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NONPARAMETRIC ESTIMATION OF HOMOGENEOUS
FUNCTIONS

GAUTAM TRIPATHI AND WOOCHEOL KIM

ABSTRACT. Consider the regression y = f(Z) + & where E(¢|Z) = 0 and
the exact functional form of f is unknown, although we do know that
it is homogeneous of known degree r. Using a local linear approach we
examine two ways of nonparametrically estimating f: (¢) a “direct” or
“numeraire” approach, and (ii) a “projection based” approach. We show
that depending upon the nature of the conditional variance var(e|z),
one approach may be asymptotically better than the other. Results of
a small simulation experiment are presented to support our findings.

1. INTRODUCTION

An important problem in microeconometrics is the estimation of shape re-
stricted functions. In order to obtain good estimates without worrying about
any potential misspecification problems, imposing valid shape restrictions on
nonparametric estimators of these functional forms seems like a good idea.
Starting from the pioneering paper of Hildreth (1954) much work has been
done in this area. Some recent references include, among others, Gallant
(1981), Yatchew (1988), Hérdle (1989, Chapter 8), Ryu (1993), Matzkin
(1994), Ruud (1997) and Yatchew and Bos (1997). For readers unfamil-
iar with techniques of nonparametric estimation relevant to econometrics,
we recommend Bierens (1985), Héardle (1989), Héardle and Linton (1994),
Yatchew (1998), and Pagan and Ullah (1999).

In this paper we restrict ourselves to estimating a conditional mean func-
tion f which happens to be homogeneous of known degree r. Recall that
f 8 Cc R® — R is said to be homogeneous of degree r € R on S iff
f(AZ) = A" f(z) for all (\,z) € Ry4 x S such that Az € S. Such functional
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2 GAUTAM TRIPATHI AND WOOCHEOL KIM

forms are frequently encountered in microeconomic theory. For instance, the
profit (resp. cost) function for a profit maximizing (resp. cost minimizing)
competitive firm is homogeneous of degree one in prices. Similarly, the Mar-
shallian demand functions for a utility maximizing agent are homogeneous
of degree zero in prices and income. In production theory attention is often
restricted to production functions which are homogeneous of degree one; i.e.
which exhibit constant returns to scale. See, for instance, the classic paper
by Arrow, Chenery, Minhas, and Solow (1961).

Although many functional forms familiar to economists may satisfy other
shape restrictions besides homogeneity, for now we focus upon homogeneity
alone. One reason for doing so is that, compared with some other shape
properties such as concavity or monotonicity, homogeneity is a particularly
tractable property to analyze. Loosely speaking, this is because the set of all
homogeneous functions (embedded in some larger space such as the set of all
twice continuously differentiable functions) is a linear space. This linearity
allows for ease of analysis in many situations. On the other hand, the set of
all concave, or monotone, functions is not a linear space but a convex subset
of the ambient space. Typically, this makes dealing with concave, or mono-
tone, functions more difficult. Therefore, focusing on homogeneity alone
may often lead to a simplification of econometric analysis. Furthermore,
as a practical matter, imposing concavity and monotonicity restrictions on
function estimates seems to be a hard, although not an impossible, task. On
the other hand, imposing homogeneity in nonparametric estimates is quite
easy and may lead to substantial improvement of estimates in finite samples.

In the parametric case it is well known how to impose a homogeneity
restriction. Basically, the idea is to restrict the parameter space. For ex-
ample, in a log linear Cobb-Douglas regression model with two covariates,
homogeneity is imposed by requiring that the coefficients on the two factors
sum to one. Even in the flexible functional form literature homogeneity is
imposed by restricting the parameter space. For instance, Gallant (1981)
imposes constant returns to scale by making some parameters in a Fourier
flexible form expansion sum to unity. Slightly differently, Ryu (1993) shows
how to impose linear homogeneity by a polar coordinate transformation.

However, in the fully nonparametric case perhaps the simplest way of im-
posing homogeneity is to use a “direct” or “numeraire” approach. In this
approach we pick one variable as the numeraire, and use it to normalize all
variables. Estimation is then carried out using these normalized variables.
For instance, Ruud (1997, Page 171) follows this approach in imposing ho-
mogeneity on his shape restricted estimator. From our conversations with
many colleagues we get the impression that most economists immediately
think of the numeraire approach when asked to nonparametrically estimate
a homogeneous conditional expectation. Since we are so used to working
with ratios of variables such as relative prices etc., which are homogeneous
of degree zero by construction, the choice of the “direct” approach is perhaps
not very surprising.
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But there is another way of nonparametrically estimating homogeneous
conditional means. We call this the “projection based” approach for reasons
that will be clarified later on. In this paper we show how to implement the
“projection based” and “direct” approaches using local linear estimators
and compare the asymptotic properties of the estimates obtained. Their
analytical simplicity and ease of use should make the proposed estimators a
useful addition to the toolkit of the applied econometrician.

The paper is organized as follows: Section 2 lists the maintained assump-
tions and Section 3 describes the procedure for estimating homogeneous
functions using the “direct” and the “projection based” approach. The es-
timators are implemented using the local linear approach. In Section 4 we
compare the asymptotic performance of the “direct” and “projection based”
estimators and show that the nature of the conditional variance of the error
term determines which estimator is better. Section 5 describes the results
of a small simulation experiment and Section 6 concludes. All proofs are
confined to the appendices.

Notation 1.1. The following notation is used throughout this paper. We
treat all vectors as column vectors and (most of the time) denote them ex-

plicitly by using a tilde. In particular, & = (z1,... ,z5), W = (&,...,Z=1),
S S

~ ~ T 4 Tg—1.1 .

Tj = (x14,... .Ts;), and W; = (xij’ ,—;slj”). S% is a convex compact

subset of R® such that z, (the last component of ¥ € S2) is positive and
bounded away from zero. Let Hy : Sg — R*~! be the homogeneous of de-
gree zero transformation Hy(Z) = @, and let Sz = Ho(S2). CF(int(SL)) is
the set of all real valued functions on int(S%) which have continuous partial
derivatives up to order k. We say that f € C*(S2) if f € C*(int(S2)) and f,
including all its partial derivatives up to order k, can be extended continu-
ously to S2. L2(S2) is the set of all square integrable functions on S which
are integrable w.r.t the probability distribution on Sg. Fr (resp. G,) is the
set of all functions in C?(S2) (resp. L2(S%)) which are also homogeneous of
degree r. The symbol “=” indicates “approximate equality”; i.e. equality
modulo an additive, but asymptotically negligible, term. ]

2. THE SETUP

Consider the nonparametric regression y; = f(Z;) + €;.

Assumption 2.1. The following assumptions are maintained:
(i) The data{y;,;}}_; are iid random variables in RxS? and E(g|Z) = 0.
The functional form of f € Fy is unknown but we do know r.
(ii1) Conditional pdf of (y,zs|w) is twice continuously differentiable in w.

)
)

(iv) h € C*(Sy) is the pdf of w = Hy(%) and infzes, h(@) > 0.
)

on Sg. O

The restrictions on Sg, namely that Sg is compact and that the last co-
ordinate of T € S’g is positive and bounded away from zero, ensure that
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conditional expectations occurring in the statements of Lemmas A.1 and
A2 exist for all » € R. This allows us to handle any degree of homogene-
ity. Since S% is compact, (ii) implies that f is also an element of G,.. (iii)
implies that E(yx”|®), E(y?22" |4@) and E(yx>"|@) are twice continuously dif-
ferentiable in w. This fact is used in the proof of Lemma B.1. We use (iv)
to ensure that the remainder terms in the Taylor expansions employed in
Appendix A are well behaved. This assumption is regularly invoked in the
kernel estimation literature to minimize complexity of mathematical details
when dealing with ratios of random variables'. See Newey (1994, Page 242)
for a brief discussion on this type of assumption. As Newey points out, it
is possible to relax this assumption but at the expense of a considerable
increase in mathematical detail. (iv) can be made more palatable if we in-
terpret it to mean that we should carry out estimation and inference in a
region where the density is indeed bounded away from zero. The last as-
sumption provides sufficient moments so that we can prove the asymptotic
normality of estimators of f. See Lemma A.1.

3. ESTIMATION HEURISTICS

Since f is homogeneous of degree r we can write

(3.1) y=alf(@,1) +e — 2 — f(i,1) + —

The problem we investigate in this paper can be stated quite simply: Should
we estimate f(Z) using the first representation or the second? We refer to
the estimate of f(Z) based on the first representation as a “projection based”
estimate, while the estimate based on the second formulation is called a “di-
rect” or “numeraire” estimate. It may not be very obvious at this point how
we can estimate f(Z) using the first representation but, as we shall soon
show, it is quite easy to do so. Although algebraically equivalent, the two
formulations will in general lead to estimators with different statistical prop-
erties since division by z7, alters the stochastic properties of the error term e.
In fact, and this should not surprise the reader, the statistical performance
of the estimators depends upon the conditional variance var(s|Z). In par-
ticular, we will show that if var(e|Z) is homogeneous of degree zero (which
implies homoscedasticity as a special case) then the “projection based” esti-
mator is asymptotically better than the “direct” estimator, while if var(e|Z)
is homogeneous degree r £ 0 then the latter dominates the former.

Remark 3.1. Notice that if » = 0, i.e. if we are estimating a homogeneous
of degree zero function, for example a demand function, the two approaches
will yield identical results. Furthermore, if s = 1 the problem is uninteresting
since homogeneous functions are known up to scale in the one dimensional

"However, it seems quite restrictive. For instance, if & = (z1,2z2) where x1,x2 4
UIID(1, 2] then it is straightforward to verify that the pdf of w = z1/z2 vanishes at the
boundary and is not differentiable at w = 1; i.e. Assumption (iv) rules out this case.
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case (because when s = 1, homogeneity of f implies that f(z) = 2" f(1)). To
avoid these trivial cases from now on we assume that r #0 and s > 1. O

Our estimation strategy is to approximate sample analogs of optimization
problems that identify f(Z) using the two representations in (3.1). At the
population level we can use the first representation to write the “projection
based” specification of f(Z) as x%(,(Z), where 3, is identified as

(3.2) B, = argmin E{y—a2’p(d)}>.
{B:B€L2(Sw)}

Since z73(1) is a homogeneous function of degree 7 for all 3 € L?(Sz), we
can characterize z/,3,(w) as the orthogonal projection of y onto G, under
the “usual” L? inner product (u,v);2 = E{uv}. In particular, we can use
the result in Tripathi (1999) to show that this projection can be explicitly

zg B(yat|d)
E(z3rlw) -
based” in describing an estimate obtained by using them first representation
in (3.1). Similarly, a population level specification of f(Z) using the second
representation can be written as x%,34(w), where we identify §; as

(3.3) Bs= argmin  E{-L - p(@)}>
{8:8€L2(Sa)}  Ts

calculated as This explains our usage of the term “projection

Observe that we can also characterize z}3;(w) as the orthogonal projection
of y onto G, using the “weighted” inner product (u, v)yeightea = E{uvz;?"}.
But since this projection is not orthogonal w.r.t the “usual” L? inner prod-
uct, we prefer to describe x%3,(Z) as the “direct” or “numeraire” (population
level) specification of f(z).

The preceding discussion shows that in order to estimate f it suffices to
estimate (3, and (4. In fact, since a finite amount of data can at best allow
us to estimate the value taken by a function at a certain point, we consider
estimating the value of f at some fixed point in Sg. So let 2y be an arbitrary
fixed point in int(S2) and let @ = Hp(Zo) denote its image under Hy. Since
the map & +— (W, x) is one to one and continuous on Sz, it is straightforward
to verify that wo € int(Sy). Let us now see how we can estimate 3,(1o)
and Bq(wo).

Let 3 be a function in L?(S3) which is sufficiently smooth. Think of 3 as
being a generic symbol for 3, or 84. Taylor expanding F(w) around @ and
neglecting all higher order remainder terms, we can write

(3.4) B(w) = B(wo) + VB(1o)' (1w — ).

The unknown coefficients {3(wo), V(o) } can be estimated by doing least
squares on sample analogs of (3.2) and (3.3) provided we can maintain the
quality of the linear approximation in (3.4). This can be achieved by em-
ploying the usual device of “local weighting” to ensure that, when estimating
{B(w0), VB (o)}, the @’s close to Wy are given more weight than the obser-
vations farther away from .
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Following this strategy we can estimate (,(wg) and [4(w¢) by solving the
following optimization problems, where, for convenience, we use the notation

b= (bo,by,... ,bs_1) and by = (by,... ,bs_1):
S == e ; S W — W
{8, VB, } (i) = argmin Y {y; — a5 ; [bo + BL (1 — 1))} K(—L——
beERs =1

);

an

W — g

— by — bl (1 — 1) }2K(

).

{2, VB} (i) = argmin y_{ =

beERs =1 s n

The kernel K (defined on R¥ 1) and the bandwidth a,, used above satisfy
the following conditions.

Assumption 3.1. K(w) = I1I3=]k(w;) where k : R — R is a nonnegative,
symmetric, continuous function which vanishes outside [—1,1] and satisfies
f_ll kuydu = 1. R, = [_11 k2(u)du denotes the “roughness” of k, p2 =
f_ll u?k(u) du, and S = [-1,1]°7L. O

Assumption 3.2. The bandwidth a,, is a sequence of positive numbers such
that a, | 0, nas~! — oo, and nas*3 — X € [0, 00). O

While ﬁp(u?()) (resp. Bd(ﬁ)o)) denotes the “projection based” (resp. “di-

rect”) local linear estimate of f(wo, 1), Wp(u?o) (resp. @d(uﬁo)) is used to
denote the “projection based” (resp. “direct”) local linear estimate of its
gradient V f (100, 1). Then fur05(Z0) = 7% o0Bp(W0) and fair(To) = o Ba(10)
denote the “projection based” and “direct” local linear estimates of f(Z).
Note that by construction fproj and fdir are homogeneous of degree 7; i.e.
we have obtained “homogeneity constrained” nonparametric estimates of f.
Another nice feature of using the local linear approach is that both f(wy, 1)
and its partial derivatives can be obtained simultaneously. This comes in
handy when one wants to calculate marginal effects or elasticities. Further-
more, solving these optimization problems is straightforward since they can
be expressed in a weighted least squares framework. See Lemma A.1 for
details.

Remark 3.2. (i) Local linear estimates of conditional mean functions, with-
out any homogeneity restriction, have been extensively studied, especially
in the statistics literature. See, for instance, Fan (1992), Ruppert and Wand
(1994) and the references therein. If instead of a first order approximation
in (3.4) we had taken a m!" order Taylor expansion of (1) around 1y,
where m > 1, we would obtain m*” order local polynomial estimates of By
and (4. In our case such higher order approximations are unnecessary since
a linear approximation suffices to compare the asymptotic mse of Bp(ﬁ)o)
and Bd(?ﬂo)- Of course, we could also have obtained locally constant (better
known as Nadaraya-Watson) estimates of 3,(wy) and B4(w) by considering

the “zero!™ order approximation B(w) = B(1p) in (3.4). In fact it is easy to
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show that the “projection based” and “direct” Nadaraya-Watson estimates
of f(Zo) are given by

Tn 2Ty - n Yy '(,U() w
v ~ r Z"]n:l y] ;J’C(U)Oa—n'w]) « ~ r Z] 1 ;1:] ’C( an ])
fproj (‘TO) = Ts,0 ) fdir(x()) =50 Wo—w; .
21 K=

Sl ’C(L0 1)

The reason we prefer Worklng with local linear estimators, rather than the
locally constant estimators, is that the asymptotic bias terms for the former
are simpler (and thus much easier) to handle analytically. In particular, as
shown in Lemmas A.1 and A.2, they do not have any terms involving the
first derivatives of f(w,1):

a f(’lI)Oa 1)

bias{fproj('%o)} = 0'5)‘1/2:u;<; sOt r{ Dow 3
. A ~ 8 f(w()a )
bias{ fair(Zo)} = 0. 5/\1/2,%{ Tyotr r{————= RN }.

Hence, when local linear estimators are used
bias{ fair (o)} = bias{ foroj(#0)},

and so comparing the asymptotic mse of fproj(#o) and fair(Zo) reduces to
comparing their asymptotic variances. In contrast, in Appendix B it is
shown that for the Nadaraya-Watson estimators of f(z),
. 02 f (1o, 1) 2
. S\ e 2 2 ’
bias{ fros(F0)} = 0:50% il tr {05 + o
[3f(7~50, 1) 9h(to) i 9f (o, 1) IE (a3 |wo)  h(to)
o o Bl 9w E(x2 )
. 02 f (0o, 1) 2
. ~ o 2 2 )
bias{ fair(T0) } = 0.5a;, .z g tr { 060 + h(do) X
ow ow'
Although in Appendix B we also show that var{ foroj(0)} = var{ forej(Z0)}
and var{ fair(Zo) } = var{ fair(Zo)}, the squared bias of fur0i(Z0) and fair(Zo)
cannot be ranked. Therefore, if we use Nadaraya-Watson estimators we can-
not analytically compare a “projection based” estimator with the “direct”
estimator in terms of asymptotic mse.
(1) The reader should also be aware that by confining attention to fprej(Zo)

and fdir(fo) we are ignoring the possibility that we could perhaps do better
by (say) looking at a linear combination of the two. Indeed such a possi-
bility cannot be ruled out unless we can show that one of these estimators
is “efficient” (in some sense). However, the task of constructing “efficient”
nonparametric estimates of f(Zg) is beyond the scope of this paper. In fact
we are unaware of any “nonparametric efficiency bound” type result in the
literature which would allow us to determine the efficiency of a proposed
nonparametric estimator of f under a homogeneity restriction.
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(i77) Let f(io) denote the “usual” local linear estimator of f(Zg) in the
regression model y = f(Z) + ¢; i.e f(Zo) solves

beRs j=1 "

)?

where H is an appropriate kernel on R®; and the bandwidth b, is a sequence
of positive numbers such that b, | 0 and nb] — oo. Note that when f is
homogeneous of degree r, f will converge at a slower rate to f than fpr;

or fgir- Imposing homogeneity on estimators of f reduces the dimension of
the regressor space by one, and leads to estimators with improved rates of
convergence. In the simulations we will compare the finite sample behavior
of fproj and faip with f. O

4. COMPARING fproj(F0) AND fair(Z0)

Following the results of Lemma A.1 and A.2, it is easy to see that the
asymptotic variances of firoi(Z0) and fqir(Zo) are
a3 B(22e?jwo) M

E2 (23" |wo) k(o)
3 Bz e o) Ry~

h(wo)

To simplify the form of these variances observe that the transformation

Z +— (W, x) is one to one and apply iterated expectations. This yields

E(z"e’|w) = E(a3 o*(@)|@), E(z;¥e?|w) = E(z;* o*(2)|0),

var{ foroj (Z0)} =

var{ fai (o)} =

where the conditional variance function 02(%) = var(|Z). It does not seem
possible (at least to us) to compare the two variances if o%(Z) is completely
unknown. However, it is possible to obtain some useful insights about the
asymptotic variance of fproj(Z0) and fai(Zo) if 02(Z) satisfies the following
assumption.

Assumption 4.1. Assume that either

(i) 0%(2) = Y2() for some unknown 1; i.e. the error terms are condi-
tionally heteroscedastic such that o(Z) is homogeneous of degree zero
in the covariates, or

(ii) 02(%) = 22 2(w) for some unknown 1; i.e. the error terms are condi-
tionally heteroscedastic such that o(Z) is homogeneous of degree r # 0
in the covariates. O

Notice that Assumption 4.1(7) is automatically satisfied if the error term
€ is assumed to be homoscedastic. As an example of a model where ho-
moscedasticity of € is compatible with linear homogeneity of f, consider the
following simple setup.
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Example 4.1. Let y be the observed profit, f the unobserved profit func-
tion of a competitive firm, and & the vector of observed input and factor
prices. Assuming that the prices are measured without error but there is
measurement error in the observed profit, we can write the model to be
estimated as y = f(Z) + &. Since f is a profit function it is homogeneous of
degree one, and as ¢ is treated as pure measurement error we can assuime
that it is homoscedastic. O

Although homoscedasticity of additive errors is often a convenient sta-
tistical assumption, it is sometimes hard to justify from a structural point
of view. In many cases Assumption 4.1(iz) may be more plausible. As an
example of a situation where both o(Z) and f(Z) are homogeneous of de-
gree 1, consider the following model which is motivated by the discussion in
McFadden (1984, Page 1406).

Example 4.2. Let z be the vector of observed input and factor prices and
f*(Z;u) the unobserved profit function of a competitive firm. w is a firm
specific random parameter which is distributed independently of z. It is
unobserved by the researcher but is known to the firm itself. For instance,
u could represent variables which are unobserved by the economist but are
used by the firm when making production decisions. Since f* is a profit
function, we assume that for each u € U the map & — f*(Z;u) is linearly
homogeneous, monotone, and convex in the prices. Let y = f*(Z;u) denote
the maximum observable profit. Then using the fact that u is independent
of &, we can write y = f(Z) + & where f(Z) = [, f*(Z;u) dF(u), and

e = fr(Fu) - /U £ (& w) dF (u]f) = [*(@:) — /U £ () dF (u).

Note that Z +— f(Z) has all the properties of a profit function; i.e. in
particular it is homogeneous of degree one. Moreover, we can verify that
E(e|z) = 0, and o(Z) is homogeneous of degree 1. O

Now it is easy to see that

E{z;?e?w} = ¢*(0) E{z; " |@}
E{aZe?w} = ¢*(w) E{a?"|w},
E{a;?e?|w} = ¢* ()
E{a%e?w} = ¢*(w) E{zy"|w}.
Hence the expressions for the asymptotic variances simplify to

N 2 @D s—1 27‘ 33727‘11)
UCLT{fdir(fo)} — ’¢' ( 0)SR SOIE( s | 0)

Assumption 4.1(i) = {

Assumption 4.1(i1) = {

Assumption 4.1(i) = V2 () H2 hgw
var{fproj (To)} = E(x2 \wo)h(w;)o

. W2 (o) Ry 2%

var{ fair(To)} = ( 0}2(11)0) 2

ASSumptiOn 41(7/7/) - N B 7ﬁ2(11')0) ER,Sfl I2TOE(CC§T"[I)0)
var{ foroj(Z0)} = ——E=ETE o)
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Since by the Cauchy-Schwarz inequality
E(z;* @) E(e}"|@0) 2 E*(7" 25w) = 1 and E(z}"|@) > E*(23|),

we get that
var{fproj (To)} < var{fdir(fo)},

under Assumption 4.1(7), and

UaT‘{fdir(f(])} < Ua?“{fproj (5%0)}

under Assumption 4.1(i7). As we had already shown that the asymptotic
bias terms for the two estimators were the same, we get that mse{ fproj (£0)} <
mse{ fair(Z0)} under Assumption 4.1(), and mse{ fair(%0)} < mse{ foroj(F0)}
under Assumption 4.1(i7). Therefore, as expected, there is no general rank-
ing for the estimators in terms of asymptotic mse. Hence the choice of
which estimate to use is not obvious but depends upon the nature of the
heteroscedasticity of the error term.

5. SIMULATION

A small simulation experiment was performed to study the finite sample
properties of the proposed estimators. Code was written in GAUSS and
we restricted our attention to the case s = 2. n observations on (y,x1,z2)
were generated from y = f(z1,x2) + o(x1,22) e, where z1, z2 4 UIID[1, 2]
and € was chosen independently of (z1,z2). A Gaussian kernel was used to
estimate fproj, fdir and f . For the first two estimators the bandwidth used
was en~ Y, while for f the bandwidth used was en=/6. Three different
choices of ¢ were considered: ¢ € {0.5,1,2}. As seen in Tables 1 and 2, the
results do not seem to be very sensitive to the choice of bandwidth. Two
particular specifications for f and & were selected.

(Model 1) fi(z1,z2) = 10y/z122, €1 4 N(0,0.75)
(Model 2) folay, 2) = 10(2% + 295)2, 25 LN(0,1).

f1 and fs represent a Cobb-Douglas and CES specification respectively. Note
that both fi and fs are homogeneous of degree one. The model parameters
were chosen so that var{f(z1,z2)}/var{y}, which can be thought of as
a measure of the S/(S + N) ratio, for each model is around 0.8. Two
simple values of o(x1, x2) were chosen to satisfy Assumption 4.1: o(x1,x9) =
1 which satisfies 4.1(z), and o(z1,22) = x2 which satisfies 4.1(ii). Each
function was estimated at a 10 x 10 uniform grid in [1,2] x [1,2] and the
mse calculated at each grid point in 1000 replications.

Recall that our asymptotic results are about the pointwise behavior of
the mse. But since the reader may find point by point comparison of mse
on the 10 x 10 grid a tedious task, we present the average (over 100 grid
points) mse in Tables 1 and 2.
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TABLE 1. Average MSE over grid for Model 1 (Cobb-Douglas).
Average o(x1,29) =1 o(x1,x2) = X2
n MSE ¢=0.5 c=1 c=2]c=0., c=1 c=
fproj 0.046 0.039 0.045 | 0.101 0.083 0.087
50 fdir 0.049 0.042 0.051 | 0.094 0.078 0.082
f 0.074 0.054 0.060 | 0.164 0.116 0.120
foroj 0.023 0.023 0.029 | 0.050 0.044 0.048
100 fdir 0.025 0.025 0.032 | 0.047 0.042 0.047
f 0.038 0.031 0.036 | 0.085 0.062 0.063
TABLE 2. Average MSE over 100 grid points for Model 2 (CES).
Average o(x1,29) =1 o(x1,x9) = x9
n MSE ¢=0.5 c=1 c=2|c=0.5 c=1 c=2
foroj 0.122 0.120 0.139 | 0.275 0.230 0.266
50 fdir 0.128 0.132 0.151 | 0.258 0.221 0.251
f 0.196 0.162 0.175 | 0.448 0.324 0.352
Joroj 0.066 0.067 0.097 | 0.146 0.132 0.148
100 Sair 0.069 0.074 0.107 | 0.136 0.128 0.150
f 0.105 0.090 0.118 | 0.247 0.179 0.188

As seen in the tables, the average mse is ranked according to our asymp-
totic results. Moreover, except in one case?, this ranking does not change
when ¢ is varied. When ¢ is homoscedastic, fproj dominates, although there
does not seem to be a dramatic difference between fproj and fdir in terms
of average mse. When the conditional variance of ¢ is homogeneous of de-
gree 1, fdir has the smallest average mse although once again the difference
between fproj and fdir is not very substantial. However, in each case, the
homogeneity constrained estimators clearly out perform f , the usual local
linear estimate of f. Therefore, when f is indeed homogeneous, using a ho-
mogeneity constrained estimator seems sensible. Of course, the reader must
keep in mind the usual caveat about any simulations results; namely, that
they are limited in nature and may vary if the underlying model parameters
are changed.

2For Model 2 when n = 100 and ¢ = 2. However, a decomposition of the average m.se
for this case revealed that while the average variance for fdir was smaller than the average
variance of fpmj, the average squared bias for the former was bigger than the average
squared bias for the latter. Therefore, while the ranking w.r.t the variances is preserved
according to our theory, the average bias differs for the two models. Hence, in this case
the higher average bias of fdir caused the ranking to change.
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6. CONCLUSION

In this paper we nonparametrically estimate a homogeneous of degree r
conditional mean function (f) using local linear estimators. We compare a
“projection based” estimator with a more conventional “direct” estimator.
Based on our asymptotic results we recommend the following guidelines
when estimating f in practice:

(i) When f is homogeneous of degree r, use a “homogeneity constrained”
estimator as opposed to some usual “unrestricted” nonparametric es-
timator of f. The dimension reduction due to homogeneity allows the
constrained estimators to possess faster rates of convergence than the
unrestricted estimator.

(ii) Use the “projection based” approach if o(Z) is homogeneous of degree
zero. This includes the case when € is homoscedastic.

(iii) Use the “direct” approach if o(Z) is homogeneous of degree r # 0.

Results of a small simulation experiment support these recommendations
although there does not seem to be a big difference in the average mse
for the two approaches in (ii) and (iii), at least for the models used in our
simulation.

Our theoretical results do not offer any guidance if no information is
available about the conditional variance function. In such a case it may
be good empirical practice to report estimates of f using the “projection
based,” “direct,” as well as the “unrestricted” local linear estimate of f. If
there is wide divergence between the reported results it may be an indication
that the homogeneity restriction on f is perhaps misspecified. Based on the
degree of divergence a formal test of this misspecification can be constructed
following the approach of Hardle and Mammen (1993), although we do not
pursue this issue in the current paper.

Finally, the reader should bear in mind that in this paper we have limited
our investigations to the case when f is homogeneous of degree r. But, as
mentioned earlier, in microeconomic theory homogeneity of functional forms
is often accompanied with other shape restrictions such as monotonicity and
concavity (or convexity). An interesting topic for future research is to find
new ways of nonparametrically imposing these additional shape restrictions
on functional forms and determine the statistical properties of such shape
restricted estimators. O

APPENDIX A. TECHNICAL DETAILS: LOCAL LINEAR ESTIMATORS

Lemma A.1. Let assumptions 2.1, 3.1, and 8.2 hold. Then

vVnai ' {Bp(wo) — f(do,1) — Biasi} | a N(0.5)
Vnay TV B, (o) — V f (i, 1) — Biass} e
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where [Biasl] _ %,ui tr{V2f(ip,1)}
Biass o s ak(@) @'V2 f (i, 1)adi |’
variance covariance matrix

and the asymptotic

E(22re? i) Ry '
_ | E2(22" o) h(wo) s—1
Y= 0. 1 E(x27e2|dg) sz ' K2 () da
5

B2 (x37[bo) h(wo) piz;

Proof. Throughout this proof let Q,, = diagsxs [1,an, ... ,a,] and let ,, de-
note the diagonal matrix diagn,[K(*-*2), ..., K(*2-%2)]. Furthermore,
for notational convenience, we also let

Go(wo) rooan (Tt
b = 01 (o) lﬁp(wo) R
: V3,(wo) ' o —ar
Os—1(i0)] ., Tem Ton(Z2)] s

Using this notation it is straightforward to see that 8(i) is the solution to
the following weighted least squares problem:

min (§ — Z,Qnb) U (§ — ZnQnb).
b
As is well known, the solution to this problem is given by
é(wo) = Q;l(Z;LQnZn)_lZ;lQngj.
Let us write 0(ig) = leSglfn, where

- 1
7Zn 'O Zp, and t, = —
nan nay,

Sp =

= 73, Q.

Straightforward calculations show that we can write S, as the partitioned

/
. 500 Spo1 22 Wi —wo
matrix S, = where sgp = IC L
o [ ] here s — e L a2,

- Wi — W .. Wi — Wo
so1 = ——1 > _ 22 (— )K(— )5

nany = an an
1 = o W — g, W) — Wy, by — o
S11 — ZJ: r (2] J (=2 .
1= e 2 i . )( . )K( @ )

an

Similarly, we write £, = [

_ _1 n o (Wi
ty = ST Zj:1yj$s,g( a

na.

] where ty = = ]Z] 1 YTy /C(w] wo)’ and

31
—wo 0)‘

n

But since y; = z ;f(w;,1) + ¢,
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we can express t, = T, + ¢, where

- [7’0] _ [ nas T Z] 1E5%s, K(w]anwo) ] ’

Tn = W —Wo W; —Wo
0! 571 Z]:l €jT S]( an )’C( an )
n ] o Z] 1 SJ (w],l)(wg(;lwo)]C(wj;Lwo)

Hence, letting 0(wy) = {vf}zg’ 11)} denote the probability limit of é(ﬁ;g),
0y

we have that
(A1) 0(aig) — (o) = Q,, 1Sy, M7 + Q1S 1 — 0(abg).

Let us first look at Q1S 1% — 0(wy). For all w; in a a,-neighborhood
of wg, Taylor expand f(w;,1) around f(iwo,1) to get

£(5,1) = 10,1) + an( Y fag, 1)
aZ w; —uw
e A (R

2 Qp anp

wj; — Wo

But this implies that ¥ reduces to

2 o(a;,)
N 2 .

by = Sn@nb(wo) + 7Bn + | o ’

2
O(Gn) sx1

where
b [ e D w IR VR (o, () K
" ke S (T2 (i, 1) (T () (P |

Since it is easy to verify that

E(22" [0 ) h (o) 0 _
Sn £ : o :
n { 0s-1 (x| o) Is—1
we get that
Op(a%)
p(an)

2
Qn'S7 1 — 0(0) = 2:Q" 5, By +

Op(an) sx1

Let us further simplify the right hand side of this equation. To do so first
use a LLN to show that

B 2B aonta) | ety D e G, 1)
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Next, a little matrix manipulation shows that

Biasl] op(an)

a?; —1g-1
?Qn Sn Bn: |:B’ia82

Op(an) sx1

Therefore, letting Bias, = [gzzzl} , (A.1) reduces to
2
op(a;)
a

(A.2) 0(wo) — (o) — Bias, = Q1S 17, +

Op(an) sx1

Now we show that S, '7, is asymptotically normal. Under Assump-
tion 2.1(v) a straightforward application of the Lindeberg-Lyapunov CLT
for triangular arrays reveals that

Vnai 7, N0y, K B(2 o) h (o).
where
Js, K2 (@) dia 0%y

K= [ 0s_1 Js w@ K*(a) da

XS

Therefore, by Slutsky, v/nas 'S, 17, LN N(0s,%). Finally, premultiplying
both sides of (A.2) by V/na; '@, and using the fact that the sequence nas*3
is bounded, it is immediate that

nas”' Qu{0(ido) — (o) — Bias,} - N(0,, ).
But this is the desired result. O
Lemma A.2. Let assumptions 2.1, 3.1, and 3.2 hold. Then

[ V/nas"{Ba(ig) — f(i0,1) — Bias}
Vnay NV 3, (o) — V f (o, 1) — Biasy}

. a2 ~
where [Bmsl] = [ Tn'ui tr{V2{(ido. 1)} ], and

L.N(0, %),

Biaso o} fS}C ak(w) a'V? f (o, 1) di
E(x3 2 &2 o) RE! /
_ h(o) s—1
2= E (x5 272 |abo) [ W K2 () di
051 R{0) 1%

Proof. In the proof of Lemma A.1 replace zy ; by 1, y; by y; /a:’;yj, and €; by
8]/:’1)’;7]. D
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APPENDIX B. TECHNICAL DETAILS: KERNEL ESTIMATORS

The following results are essentially an exercise in using the delta method.
For examples on the use of the delta method or “linearization” techniques
in nonparametric regression see Schuster (1972) and Hérdle (1989).

s—1 xE’TOIE(xET€2|'LD0)

Lemma B.1. var{fpeoj(%0)} = =t 55 o)

Proof. Write fyroj(Z0) = An(Z0)/Bn(%0) and f(i) = A(Z0)/B(&o), where

n

i/~ s wo — Wj ~ r o~ ~
Ani0) = —25 D yiah K= ), Ald) = o} By} |io) (i)
n j=1 n
By (o) = 2’")6 J,B”:]E 21 @) (o).
= 1.2 o Blao) = ([ @)h(i)

Then by a Taylor expansion®

Fors(0) ~ Eey(30) & Fct Aulao) — EAu (i)
f(@0) (5 (- 5 ox
= (a0 (Br(@0) — EBu(&0)}
Therefore,
1 f*(%0)
(B.1) var{fproj(xo)} B )var{A (Io)}+ B2 (i )var{B n(Z0)}
_ 252(?;())) cov{A,(Z0), Bn(Z0)}.

Recall that wp lies in the interior of Sy and that the maps E(yz}|w)h(w),
E(y?z% |w)h(w) and E(yz?" |w)h(h) are twice continuously differentiable in
w. Using these facts, and doing the usual change of variables, we can show
that for large enough n

var{An(i"O)} = R

Il

var{Bn (o)} = 5 E(z¥ |io) (o)

cov{A,(Zo), B,(Z0)}

Ile
PYES
L

8
w3
[=}

=
—
<

8

w
_=

S
N
=

g
<

3 Assumptions 2.1(iii) and (iv) ensure that the remainder terms in this Taylor expansion
are well behaved. We avoid introducing any explicit remainder terms in this analysis as
they do not affect the outcome of the paper.
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Therefore, substituting these results in Equation B.1 and using the fact that
[(Zo) = x5 o f(t0o, 1), a little algebra shows that

r ~ o %8_1 Igro 2r
Uar{fproj(IO)} = na 5 1]E2(£L'2T‘w0) (1170){E(y T |’Ll)0)
+ E (22 f2(%) o) — 2E(ya2" f()|do)}
_ my z2 E(Igr{y — f(2)}?|o)
nagy~t  E2(22"|do)h (o)
Ms—1 22 E(22e?|a)
nay * E2(x2r|wo)h(wo)

O

s—1 227 B(x5 22 |@o)

Lemma B.2. Uar{fdlr(IO)} - 9{s T = C) -
Proof. Similar to the proof of Lemma B.1. O

Lemma B.3. bias{fproj (Zo)} = 0.5a3 prx zotr l f(wg;’l) +

2 0f (io,1) OlE(z 2T|u”;0)h(u”,0)]}
E(zZ"[wo)h(iwo) 0w Pl )

Proof. As in the proof of Lemma B.1, a Taylor expansion shows that

]Efproj(a?O) - f('%o) = {EATL('%O) - A(.i‘o)}

F(Z0) rmr /- -
EB, —B i
B BB, (i) = B(E0))
But as (i) wy € int(Sg) (ii) E(yzl|w)h(w) and E(x?"|w)h(d) are twice
continuously differentiable in w, a change of variables approach yields that
for large enough n

BAn(@) — AGao) = 05037, [ o THEWEISM(E)
5 e L OHE(@Y o) h(W0)} - ooy
EB, (Zo) — B(&g) = 0.5a2 /S}C u S50 uk(a) du.

}a/C(a) dii

Since it is easy to see that for n € C2(Sy)

~/6277( )
/SK“ gwow W4

the expressions for the bias of A,, and B,, reduce to
i O*{E(yxt]wo)h(wo)}

( )

=t

EA, (%) — A(Zg) = 0.5a2 2" oﬂntr{ Dol }
EB, (i) — B(#) = 0.5a%2tr{ 2{E($§ggglh(wo)} .

Some algebra, and the fact that f(Zo) = z{, f(wo,1), now leads to the
desired result. O
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. Foosa o 92 f (wo,1
Lemma B.4. bias{ fair(Z0)} = 0.5a5 p2a’ o tr % +
2 0f(o,1) ah(@o)}
Wo) - 0w oa 1

Proof. Similar to the proof of Lemma B.3. O
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