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ABSTRACT

The paper concerns the fixed-width confidence intervals for location based on M-
estimators in the location model. A robust three-stage procedure is proposed and
its asymptotic properties are studied. The performance of the procedure depends on
some tuning parameters. Their effect on the proposed confidence interval is checked
together with the overall behaviour of the procedure in a simulation study.

I INTRODUCTION

The problem of constructing fixed-width confidence intervals is often studied in the
literature. There were developed general principles how to construct such confidence
intervals. The most well-known is the fully sequential Chow-Robbins procedure
which possesses certain optimality properties. Useful for practical purposes is the
two-stage Stein procedure and its various modifications and generalizations. While
Chow-Robbins procedure requires to check the stopping rule after each observation,
the two-stage and, generally, multi-stage procedures require to check the stopping
rule only once or few times. This feature of the multi-stage procedures is attrac-
tive especially in connection with computationally intensive estimators. For more
information see, e.g., Ghosh, Mukhopadhyay, and Sen (1997).

Asymptotic properties of three-stage procedures were investigated e.g. in Hall
(1981). An exhaustive overview of the asymptotic theory of multi-stage procedures
is given in Ghosh, Mukhopadhyay, and Sen (1997). The generalization of three-stage
procedures using bootstrap approximation of critical points was proposed in Aerts
and Gijbels (1993).



The above mentioned procedures were originally related to the sample mean.
Jureckova (1978) proposed and studied a robust version of the Chow-Robbins pro-
cedure, particularly based on M-estimators. Sen (1981) investigated among others
sequential methods based on ranks. Some theory concerning sequential procedures
for GM-statistics was established in Aerts (1988).

We assume through the paper that Xi,..., X, are independent identically dis-
tributed (iid) random variables with a common distribution function F'(z—6). Recall
that the M-estimator M,, = M,, (1) of the parameter 6 generated by the score func-
tion 1 is defined as a solution of the equation Y ; ¥(X;—t) = 0. If the score function
1) is monotone and if the solution is not unique we define M,, = (M, +M,,)/2, where
My =sup{t:> ", 9(X; —t) >0} and M} =inf{t:> " p(X; —t) <0}.

The fixed-width confidence intervals are typically based on a certain point esti-
mator and its asymptotic distribution.

The properties of the M-estimators in the fixed sample setup were studied rather
extensively. For more information we refer to Huber (1981), Jureckovd and Sen
(1995), Hampel, Ronchetti, Rousseeuw, and Stahel (1990), and Rieder (1994). An
introduction to the theory of M-estimators is given e.g. in Serfling (1980).

Using this asymptotic normality, it can be easily shown that the (asymptotically)
optimal sample size for the 1 — a confidence interval of width 2d based on the M-
estimator is cy(d) = (ul,a/ZU(@b,F)/d)z, where o%(1, F) is the variance of the
asymptotic Normal distribution of the M-estimator and u;_q 5 is the 1—a/2 quantile
of standard Normal distribution.

The objective of this paper is to develop robust three-stage fixed-width confidence
intervals and to investigate their basic asymptotic properties. The assumptions and
some properties of M-estimators which will be used through the paper are given
in Section II. The robust three-stage procedure is introduced and investigated in
Section III. The main result is Theorem 2 which says that the procedure is consistent
and (first order) asymptotically efficient. Simulations in Section IV allow to assess
the small sample behaviour of the robust procedure and the influence of some tuning
parameters on the robust fixed-width confidence intervals.

II ASSUMPTIONS AND OVERVIEW OF PROPERTIES OF M-ESTIMATORS

Let us now formulate the regularity conditions on the score function #(.) and on
the distribution function F(.) = Fy(.) = Fy(. — 0) of the observations X;. The
assumptions on distribution function F' in Subsection II.1 are more complicated
than the assumptions which are normally used for fixed-width confidence intervals
based on sample mean but usual for sequential methods based on M-estimators (see,
e.g., Jureckova and Sen (1995)). The assumptions on the score function 9 cover also
the score functions with jump discontinuities. The differentiability conditions are
given in Subsection I1.3. The conditions of skew-symmetry of the score function
and of the symmetry of the density f could be relaxed—we keep these conditions
for the sake of simplicity of the resulting formulas.



II.1 Assumptions on F

Fy(.) = F(. + 6) has an absolutely continuous density fy(.) such that fo(z) =
fo(—z), Vx € R and fo(z) is decreasing in x for x > 0. Moreover, F'(.) has the

o0
finite Fisher information, ie., 0 < I(F) = [ {f'(z)/f(z)}*dF(z) < oo and there
—0o0

o0
exists [ > 0 such that E|X;|' = [ |z/'dF(z) < occ.
-0
Let ¢(z) = |z|'F(z)(1 — F(z)), z € R, and ¢ = supyegc(z). Then ¢f <
00, limgy1 o ¢(z) =0, and [ {F(z)(1— F(z))}P dz < o0 Vb > % > 0.

I1.2 Assumptions on 9

The score function 9(.) is nondecreasing and skew-symmetric, and there exists a
positive number A such that ¢ (z) = 9 (h)sign(z) for |z| > h.

(.) can be decomposed into 9(z) = 1 (x) + 12(z) for all z € RN, where ()
and 19 (x) are respectively the absolutely continuous and the step component.

I1.3 Assumptions on Agp(t)

o
The function A\p(t) = Ag,(t) = [ ¢(z —t)dF(z) is differentiable at ¢ = 6, Ap, (0) =
—00

0, y(¢, Fy) = }’9(0) # 0, and its derivative >"F9 (t) is a continuous function of ¢ in
some neighbourhood of 6.

I1.4 Overview of Basic Properties of M-estimators

An important property of the M-estimator is the following asymptotic linearity
result which is generalization of the result of Jureckovd and Sen (1981).

LEMMA 1 Under the assumptions of Section II, for every fized 0 < K < o0, € > 0,
0 > 1/4, and n > 0, there exists ng such that

P { sup  |nl™? [Apn O+ tn2) — A, (9)]
[t|<Klogn

—nl0 [/\F(H +tn~?) — )\F(G)] |2 6} <en ', Vn > ng.

PROOF: The proof is given in Hldvka (2000). O

Lemma 1 allows to investigate M-estimators using well-known results for sums
of iid random variables. One of the corollaries is e.g. the strong consistency of the
M-estimator under our assumptions.

In order to define the sequential procedure, we need an estimator of asymptotic
variance of the M-estimator. The situation is complicated by the presence of the



jump component of the score function 1(.). A general estimate of the asymptotic
variance could be defined e.g. as

(VA (M, — tn=1/2) — A, (M, + tn=1/2)]/21)"

~2
n

Under our assumptions, using Lemma 1, it can be shown that the estimate (1) is
consistent, see also Hlavka (2000), Jureckova and Sen (1981), Aerts (1988).

Lemma 1 proves to be very useful also in the proof of the following Theorem 1
which states that the bootstrap for M-estimators works in our situation. Notice
that bootstrap for M-estimators has been already investigated, under different as-
sumptions, e.g. in Karabulut and Lahiri (1997), Lahiri (1992), or Arcones and Giné
(1992).

THEOREM 1 Let the assumptions of Section II be satisfied. Let M) be the M-
estimator based on the bootstrap sample from the empirical distribution F,(z) and

let M, be the M-estimator based on the random sample from the distribution F(z).
Then

lim sup |P* {V/n(M; — M,) <z} — ®[z/5,]| =0 [P] a.s., (2)

n—oQ TER

lim sup |P* {v/n(M;; — M,) < z} — ®[x\p,(0)/Sn]| =0 [P] a.s., (3)

n—oo TER

and

lim sup |P* {/n(M; — M,) <z} —P{/n(M,—0)<z}|=0 [P]as., (4

n—oo TER

where ®(z) denotes the distribution function of the standard normal distribution and
where 62 is defined by (1).

PROOF: The proof is given in Hldvka (2000). O

IIT ROBUST THREE-STAGE PROCEDURE BASED ON BOOTSTRAP

Using bootstrap approximations, we can estimate the quantiles of the unknown dis-
tribution of the M-estimator using the (known) distribution of M, the M-estimator
based on observations X7,..., X} ~ F,(z), where F;, denotes the empirical distri-
bution function of Xq,..., X,.

The standardized bootstrap critical point ¢4 (o) is defined as 1—a quantile of the
(centered and standardized) conditional distribution of /m|M;, — My, |/6pm, where
&2, is the estimate of the asymptotic variance of the M-estimator.

The studentized bootstrap critical point fg(a) is defined as 1 — « quantile of the
(centered and studentized) conditional distribution of /m|M);, — My,|/5},, where
gy, is the estimate of the asymptotic variance of M, based on the bootstrap sample
X7, X

These critical points can be used to introduce the following three-stage procedure.

4



ITI.1 The Robust Three-Stage Procedure

In the first stage we fix the parameter v > 0 which controls the sample size in the
first stage, and we draw

m = m(d) = max {2, [("“;/2)2/ ““)] 4 1} (5)

observations. These observations are used to determine 62, and the standardized
bootstrap critical point ¢4 (a). The intermediate sample size Ni(d) based on the
standardized bootstrap critical points is then given as

+%, (6)

o= (45

where 0 < k£ < 1 is the parameter controlling the sample size in this stage. Finally,
we draw next Na(d) — Ni(d) observations, where

. \2]°
Ll(a)(ml) 1 (7)

Ng(d)zmax Nl(d), ( d

and obtain the 1—a confidence interval (My, —d, My, +d) based on the standardized
bootstrap critical points. The construction of fixed-width confidence intervals based
on studentized bootstrap critical points is analogous.

IT1.2 Asymptotic Properties of the Robust Procedure

Basic asymptotic properties of this robust three-stage procedure (5)—(7) based on
the standardized bootstrap critical points are stated in the following Theorem 2.
Part (i4i) of the theorem says that the coverage probability of the resulting interval
is asymptotically correct, part (iv) says that the procedure is first order efficient.

THEOREM 2 Suppose that the conditions of Section II hold. Then the three-stage
procedure based on bootstrapping M-estimators has the following asymptotic proper-
ties:

(1) d]_i)lgl+ No(d) = 0 [P] a.s., (8)
(id) PM$%21 P as. (9)
(i66)  Jlim P(Myyq)—d <0< My +d)=1-a, (10)
(1v) dl_i)r&_E (ng;l;) =1, (11)

where cpr(d) is the asymptotically optimal number of observations for fixed-width
confidence interval based on M -estimator.



For the proof of Theorem 2, we will need the following two lemmas which have
also some interest of their own because they provide upper bounds for the difference
between the M-estimator M, and its bootstrap version M,. These lemmas are
bootstrap versions of similar results of Jureckova and Sen (1982).

LEMMA 2 Under the assumptions of Section II, for every 0 < ¢ < 00, 0 < a < 1,
and c3 < t < y/mcy, we have

PIP* (Vin|M;, — M| > 1) > o]

v=loga v ]’
< 2exp {— [_ T — 2215] } + 4 exp{—cyt?/4},

where ca = 2[f(h + c1)]? > 0, the constant 1(h) is given in Subsection II.2,

v—loga . \/icl
and ¢4 = min< 2¢;, ————— » .

T Jeal2p(h) Ve(h)

LEMMA 3 Under assumptions of Section I, there exists mg such that for allm > my
and t > 2hm!/?
P [P* (Vm|M}, — M| > t) > qf

<3 [4F(9 —tm Y2 R) (1 — F(8— tm~ Y22 — h))]m :
where h is given in Subsection II.2.

PROOF OF THEOREM 2: Denote by

(12)

M* — M,
&mzm{ﬂLL—ﬂs@

S, Fn)

the distribution function of the absolute value of the standardized bootstrap statis-
tics. By Theorem 3.2 in Hlavka (2000) we have that

20(z) — 1, ifz>0

. A .
lim £)(z) = { 0 otherwise. [P] a.s. (13)

n—oo

Recall that ¢2(a) denotes the 1 — o quantile of £2. By the strict monotonicity
and continuity of ®(z) and by e.g. Lemma 1.5.6 in Serfling (1980) we have for all
te (0,1)

lim £2(t) = U1_t/2 [P] a.s. (14)

n—oo

Notice that limg o+ m(d) = oo and therefore

: A
Jm €h(@) =uiap  [Plas. (15)

This, together with consistence of 63n( 4) and the definition of N, (d) implies that

dgrg:_ Ni(d) = o0 [P] a.s. (16)
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which in turn implies that also

dl_i>%1+ Ny(d) = o0 [P] a.s. (17)

The definition (7) of the stopping time Ny(d) implies the following inequalities.

n 2 R 2
lﬁfél(z)am] < Nold) < [65(‘;1(3)0N1 o
FN ()T [(ER, (@)ow,)? < k(R (a)6m)? +md® + d?] (18)

Next, by the strong consistency of £/'4,, as an estimator of u;_, 20 (1, F') we have
for every ¢ > 0
lim P(|E;L46n —U_q/20| < &,Yn>m) =1, (19)

m— 00

where we abbreviate o(1, F') by 0. Let us fix 6 > 0. We can choose dy > 0 such
that

P{I[(&n, (@)6n)? < k(Ea(a)om)? +md? +d?] = 0,Yd > dp} > 1.
which implies that there exists dy such that for all d > dj
I[(é8,(@)onm)? < k(Ep(@)om)? +md® +d?] =0 [P] a.s. (20)

Combining (18) and (20) leads to part (i7) of the theorem.

Part (4i7) of the theorem follows from the Slutzky theorem, the Anscombe the-
orem and part (i).

To verify part (iv) of the theorem it is sufficient to prove uniform integrability
of the set {Ny(d)d?}4-o- It suffices to show that there exists dy > 0 such that

o0
sup P{Ny(d)d*> > 1} < oo. (21)
-1 0<d<do

We can choose dy such that for every 0 < d < dy we have
2/(14+7)7°
([(Ld“”) / 7)] + 1) &<l (22)

2d* <1 (23)

and

which implies that

A

P(Ny(d)d? > 1)

+1> d%l}ﬂ?{([W}OH) d2>l}

= P1(d) + Pa,(d). (24)

(€, (@)n,)?
d?

7



Let us first deal with the second probability.

Py(d) <P {g;,‘l(a)&m > l_de} <P {ﬁé(a)&m > ;—k}

:P{Eﬁ (,/%2 ) < l—a} :P{P;} <|M(M;—Mm)| < ﬁ) < 1—a}
= P{PSL (I\/E(M;; — Mp)| > \/%) > a} (25)

Now we apply Lemma 2 and we obtain, for all 0 < d < dp,

;Pg,z(d) = ;P {P;; <|\/E(M;; — Mp)| > &) > a}
S . \ I
= ;P{Pm <|\/E(Mm _Mm)| > \/%) > a}
vmea
+ Z P{P;a (|\/E(M:n —Mm)\ > \/%) >a}

l=c3+1
> P{P;; (W(M:n M) > \/%) > a}, (26)
I=+v/mc4

where c3 and ¢4 are given by Lemma 2. The first term on the right hand side of (26)
is clearly finite (smaller than cs), the finiteness of the second term follows from
Lemma 2. It remains to investigate the properties of the third term on the right
hand side of (26).

We can use Lemma 3 which implies that

- * * l
> P{Pm <|\/E(Mm — My,)| > \/%> > a}

l=+/mc4

- 21 21 ’

< = _ — 4= _

< ) 3|4F (9 ,/km h) (1 F(G ,/km h))] (27)
l=+/mc4

where h is given in Subsection II.2. Notice that, for ¢ > 0,

[F(0—t)(1—F(@—1))] = f(6 —t)[2F(0 —t) — 1] < 0.

Hence, it follows that the term inside the sum in (27) is non-increasing in . This
allows us to show the finiteness of the sum in (27) by showing the finiteness of the
following integral for which we have

[ e (o-e(2) =0 =r (s-0(2)" -1)]} e

csml/?



_2m / W{AF (0—u—h)[1—F (0 —u—h)|}" du

tcé/2m1/4

< () im {4F (6~ W)[1 — F (0 — R
x / (4F (0—u—h)[1—F (0 —u—h)} du, (28)
tcé/2m1/4

where ¢ is given in Subsection II.1 and b is any number satisfying b > 1/I. Notice
that F' (0 — h) < 1/2 which implies that 4F (6 — h) [l — F (¢ — h)] < 1. It follows
that m {4F (§ — h) [1 — F (6 — h)]}™ " is uniformly bounded in m and tends to 0

as m — 00.
00

Finally, [ {4F(@—-u—h)[1-F(0—u-— m)]}Pdu < oo by assumptions.
tcé/zml/‘l
Hence, the sum in (27) is finite. It remains to investigate the convergence of
2121 8UPg<g<dy Pru(d)-
Notice that, by definition, N1(d) > m(d) for all d > 0 which immediately implies

that
A A l A o l
sup P | &y, () (@O N, (a) > 5| < sup P &y (@)om > 5] (29)
0<d<do 0<d<do

Notice that the term on the left hand side is P; ;(d) and the term on the right hand
side is exactly P, ;(d), where k is set to 1. The convergence of the term on the right
hand side of (29) has already been established. This proves the desired uniform
integrability result and concludes the proof of the part (iv) of the theorem.

O

Proor or LEMMA 2: Clearly,
P*(v/m| M}, — My,| > t) = P*(M, > My, +tm™Y?)+P* (M}, < My —tm~"/?) (30)

We investigate only the first term on the right hand side of (30), the treatment of
the other term is similar and it gives the same result. Using the definition of the
M-estimator and Theorem 2 of Hoeffding (1963) we have that

P*(M}, > My, + tm~1/%)

1 & 1 &
<P, {EZw(X: = M) < — > (X[ — Mp —tm—1/2)}
=1 =1
* 1 ¢ * —-1/2
= — ;= — >
Pm{mi:zlwxz M — b0 >_o}



* ]' < * — * * —
=Py {E; [w(Xz- — My, —tm™Y?) — B* (X} — My, — tm 1/2)]

> [—i > p(Xi — My, — tm‘l/z)] /\/E}

Vm

m 2
< exp { l% ;1/)(&' — M, —tmm)] } ;

for all 0 < ¢t < ¢;4/m. This means that

exp {—

1 m
T D p(Xi — My, — tm™'/?) < \/—log a]
i=1

P[P* (M}, > My, +t) > o]

m 2
% Z Y(X; — My, — tm_1/2)] } > a]
=1

IN

P

=P

<P

{—% i P(X; —0—tm~%)2) < \/— loga} ﬂ {Vm|M,, — 6] < t/2}
=1

+P

{—%iw(Xi — M, —tm /%) < \/—loga} ﬂ{\/r_n|Mm — 0] >t/2}

=1

<P +P [v/m|M,, — 0] > t/2] (31)

= D X — 0 tm22) < /= loga
i=1

Using Lemma 3.1 in Jureckovd and Sen (1982), the second probability in (31) is
bounded by

P [m|M,, — 0] > t/2] <2exp {—cot?/4}. (32)

for 0 < t < 2¢14/m. It remains to investigate the behaviour of the first term in (31).
The following inequality was established in the proof of Lemma 3.1 in Jureckova
and Sen (1982):

_Ep(X) —0— %m*ﬂ) > \/Eip(h)%m*l/? (33)

Using (33) and the Hoeffding inequality, we have that

m

1 t
P|—— Xi—0—-m /2 —1
m;zp( 0 ™M ) < oga
m ! 2 ! 2

i=1

10



_loga

> —
m

— By(X;—0— Zm —1/2)]

m

1 g Ly g L
m Z P(Xi — 0 2m ) — Ep(X; — 6 2m )

i=1

VAT «zzwmfm_lﬂ]
m 2

NE: [—v=Toga + v2e3(h)t/2] o —loga /&
Sep{ 2P }_ p{ - Vap(n) 2 d }

<P

(34)
for all ¢ such that

0<t<2civ/m

and
—V=loga + Vaep(h)t/2 < c1v/m,

where h (and 1)(h)) are given in Subsection I1.2. Combining (30), (31), (32), and (34)
leads the desired result.

O

Proor orF LEMMA 3: Using the technique of proof of Lemmas 3.2 and 3.3. in
Jureckova and Sen (1982), we can write

P* {/m| M, — M| >t} < 2P* { bomjait > Mo+ tm ™12 — h}

m

<2 [4Fm(Mm+tm —R){1 — Foy(My, + tm /2 —h)}]
It follows that

P (P* {/m|M}, — M| >t} > a)

<P ([4Fm(Mm Ftm~ Y2~ B){1 — Fop(My +tm~Y/2 — h)}]m > a/z)

1 /a\1/m
_ Sz gy s L@
gP[1 Py (M + tm h)>4(2) ]

<P [1 —Fpn(@+tm 22— ) > i (%)l/m] + P [l My, — 0] > t/2]

_p [Fm(e Ftm V22— By <1 i (%)”m] 1+ P [Vl My — 0] > /2]

<P [Xuim(i-epr) > 0 +tm™2/2 = h] + P [Vl My — 0] > /2] (35)

for all m > my, where 0 < ¢ < 1/4 and mg are such that

1 7\ 1/mo
1——(—) 1—e.
1 (5 <l-c¢

11



Juretkovd and Sen (1982) investigated the behaviour of the second probability
in (35). They showed that, for ¢ > 2hm'/2, it is bounded by

2[4F(0 — tm™2/2 = B)(1 = F(6 — tm™"/2/2— 1))] " (36)

Using their technique, we investigate also the first probability in (35). For the
simplicity of notation, we denote

a=F(0+tm 22 —h).

Notice that a > 1/2 for ¢t > 2hm!/2. Using Theorem 1 of Hoeffding (1963) with the
bounds for a > 1/2, we have

1
P | Xun. o <P |—Bi — 1—
(X (mifm(r—eye) > a] < [m i(m,a) —a>1-¢

< exp {—%} < fexp{~1/4a(1 — a)}]" < fa(1 - )™ (37)

Combining (35), (36), and (37) yields the lemma.

IV SIMULATION STUDY

For the simulations presented in this section we decided to use Huber’s v, (.) function
which is (for A > 0) defined as () = max {—h, min(z, h)}. This score function
has been derived by Huber (1981) as a score function which minimizes the worst
possible variance which can be obtained for e-contaminated Normal distribution.
The value of h should be chosen accordingly to the level of contamination € and it
can be obtained as a solution of the equation

28(h) — 1+ 2p(h) _ 1 (38)

where ®(-) and ¢(-) denote the distribution and density function of the Normal
distribution, respectively (Antoch and Vorlickovd 1992).

IV.1 Normal Distribution

The asymptotically optimal stopping time for normally distributed data and for the
sequential procedure based on M-estimators with Huber’s score function is equal to

Iu'lfa/2>2 1—2¢(h) + (h* —2)(1 — ‘I)(h))_

en(d) = ( d (20(h) — 1)2 (39)

We carried out the simulations for the desired length of interval equal to 1, 0.6,
and 0.2, i.e., for d = 0.5, d = 0.3, and d = 0.1. The tuning parameters v and k for
the three-stage procedure were chosen as v = 1/3 and k£ = 1/2. The calculations
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TABLE I
Normal distribution, Huber’s 1 with h =15, y=1/3, k=1/2

d cp(d) critical points mean median coverage probability

0.50 16 N 15.71 14 0.923
A 18.86 17 0.934
U 23.94 21 0.964
0.30 45 N 39.95 37 0.920
A 48.65 44 0.932
U 55.88 52 0.945
0.10 399 N 392.74 391.5 0.927
A 485.46 457 0.948
U 490.42 465.5 0.943

were repeated 1000 times. The results of simulations are presented in Table I and
in Figure L.

The first column of the table contains the value of d which is one half of the
desired length 2d of the confidence interval. The (asymptotically) optimal number of
observations for the standard Normal distribution (39) is given in the second column.
The third column specifies the critical points which were used for calculations. “N”
denotes the normal critical points, “A” stands for the standardized bootstrap critical
points, and “U” denotes the studentized bootstrap critical points. In the fourth,
fifth and sixth column, we present the mean, median and the coverage probability
estimated from 1000 simulations.

We carried out the simulations for the desired lengths of confidence interval equal
to 2d =1, 2d = 0.6, and 2d = 0.2. As expected, d = 0.5 typically leads to a smaller
sample size.

Comparing the values of mean and median for all three methods with the optimal
sample size given in the tables, we see that the method “N” tends to underestimate
the optimal sample size. The coverage probability of 95% was reached only for the
method based on bootstrap critical points for d = 0.5, other coverage probabilities
lie below the value 0.95. Notice that in all cases, the coverage probabilities for the
bootstrap based methods are closer to 0.95 than the method based on normal critical
points.

In Figure I, you can see the histograms of the square root of the stopping times.
The first display on each figure shows histograms for the normal critical points,
the second display shows histograms for the procedure based on the standardized
bootstrap critical points and on the third display we plot the histograms for the
procedure based on studentized bootstrap. The histograms at each display corre-
spond to the stopping times for procedures giving fixed-width confidence intervals
of lengths 2d = 1, 2d = 0.6, and 2d = 0.2, respectively. We can clearly see the
dependence of the variance on the desired length of the confidence interval.

The difference in the magnitude of the stopping times between these three meth-
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FIGURE I
V' Ny for Normal distribution.
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ods is clearly visible for d = 0.1.

Also the coverage probabilities and stopping times given in Table I suggest that
the method based on normal approximation tends to stop too early. It seems that
the methods based on bootstrap correct for this feature. On the other hand, the
graphics suggests that the variance of Ny for the methods based on bootstrap is
larger than for the method based on normal critical points.

IV.2 Cauchy Distribution

Even more interesting are simulations for the Cauchy distribution. In this case, the
methods based on sample mean can not be used at all, because Cauchy distribution
has heavy tails. The possibility to use M-estimators in this situation is therefore of
great importance.

The asymptotically optimal stopping time for Cauchy distribution is equal to

em(d) = (ul*a/2>2 h? +2/n[h — (h? 4 1) arctg h]

d (2/m arctg h)? (40)

For this simulations, we decided to modify the rule for choosing the starting
sample size. It seems that bootstrap does not have to provide reliable results if the
starting sample size is too small. For this reason, we use starting sample size always
greater than 20.

It seems that here the asymptotics works better than for the Normal distribution
in the previous subsection. The likely reason is that the confidence intervals of the
same width require approximately two times more observations for the Cauchy than
for the standard Normal distribution
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FIGURE II
vV Ny for Cauchy distribution, k = 0.5, mg > 20.
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FIGURE III
Vv Ny for Cauchy distribution, k = 0.7, mg > 20.
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FIGURE IV
vV Ny for Cauchy distribution, k = 0.9, mg > 20.
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TABLE II
Coverage probabilities for Cauchy distribution, h = 1.5, v =1/3, k = 0.5, my > 20

d cp(d) critical points mean median coverage probability

0.50 46 N 45.39 40 0.944
A 51.95 45 0.959
U 49.68 43 0.952
0.30 128 N 126.54 123 0.940
A 134.34 126 0.950
U 133.66 124 0.953
0.10 1150 N 1144.9 1147 0.955
A 1060.2 1049 0.946
U 1056.2 1043 0.948
TABLE III

Cauchy distribution, Huber’s ¢ with h = 1.5, v =1/3, mgo > 20

d critical points k=05 k=07 k=0.9

0.50 N 0.944 0.951 0.961
A 0.959 0.957 0.968
U 0.952 0.965 0.967
0.30 N 0.940 0.960 0.968
A 0.950 0.961 0.975
U 0.953 0.957 0.971
0.10 N 0.955 0.959 0.963
A 0.946 0.948 0.955
U 0.948 0.938 0.956

In Table IIT and Figures IT-IV we tried to pursue another interesting phe-
nomenon. As k increases, it seems that the histograms shift slightly to the right.
This is confirmed by the values in Table II. We see that the coverage probabilities
(together with the final sample size) increase with increasing k. Choosing & = 0.9
means that our procedure overestimates the necessary sample size—this effect is
more dramatic for longer confidence intervals which result in smaller sample sizes.

We conclude that our method works well also for the Cauchy distribution. We
can see that the bootstrap critical points approximate the correct distribution of
the M-estimator better than the normal approximation. We recommend to choose
the starting sample size to be at least 20 and we recommend to choose k£ = 0.5,
or at most k = 0.7. Higher values should be chosen only for very small lengths of
confidence intervals where the choice of the value of k does not seem to have negative
impact on the coverage probability of the resulting confidence interval.
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