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Abstract

We study experimentally a standard four–player Hotelling game,
with a uniform density of consumers and inelastic demand. The pure
strategy Nash equilibrium con…guration consists of two …rms located
at one quarter of the “linear city”, and the other two at three quar-
ters. We do not observe convergence to such an equilibrium. In our
experimental data we …nd three clusters. Besides the direct proxim-
ity of the two equilibrium locations this concerns the focal mid–point.
Moreover, we observe that whereas this mid–point appears to become
more notable over time, other focal points fade away. We explain how
these observations are related to best–response dynamics, and to the
fact that the players rely on best–responses in particular when they
are close to the equilibrium con…guration.
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1 Introduction

Despite the popularity of simple location models in industrial economics and

voting theory, in the tradition following Hotelling (1929), and despite the re-

cent rise of the experimental method in economics, there have been only few

experimental tests of such models. Brown–Kruse, Cronshaw, and Schenk

(1993) and Brown–Kruse and Schenk (1999) study models with elastic de-

mand, while Collins and Sherstyuk (1999) focus on the simpler case—which

we address, too—where demand is inelastic.

Collins and Sherstyuk implement a model with three agents who choose

locations on a line segment with a uniform density of consumers (who, due to

the assumption of inelastic demand, can also be seen as voters with one vote

each). It is well–known that this game has no pure–strategy equilibrium (see

Eaton and Lipsey, 1975). Normalizing the line segment to the unit interval,

the unique mixed–strategy equilibrium prescribes uniform randomization

over the middle two quarters for all …rms (see Shaked, 1982). As it is a well–

established fact that experimental subjects have di¢culties in randomizing

(see, for example, Rapoport and Budescu, 1997) it is not very surprising

that Collins and Sherstyuk do not …nd strong support for the equilibrium

hypothesis. Their empirical distribution of choices is M–shaped, and has a

considerably larger support than the equilibrium distribution.

In this study we analyze the case of four agents, with uniform consumer

density and inelastic demand. As the equilibrium of this case implies that

two …rms locate at 1
4 , and the other two at 3

4 , this setup seems ideal for the

investigation of various matters.

First, there is no other number of agents where the equilibrium predic-

tion has a better chance to be valid.1 With three competitors, the unique

symmetric equilibrium is mixed, with …ve the unique equilibrium con…gu-

ration is asymmetric and implies unequal payo¤s, and with six and more

agents the equilibrium con…gurations cease to be unique. Thus, only the

two– and the four–agent cases yield unique pure and symmetric equilibrium

con…gurations which give identical payo¤s to all agents.
1Apart from two, where equilibrium play seems trivial.
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Second, the equilibrium in the four–agent case has a property which

makes it interesting from a behavioral and empirical point of view. Not only

the focal mid–point is empty but the whole middle segment of the “linear

city.” That is, notwithstanding the nice theoretical properties mentioned

above, the equilibrium is not entirely intuitive, and also con‡icting with

casual empirical evidence. There are no cities without shops in the center,

nor are there democracies without parties located in the political middle

ground.

The picture we will discern in our experimental data can be summarized

in the following

Experimental Result In the four–seller case, the equilibrium prediction

is of substantial but limited help. About one third of all choices are

clustered around the equilibrium locations, but in no session do we

observe convergence to equilibrium. At the same time, the focal mid–

point exerts a considerable attraction with almost 10% of all choices

clustered around it. Consumers pro…t from this considerably in the

form of lower transportation costs.

The remainder of the paper is organized as follows. In Section 2 we give

a theoretical account of the model we implement. In Section 3 we present

the experimental design. In Section 4 we analyze the results and explain the

data, while Section 5 concludes.

2 Theory

Consider a “linear city” in which four …rms produce a good at constant

marginal cost. The price of the good is …xed (due to some unmodeled

features of the market). Consequently, costs can be normalized to zero

and the price to one. To sell the goods, the …rms simultaneously choose a

location on the unit interval [0; 1]. A continuum of consumers with mass 1

is uniformly distributed along the interval. Each consumer buys one unit

of the good. And due to (unmodeled) transportation costs, each consumer

buys her good at the …rm located closest to her.
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As shown, for example, in Eaton and Lipsey (1975) there is a unique

(pure–strategy) equilibrium con…guration of locations: Two …rms locate at
1
4 , the other two at 3

4 . As proved in Osborne and Pitchik (1986), there is also

a symmetric mixed–strategy equilibrium where …rms employ continuous and

di¤erentiable density functions which are symmetric around 1
2 as strategies.

However, as Osborne and Pitchik (1986) illustrate, it is hard to …nd this

equilibrium. In Appendix A we show why …nding it for the four–…rm case

is impossible.

In an experiment a continuous model can only be approximated by a

discrete model with a su¢ciently …ne grid. Therefore, we next derive the

equilibrium solution of the four–…rm case with a …nite number of locations.

Let L = f1; 2; :::; Xg be the set of locations whose cardinality is assumed

to be divisible by four,2 and let Li 2 L be …rm i’s location choice. On each

j 2 L there is one consumer who buys one unit from the …rm located closest

to her, i.e., she chooses a …rm i such that her transportation costs jj ¡ Lij
are minimized. In case of more than one …rm minimizing consumer j’s

transportation costs we assume that, if there are …rms at equal distance to

the left and to the right of her, she ‡ips a coin to determine her “direction,”

and if she reaches a location with more than one seller she buys from each

with equal probability.3

Without loss of generality we can order the …rms such that L1 · L2 ·
L3 · L4. In Appendix B we prove the following

Proposition 1 In each pure–strategy equilibrium either L1 = X
4 or L1 =

X
4 + 1, L2 = X

4 + 1, L3 = 3X
4 , and either L4 = 3X

4 or L4 = 3X
4 + 1.

Thus, there are four di¤erent (pure–strategy) equilibrium con…gurations

and, considering all possible permutations, there are 54 di¤erent equilibria.

Notice that we can speak of a “unique” equilibrium in the sense that any

equilibrium is characterized by two …rms being located at the edge of the
2This makes the analysis most convenient. For di¤erent sets of locations the results

are only slightly di¤erent. We omit those since we implement a number divisible by four
in the experiment.

3As explained in the instructions to the players (see Appendix C), in the experiment
we actually implement an equivalent deterministic version of the consumer demand.
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…rst and the second quarter of the “linear city”, and the other two at the

edge of the third and fourth quarter. Moreover, each equilibrium is not only

“symmetric” with respect to the mid–point of the “linear city”, but is also

“symmetric” as described in

Corollary 1 In each pure–strategy equilibrium, each …rm receives an iden-

tical payo¤ of X4 .

Solving analytically for the (doubly symmetric) mixed–strategy equi-

libria is virtually impossible. Therefore, we employed numerical methods

for di¤erent values of X. Figure 1 shows the equilibrium for the case of

X = 100.4 The intuition behind the peculiar zigzagging shape of the equilib-

rium distribution is the following. First, overall the equilibrium probability

distribution must be, in some sense, U–shaped, with the extremes of the city

excluded from the support. Hence, there must be considerable mass at the

most left and right end of the support. The locations outside the support

are too risky as a competitor choosing a somewhat more central location will

cut a player o¤ from most of the market, leaving her with only the fringes

of the city, which is acceptable only if this fringe demand is large enough.

For the locations in the middle of the support there is the risk that a player

is squeezed in by two competitors. With a uniform distribution this risk is

too great and the expected payo¤s would be lowest in the middle. Hence

some probability mass must be shifted away from the center. Second, sup-

pose a player is at the …rst position on the left that is played with positive

probability, and she considers moving one step to the right. In equilibrium

both locations have to give the same expected payo¤. The bene…t of mov-

ing one step to the right is small, but her potential loss is enormous as she

faces the risk of seeing the complete left tail of the consumer population cut

o¤ by a rival choosing her current position. Hence, in order to be indi¤er-

ent, the probability that someone occupies this …rst position has to be low.

Combining this with the overall U–shape gives the …rst zigzag step.

4The expected demand for each …rm is “exactly” (with 15 zeros behind the decimal
point) 25 for each location in the support of the equilibrium strategy. The computer is
still running for the case of X = 1000.
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Figure 1: The mixed equilibrium density function for X = 100

3 Experimental design

The computerized experiment was conducted at Humboldt University in

November and December 1998. Subjects were mostly undergraduate stu-

dents of economics or business administration. Upon arrival in the lab they

were assigned a computer screen and received written instructions.5 After

reading them, questions could be asked and were answered privately. In to-

tal six sessions consisting of 50 rounds were conducted with four participants

each. The number of rounds to be played was known. In the instructions

subjects were informed about the following. In the experiment each par-

ticipant has the role of a seller who, just as three other sellers, has the

opportunity to sell a …ctitious product in a market. There are 1000 simu-

lated buyers which are located on the integer points of a line from 1 to 1000.

The task of a seller is to choose a position (a number from 1 to 1000) on

the line with the understanding that all sellers do this simultaneously, and

that each consumer wishes to buy exactly one unit per round. Since costs
5For a translation of the instructions see Appendix C.
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are symmetric across sellers (1 Taler per unit), consumers would buy from

the seller to whom the distance is shortest. For how ties were broken see

the instructions in Appendix C.

Locations could be speci…ed using two di¤erent methods (see Figure 2).

The …rst method was to move an arrow to a speci…c position on a black

line which had no ticks indicating numbers. The numerical value of the

chosen location was then also shown in a small box next to the line. At

the start of each round the arrow appeared at a neutral “parking position”

on the right edge of the screen. The second method to enter a location

was to type it directly into the aforementioned box. A click on a special

icon (“Go!”) then automatically moved the arrow to the corresponding

position on the line. After each round a participant was informed about

her own and the positions of the other three sellers in the preceding round.

This was done in horizontally arranged and colored boxes (one color for

each participant). Additionally, arrows with the same colors emanating

from the boxes pointed to the corresponding positions on a line below the

boxes. A given player’s own position was always shown in the green box

(with a green arrow), whereas each of the other participants in the market

was represented by one of the other colors (blue, yellow, red), which was

held constant during the entire experiment.6 Each participant was informed

about her own pro…t in the most recent round as well as about her cumulative

pro…ts. Furthermore, the participants were able to recall the four positions

of all preceding rounds by clicking on special icons “back” and “forth”).

Subjects were informed that the sum of all pro…ts accumulated during

the experiment would determine their …nal monetary payo¤. The exchange

rate was Taler 400 = DM 1. A session lasted between 45 and 60 minutes,

and subjects’ mean earnings were DM 31.25.

6For instance, the player whose screen is shown in Figure 2 chose location 179 in round
2 which implied a payo¤ of 224.5 Taler in that round. In round 3 he considers choosing
location 554.

7



Figure 2: A screen shot

4 Results

Figure 3 displays the frequency distribution of location choices across all

periods (top), and for the …rst and second half of the experiment separately

(bottom), in each case aggregated over all sessions. The eventual distribu-

tion is W–shaped with modes at the two equilibrium locations and the focal

middle. Thus, both our intuitions are con…rmed. The equilibrium locations

are attractive, but so is the center of the city. The three locations around

which there are clusters of …rms—the two equilibrium locations and the focal

mid–point, in turn suggest the title of the paper.7

Comparing the second half of the experiment with the …rst half, the fol-

lowing points emerge. First, there is a trend both towards more equilibrium

behavior and towards more clustering in the middle, and there is no real

convergence to the equilibrium. Considering deviations up to a distance of

25 still to be in a location’s neighborhood, we …nd that 19.2% of all choices
7King’s Cross does not only correspond to Schelling’s focal Grand Central, it also

came out on top in an undergraduate class room game at QMW presenting a London
Underground variant of Schelling’s coordination problem.
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Figure 3: Frequency Distribution of Locations
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in the second half of the experiment are clustered around the “western”

equilibrium location, 13.5% around the “eastern” equilibrium location, and

9.7% around the mid–point.8 Second, whereas the importance of the fo-

cal mid–point increases, other focal points (most notably 400 and 600, but

basically all multiples of 100) actually fade away. Our investigation of the

experimental data will be focussed on analyzing and explaining these two

points.

With respect to the lack of convergence to equilibrium, it is interesting to

note that there is not even a slow trend towards an equilibrium con…guration.

For each session we determined the distance from equilibrium in a given

period as follows. We ordered the players such that L1 · L2 · L3 · L4,

and computed the average distance per player in a given period as D =

(jL1 ¡ 250j + jL2 ¡ 251j + jL3 ¡ 750j + jL4 ¡ 751j)=4.

Figure 4 shows the time series of the average distance from equilibrium

per player in each of the six sessions, plus the same variable averaged over

the six sessions. The average D over all data is 114.2 (120.6 in the …rst half,

and 107.8 in the second half of the experiment). Three out of six sessions

had a higher average distance in the second half of the experiment. Overall,

the di¤erence is statistically insigni…cant.9 We see that the average distance

per player ‡uctuates a lot, mainly between 50 and 200.10 Notice that in most

sessions the players are occasionally very close to equilibrium, but then tend

to move away from it again.

The implications for social welfare are interesting. As …rms are more

evenly spread out than predicted by the equilibrium, consumers’ transporta-

tion costs are signi…cantly lower (while the sum of the …rms’ pro…ts is, by

assumption, constant). Table 1 shows the average travel distance of the

consumers. In equilibrium, this average would be 125.
8Notice that the lower frequency around the “eastern” location is in part explained by

a slight overshooting towards the “eastern” city limit.
9An alternative measure for the distance from equilibrium would be the standard de-

viation of pro…ts, high standard deviations indicating a large distance from equilibrium
(where it is zero). In the …rst half of the experiments this standard deviation is on average
121.1, and in the second half 113.5, a di¤erence that is not signi…cant either.

10 If all players were located in the center, the average distance would be 250.
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Figure 4: The average distance from equilibrium per player for each of the
six sessions

Market index 1st half 2nd half both

avg: distance 107.4
(35.5)

105.2
(34.7)

106.3
(35.1)

Table 1: Average travel distance of consumers (standard deviations over
periods in parentheses).
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Why, then, do …rms not converge to the equilibrium outlined in Propo-

sition 1? One answer could be that …rms actually do play an equilibrium,

namely the mixed one. But, as we know from above, the mixed–equilibrium

probability distribution of location choices is U–shaped, and not W–shaped

with a cluster in the center. Hence, mixing as such cannot fully explain

our data. It seems clear that the middle mode is due to the attractiveness

of focal “King’s Cross.” But being focal as such is of limited help in ex-

plaining our data. This is not so much because a focal–point explanation

is, of course, outside the domain of standard rationality, but rather because

the prominence of the focal mid–point seems to augment over time, whereas

other focal points fade away.

The factor explaining both phenomena (the lack of convergence to equi-

librium, and the di¤erent relevance of various focal points) is the players’

use of myopic best–replies. The pure–strategy equilibria are not stable un-

der best–reply dynamics. And what is more, best–reply dynamics lead

towards the center. This does not only hold when all players adhere to

best–responses, but also in the following more loose sense. Best–response

sets typically include a range around the center (even in most equilibria),

but not the fringes of the city (the most extreme locations that could be a

best–response in equilibrium are X4 and 3X
4 +1). Moreover, when one player

moves towards the middle, subsequent best–reply adjustments imply that

the other players are dragged towards the middle as well, where they tend

to cut o¤ the earlier mover from large sections of the consumer population.

As an illustration, consider the following example. Suppose the …rms

are currently in equilibrium, with one …rm at location 250, one at 251, and

the other two at 750 and 751. Now, imagine the …rm at 251 deviating from

its equilibrium location to, say, the mid–point at 500. It does not lose, as

all locations between the equilibrium locations are included in its best–reply

set. Then, in the next period, the …rm which remained in the West End will

relocate next to the …rm in the center which deviated …rst. And the …rm at

750 may jump over to either the West End at 249 or the East End at 752. In

the next periods, further best–reply adjustments imply that within two or

12



three periods after the initial deviation all …rms are located within a distance

of two or three from the mid–point. Hence, a single best–response deviation

from the equilibrium (which is not irrational, as it gives the same payo¤ as

the equilibrium payo¤) does not only lead away from the equilibrium, it also

induces other …rms to move towards the center of the city.

An analysis of individual relocations shows that subjects pay consid-

erable attention to (myopic) best–replies. 17:5 % of all adjustments are

perfect (myopic) best–replies, and 40:5 % when allowing for errors up to 10

% in the payo¤ dimension (under the hypothesis that the other …rms do not

move). Moreover, the frequencies of best–replies are not declining over time

(in four of the six sessions myopic best–replies are actually more frequent in

the second half of the experiment).

Hence, best–replies would explain both the lack of convergence to equi-

librium and the fact that the focal mid–point becomes more notable whereas

other focal points fade away. However, reasoning along this line raises the

next question: If …rms pay so much attention to best–replies, and given

that the equilibrium is unstable under best–reply dynamics, then, why are

there, after all, so many (approximate) equilibrium choices? The answer

to this is that the degree of subjects’ adherence to (myopic) best–replies is

situation–dependent.

Considering all sessions and all periods, we use the median distance

from equilibrium (115.5) to separate the two states “far away from” and

“close to” equilibrium. Allowing for a 10% error in the payo¤ dimension, as

above, it turns out that players choose a best–reply in 50.0% of the cases

in which the game was close to equilibrium, whereas this occurs in only

31.0% of the cases far away from equilibrium. Using these paired best–

response frequencies of the six sessions as independent observations, we …nd

that in each of the six sessions players choose best–replies more often when

the game is close to equilibrium. A sign–test shows that this is signi…cant

at .0156 (one–sided). Moreover, these higher frequencies of choosing best–

responses when close to equilibrium do not occur simply because the sizes

of the best–response sets happen to be much larger in that situation. The
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size of the best–response sets is only very weakly negatively correlated with

the distance from equilibrium.11 In other words, the players appear to have

a di¤erent attitude towards best–responses dependent upon the situation

they face. This explains why the players are not permanently pulled away

from equilibrium (through the best–responses), and why we observe the high

variation in the distances from equilibrium within each session.

The question, then, is why the players have this di¤erent attitude to-

wards best–replies in the two states. The average gains for the four players

expected from myopic best–replies in a given period are highly correlated

with the distance from equilibrium.12 Although the imagined gains to be

made from myopic best–replies are based on the presumption that the other

players do not move, a presumption which must be counterfactual when

applied to all players, when play is close to equilibrium, this may be a rea-

sonable …rst–order approximation. However, when we are far away from

equilibrium, and there are large potential payo¤ gains from best–responses

looming for all players, players must be much less likely to believe that the

other players will actually stay put. Hence, the players are not completely

myopic.13

When far away from equilibrium, subjects obviously try to outguess each

other. At this moment we do not want to speculate which sophisticated,

or perhaps simple, reasoning process the players might follow in such a

situation. What drives us here is only to …nd an explanation as to why the

players must have this di¤erent attitude towards best–responses when far

away from equilibrium and when close to it, since it is this di¤erence that

plays a key role in our explanation of the data. And the key to this question

is that the assumption that other players will not move (which underlies

the notion of myopic best–replies) is far more realistic when play is close

to equilibrium. This, in turn, drives players again away from equilibrium.

The cyclic behavior of the distance from equilibrium results. And so do the

three modes.
11The correlation coe¢cient is ¡:08, with a t–statistic of ¡2:56.
12The correlation coe¢cient is .84 (signi…cant at .000).
13And this is with good reason, because it turns out that the total adjustments by

the four players in a given period, calculating total relocations in period t as TRt =P
i jLti¡Lt¡1i j, is positively correlated with the distance from equilibrium. The correlation

coe¢cient is .43 with a signi…cance level of .000).
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5 Conclusion

Analyzing a standard four–player Hotelling game, we showed why standard

rationality in the form of an equilibrium prediction is of limited help. More-

over, we also showed that a focal–point type of explanation, which is, of

course, outside the domain of standard rationality as such, is of equally

limited help.

We demonstrated how the pure–strategy Nash equilibria have the prop-

erty that they are unstable under best–reply dynamics. More speci…cally,

we illustrated how best–reply adjustments drag players towards the center

of the “linear city.” Thus, it is the best–reply adjustments that makes the

mid–point becoming more important over time whereas other focal points

fade away.

Analyzing the individual choices in the experiment we found that best–

replies form an important component of the players’ strategies. However,

the importance of best replies is situation–dependent: The further …rms are

o¤ the equilibrium the less likely are best–replies and vice versa. Players

trust the hypothesis that others will not move much less when the current

con…guration is “irrational.” This di¤erent attitude towards best–replies in

turn explains why there is a tendency back towards equilibrium when far

away from it, and away from equilibrium when close to it.

On the aggregate level these movements result in a W–shaped distribu-

tion of locations. There are clusters around the equilibrium positions and

the focal mid–point. Hence, we should not be surprised when, for example,

democracies with four parties (as the FRG used to be) do not have two

left–wing and two right–wing parties.
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A On the symmetric mixed equilibrium in the con-
tinuous case

As usual, let the consumers be evenly distributed along the interval [0; 1]: A

mixed strategy is a probability measure F = F (z) over [0; 1]: As in Shaked

(1982) we are looking for a doubly symmetric solution which is suggested by

the symmetric nature of the problem. Hence, we assume that F is symmetric

around 1
2 and is employed by all …rms. According to a result of Dasgupta

and Maskin (1986a/b) F is atomless. Let f be the density function of F:

The support of f is assumed to be a subinterval of [®; 1 ¡ ®]; 0 · ® < 1:

Furthermore, assume that three …rms choose their location according to f:

Then, the expected payo¤ of the fourth …rm choosing location z 2 [®; 1¡®]

is given by

A(z) = 3
Z z

®

µ
1 ¡ z +

z ¡ x
2

¶
f(x) (F (x))2 dx

+6
Z z

®

Z 1¡®

z

y ¡ x
2

f(y)f(x) (1 ¡ F (y))dydx

+6
Z z

®

Z 1¡®

z

y ¡ x
2

f(y)f(x)F (x)dydx

+3
Z 1¡®

z

µ
z +

x ¡ z
2

¶
f(x) (1 ¡ F (x))2 dx:

For f to be an equilibrium, A must be constant over the support, hence

A0(z) = 0 for all z 2 [®; 1 ¡ ®]: Di¤erentiating A(z) w.r.t. z; this condition

is equivalent to (see also Osborne and Pitchik, 1986)

1
2

·
2rf(r) (2F (r) (1 ¡ F (r)) ¡ 1) +

1
3

+ F (r)
µ

F (r)
µ

1 ¡ 2
3

(F (r)) + 2f(r)
¶

¡ 1
¶¸

+f(r)
µ

1
2

¡ r
¶

(1 + F (r)) + f(r)
µZ 1¡a

a
xf(x)F (x)dx ¡ 1

2
r
¶

= 0:

It is above all the integral in this equation that makes even a numeric

analysis impossible.
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B On pure–strategy equilibria in the discrete case

Proof of Proposition 1 Remember that L = f1; 2; :::;Xg, with X be-

ing a multiple of 4, and that we order the …rms such that L1 · L2 ·
L3 · L4. By ¦i we denote …rm i’s (expected) pro…t. Observe that ¦i ¸
max fX ¡ L4; L1 ¡ 1g for all …rms i, because otherwise …rm i could improve

its payo¤ by locating itself at the outside just next to …rm 1 or 4. Since
P
i¦i = X, we get max fX ¡ L4; L1 ¡ 1g · X

4 , and hence

L1 · X
4

+ 1 and L4 ¸ 3X
4

(1)

Next we establish the following fact:

L2 ¡ L1 · 1 and L4 ¡ L3 · 1 (2)

To see that (2) holds true, suppose the opposite, i.e., L2 ¡ L1 > 1. Then

…rm 1 could increase its pro…t by choosing L1 + 1. Analogously for …rms 3

and 4. Combining (1) and (2) we get

L2 · X
4

+ 2 and L3 ¸ 3X
4

¡ 1: (3)

For the moment we will focus on those cases in which the following holds:

L3 ¡ L2 > 1. We will show later that this is the general case, and we will

analyze as well the single special case where this does not hold.

Consider …rst L1 6= L2. Then (because otherwise …rm 1 would like to

relocate between …rms 2 and 3) it must hold that

L1 ¸ L3 ¡ L2

2
=

L3 ¡ L1 ¡ 1
2

: (4)

From (4) we get that L1 ¸ L3¡1
3 . Combining this with (3) leads to

L1 ¸ X
4

¡ 2
3
: (5)

Since only integer values are allowed, combining (1) and (5) gives L1 2
©X

4 ; X4 + 1
ª

: Now suppose …rm 1 was located at X4 + 1. Since L1 6= L2, the

pro…t of …rm 1 is greater than X4 , and there must be at least one …rm earning
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less than X4 , which it could get by switching to L1 ¡ 1, i.e., X4 . Hence, we
must have

L1 =
X
4

and L2 =
X
4

+ 1: (6)

Next suppose L1 = L2. Analogous to (4), in that case it must hold that
L3 ¡ L1 ¡ 1

4
+

L1

2
¸ L3 ¡ L1

2
: (7)

From (7) it follows that L1 ¸ L3+1
3 . Combining this again with (3) and (1)

leads to L1 2
©X

4 ; X4 + 1
ª
. Now suppose that …rm 1 and 2 were located at

X
4 . This is not an equilibrium because each of them would have an incentive
to move to X4 + 1. Hence, we must have

L1 = L2 =
X
4

+ 1: (8)

To see that L3 ¡ L2 > 1 is indeed the general case, observe …rst of all
that it follows directly from (3) whenever X > 8. Now, suppose X + 8. If
L1 6= L2 we cannot have L1 = X

4 + 1 for the reason given above. Hence
we still have L3 ¡ L2 > 1. And from (3) it follows that the same applies if
L1 = L2. The only special case arises when X = 4. If L1 6= L2, then again
we cannot get L1 = X

4 + 1 for the same reason as above. Hence L1 = X
4

and L2 = X
4 + 1. If L1 = L2, then this cannot happen at X4 because either

L3 = 3X
4 ¡ 1, in which case the pro…t of …rm 1 would be less than X4 , which

it could secure by choosing an empty location, or L3 ¸ 3X
4 , in which case

the general analysis of above goes through. Hence, it must be the case that
L1 = L2 = X

4 + 1.
In other words, for any X > 0, with X a multiple of 4, all equilibrium

con…gurations must conform to (6) and (8). Analogous reasoning for …rms
3 and 4 leads to

L3 =
3X
4

and L4 =
3X
4

+ 1 (9)

or
L3 = L4 =

3X
4

: (10)

Having excluded all alternative con…gurations, the proof is completed by
demonstrating that each combination of either (6) or (8) with either (9) or
(10) is indeed an equilibrium con…guration by checking all best–responses.

¤

Proof of Corollary 1 Straightforward pro…t calculations for each …rm
for each equilibrium con…guration. ¤

19



C Translation of the Instructions

Welcome to the Experiment. Please read these instructions carefully. Do

not talk to your neighbors. Please keep quiet during the entire experiment.

If you have any questions, please raise your hand. We will then come to

your place.

In our experiment you can earn di¤erent amounts of money, depending

on your behavior and that of other participants who are matched with you.

In this experiment you have the role of a seller, who supplies a …ctitious

product together with three other sellers on a market. You and the other

three participants have the opportunity to sell the product to a group of

1000 simulated buyers at a price of 1 Taler per unit. The buyers are located

on the integer points of a line (from 1 to 1000). You and the other sellers

will simultaneously choose a location (a number from 1 to 1000) on this

line. All consumers want to buy exactly one unit of the product. Since the

product has the same price of 1 Taler at every seller, the buyers purchase

the product at the seller located closest to her. Each …rm sells as many

units of the product as consumers come to buy there and it earns exactly

this amount of money. To make it not too complicated we assume that a

consumer who is located in the middle of two …rms (and has by that the

same distance to both of the sellers) is ”split up” and buys half a unit from

the left and half a unit from the right seller. In the case of more than one

seller located at the same location, we assume that they serve the demand

in even shares. Thereby it could happen that a fraction of a unit is sold. An

example will explain this option: Assume that a consumer is located in the

middle between two sellers at the same place to the left and one seller to

the right, i.e. he has the same way to the two sellers on the left hand sight

and to the seller on the right hand sight. Then this consumer will buy half

a unit of the product from the right sellers and half a unit of the product

from the left seller, i.e., both sellers to the left sell one quarter of a unit and

the seller to the right sells one half of a unit.

The experiment consists of 50 rounds. At the beginning of each round

you have to choose a location on the line. There are two methods of doing
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this: The …rst method is to move the green arrow to a speci…c position on

the line by clicking this point on the line with the pointer. The green arrow

is then automatically placed there. In this case the numerical value of this

position is simultaneously shown in the box next to the line. The second

method is to type in the position (a number from 1 and 1000) into the box

next to the line. By clicking the …eld ”Go”, the arrow moves automatically

to the corresponding position on the line. Of course, you can choose a

combination of both methods, e.g., determine a rough position with the

arrow and choose afterwards the exact position by a numerical speci…cation.

If you have …nally chosen a location, con…rm your decision by pressing the

”OK” button. In every round you can choose an arbitrary new position or

you can choose an old position again.

After each round your position and the positions of the other three par-

ticipants in the preceding round are shown. They appear in boxes of dif-

ferent colors (one color for each participant). Additionally, arrows of the

same color, emanating from the boxes, point to the corresponding position

on the line. Take into account that your own position is always displayed

in a green box (respectively by a green arrow). The positions of the other

participants are displayed in a blue, yellow, or red box. The assignment of

the colors to the other participants is constant during the entire experiment.

Furthermore, you will be informed after each round about your own pro…t

in the last round and your present accumulated sum of pro…ts. You can …nd

this information in the upper part of the screen.

In each round you can recall the four positions of past rounds. To do

this just click on the …elds labeled ”back” respectively ”forth” located at

the upper right part of the screen.

During the entire experiment you are matched with the same three other

participants which will be randomly assigned to you. Each group of four

participants serve its own market.

Your …nal pro…t is determined by the sum of all pro…ts earned during the

50 rounds. You will get for every 400 Talers 1 DM. You get your payment

immediately after the experiment.
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