (1989)), or one of its components is fixed (see, e.g.
Sherman (1994b)). For the sake of simplicity, herein we adopt the latter solution and we
fix the first component of 6 to one. B

Suppose that there exists a compact subset © of IR4~! with non empty interior such
that the assumptions below are verified. In fact, in the sequel of the paper we rather use
a compact

@:{9 L0 = t(l,tbv) , 5eé}cﬂ%d
which we identify with © via the application 6 — * (1, tg) )

Assumption 1 For every § € ©, the random variable X0 admits a density f, with
respect to the Lebesgue measure on IR.

In order to guard against working with denominators close to zero, we consider a
so-called trimming on the X variables : fix arbitrarily A, a compact subset of IR¢, and
consider only the observations (Y;, X;) with X; € A. Hereafter I, (X) denotes a function
which equals one if X belongs to A and zero otherwise. For any 6 € ©, let us define

A)={t:t=20, z € A}
which it assumed to be a finite union of proper intervals. For any ¢ € A (), let

No(t) = EY Ia(X) [ X0=1)-fy(t), (13)
Dy(t) = E(Ia(X) [ XO=1)-fo(t).

Assumption 2

1. The functions (6, z) — Ny (20) and (0, z) — Dy (z6) are continuous on © x A.

2. inf Dy (.’1)’0) > 0.

fcO
TEA

3. For some k£ > 1, the function 7y (z0) is k times differentiable with respect to
the last d — 1 components of # and the kth derivatives are continous on 4 x ©
and, for any = € A, Lipschitzian on ©.

4. For any 6 in ©, the functions Ny (-) and Dy (-) are twice differentiable on A (6),
with Lipschitzian second derivatives and corresponding Lipschitz constants in-
dependent of 6.

Let P4 be the conditional probability measure defined by

(AN{X € A})
P({X € A})

pray="L

for any measurable set A. Hereafter, we consider the following notation : for any # € ©
andt € A(0),
rg(t) = EA(Y|X0=1t), (14)



denotes the conditional expectation of Y given X6 = ¢, while
vg (t) = var? (Y| X0 =1), (15)

stands for the conditional variance of Y given X# = ¢, both defined with respect to P4.
We also call ry () a trimmed regression function.

Assumption 3 There exists § > 0 such that
{reR:30cO©andte A(f) suchthat |r—ry(t)]<d}CI,

where [ is the domain of the functions B and C' defining the contrast function .

Assumption 4 sup vy (z6) < oo.

0cO
€A

Assumption 5 There exists a unique 6, interior point of ©, i.e., 6, = * (1, f%) and
5¢ interior point of é, such that

E [y (Y, E*(Y|X0y)) 14 (X)] = max E [v (Y, E4 (Y]X8)) 14 (X)] . (16)

Let us make some comments on the previous assumptions. The U—processes tech-
niques we use in the proofs allow us to relax an embarrassing usual constraint, that is
the random vector X admits a density (see Héirdle, Hall and Ichimura (1993) and Hall
(1989)), and replace it with Assumption 1. Note that X6 may have a density even if X
has discrete components, which is often the case in applications. A trimming procedure is
quite usual when a nonparametric regression estimator is involved. Even if one assumes
X having a density bounded away from zero, this does not yet ensure the second part of
Assumption 2. The restriction introduced by the set A could be quite straightforwardly
eliminated by considering a sequence of nonrandom or data-driven sets A,, n > 1, grow-
ing at a suitable speed to the whole set of values of X (see, e.g., Sherman (1994b)). Since
this implies longer proofs, for the sake of simplicity, we confine ourselves of a fixed trim-
ming. Assumption 3 ensures that the estimator proposed below is well defined, at least
for a large enough sample size. Assumption 4 is used to control the envelopes of certain
classes of functions appearing in the proof of the asymptotic normality of our estimator.
Assumption 5 identifies the ¢—first projective direction 6.

It is to be stressed that two trimming devices appear in Assumption 5. First, a trimmed
criterion 114 is convenient in order to avoid denominators close to zero. On the other
hand, the trimmed regression E4 (Y|X#), instead of E (Y |X#6), appears as argument of
1. This facilitates the proofs because it allows us to recover degenerate U—statistics when
decomposing the empirical counterpart of E [¢ (Y, E4 (Y |X6)) I, (X)] that we use for
defining the estimator of 6.

In the following lemma we give an useful interpretation of the trimmed regression.
Moreover, we show that if the SIM condition holds (see (1)), 6, of Assumption 5 coincides

Lemma 1



1. Ifry, 0 € O, denotes the trimmed regression defined above and Ny and Dy are defined
as in (13), then, for any t € A(6),

2. If there exists 6y € © such that E (Y|X) = E(Y|X6y), then, for any z € A,
EA(Y|X 0y = z6y) = m(zbp).
Moreover, if 0, is defined as in Assumption 5, 6, = 0.
Proof :
1. It suffices to remark that
E* (Y|X0) E(Ia(X) | X0)=E(Y I, (X) | X6),

since, for any B € o (X6),

/ EA(Y|X0) E(I4(X) | X6) dP

X0eB
= / E(EY(Y|X0) 1.(X) | X6) dP = / EA(Y|X0) I, (X) dP
X6eB X0eB
= P(X €A / EA(Y|X6) dP* = P (X € A) / Y dP#
X0eB X0eB
- / Y I, (X) dP = / E(Y I,(X) | X0) dP.
X0eB X0eB

2. From the definition of ¢ we deduce that, for any y, the function r — ¥(y,r) is
maximized for » = y. Thus, in order to deduce that 6, satisfies the optimum condition of
Assumption 5, it suffices to show the first part, that is, for any z € A,

EA(Y|X0, = 200) = m(z6,). (17)
From 1, we have
E(Y I,(X) | X600) = EA(Y|X00) E (I4(X) | X6).
On the other hand, under the SIM condition,

E(Y I, (X) | X6) = E(E(Y I4(X) | X) | X8o)
E(m(X) 11 (X) | X | X60)
m (X60o) E (Is (X) | X6).

and thus, for any z € A, we get (17). R



2.2 The estimator of 0,

In order to perform our semiparametric approximation of the regression function m (-) we
estimate the nonparametric part by a classical kernel estimator.

Condition K The kernel K : IR — IR is a differentiable symmetric positive function.
Moreover, K and K’ are of bounded variation and :

1. lim |u K (u)| = 0.

|u]—o00
2. [|u]’ K (u)du < o0 ;5 let K; = [u?K (u) du.
3. KQ IK2 d’LL < 00.

For a, < b,, n > 1, two sequences of positive real numbers decreasing to zero, let us
define H, ={h:a, <h <b,} and

(0 h) = argmax — Z¢ Yz,rgh (XZH)) I4(X5) E arg max §(97 h), (18)

0cO,hcH, T i1 0cO,hceHn
where
DY Ka (b= X0) LX)
Fop (1) = —2 ot Non(8) A(6)
6’,h - — A'L bl 9
AN KL (t—X0) 1i(X;) D, ()
JFi

denotes the one-leave-out version of the classic Nadaraya-Watson estimator of the trimmed
regression function 79 (-) = E4(Y|X60="). Here K (-) stands for K (- /h) /h. The
trimmed one-leave-one nonparametric estimators 7§ 1, allow us to decompose S (f,h) in a
sum of U—statistics. As mentioned above, the definition of ry (+) renders these U —statistics
degenerate.

Let us note that an adjustment of ¢ (Yi, fg’h (XZ-H)) could be necessary when fz,h (X;0)
is outside the domain of ¢ (y, -) (see, e.g., Klein and Spady (1993) for the case of a binary
response model). Under the assumptions we consider herein an asymptotically negligeable
adjustment could be built and thus the convergence results do not change. For the sake
of simplicity we do not consider this issue below.

3 Convergence results

3.1 The parametric part

Theorem 1 Consider that Assumptions 1, 2.1, 2.2, 2.8 (with k = 1), 3, and 5 and
Condition K are satisfied.

a) Assume that E(Y?) < oo and that 6 is defined with a, = Cn=%, where 0 < § < :
and C' > 0, and b, — 0. Then 0 —s By, in probability, as n tends to infinity.

b) Assume that E(Y*™) < oo, for some m > 8, and that B is defined with a,, = Cn?,
where 0 < 6 < % - % and C > 0, and b, — 0. Then H—s By, almost surely, as n tends
to infinity.



Proof : See appendix W
Let us define

My, =FE [391/1 (Y, (Xiby)) (B9 (Yisro, (Xiy)))" La (Xz-)]

and
W¢ = E [—839111 (Y;, 7"9¢ (Xﬂ,/,)) IA (X,)} .
Note that
My=E [[C' (ro, (Xi04))]” var (Yi | X;) Ogro, (Xi0y) B, (Xi64)T I (XZ-)]
and

Ww =F [C’ (7"9¢ (Xﬂw)) 897'% (XZ9¢) 897'% (XZ-H,,,)T IA (XZ):| .

Let ry , ry and Dj denote the derivatives of the functions ¢t — ry, (t) and t — Dy, (%),
p) Oy ¥ ¥ ¥
respectively. Define

K? 1
A = Tl E {5 s (7"91& (Xi0y) 70, (Xi0¢)) 19)

, 27) (Xiby) Dp, (Xi6y)]’
X [r% (Xiby) + Do, (X:0,) I, (X5)

1 1
Ay = K B {5 0o (o, (Xiby) 70, (Xiy)) Do, (X:8,) v, (Xifly) 1a (Xz')},

and

1
h, = argmax <A1h4+A2—h) = (Ay/4A,) P 15,
h n

Note that in our framewok 02,2 (r,r) = —C’ (r) < 0. The usual Ly—MISE corresponds
to 05,0 (r,r) = —2.

In the proof of the following theorem, we need to extend the definition of A; and A,
to 6 in a neighborhood of 6. More precisely, define A; () and A, (f) as in (19) with 6,
replaced by 6.

Theorem 2 Consider that Assumptions 1 to 5 (Assumption 2.3 with k = 2) and Con-
dition K are satisfied. Moreover, A; (-) and A (+) are Lipschitz in a neighborhood of 0.

Assume that E (Y*) < co. Let (5, ?L) be defined as in (18) for a, = Cn~2*¢ with C > 0

and 0 < e < 3/10 and b, = 1/Inn. Then
h P
— —1
hy,

and

Vi (0-6) 2 N (0, W MW7)

where W, denotes a generalized inverse of Wy, .

9



Sketch of the proof : The complete arguments are given in the appendix. Let us
present below the lines of the proof. The idea is to generalize the decomposition used by
Hérdle, Hall and Ichimura (1993). We write

§(0:h’) = _Zw Y;areh )) (Xz)
= S(G)+T(h)+R1(9,h)+R2(h),

where

n

50) = + > w0 (X0) 1 (X) = =3 (Yoo, (Xi0)) La(X,),

=1

T(h) = %Zw(w (Xiby) 7, (Xi8)) 14 (X0

Ri(0,h) = —Z[ (Vi 75 (Xi6)) — © (Vi 7o (X:))| T (X))
>
Ry (h) = Z

Vi

¥ (Yo foon (Xi80)) = ¥ (Vi o, (Xiew)] 14 (X5),

0 (Yo, (X:00)) = (1o, (Xi00) 7 <Xz-0¢>)] L3 (X3).

,

Next we show that maximizing S (6, h) simultaneously with respect to both 6 and h is
asymptotically equivalent with separately maximizing S (§) with respect to 8 and T (k)
with respect to h. More precisely, in our proof we follow the steps described below.

Step 1 Show that

T(h) = Ah*+ A 'h™ 4+ Op (n72h2) + 0p (n'h7Y) + op (hY)
+ {terms independent of h}.

In our framework —7 (h) is an estimator of —J(h) that we call the ¢»—MISE and which
is defined as

() = B [0 (ra, (Xi4) 7 (X:80)) I (X)] = [ =0 (1 (8,75, ) D (0 .
We show in the appendix that
J(h) = h*A; +n'h Ay 4+ op (R* A1 + 07 R Ay)

and thus h, is nothing else the theoretical optimal bandwidth obtained by minimizing
the theoretical y—MISE criterion —J(h).

Step 2 In order to deduce Tz/hn — 1 in probability, it remains to show that the
other two terms of our decomposition containing h are asymptotically negligeable when
compared with 7" (h). Therefore, we show that

10



Ry (h) =0p (n'h7") + Op (n_l/2h2) + {terms independent of h}
and
Ry (0,h) = op (h*) + op (n7'h71)

uniformly over op(1) neighborhoods of 6.

Step 3 Using a classical method for proving asymptotic normality as presented, e.g.,
in Sherman (1994a), p 453, Theorem 1 and 2, we deduce first, the y/n—convergence of
[ using a two steps argument, and afterwards its limit distribution. With Sherman’s
notation, consider

In(0) = S (6) + Ry (6, h)

and
D(6) = — 50— 60) Wy(6 — 00).

From Step 2 and a version of Sherman’s Theorem 1 we obtain a preliminary rate of
Op(n~2/%) for §. This allows us to restrict § to Op(n~%°) neighborhoods of 8,,. Next, we
show that

Ry (0,h) = op (||0 — 0yl /v/n) +0p (1),

uniformly over O,(n~2/%) neighborhoods of 6, and with respect to O,(n~'/%) ranges for
the bandwidth. Finally, the second part of our results is a consequence of Sherman’s
Theorem 1 and 2. W

Note that the asymptotic distribution of ® does not depend on the choice of the
nonparametric estimator of the regression function 7, (-). We argue that our methodology
could be applied for other linear smoothers than the classic kernel estimator. For instance,

in the definition of (5, /ﬁ) , one may replace 7 , (z6) by the local linear estimator

~q

%,h (z0) = a
with @ verifying
(ai,'éi) = argmin Y Ky (X,0 — 26) [Y; — a — b (X,0 — 26)]*.
“

The same kind of decompositions could be used and the corresponding asymptotic results
could be deduced.

3.2 The nonparametric part

For any = € A, consider

Xn:yi K; (28 — Xi8) L4 (X,)

7o (#0) = =5
Y K; (xﬁ . Xz@) Ly (X5)
1=1

11



the kernel-based estimator of
ro, (z0y) = B4 (Y | X0y = z0y).

The asymptotic bias and variance of this estimator are obtained from the fact that
T35 (330) behaves very much like ?% 7 (20y), the theoretical kernel estimator (with band-

)

with 97, 7 (20y) = Op (1) and 6—06,=0p (n='/2). Classic results on the asymptotic
distribution of the kernel estimators (see, e.g. Bosq and Lecoutre (1987), Chapter 5)
allows us to state the following result.

width ﬁ) of g, (z0y) . More precisely,

Poi (0n) = 7o, 7 (#0) = 007, 7 (56) (0= 64) + Op (He b,

Corollary 1 Assume that the conditions of Theorem 3 are fulfilled and that vy, (-) defined
in (15) is continuous. Then, for any x € A,

~

nh (77 (20) = ro, (a6y) = B8 (26,)) > N (0, V (26y))

where
Bt = (Ki/2) [rg, (1) + 2, (1) £5, (t) / fo, (1)

and

V() = Kz vg, (t) / fo, (1) -

4 Appendix

4.1 Appendix 1 : rates of uniform convergence for degenerate
U —processes

In this section we briefly recall definitions and results from Sherman (1994a) (see also
Serfling (1980)) which we use as main tools for our proofs.

Let Zi,..., Z, be independent copies of a random vector Z with distribution P on a
set S. Let k be a positive integer, A a subset of IR™ (m > 1) and S* the product space
S®...0 S (k factors). For each positive integer n and each A € A, let f,(-; A) denote a
real-valued function on S*, also called the kernel. Define the corresponding U—statistic

of order k
kan(a - Z f’n 119 zka )a
1574, J 7

12



where (n);, = n(n—1)...(n—k+1). In the present framework, allowing the function f,(-; )
to depend on the sample size is crucial when we have to consider # in a neighborhood
shrinking to a limit point at a suitable speed. Moreover, this dependence could be also
useful if one considers a sequence of growing trimming sets A,,n > 1, in the space of the
explanatory variables. For a simplicity, we omit to write the dependence of this function
on n but we consider it implicitly.

The collection {Uf f(+;A), A € A} is called a U—process indexed by A. Note that U,
is nothing else than the empirical measure P, that places mass n~! at each Z;; therefore
below we rather write P! instead of U!. Let s* = (s, ..., s;) denote an element of S*. If
for each A € A and each s* € S*,

Ef (S1yy 81,2, 8i41y s Sk; A)] = 0, 1=1,...,k,

then F = {f(;A), A € A} is called a P—degenerate (or simply degenerate) class of
functions on S*. Moreover, UFf(-; \) is called a degenerate U—statistics of order k and
{UFf(5A), A€ A} is called a degenerate U—process of order k.

We say that F(-), defined on S*, is a (pointwise) envelope for F = {f(;\), A € A} if

Sup f(5 0] < F().

Sherman (1994a) states uniform convergence results for degenerate U—processes corre-
sponding to classes of functions F satisfying the so-called Fuclidean condition.

DEFINITION (see Sherman (1994a), p 447) Let F be a class of real-valued functions
on a set X. Call F Euclidean for the envelope F' if there exists positive constants A and
V with the following property : if y is a measure for which [ F?du < oo, then

D(z,d,, F) < Az™", 0<z<1,

dy(f, ) = [ [1r=gfaus [ F%zu] 1/2

and D(z,d,, F) denotes the packing number, that is the largest number D for which there
exists fi,..., fp in F such that

du(fif) >z fori#j.

where, for f,g € F,

Note that the constants A and V' do not depend on p. The criteria for determinating
the Euclidean property we use in the proofs are summarized in the following proposition.

Proposition 1

1. (see Nolan and Pollard (1987), Corollary 21) Let F be a uniformly bounded Eu-
clidean class of functions on X ® X. Then, for each finite measure v on X, the
class { [ f (z,)dv(z), f € F} is Euclidean (for a constant envelope).

13



2. (see Nolan and Pollard (1987), Lemma 22(ii)) Let g(-) be a real-valued function
of bounded variation on IR. The class of all functions on IR® of the form z —
g (az + B), with o ranging over IR¢ and (3 ranging over IR, is Euclidean for a con-
stant envelope (az denoed the usual inner product of a and z in IR?).

3. (see Pakes and Pollard (1989), Lemma 2.13) Let F = {f(; A), A € A} be a class of
functions on X indexed by a bounded subset A of IR™. If there erists an o > 0 and
a nonnegative function ¢(-) such that

\f(x,A) = fz, N)] < o(z) [N = N||* forz € X and \,\ €A,

then F is Euclidean for the envelope |f(-,Xo)| + M&(-), where \g is an arbitrary
point of A and M = (2/msup, || — Xol])” -

4. (see Pakes and Pollard (1989), Lemma 2.14(i) and (ii)) If F is Euclidean for the
envelope F', and G is Euclidean for the envelope G, then {f+g, f€ F, g€ G}
is Euclidean for the envelope F + G and {fg, f € F, g € G} is Euclidean for the
envelope F'G.

Finally, we recall the results on the rates of convergence of degenerate U—processes
that are used in the proofs.

Proposition 2 (rates of convergence in probability) Let F be a class of P—degenerate
functions on S*, k > 1, and P* = P® ... ® P (k factors). Suppose F is Euclidean for a
squared integrable envelope F, that is [ F2dP* < 0.

1. (see Sherman (1994a), Corollary 4(ii)) Then

sup ‘nk/2Uff| = Op(1).
feF

2. (see Sherman (1994a), see Corollary 8) Suppose F = {f(:;A), A € A}, and that
Ao s a point of A for which f(-;X0) = 0. If [|f(:;A)|dP* — 0 as A — X, then
uniformly over op(1) neighborhoods of Ao,

UEF(-50) = op(n *7?).

Proposition 3 (rates of almost-sure convergence; see Sherman (1994a), Corollary 9)
Let F be a class of P—degenerate functions on S*, k > 1, Euclidean for an envelope
F. For real numbers 6 > 0 and f > 1, let p be a positive integer satisfying p > (/0. If
[ F*dP* < oo, then

sup ‘nk/Q_‘jUfff‘ — 0,

feF

almost surely as n tends to infinity.

14



4.2 Appendix 2 : proofs

Proof of Theorem 2 :

For any # € © and ¢t € A(O), let

Nop (t)

Ton (t) = Do (1)’

where

Nop(t) = EY Ky (X0—1t)14(X)],
Dgp(t) = E[K,(X0—1t)14(X)].

Asking b, — 0 ensure that 6, is the unique optimum of the limit problem. We only have
to prove that, under the stated assumptions,

sup
0cO,hcH,

S(6,h) = B (1 (¥, (X0)) L (X))] = 0, (20)

in probability and almost surely, respectively. For any # € © and h € H,,, we can write
§(9 h) = E (¢ (Y, 9 (X0)) L4 (X))

= = Z Y;, T@ A Xﬂ)) Iy (Xi) — o (Y, ron (Xi0)) In (XZ)]
+— Z (Yi,ron (Xi0)) L (Xi) — o (Yi,re (Xi8)) La (Xi) ]

4= Z (Y, 79 (Xi0)) 1a (X3) — E (3 (Yi, 79 (Xi0)) La (X5))]

O

"5 (0,h) + S5 (0,h) + S5 (6).

The almost sure convergence of S (#) uniformly in 6, can be obtained from a strong

uniform law of large numbers as in Pollard (1984), chapter II; see also Pakes and Pollard
(1989), Lemma 2.8. Consider the family

Fs=A{(z,9) = ¢y, 79 (20)) L4 (z), 0 €O}

which, under the stated assumptions, admits an envelope F3(z,y) = Cs(|y|+ 1), for some

C3 > 0. Moreover, it is easy to see that F3 is Euclidean for the envelope F' (see Lemma 2.13
Pakes and Pollard (1989)). Thus,

~

3(9)‘%0,

0co
almost surely. R
For the uniform convergence of S, (6, k), let us note that

sup [Nop (1) — Ng ()] — 0
00, te A(6), he H

15



and thus

Indeed,

sup | Ny, () —

0,t,h

sup
0€O,tc A(0), heHn,

sup
0€0,tcA(0), he Hn

Ny (2)]

= sup
0,t,h

/ K(u) (Z‘ﬂ N (£ + uh) — Ny (t)|) du

IN

Do () — Dy (£)] = 0.

|To.n (t) — 7o ()| — 0.

/ K () [Ny (£ + uh) — Ny (1)) du

and the last integral converges to zero due to the uniform continuity of Ny (¢) as function
of # and t. The same arguments prove the uniform convergence of Dy, (t) . Since

‘§2 (6, h)‘

<

—Z

0,t,h

0,t,h

(Ya,ron (Xi0)) — 9 (Yi,me (Xif))] La (Xi)

(sup |To. (1)

n Z 029 (YiTop) [ros (Xif) —ro (Xif)] La (X;)

(sup ITo.n (t) — 10 (2)]

n

) LS st (Vi o) L (X0)

i=1

) 202 Vi +1)

where F@jh lies between 75, (X;6) and ry (X;6) and C, is some positive constant, we deduce

almost surely.

0cO,hcHn

Finally, we may write

S, (6, h)‘

where 7y, is between 7}, (X;0) and 7oy (X,6).

IN

—Z

1 n
22

sup

Yu To h X,-H)) - (Y5, T9,h (X,H))] T4 (X3)

LS00 (Vo) [ (0) = (X)) 14 (X)
=1

3, (G,h)‘ 0,

00 (Vi) (50 [ 0 = ron (0]) 12 (X0

Now, the idea is to show the uniform

convergence of the one-leave-out kernel estimator 75 ,. Since
’

on (Xifl) =195 (Xi0) =

NGh(X 0)

_ N

(Xi0)

De n (Xi)

Dy p,

(Xq)

16



1
Dy, (Xi0)

it is sufficient to prove that

{ [ Ny (Xi8) = Ny ( Xie)} — 7o (Xi6) [f)g,h (Xi6) — Dy (Xzﬂ)] } :

sup | Dy, (¢) = Do ()] = 0 (21)
laéfjghn
and

sup | N, (6) = N 0] o, (22)
t
1<z<n

in probability and almost surely, respectively. We have

n—1
‘Nah — Ny (t)‘

%Z{YJ % K (t_hXje) T2 (X5) — E[Y; Kn (t — X;0) Iy (Xj)]}‘

JF#i

< ‘/fﬂhtdp /fehtdp‘
J% YK( ent 9) 1. (X) ~ EY: K ((t — X8) /h) 1o (X))
<

1
— /fa,h,t dpP, — /fa,h,t dP‘ + EQ(Xi,Yi);

where P, denotes the empirical probability which places mass n~! to each observation
(X,Y) sampled from P,

fort (@, y) =y K((t—20)/h) I4(x), 0€0O,tecAf), heH,,

and g (+,-) is a real-valued function with the absolute value bounded by C (|Y;| + 1), for
some C' > (. Consider the family

fl = {fg’h,t (', '), 0 e @, te A (9) h e (O, 1]}

/fahth /f&htdp‘

SUp | fons (2.9)] < File,y) = G (ly[+ 1),
1

and note that

sup
0,t,h

/fG,thn_/fH,th‘ <SUP

and that

for some C; > 0. Under the assumptions of part a), the envelope F; has a finite moment
of order two. It is easy to see that F; is Euclidean for the envelope Fj (use the bounded
variation of K and apply Lemma 22(ii) of Nolan and Pollard (1987) for « = h'6 and
f = h't). From Sherman (1994a), Corollary 4(ii) with k£ = 1, we get

n
sup Nah( ) — Non (t)‘ < 7sup

0,4 h an (n —1)
1<i<n

/thth /fghth‘+Op(a n- )
= op (a;ln_(l/Q_’Y)) ,
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for any v > 0. On the other hand, under the assumptions of b) and for some m > 8, we
apply Corollary 9 of Sherman (1994a) with m = 2p, 6 = 23/m, 3 > 1, and we obtain,

sup N, (6) = N (t)] = o (a0~ G=577),
1<f<n

almost surely, where v = 2(8 — 1)/m > 0. For Y = 1 we obtain (21). Thus

sup
0cO,heHn

S (6,1)] =0,

in probability and almost surely, respectively. Finally, we may conclude that (20) is veri-
fied and the proof is closed. W

Proof of Theorem 3 :
STEP 1 : the order of T'(h) Let us introduce the following simplified notation: I;

stands for I(X;) while r and 7* replace ry , and 72%,};: respectively. Moreover, V; = X;0,.
We have

T(h) = =Y & (r(V;),# (V) I

=1

2o g 00 (1007 0D [ (00) =7 () 4

_Z (02,4 (r (Vi), 7)) — 05 (r (Vi) .7 (Vi))]

2 Ty + Ty (h) + Ty (h) + Ty (),
with 7 between r (V;) and #* (V;). Since 02t (r,7) = 0, we have Ty (h) = 0. Using the
Lipschitz condition verified by r — 92,9 (-, 7), it is easy to see that T3 (h) has a smaller
order than Ty (h).

The order of 7, (h) Let us further simplify our notation : when there is no possible
confusion we drop the argument V;; we write 7 = N/ D® and r = N / D. We have

11 ,
Zﬁgéxwm—ﬁ
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= I Loy (R-ebd) L
—52522‘/’( ~rDY) =
1= 1 ~ ~N2 1 2 /.
Y (Nz—rDz) {———13 (DZ—D)} I
n <= D?
1 n . N2 1 n R N2
- =¥ g (NZ—TDZ> L--Ya (Nf—rDZ) bin I;
ni:l n’i:

with D’ between D* and D, a; = 2 D~20%,% and by, = 2 <D ) (DZ . D) It is clear
that |b;,| < B, with B,, = op(1) (see also the proof of Theorem 2). Using the definition
of N* and D we get

n—2

1
Ty (h) = — Ty (h) + 1 Tsy (h) + {terms of smaller order}

where
1
15 (h) = n(n — 1) (n _ 2) i;lai D/J =T (V;)] [}/l =T (V;)]
x Ky (Vi—=V;) Ko(Vi=V) L I T
Yoa [i—r(W)I KQ(Vi-V)) L.
1#]

1

Ty (h) n(n=1)

The order of Ty (h) Using an usual decomposition of a U—statistics of order £ in
degenerate U—statistics of order s < k (see Serfling(1980), pages 177-178), we may write

T21 (h) - US’le ('a ) )
= (3" > [fa (%25, %) — E (fu1| Zi, Z)) — B (| Zi, Z) — E (fu1] Zj, 20)
1#j#l

+{(n)21

— ()7 (ZE (fa1lZ:) + ZE (fa1]Z5) + ZE (f21|Zl)) +3E (f21)}

- {(n){1

+E (fa)
= U3f231 (" ) h) + U2f221 (" " h) + P;f211 ('; h) +E (f21)
where (n), =n(n—1)..(n—k+1), Z; = (V;,X;) and

+E (f211Z;) + E (fo1|Z;) + E (f11Z1) — E (fa1)]

Y E(fulZ,Z) + > E (fulZi, Z) + > E (fu|Z;, Z1)
i il i#l

— 3K (le)}

SE(falZ)+ > E(falZ) + > E(fal%)
i=1 j=1 =1

for (zi, 2, 2) = far (2, 25, 215 h)
= a; [y; — 7 (2iby)] [y —r(zi0y)]
X Kh (:L‘Z0¢ — x]ﬂw) Kh (:L‘j0¢ — xl0¢) Iz Ij Il .
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We show below that E (fo1) is the dominant term in the decomposition of Ty (h).

Since F (Y*) is finite, the family {h?f3, (-,-,-;h); h € (0,1]} is Euclidean for a squared
integrable envelope (see Lemma 22(ii) and a straightforward generalization of Corollary
21 of Nolan and Pollard (1987); see also Lemma 2.14(i,ii) of Pakes and Pollard (1989)).
Hereafter NP87 stands for a short of Nolan and Pollard (1987) while PP89 abbreviates
Pakes and Pollard (1989). Apply Corollary 4 of Sherman (1994a) and deduce

Usfsi (-5 k) = h?0p(n ) = Op(h *n /7). (23)
Next remark that
E (fo1lZi, Z;) = a; [Y; — 1 (Vi)] K (Vi = Vj)
xEA{Y,—r(Vi)] Kn(Vi=Wi) LlZ;, Zi} L 1
=a; [Y;—r (V)] Kn(Vi—=Vj)
XE{E{[Yi—r(Vy)] Kn(Vi=V1) L|Z;,Vi}|Z:} I 1

=a; [Y; —r (V)] Kn(Vi—Vj)
xEA{[r (Vi) —r (V)] E(LIV) Kn(Vi=V) |[Vi} L I

On the other hand, the definition of r, the symmetry of K, a simple change of variables
and a second order Taylor expansion give

gi2(v;h) = EA{[r (Vi) —r ()] EL|Vi) Kn(v—-V)} (24)
- /N(u)Kh (v — ) du — r(v) /D(u)Kh (v — ) du
_ / N(v = wh) Lu, (v — wh) K (1)dw
() / D(v — wh) Luay (v — wh) K (w)dw
= R / s (v, w; B) Lugayy (v — wh) w?K (w) duw
R / 5p(v,w; ) Loy (v — wh) w?K (w) dw,

where sy(v,w;h) and sp(v,w;h) are the reminders under integral form of the Taylor
expansions of N and D, respectively. That is, for v — wh € A(6y),

v—wh
sp(v,w; h) = / (v—wh—t) L"(t)dt

where L is either N or D. Little algebra shows that the families {s.(-,-;h); h € (0,1]}
verifies the conditions of Lemma 2.13 of PP89 for ¢t = h and = = (v, w). We deduce that
these families are Euclidean for a constant envelope. Next apply Lemma 22(ii) of NP87
and Lemma 2.14(ii) of PP89 in order to deduce that {s.(-,-;h) La,) (- —-h); h € (0,1]}
is Euclidean for a constant envelope. Finally, we interpret the last two integrals in (24)
as expectations with respect to the finite measure w? K (w) dw and we apply Corollary
21 of NP87. We further deduce that the family {h 2gi2(-;h); h € (0,1]} is Euclidean
for a constant envelope and, consequently, that {h ™' E[ fo (2,2;,-;h)]; h € (0,1]} is
Euclidean for the squared integrable envelope C'|Y; — r (V;)| I; I;, for some C' > 0 (use K
and 7 bounded and E(Y[;) < 0o). Similar arguments can be used in order to deduce that
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{h=YE[ fo1 (2i,-,21;h)]; h € (0,1]} is Euclidean for the corresponding squared integrable
envelope. The last term of U2 fZ (-,+; h) to be studied is

E(falZj Z) = B [fal (Y5, V5) , (Yz,V)]

= E{a; [Y; —r (V)] Y1 —r(V3)]
XKy (Vi = Vi) Kn (Vi = Vi) L I; L] (Y5, V;), (Y5, Vi) }
= E{a; [Y; —r (V)] [Yi—r (Vi)]
<K (Vi Vi) Kn (V= Vi) B (LIVA) | (Y, V), (VW)Y Iy I

Recall that a; is a bounded function of V;. By a change of variable we have

Elfal (Y, Ja J) (5, v5) » (Y1, Vi) = (1, )]
= Ja(w) [y; —r (W] [y —r(w)] Ky (u—0v;) Kyp(u—wv) D(u)dul; I,
h~ f a(v; +wh) [y; —r (v; +wh)] [y — 7 (v; + wh)]
x K (w) K[(’UJ — ;) [h+w] D(v;+wh) Lag,) (v; +wh) dw I; I,

Inspired from Example 11, p 798, NP87, we consider the last integral an expectation
with respect to the probability defined by K (w) dw. Note that a(-), 7 (-), K (-), D(:) and
Ta@,) () are all functions with bounded variation. Using Lemma 22(ii) and Corollary
21 of NP87 and Lemma 2.14(ii) of PP89, deduce that { h E [ fo1 (-, 25, z:; h)]; h € (0,1]}
is Euclidean for a squared integrable envelope. Finally, {h f% (-,-;h); h € (0,1]} is Eu-
clidean for a squared integrable envelope. Moreover, from the previous calculations and
a dominated convergence argument we get

lim h f221 (Zil’ Zigs h) = Oa
h—0

provided that x; 0y # x;,0,, and thus we may extend h f3 (-,-,-;h) by continuity, except
for a negligeable set, and verify Corollary 8(ii) of Sherman (1994a) for U2 (h f2 (-, h))
(in that corollary take 6 = h and 6, = 0). We deduce

Unfs (,sh) = op(h™'n7h). (25)
For the order of P! f}, (-; h) let us write

E(f21|Zz') = E[E(f21|Zz',Vj;VZ) |Zz] I;
= wE{E[Y;—r (V) L | 2, V] E[(Yi—r (V) L | Zi, Vi]
x K (Vi=V;) Kn(Vi=Vi) | Zi} I
= aBE{[r(V;) —r(V)] [r Vi) —r (V)] E(L;|V;) E(LIV)
x Kn(Vi—V;) Kp (Vi—= Vi) | Vit L
= a E{[r(V;) —r (V)] K (V; Vi) E(L|V;) | Vi}
xE{[r (Vi) —r(V})] Kn(Vi=V;) E(L|V) | Vi} L
ai {E{[r(V;) —r (V)] Kn (Vi = Vi) E(L|V;) | Vi}} 1
a; [912(Vi;h)]2 L,

with g12(-;h) defined as in (24). Deduce that {h™* E[ fo1 (2;,-, s h)]; h € (0,1]} is Eu-
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clidean for a constant envelope. On the other hand,

E (le‘Zj) =E [E (f21‘Zja Zi) ‘Zj]

= E{E{a(V}) [Y r (V)] Yi—r (V)] Kn(Vi=V;) Kn (Vi = Vi) L I; 11|}, 2} | 75}
= E{a(Vi)) [Y; —r (V)] E{[Yi—r (V)] Kn(Vi=Vi) L Z;, Zi} K (Vi=V;) Li|Z;} I
= E{a(V)) [Y; —r (V)] E{Yi—r (V)] Kn(Vi=Vi) L L;i|Vi} Kn(Vi=Vi)[Z;} I
= E{a (Vi) [Y; —r (V)]

X E{ [(Yi =7 (V2)) LIV, Vil K (Vi =V0) IVi} Kn (Vi = V}) L|Z;} L
= E{a (Vi) [Y; —7r (V)]

x E{[T Vi) —r (Vi)l ELVi) K (Vi= W) Vit K (Vi = V)) LilZ;} I
= E{a (V) [Y; —r (V)] g12(Vi; h) Ki (Vi = V5) E(L|Vi) 1Y, Vi) I

Moreover, by a change of variables we have
E{a (Vi) [V; —r (Vi)] g12(Vish) Kn (Vi = V;) E(LIVA) |V =y, V; = v}
= [ o) y=r ) sl ) Ka (¢ =) D)

= / a(uh +v) [y —r (uh + v)] gia(uh +v;h) K (u) D(uh +v)du

= / a(u+vh) [y — 7 (uh +v)] gi12(u,v; h) K (u) D(uh + v) du,

where
Gio(u,v;h) = R? /gN(u, w; k) Lngg,) (uh + v — wh) w’K(w) dw
—h? /§D(u, w; h) Ly, (uh +v — wh) w’K(w) dw,
with,
uh+v—wh
sp(u, w; h) = sp(uh + v, w; h) = / (uh +v —wh —t) L"(t) dt
uh+v

for uh +v — wh € A(fy) and L equal to N or D. With the same arguments as above
it can be shown that the family {s.(-,-;h); h € (0,1]} is bounded and verifies the con-
ditions of Lemma 2.13 of PP89 for ¢ = h and = = (u,w). Now it is easy to see that
{h2E|[ fa (-, 2,-;h)]; h € (0,1]} is Euclidean for a constant envelope. The same argu-
ments apply for E (fs1]Z;) . Use Corollary 4 of Sherman (1994a) to see that

P, f31 (h) = Op (K*n~'/?). (26)

The order of 75, (h) : we consider the following decomposition of T, (h) as a sum of
mean and two degenerate U —statistics

Ty (h) = Un2f22 (', )

= (), [f2 (%, %) - E(f2lZ) — E (f2|Z;) + E (f2)]
1%

n

+ ()7 Y (B (f2!Z) + E (f22|2;) — 2E (f2)]

=1

+E (f) B U2f2 (- h) + P fay (3 h) + E (fa2)
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where
for (71, 23) = for (21, 25 B) = a; [y; — r (x:i0y)]” Kiy (26 — 20y) 1; 1.

Using the same kind of arguments as those used for the order of U2 f3, (-; h) we deduce

that
Unfz (i) = h20p (n7') = Op (R %), (27)
For the order P! f}, (-,+; h) we write
E(f|Z:) = E(f22 | Vi)
=a; E{E{[Y; —r (V) L|V;,V;} K} (Vi =V}) | Vi}
—azE{E{[Y—r V]) r(Vy) = (O LIVi,Vi} KR (Vi=V;) | Vi} I,
=a; E{E{[Y; —r (V)" I |V} KZ(V;=V;) | Vi} I,
+a; E{E{[r(V}) - ( D 1 IVQ,VJ} K2 Vi=Vy) | Vi} I
=%E@%()(LI)WW’VHV}
+a; E{r(V;)—r (W) EL | V) K (Vi—V;)|Vi} I,
where vy, (t) = var® (Y|X60, = t). Using again a change of variable and the results of
NP87 and PP89 we deduce that the family { h E [ foo (2i,-; h)]; h € (0, 1]} is Euclidean for

a constant envelope. Similar arguments apply to the family { h E'[ fo2 (-, 2;; h)]; h € (0,1]}
which is thus Euclidean for a squared integrable envelope. Corollary 4 of Sherman (1994a)

gives

Pl fo (5h) = Op (R 'n1?). (28)
From (23) and (25) to (28) we obtain
Ty (h) = Op(h™n72) +op(h™'n7") + Op (K*n7Y2) + E (fa1)
+0p (h 20 2) + Op (K0 3%) + n L E (fa)
= op(h™'n™") + Op (K*n™%) + E(fu) +n 'E (f)

From the previous formulae, suitable change of variables, Taylor expansions and symmetry
of K we have

E(fnlZ) = ai {E{[r(V;) —r (V)] Ku(V;=Vi) E(L|Vy) | Vi}Y* I

= {7“ (Vi) D(Vi) + % h* (rD)" (V;) + Op (K°)

—r(V;) D(V;) — % r* r (Vi) D" (V;) + Op (h3)}2
K7

= h'a = [(rD)" (Vi) =7 (Vi) D" (V)] L+ Op ()

and
E (fa) = EE (fu|Z:)] = h*A1 + Op (h°) .

On the other hand,
E(f|Zi) = ai E v, (V;) E(L | Vi) K (Vi=V;) | Vi] I
+a; E{[r (V;) =r (V)" E(L; | Vi) K;, (Vi = V) |Vi} L,
= h7'K; a v, (Vi) D (Vi) Ii +Op (1),
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and
n'E (fn) =n"'E[E (f»|Z))=n""h""A,+ Op (n71) .

We may conclude that
T (h) = J (h) + {terms of smaller order in h}.

STEP 2

2A : The order of R, (h) We further decompose R, (h) :
1« ; ;
Ry(h) = =3 [0 (¥ (Vi) = ¥ (ro, (Xiy) 7 (VA))] T
=1
= 0w (r (V). (V) Y- (V] L
=1

= 3 (AW (), (W) + % (r (), (W) [ (04) = r ()]}
) x[Yi—=r (V)] I
+ {terms of smaller order in h}

The second equality is due to 9%% (s,7) = 0. We only retain the dominating term
containing h :

Ba(h) = 370k (W), 7 (W) i =r (V)] [ (V) = (V)] I

with o; = a(Z;) = 044 (r (Vi) ,r (Vi) [Yi —r(Vi)]. Note that E (a(Z;) ;| V;) = 0. We
have

~ 1< N N 1< 17 /= N1
Bah) = -S <_ﬁ__> L == [ai 5] (NfD—NDZ) =
n
=1

= 35 (B D) 1_%27 (¥ —+D) (B~ D) 1,

n
=1
+ {terms of smaller order in h}
= Ry (h) + Ryo (h) 4+ {terms of smaller order in h}

with 8, = 8(Z;) = a(Z;)D™" and v, = §,D~*. Moreover,

1 1
—= D> Vi Ka (Vi V) = (V) —< > Ka(Vi=V;)
j#i j#i

I;

Ru(h) = 35,
=1
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= %Zﬂ, {ﬁZ[Y}—T(Vi)] Ky (Vi =Vj) Ij} I;

=1 j#t
= ), ) B NVi—-r(B)] Kn(Vi=V)) I; I;
i#j
= U72Lg2 (', B h) 9

As above, we may decompose
Ry (h) = UZg; (k) + Pigy (h) + E (g2)
= (n);" Y _[92(Zi, Zj;h) — E (92 %) — E (92 ) + E (92)]

i
+-— Z (921Zi) + E (92| Z;) — 2E (g2)]
+E (92)
= ()3 > 192(%i, Z}) — E (921 Z)]
i#]

1 n

since E (g2|Z;) = 0. Since f§(-) is bounded we deduce that {hgo(-,-;h); h € (0,1]} is
Euclidean for a squared integrable envelope Similar arguments as those used for h —
h % (-, -, +; h) allows us to extend h — h g2 (-,-; h) by continuity and to apply Corollary 8
of Sherman (1994a) in order to deduce

Ungs (-, h) = op(h™'n 7).
Same arguments as used for {h™2gi2(-; h); h € (0,1]} (see (24)) allows to write
Plg (+h) = Op (2 12).

On the other hand, for the other term retained from Ry (h) we have

Ry (h) = %Z% [nilz[m—r(vm Kn(Vi=Vj) I

JFi

1
X[n—lzmm—m L-DW)| &
I#i
-1~ 1 =~ 1 =~
= Z_ 5 Roon (h) — mR222 (h) -+ mRQQ?’ (h)’
where
Ro(h) = (n);' > 7% Vi—r (W] Kn(Vi=V;) Kn(Vi=V)) L I; 1,
i)l
Rog (h) = Zﬁ j Vi)l Kn (V; =V;) L I;
1]
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and

R223 Z% j_ ]Kz(v V)
J#i

Using the same techniques as above we obtain
§22 (h) = Op(h727’1,73/2).
Consequently,

Ry (h) = op (n*h ) + Op (n"*/?h?) + {terms independent of h}.

2B : The order of R, (6,h)

Ri(0,h) = % b (Y7 (X)) — o (Vi o (X:0))]

—% y [ (K:T0¢h X9¢)) W (Yi, 7o, (X,~9¢))] Li
- Rl(O,h)—Rl(%,h).

Since 0%,%(y,7) =C"(r) (y —r) — C'(r) = C"(r) (y — r) + 053 (r, ), we have
Ri(6,h) = — Z W (Yi P (Xi0)) — ¢ (Yiro (Xi0))] I (29)
- ;Zaﬂp (Yi, 79 (XiB)) [7h (Xi6) — 1o (Xi0)] I;

11 2
+-— ; 505t (Yi, 10 (X0)) [ (Xi) — 9 (X)) L
+ {terms of smaller order in h}

— _Z(s Z:;0) [y, (Xi6) — 19 (X:0)] L
- Z ¢ (Z:;0) [, (Xif) — 79 (Xi)]

2
+; ; 53321/) (ro (Xif) , o (Xi0)) [7 (Xi6) — 1 (Xi0)]" I;
+ {terms of smaller order in h}

“ Ry, (6,h) + Ry 0,h) + R (6,h)

+ {terms of smaller order in h},
where § (z;0) = 021 (y, ro(x8)) and ( (2;0) = C"(rg(20)) (y — ro(x8))/2. Note that

E(6(Z;0) ;| Xib) = E (¢ (Z;;0) 1; | X;0) = 0. (30)
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For Ry (6, h) we may use the same arguments as for Ry (h) in order to deduce

R (0,h) = op (n_lh_l) + Op (n_1/2h2) ,
uniformly over op(1) neighborhoods of 6. It suffices to apply the results of Sherman
(1994a) as follows : Corollary 8 for (6,h) — (64,0) and Corollary 4 for supremum with
respect to (6, h). On the other hand, Ry5 (6, h) and Ry3 (6, h) can be analyzed in the same

way as T5(h) (note that T5(h) = Ry3 (0y, h)). Each of these two quantities can be written
as a sum between their expectations and terms of smaller order than T5(h), uniformly

over op(1) neighborhoods of 6. From (30) we deduce E [ﬁu (0, h)} =0, for any 6 € O.

For the expectation of §13 we get
E [EB (o, h)} = A (O)h* + Ay(O)n~h!

with A;(0) and A, (#) defined as in (19) with 6, replaced by 6 € ©. Since A;(:) and Ay(-)
are continuous in 6y, we deduce that

Ri(6,h) = Ri(0,h) = Ry (0y,h) (31)
= [A1(0) — Ai(0y)] " + [A2(0) — Ax(0y)]n " A~
+ {terms of smaller order in A}

= op(Ta(h)),

uniformly over op(1) neighborhoods of #,,. We may conclude that the optimal bandwidth

B is of order n—1/5.

STEP 3 : \/n—convergence of B,

3A. The order of R, (6, h) revised Let us remark (31) together with an obvious bound
for S(#) (see the end of Step 3) allows us already to consider 8 in a Op(h?) = Op(n~%/%)
neighborhood of 6. Indeed, apply a version of Theorem 1 of Sherman (1994a) with \/n
and n~! replaced by n=%/5 and n~*/5 respectively (see also Theorem 1, Sherman (1994b),
page 376). Using this preliminary rate of 5, we refine the decomposition of R; (6, h) in
order to obtain

R, (6,h) = op (W) +op(n'),

uniformly over Op(n~%°) neighborhoods of 6, and with respect to domains of order
Op (n™'/%) for the bandwidth. Assuming a Lipschitz condition on the functions A (-)
and As(-), we remark from (31) that we only have to examine what we called ”terms of
smaler order in h”. More precisely, we have

R (6,h) = [}’éu 6,h) — R (0¢,h)]
+ [ﬁu (6,h) — Ru (91,,,}1)}

+ [(Elg 0,h) — E [éw (0, h)D _ (leg (O, h) — E [Elg 8y, h)] )]
+[A1(0) = AL (6y)] b + [A2(0) — Az(8y)] 0 A
+0P(< 7 o (Xi6) — 79 (XZ-G)‘S) .
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It can be easily remarked that the last term is of order op(n™') and thus we only have to
examine the first three differences. Let us consider only the first one, the other two are
to be treated in the same manner. Fix 6, € ©, n > 1, an arbitrary sequence such that
0. — 0y = O(n=%/%). Moreover, let H, = (0,Cin~/%) with 0 < C; arbitrarily fixed. We

may use the usual decomposition in degenerate U—statistics (see Ry (h)) and write

Ryy (6, h) — Ry (8, h)
= (n);" Y 6(Z;0,) D N(Xiby) [Y; — 1 (Xibn)] K (Xibn — X;60,) I T;
i#]
—(n)y ") 6(Zi;0p) DTHXiby) [V; — 7 (Xify)] Kn (Xify — X;04) I I;
7]
—|—0p(n_1)
= ()3 Y | P (20 25360, 0) = P2 (23, 2560, )]
i£]

n

()7 [Pl (O, ) = Fiy (2550, 1)
=1
+0p(n_1)

not

= §111 + §112 + OP(n_l)-

In order to justify the rate op(n~?) of the reminder term, see the decomposition of R (k)
and remark that the order of Ry, (h) is still valid uniformly with respect to § € ©. Denote
92(Zi, Zy h) = [ (Ziy Zj; 00, h) — 11 (Ziy Zj; 04, h) and remark that

B[4 (2:,25:0.1)| = B T4 (Z:, 2500, 1)| = B [32 (2, 25 )] = 0.

By continuity hg? (-,-;h) = 0, for h = 0. Given the Lipschitz conditions verified by the

functions contained in fi1, it can be shown that

sup |hg2(Zi, Zj; h)| < (0, — 64) ¥ (Z;, Z;)

heH,

with ¥ squared integrable. Apply Theorem 3, Sherman (1994b) for f,(-,0) = hg? (-,-; h),
6 =17, =n"° k=2, and deduce

Ry = Op ((n_2/5)a h_ln_1> ,
where 0 < o < 1, uniformly over Op (n_l/ 5) bandwidths. Next, use the same arguments
for h2gL (-; h) with g (-;B) = fiy (6, B) = f1; (+; 0y, h) and apply again Sherman’s result
for f,(-,0) = h7%G} (-;h), 6, =, =n~Y/% k =1, in order to deduce
ﬁllg =0p ((n_2/5)ah2n_1/2> , 0<a<l,
uniformly over Op (n='/®) bandwidths. Thus we get
Ry, (0nsh) — Ry (By,h) = op(n™"),
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uniformly with respect to h of order Op (n_l/ 5) . Using the same arguments for the other
term appearing in the decomposition of R; (6, h), we may conclude

06— 6
Ry (0,h) = op (”7\/ﬁ¢”) +op (nil) ) (32)
uniformly over O (n=?/%) neighborhoods of 6y, (thus uniformly over Op (n=?/°) neighbor-
hoods of 6) and domains of order Op (n~'/%) for the bandwidth.

~

3B :/n—convergence and asymptotic normality for 6§, Consider

T,.(6) = S (8) + Ry (6, h)

0(6) = — (6 60)TWy(6 - 00)

where, recall,

3(0) = %2_: b (Yirg (X:0)) T %Z b (Vira, (X:60) .

Let
1 n
Vo= 000 (Yire, (Xify)) T

=1

and

1 n
Wn = — E Z 8397,/) (}/;,T9¢ (X10¢)) Iz
=1

Since by classic asymptotic results we have W, — Wy, almost surely, and V,, = Op (n7/?)
we may write

SO = (0—04)"Va — = (0—06y)" W (6—6y) +op (10— 04]°)

1
2 1
= Op (10 = 0yl /v/n) — 5 (0 —0y)" Wy (6—0y) +op (16— 04",

uniformly over op (1) neighborhoods of §,. This and (32) ensure (ii) of Theorem 1 of
Sherman (1994a), uniformly over Op (n~?/%) neighborhoods of 6, and with respect to h
of order Op (n%/%). Since (i) of that theorem is obviously verified, we may deduce that

[0-04)| =0p (7).

Finally, apply Theorem 2 of Sherman (1994a) in order to obtain the asymptotic distribu-
tion of . M

REFERENCES

BosqQ, D. and LECOUTRE, J-P. (1987). Théorie de l’estimation fonctionnelle, Eco-
nomica, Paris.

29



DELECROIX, M. and HRISTACHE, M. (1999). M-estimateurs semi-paramétriques dans
les modeles a direction révélatrice unique. Bull. Belg. Math. Soc., 6, 161-185.

FRrRIEDMAN, J.H. and STUETZLE, W. (1981). Projection pursuit regression. J. Amer.
Statist. Assoc., 76, 817-823.

GOURIEROUX, C. MONFORT, A. and TROGNON, A. (1984). Pseudo maximum likeli-
hood methods: theory. Econometrica, 52, 681-700.

HARDLE, W., HALL, P and IcHIMURA, H. (1993). Optimal smoothing in single-index
models. Ann. Statist., 21, 157-178.

HALL, P (1989). On projection pursuit regression. Ann. Statist., 17, 573-588.

ICHIMURA, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation
of single-index models. J. Econometrics, 58, 71-120.

IcHIMURA, H and LEE, L.-F. (1991). Semiparametric least squares estimation of
multiple index models: single equation estimation. In Nonparametric and Semi-
parametric Methods in Statistics and Econometrics, W. A. Barnett, J. Powell and
G. Tauchen, eds., Cambridge University Press, Ch. 1.

KLEIN, R.W. and SpaDpYy, R.H. (1993). An efficient semiparametric estimator for
binary response models. Econometrica, 61, 387-421.

McCULLAGH, P and NELDER, J.A. (1989). Generalized Linear Models, 2nd ed., Chap-
man and Hall, London.

NorLAN, D AND PoLLARD, D. (1987). U—processes : Rates of convergence. Ann.
Statist., 15, 780-799.

PAKES, A. AND POLLARD, D. (1989). Simulation and the asymptotics of optimization
estimators. Econometrica, 57, 1027-1057.

SERFLING, R.J. (1980). Aproximation Theorems of Mathematical Statistics. Wiley,
New-York.

SHERMAN, R.P. (1994a). Maximal inequalities for degenerate U—processes with appli-
cations to optimization estimators. Ann. Statist., 22, 439-459.

SHERMAN, R.P. (1994b). U-processes in the analysis of a generalized semiparametric
regression estimator. Econometric Theory, 10, 372-395.

30



