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Neighborhoods as Nuisance
Parameters? Robustness
vs. Semiparametrics.

Helmut Rieder
University of Bayreuth, Germany

25 March 2000

Abstract

Deviations from the center within a robust neighborhood may naturally be
considered an infinite dimensional nuisance parameter. Thus, in principle,
the semiparametric method may be tried, which is to compute the scores
function for the main parameter minus its orthogonal projection on the
closed linear tangent space for the nuisance parameter, and then rescale
for Fisher consistency. We derive such a semiparametric influence curve
by nonlinear projection on the tangent balls arising in robust statistics.

This semiparametric IC is compared with the robust IC that minimizes
maximum weighted mean square error of asymptotically linear estimators
over infinitesimal neighborhoods. For Hellinger balls, the two coincide
(with the classical one). In the total variation model, the semiparametric
IC solves the robust MSE problem for a particular bias weight. In the case
of contamination neighborhoods, the semiparametric IC is bounded only
from above. Due to an interchange of truncation and linear combination,
the discrepancy increases with the dimension. Thus, despite of striking
similarities, the semiparametric method falls short, respectively fails, to
solve the minimax MSE estimation problem for the gross error models.

Moreover, for testing hypotheses which are defined by two closed and
convex sets of tangents, we furnish a saddle point via projection on these
sets. In the cases of total variation and contamination neighborhoods,
the robust asymptotic tests based on least favorable pairs are recovered.
Therefore, the two approaches agree in the testing context.

Key Words and Phrases: Infinitesimal neighborhoods; Hellinger, total
variation, contamination; semiparametric models; tangent spaces, cones,
and balls; projection; influence curves; Fisher consistency; canonical in-
fluence curve; Hampel-Krasker influence curve; differentiable functionals;
asymptotically linear estimators; Cramér-Rao bound; maximum mean
square error; asymptotic minmax and convolution theorems; C(a)- and
Wald tests; least favorable pairs; robust asymptotic tests; saddle points.
AMS/MSC-2000 classification: 62F35, 62G35.
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1 Introduction: The Semiparametric Setup

We need to set up the standard semiparametric framework, which employs some
family Q in the set M of all probabilities on some sample space (Q2,B),

Q={Qp,|0€O0, veH}C M (1.1)

The parameter 6 of interest is finite (k-)dimensional, out of some open param-
eter set © C R*, whereas v acts as nuisance parameter. For each 6, v ranges
over some set Hy ; typically, subsets of some infinite dimensional function spaces.
The observations zi,...,T, ~ (g, are assumed to be independent identically
distributed. Estimators of § may be any functions S,:Q" — R* which are
product measurable B", Borel B¥. Let us fix (fg,0), the true but unknown
values of main and nuisance parameter.

In this generality, optimality results for the estimation of 6y can only be
derived in an approximate way, that is, asymptotically as the sample size n
tends to infinity. Moreover, to obtain meaningful results at all, estimators, which
now are estimator sequences S = (S,,), have to be judged locally about (6y,vp).
Subsequently, this fixed parameter will be omitted whenever feasible. Thus,
we put Qg,,, = (. Expectation and covariance under @) are denoted by E
and C, respectively. Also the spaces L, and L., of square integrable and
essentially bounded real functions, respectively, refer to the fixed Q = Qg,,v, -
The corresponding spaces of R* valued functions are denoted by L% and Lk,
respectively.

For the local asymptotics a certain smoothness of the parametric model is
required, in the sense of mean square differentiability at (6, v9) of square root
densities: There exists some function A € L% —the scores function for the main
parameter 6 at (fp,v9)—such that for each a € RF, and for each function
g € 0,Q there exists some path ¢ — vj € Hp 414, such that, as t - 0 in R,

\/ dQGg—i—ta,uf = (1 + %t(aIA + g)) dQGo,Vo + O(t) (1'2)

In this context, the tangent set 09 = 01 Q + 929 of the model Q at (6o, 1)
enters, where 8;Q = {a’A | a € R*} is the tangent space (linear, closed) for
the first parameter component, and 9,Q C Ly denotes the tangent set for the
nuisance component; all tangents in either class 9,9 necessarily of expectation
zero. The covariance Z = CA, which is the Fisher information of the vq-
section Q,, of model Q for the parameter 8 at 6y, confer (1.10) and (1.11)
below, is assumed of full rank k.

As for complete technical details, maybe in slightly different notations, the
reader may consult standard textbooks on asymptotic statistics such as Bickel et
al. (1993; chapters 2-3), Rieder! (1994; chapters 2-4), and van der Vaart (1998;

L HR, subsequently
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chapter 25). This recommendation also holds for the following notions, to be
summarized in this section.

Influence functions %) or, in robust terminology, influence curves ¢ for
model Q at (6p,vo) are defined by the conditions

pels, Ep=0, E¢YAN =1, E¢g=0VYgeHQ (1.3)

where [ denotes the k x k identity matrix. The set of all influence curves for
model Q at (6o, vp) is denoted by ¥ = Ty, ,, .

On the one hand, influence curves go with functionals 7: Q — R* which
are differentiable, with respect to model Q at (6o,9) in accordance with (1.2),
and Fisher consistent for the main parameter, such that

T(Q9o+ta,ut) = T(QGo,uo) + Ew(aIA + g) t+ O(t) =0p +ta + O(t) (14)

On the other hand, influence curves go with asymptotically linear estimators.
These are estimators S = (5,,) that have an expansion

VAL (S, = 80) = == 3" (ws) +0an (n) (1.5

where the remainder tends to zero in probability, under the sequence of prod-
uct measures Q™. Such estimators are asymptotically normal in accordance
with (1.2): Setting Qn(a,9) = Qgyts,a,»9 for sp = 1/4/n, their distributions

under Q"(a,g) converge weakly as n — oo, for every a € R* and g € 8,0,

Vi (Sn = 00)(@Qr(a, 9)) —— N(a,C)) (1.6)

Given any ¢ € U, at least locally valid constructions to achieve (1.4) and (1.5)
are T(M) =6+ 2 [¢+/dQ+/dM and S, =860+ 1/n> ¥(z;).

For either tangent set 0, Q let lin 9, Q and ¢flin 0, Q denote the linear span,
respectively the closed linear span, of 0,Q in Ls. Thus, ¢/lin9,Q = 0,9, and
cllinfQ = 019 + ¢Llind,Q as dim o, Q is finite. Introduce the orthogonal
projection m,:Ls — ¢/1in0,Q on c¢flin8,Q, and IL.: L¥ — (cflin0,Q)* the
orthogonal projection in the product space; then II, = (m,..., 7)), acting
coordinatewise.

In view of (1.3), the projection II(x)) on (cflin Q)* must be the same for
every 1 € ¥ —the shortest, or canonical, influence curve p. In fact,

HW) = o= J " (A-ILA) Vet (L.7)
where

J =C(A -T2 (A)) (1.8)

denotes the Fisher information of model Q for the parameter 6 at (6o, ).
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By a little argument, the existence of influence curves may be seen to be
equivalent to regularity, that is, positive definiteness, of 7,

V£) << J>0

' . k (1.9)
< d'A¢ cllind,Q VaeR*, a#0

which condition we want to assume fulfilled subsequently.

Remark 1.1 [adaptivity] With the nuisance parameter v fixed to v, the
vp-section Q,, of model Q is a model without nuisance parameter,

Qu, = {QG,VO | b€ @} (1.10)

satisfying (1.2) with 0,9,, = {0} and 0Q,, = 0:Q. Consequentially, the
canonical influence curve ¢ and the Fisher information of model Q,, for the
parameter § at 6y are given by, respectively,

o=T'A, I=CA (1.11)

The following bound of J by Z, in the positive definite sense, is an immediate
consequence of (1.7) and (1.11),

Co=T'<TJ1=Cp (1.12)

where the lower bound is attained iff ¢ = g, which in turn holds iff II,(A) = 0.
This is the case of adaptivity. The construction of adaptive estimators is a
major subject of semiparametric theory; confer Bickel (1982; Sections 3 and 4),
Klaassen (1987), Schick (1986), and the references mentioned therein. Y/

Remark 1.2 [bounded influence curves] Existence of bounded ICs ¢ € ¥,
which may become relevant for robustness in semiparametric models, proves
equivalent to the following condition

adA ¢ cl'lind,Q VaeRF a#0 (1.13)

where ¢f'lin denotes the closed linear span in L; . This follows from Theorem 1
of Shen (1995) on observing that his condition (S”), with ¢£'lin(82 Q+constants)
in the place of ¢f'lin8,Q, because EA = 0 and Eg = 0 Vg € 8,9, in fact
simplifies to (1.13).

Naturally, as any bounded influence curve is an influence curve, respectively
as the Lj -closurein (1.13) is larger than the Lq-closure in (1.9), condition (1.13)
is generally stronger than (1.9). When lin 9,Q has finite dimension, however,
it is closed in both L; and L, and consequentially, the existence of influence
curves automatically implies the existence of bounded ones. Y/
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Remark 1.3 [finite dimensions] In case Hy C R™ for some finite dimen-
sion m, suppose the square root densities of model Q are Ls-differentiable
at (0o, o) with respect to the full parameter (6,v), such that (1.2) is satisfied
with paths »; = vy + tb and with g = b'A, where A € LT*, EA = 0, denotes
the scores function for the nuisance parameter v at (6o, o).

Then 0,Q = {V'A | b € R™}, and the Fisher information # of model Q
for the full parameter (0,v) at (6o,vq) is

HzC(i) = (CI, %) where C = EA A’ (1.14)
Like Z = CA > 0, the covariance D = C A, which is the Fisher information of
the 6p-section Qg, of model Q for the parameter v at vy, may be assumed of
full rank m.

Then I5(A) = CD7'A and J = C(A —IIx(A)) =Z — CD~'C’ (familiar
from C(a)-tests). Moreover, J > 0 iff H > 0, since detH = detD det J .
Condition (1.13), too, because D > 0, is obviously equivalent to tkH = k+m.

In this case,

_ 71 _ -1 _ i A

o=J '(A-CD'A)=DH <A> (1.15)
where

J=T-CD7'C" and D = (lg,0hxm) (1.16)

defines the shortest influence curve, in fact, the first component of the shortest

influence curve (usually ascribed to the MLE) for the full parameter.

Starting from this function ! (2) , bounded influence curves have been

constructed explicitly by HR (1994), Remark 4.2.11 and 5.5(8), 5.5(9), if the
matrix D there is specialized to the projection matrix (Ig, Ogxm) - Y/

Closely related to the orthogonal projection (1.7) of influence curves leading to
the canonical IC p is the Cramér—Rao bound for the covariance,

Cy>7 '=Cp VyYeu (1.17)

in the positive definite sense, with equality iff ) = g. In view of (1.6), this bound
concerns the asymptotic covariance of asymptotically linear estimators. Thus,
the asymptotically linear estimator with canonical influence curve o at (6o, 1)
is the asymptotically most accurate to estimate 6y, in model Q.

That this optimality is not restricted to estimators which are asymptotically
linear, but need to fulfill only a regularity condition weaker than asymptotic
linearity, or may even be arbitrary measurable, is the subject of the convo-
lution and asymptotic minimax theorems, respectively; confer, for example,
Bickel et al. (1993; Theorem 3.3.2), HR (1994; Theorems 4.3.2, 4.3.4), van der
Vaart (1998; Theorems 25.20, 25.21, Lemma 25.25).
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Remark 1.4 [nonlinear projection] These optimality theorems require some
structure of the tangent set dQ, to be a linear space or at least a convex cone.
In spite of the special structure, the projection in terms of which the bounds
are stated, is generally that on the closed linear span ¢flin 0Q.

One exception is the concentration bound for asymptotically median unbi-
ased estimators by Pfanzagl and Wefelmeyer (1982; Theorem 9.2.2), in terms of
the projection on a closed convex cone 99 . In HR, (2000) we however show that
the bound may not possibly be attained, and derive a suitable one-sided bound
that is still based on the projection on ¢£dQ (as opposed to ¢flindQ).

2 The Infinitesimal Robust Setup

In robust statistics, we start with an ideal model P = { Py | # € © } which is
smoothly parametrized by some finite ( k-)dimensional parameter 6 out of an
open subset ©® C RF; that is, P is some model as assumed in Section 1 but
deprived of its nuisance parameter. Since we do not believe in such a model P
strictly, we enlarge its elements Py to certain neighborhoods U(6;r) C M of
radius r. Then the i.i.d. observations, under the hypothesis 6, may be allowed
to follow any law @ € U(6;r), while still § has to be estimated. Thus, the
neighborhood model Q is obtained,

0={Q|6e0,QecU®b;r))} (2.1)

Model Q is clearly semiparametric: The deviation @ — Py of @ € U(#;7r) from
the ideal Py has entered as nuisance parameter v, ranging over the sets of
differences Hg = {Q — Py | Q € U(#;r) }, where Q = Qp,, with v € Hy. In
particular, the ideal model P is the vy section of model Q for vy =0.

Remark 2.1 [nonidentifiability | If one does not start with a true €, but the
real law (), and seeks 6 depending on (), one runs into the identifiability
problem: The equation ) = Q¢,0—p, = P» + @) — P has multiple solutions §.
This is the case already for members @ = F; of the ideal model with { close
to @ such that Pr € U(;r) (usually, the parametrization is continuos relative
to the neighborhoods).

This problem has been dealt with by means of functionals that are Fisher
consistent at the ideal model and extend the parametrization to the neighbor-
hoods. Actually, both approaches lead to the same optimally robust influence
curves and procedures—once the choice of functional is subjected to robustness
criteria; confer HR (1994; preface, subsection 4.3.3). /i

We specify the neighborhoods U(#;r) to be balls around Py of radius r in
Hellinger or total variation distance, or contamination neighborhoods,

Uc(0;r) ={Q e M | du(Q,Pp) <71} (2.2)
U0;r)={Q=00-r), Po+ (1AT)M | MeM} (2.3)
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where the Hellinger and total variation metrics dp and d, are given by

20(Q.P) = [|Va@-VaP[',  2a@.P) = [liQ-arl @4

Let us fix 8y € © and vy = 0, and write P for the previous @ = Qg,,1, = P, -
In the sequel, the scores function A is that of the ideal model P, for 8 at 6.

Towards the differentiability (1.2) of the neighborhood model Q. at (6,,0),
depending on the type of neighborhoods U, (6p;r), we introduce the following
balls G. = G.(6o;r) as candidate tangent sets 92Q. ,

Gn={g€Lly|Eg=0,Eg* <87} (2.5)
Go={g9€Ly|Eg=0,E|g| <2r}
gc={g€L2 |Eg=0,gZ—r}

where G, C V2 G, as d, < 2d, and G. C G, = G. — G. by (7.36) below.

Proposition 2.2 The tangent sets at (89,0) of the neighborhood model Q. ,
for x = h,v,c, are

61Q*:{GIA|a€Rk}; 62Q*ZG*; 6Q*:aIQ*+62Q* (28)

PROOF Invoke bounded approximations A® of A such that EA® = 0 and,
as t — 0, sup|[A®| = ot~ ') and E|A® — A2 - 0. Given a € R* and any
bounded g € G, , employ the path v/ = tg in defining measures Q; = Qgo+ta,tg
by

dQ; = (1+t(a'AD + g)) dP (2.9)

Then mean square differentiability (1.2) is satisfied, and these probabilities be-
long to the neighborhoods U, (6y + ta;tr) in the following, entirely acceptable
sense,

de(Qt, Poorta) < tr +0(t) (2.10)

in the cases * = h,v. In the case * = ¢, there exist approximations ]390+ta
of Py,+tq , namely, 1390+ta with P density 1+ t,a’A®, t, = t/(1 —tr), such
that _ ~

dy(Poo+ta, Poo+ta) =0(t) and Q¢ € Uc(o + tastr) (2.11)

for the tr contamination balls (76(00 + ta; tr) about 1590+ta.

In either case, we pass to the closure of G, N Lo, in Ly, which is G, . The
technical details needed in this proof may be found in HR (1994): Remark 4.2.3,
Lemma 4.2.4, Lemma 5.3.1, and proof to Theorem 5.4.1 (a). Y/

Although not yet explicitly as tangent sets, the balls G. appear in Bickel (1981)
and in other work on infinitesimal neighborhoods by that time.

The tangent sets G, are closed convex, and the smallest cone and linear
space containing either G, is already the full tangent space L, N {E = 0},
provided only that r > 0. Consequentially, A —TI2(A) =0 and J =0 in (1.7);
in particular, adaptivity fails drastically. The canonical IC p is undefined.
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3 The Semiparametric Influence Curve

In the robust setup, we therefore modify definition (1.7) of canonical influence
curve, replacing 72 by the nonlinear projection ma: Lz — 02Q4 on 92Q. = .
itself. Correspondingly, I, is replaced by Iy = (2,...,7a)": LE — (829.)%,
defined coordinatewise. Thus, we obtain the following function g., which we
call the semiparametric influence curve,

o=K"1(A-TL(A)) (3.1)
with scaling matrix

K =E(A -TI(A)A’ (3.2)

The definition of § requires that det X # 0. Rescaling of A — II,(A) by K
ensures that EgA’ = I, (Fisher consistency). Note that K # C(A —IIx(A)),
since residuals are no longer orthogonal to the approximating ball.

Remark 3.1 The modified projection recipe (3.1)—(3.2) seems intuitively plau-
sible but is based only on analogy. The semiparametric influence curve has not
been derived as—but may be checked against—a mathematical solution to some
suitable extension of the Cramér—Rao bound, or convolution and asymptotic
minimax theorems, in the semiparametric, respectively robust, setup with full
tangent balls. Y/

The following approximation lemma is well-known and will be applied to the
balls G = G, , the space X = Ly, and the coordinates z of A; then §= T2(A;).

Lemma 3.2 Let G be a nonempty closed and convex subset of some Hilbert
space X, and x € X . Then the minimum norm problem

|z —g|° =min! geG (3.3)
has a unique solution g € G, which is characterized by
(z—glg—9) <0 VgedG (3.4)

In the sequel, Z = CA = (Z; ;) and 9 = Z-'A denote Fisher information (of

full rank k) and the canonical influence curve, of the ideal model P at 6.
We now determine the semiparametric influence curves gy, g,, 0. for the

Hellinger, total variation, and contamination neighborhood models, respectively.

Theorem 3.3 [Hellinger model] The semiparametric IC gy, exists iff

87‘2 < minjzl,m,k Ij,j (35)
And then
gn=06=T"'A (3.6)
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PROOF In the case Kk = 1 we have T2 = yA with v = positive root of the
minimum of 1 and 87%/Z. Indeed, by Cauchy-Schwarz, for every g € G,

(A=7Alg) = (1=7)(Alg) < A-mVBrI'? = (1-7)yT = {(A—yAlyA) (3.7)

For general k > 1, this implies that A — ﬁg(A) = DA and K = DZ with
matrix D = diag(l —;), where 0 <v; <1, and v; =1 iff Z; ; < 8r2. Y/

Theorem 3.4 [total variation] The semiparametric IC g, exists only if
27 <minj—,. 5 E|Aj] (3.8)
And then A®) = A —TI,(A) has coordinates
Agv) =vj VA AVY (3.9)
where the clipping constants v; < 0 <wvj are uniquely determined by
E(v; — Aj)y =r =E(A; —vj) (3.10)

PRrOOF Obviously, A; —72(A;) =0 iff E|A;| < 2r. Thus assume (3.8).

In case k = 1, in order to minimize E(A — g)? for g € G,, we set up a
Lagrangian E((A — g)? + 2ag+28|g|) with some unspecified real multipliers,
and try to minimize the integrand I(g) = (A —g)?+2ag+23|g| at each point.

A minimizing value § = 0 means that A%2 < (A — g)2 + 2ag + 23g for all
numbers g > 0; that is, A—a < 3, and A? < (A — g)2 + 2ag — 283g for all
numbers g < 0; that is, A —a > —f. This is the case when A —§=A.

If ¢ > 0, then the derivative dI(g) =0 gives A—g=a+ 8. If § <0,
dI(g) = 0 gives A—§ = a— 3. These are the cases when A—a > §, respectively
when A —a < (.

Altogether, A—g=(-B)VA—a)AB +a=(a—B)VAA(a+ ) seems
to be the necessary form of § = A —§.

Now define § = v' V A Av" by means of the unique solutions v’ < 0 < v
of E(v' —A)y =r = E(A — "), which is a matter of continuity (dominated
convergence theorem), monotony (strict), and the intermediate value theorem.
We shall verify that this ¢ minimzes E¢? subject to Eq =0, E|A —¢| < 2r.

By the definition of ¢, E(A — q¢)§ < v" E(A — q)+ —v'E(q — A)4, which is
less or equal r(v" —v') = E(A —§)G. Thus E(—§)(¢ —§) < 0, which is (3.4).

Theorem 3.5 [contamination] The semiparametric IC §. exists only if
r < —maxj=1,. infp A; (3.11)

where inf, denotes the P essential infimum. And then A(©) = A — ﬁz(A) has
coordinates
AY = (A +7) A, (3.12)
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with clipping constant u; > 0 uniquely determined by
0=E (A]' + T) A uj (3.13)

PRroOF Obviously, A; —72(A;) =0 iff A; > —r a.e. P. Thus assume (3.11).

In case k = 1, in order to minimize E(A — g)? for g € G., we pass to the
equivalent problem of minimizing E ¢ subject to Eq =0, ¢ < A+, for which
we minimize a Lagrangian Eq¢®> — 2uEq = E(q — u)? + constant, subject to
g < A+ r. Doing this pointwise, the necessary form seems ¢ = (A +7) Au.

Now consider the function f(s) = E(A+r)As for s > 0. It is monotone,
continuous [ dominated convergence applies since —(A+r)_ < f < (A+7)4],
and has limits —E(A+7r)_ <0 and » >0 at 0 and oo, respectively. Thus f
has a zero u > 0, which we use to define § = (A+7) Au. (Only in case r =0,
may u be nonunique, but then § = A.) By construction, ¢ satisfies the side
conditions Eq=0, ¢ < A+7.

To prove § optimal, let ¢ € Lo be any such function. Then ¢ < §g=A+r
as soon as G < u. Thus (u — §)(u — q) is always greater or equal to (u — §)2.
Consequentially, E(—§)(¢ — §) = E(u — §)(¢ — u+u — §) < 0; which is (3.4).

Remark 3.6 In Theorems 3.4 and 3.5, conditions (3.8) and (3.11), respectively,
ensure that EAE-*)AJ- > 0 for * = v,¢. This may be seen by writing

E AE”)Aj =E AE.U)AE.”) + 7 —v;) (3.14)

where r(v] —v}) > 0 unless r = 0 (and then Ag-v) = Aj, and Z;; > 0),

respectively by writing
EAYA; = EAYAY + EAL (A; +7 - AlY) (3.15)

where A; +r <u; a.e.P onlyif r =0 (and again Ag.c) =A;, Z;; > 0).
However, whether condition (3.8), respectively (3.11), for dimension k > 1

already imply the nonsingularity of X, hence the existence of g, , respectively

of 9., is unclear. /i

Remark 3.7 The optimization problems of this section resemble those that
determine robust influence curves, however with three distinctions:

(1) The approximation E|A — g|> = min!, instead of E|¢|? = min!.

(2) The L;,L;, and infp bounds on tangents translate into bounds on
influence curves in the dual norm sup,cg, |Etgl|, for * = h,v,c, respectively.

(3) There is no condition on tangents that would correspond to the Fisher
consistency EA’ = i, of influence curves. /i
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4 Comparison of Semiparametric and Robust
Estimators

We shall prove, respectively disprove, the semiparametric recipe (3.1)—(3.2) by
comparison of results. How does the semiparametric estimator—the asymptot-
ically linear estimator with semiparametric influence curve g,—compare with
the robust estimator—the asymptotically linear estimator with robust influence
curve 17, that, by definition, minimizes maximum asymptotic mean square error
of asymptotically linear estimators? The maximum is evaluated over shrink-
ing neighborhoods U,(8y;r/\/n), as the sample size n tends to infinity, with
starting radius r > 0—henceforth, radius r—fixed. For asymptotically linear
estimators, this maximum asymptotic MSE naturally extends the covariance
criterion employed in the Cramér—Rao bound to the infinitesimal robust setup.

Remark 4.1 An extension of asymptotic maximum MSE over neighborhoods,
from asymptotically linear to arbitrary estimators S = (5,,), employing a risk
such as
lim lim limsup sup  sup /b ARy ?dQ™ (4.1)
=002 nooo  |t|<c QEUL (i)
where U, (t;r) = Ul (6o+t/\/n,m/\/n) of fixed radius 7, and R, = v/n (S,—60),
has not been achieved. Theorem 4.1(A) of HR (1981b), which admits arbitrary
estimators, is restricted to one sided confidence probabilities, dimension k=1,
and total variation, contamination neighborhoods (for which least favorable test-
ing pairs exist). Therefore, except in this special robust setup, our comparison of
semiparametric and robust ICs is tied with asymptotically linear estimators. /)

For the estimation of 6y, over shrinking neighborhoods U.(6¢;r//n ), radius r,
we consider a weighted MSE with nonnegative bias weight 8. In the case of
estimators of 6y that are asymptotically linear with influence curves v at 6,
the maximum asymptotic weighted mean square error is

MSE. (v; 8,) = E[¢|* + Br’w(¥) (4.2)

As for the derivation of this risk with weight 8 = 1, the bias terms w.(¢), and
the minimization of MSE,(¢;8,r) for ¢ € ¥, which determines the robust
IC 7, uniquely, please confer HR (1994; chapter 5, subsection 5.5.2).

The influence curves ¥ = ¥y, , and asymptotic linearity of estimators, are
defined with respect to the ideal model P at 6.

4.1 Coincidence in Hellinger Model

Hellinger bias, according to HR (1994; Proposition 5.5.3), is given in terms of the
maximum eigenvalue of the covariance, w?(¢)) = 8 maxevC4. In view of the
Cramér—-Rao bound (1.17), therefore, Hellinger risk MSEy(.; 8,r) is minimized
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by the canonical IC (1.11): ¢ = Z~'A, for every (3,7 € [0,00). Theorem 3.3
thus shows the following coincidence.

Theorem 4.2 Assume (3.5): 812 < min;—i,.. . Zj;. Then the semiparametric
IC gy, agrees with the robust IC ny,,

éh = é = I_IA = 77h (43)
minimizing MSEy(.; 8,r), for every 8 € [0, 00).
In principle, the coincidence justifies the semiparametric recipe. The value of
this result, however, is somewhat diminished since Hellinger neighborhoods, in
certain respects, are deemed too small; confer Bickel (1981; Théoreéme 8) and

HR (1994; Example 6.1.1). The gross error neighborhoods (total variation,
contamination) seem in practice more suitable for robustness.

Remark 4.3 Identity (4.3) implies equality Cg = Cnp in (1.12), with the
semiparametric and robust IC n, = g replacing the canonical IC g, which might
suggest adaptivity. However, due to bias, covariance alone does not define the
right risk in the Hellinger model Qj , which is why MSE,, is used. But clearly,

MSE(ns; B,r) = trZ7' + 837 maxevZ ™ > trZ™' = MSE(;3,0) (4.4)

if only Br > 0. Despite n, = ¢ achieves minimum MSE in model Qp as
well as in P, strict inequality holds in (4.4), so adaptivity is violated: Hellinger
neighborhoods do not go for free. Y/

4.2 Relations for Total Variation
Dimension k£ =1

Total variation bias in one dimension, according to HR, (1994; Proposition 5.5.3),
is wy(¥) = suppt — infpe. The robust IC 7, minimizing MSE,(.;3,r) is
given by HR (1994; Theorem 5.5.7), with 3r? replacing 3 there. Thus,
ny=c VAANC" (4.5)
for any numers ¢’ <0< ¢” and A such that En, =0, En,A =1, and
Bri(c" — ) =E( — AN), (4.6)
The following result justifies the semiparametric recipe (3.1)—(3.2) if one accepts
the particular bias weight implicitly defined by (4.7).

Theorem 4.4 Assume (3.8): r < EA;. Then the semiparametric IC g,
agrees with the robust IC n, minimizing MSE,(.; 8,r), iff bias weight 8 = (3(r)
is chosen such that
Bt=r@" - (4.7)
where v' = v'(r) < 0 < v"(r) =" are determined by
!

E@W —A)y=r=EA-2"); (3.10)
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Figure 1: Bias weight 8(r) and radius R(r) versus radius 0 < r < 1/A/27 , for total
variation neighborhoods U, (6,7/y/n) about the ideal location model Py = N'(6,1).

PRrROOF Theorem 3.4 supplies g, = Av' VA Av" with clipping constants o', v"
determined by (3.10) and rescaling constant A=! = K > 0 (Remark 3.6).
Thus g, attains form (4.5) with ¢/ = v'A and ¢’ = v"” A; in particular,
Bri(c" — ') = Br2(w" —v')A. Since Ar = AE(W' — A); = E(¢' — AA),
by (3.10), equation (4.6) is the same as (4.7). Y/

Bias weight 8 = 1, in view of (4.1), is the most natural choice. Then the
semiparametric IC g, minimizes MSE,(.; 1, r1), since it equals the robust IC 5,
for this radius ry, iff

it =0"(r) = ' (1) (4.8)

Let us keep bias weight 8 = 1. Then the semiparametric IC 5, defined for
radius r minimizes the risk MSE,(.; 1, R(r)) for another radius R(r) given by

R%*(r) = r/ (v”(r) — v'(r)) =r2B(r) (4.9)

since g, is of form (4.5) and (4.6), hence is the robust 7, , for this radius R(r).
Also, by (4.7), it holds that R(r) = r4/8(r) , and (4.8) means that R(r1) =7y .

Example 4.5 For the standard normal location model Py = N'(0,1), Figure 1
shows the bias weight [(r) and the radius R(r) defined by (4.7) and (4.9),
respectively. The function B(.) has singularities at 0 and the right bound-
ary, which is 1 /\/2_77 = 0.3989, and attains its minimum value Bgi, = 4.8662
at min = 0.1668. In particular, no radius 71 for which B(r;) =1 exists.

The radius R(r) descends to 0, hence 3(r) = o(r~2), as r — 0, and rises
to oo as r — 1A/27 . Since R(r)/r = \/B(r) is always larger than +/Bmin ,
the semiparametric IC 9, safeguards against more than double the amount of
contamination assumed in its definition (3.1)—(3.2), and, as B(r) > Bmin, is
typically even more pessimistic. /i
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Confidence risk

The asymptotic maximum risk considered in HR (1981b), instead of mean
square error, and bounded from below for arbitrary estimators (S,), is based
on right and left confidence probabilities as follows,

lim limsup sup sup Q"(R, < —-7)VQQ"(R,>T) (4.10)

€70 mooo |t[<c Q€U (1)

where U, (t;r) = Uy (6 +t/\/n,r/\/n) of fixed radius r, and 7 € (0, 00) is some
interval half-width. As already in (4.1), the standardization R, = v/n (S, —6o)
is needed only for the description of the asymptotic minimax estimator as an
asymptotically linear one.

Theorem 4.6 Assume (3.8): r < EA;. Then the semiparametric IC 9,
agrees with the robust IC 7, with respect to confidence risk (4.10) iff we choose
half-width

T=7(r)=1 (4.11)

PRrROOF According to HR (1981b; Theorems 4.1(A)-4.3; 1980; Theorem 3.1),
for radius
r< TEA+ (412)

the estimator (S,) minimizing risk (4.10) is asymptotically linear at 6y with

IC 7, of form (3.9) and (3.10), however, with r in (3.10) replaced by r/7.
Thus, the semiparametric IC g, is the robust IC 5, iff 7 =1 in risk (4.10).

And then, condition (4.12) on r is the same as (3.8). Y/

Dimension k£ > 1

Exact total variation bias for more than one dimension is rather unwieldy,
wy(¥) = supj. =i suppe'yy — infpe'y), where sup,—; extends over all unit
vectors in R¥; confer HR (1994; Proposition 5.5.3). Approximate versions
wi5(¥) and wy;eo(t) are defined by the Euclidean and sup norms in R* of
the vector of coordinate biasses w,(1;), respectively, which bound the exact
bias from below and above: wyco < Wy < Wy2 < vk Wy - According to
HR (1994; Theorems 5.5.6-7) on one hand, the robust ICs 7, minimizing either
risk MSE,,s(.;3,7) have the coordinates

n; =c;VAANC (4.13)

with any numbers ¢; < 0 < ¢ and row vectors A4; € R* such that the side
conditions En, =0 and En,A’ = [ are met. Moreover, the clipping constants
satisfy

ﬂrQ(c;-' —c;) =E(¢ - AjAj)+ (4.14)
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in case s = 2, whereas, in case s = 0o, the differences ¢}/ — ¢/ are all the same
Bri(cj —cj) =E(ci — AiA1), + -+ E(c}, — AeAs) . (4.15)

By Theorem 3.4 on the other hand, with clipping constants v; < 0 < v} defined
by (3.10), and (4%")~1 = K by (3.2), the semiparametric IC 3, has coordinates

8; = AP ol VAL AV + -+ APF 0l v A, A (4.16)

Thus, the order of clipping and linear combination is interchanged in g, and 7, .
So g, resembles, but does not exactly match, the robust 7, , therefore does not
minimize either risk MSE,s(.;8,7), s =2,00, if only gr > 0.

However, the bias terms w,,;s are only bounds for the exact bias w, , while g,
ought to be compared with the minimizer of the exact risk MSE,(.;3,r).
And, at least, g, has finite biasses wy;s(8,) and w,(@y), hence finite risks
MSEy;s(0v; 8,7) , and MSE, (8v; 3,7) -

The relative increase of risk of the semiparametric IC g, over that of the
robust IC 7, remains to be investigated numerically—even in one dimension
when 3 # B(r). A suboptimal g, may still be useful.

4.3 Discrepancy for Contamination

Contamination bias is w.(¢)) = supp |¢)|, the Lo norm. The robust IC 7,
which minimizes MSE.(.;3,r), by HR (1994; Theorem 5.5.6), is the Hampel—-
Krasker influence curve,

e = (AA —a)w, w:min{l, ﬁ} (4.17)
with a particular bound, namely, the solution b to the equation
Br*b =E (|AA — q —b)+ (4.18)

which may be nonunique only if 87 =0 (in which case 7. = 9).
The semiparametric IC g., by Theorem 3.5, has coordinates

éj = Aj’l (A]_ + T‘) A uy + -+ Aj’k (Ak -+ T) A U (419)
with upper clipping constants u; defined by (3.13), and (47%)~! = K by (3.2).
Thus, in general, g, is unbounded so that the risk MSE.(g.;8,7) becomes

infinite, if only Sr > 0 (the only interesting case).

The intuitive convex combinations, which have been used in robust statistics
prior to any other type of neighborhoods, have always turned out very similar
to total variation in robustness respects. It is therefore surprising that the
semiparametric recipe (3.1), (3.2) may give reasonable results for one model but
not the other. However, in the simplest testing context (one parameter, one-
sided), the discrepancy disappears again; confer Remark 7.3 and Theorem 7.7.
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5 Unresolved: Robust Adaptive Estimation

In the general semiparametric model of Section 1, given the canonical influence
curves (1.7), one gy, for each parameter # € ©, v € Hy, the construction
problem is to obtain an estimator (S,) that, for each § € © and v € Hy, is
asymptotically linear at (6,v) with prescribed IC gg,,, .

Such estimators are automatically nonrobust in the same setup—asymptotic,
infinitesimal—in which their efficiency is obtained.

For example, consider the model dQy,.(z) = v(x — ) dz with location pa-
rameter § € R and nuisance parameter v any symmetric Lebesgue density of
finite Fisher information of location, Z, = [ A2(z)v(z)dz, A, = —i/v; then
A (z) = Ay(z — 0). In this model, adaptivity Iy ,(Ag,) =0 holds by rea-
sons of symmetry. Adaptive estimators have been constructed by Beran (1974)
and Stone (1975) and, at each (6,v), have expansion (1.5) with influence curve
00,0(z) = dp,u(x) = I, 'A,(z — 0). Hence, under Qf , , they achieve normal
limit law N(0,Z, '), as if v was known.

The assumption of exact symmetry, however, is very strict. In practice,
one would accept a distribution function as symmetric if it only is in a small
neighborhood of an exactly symmetric one. Such nonparametric hypotheses of
approximate symmetry have been investigated by HR (1981 a; section 3) and
generalized by Kakiuchi and Kimura (2000). If Qp, is thus enlarged to a
shrinking neighborhood U.(6,v;r/i/n), while still § has to be estimated, the
adaptive estimates /n (S, — 6) are driven off from their limit N(0,Z,!) by
some bias up to %rwy(dp,,) which, for gross error neighborhoods (% = v,¢),
may become infinite if only A, = —#/v is unbounded.

This observation obviously extends to the general semiparametric model if
the canonical influence curve gy, is unbounded.

Other robustness aspects, not considered in this paper, are breakdown point
and qualitative robustness. Possibly related is Klaassen’s result on the nonuni-
form convergence of adaptive estimators in the symmetric location case; confer
Bickel’s (1981) presentation. Pfanzagl and Wefelmeyer (1982; Proposition 9.4.1,
Corollary 9.4.5) have similar results, which connect the nonuniformity with dis-
continuity of the Fisher information. On the contrary, it is easy to see (since the
Lindeberg condition may be verified uniformly) that Huber’s (1964) minimax
location M-estimate tends to its normal limits uniformly on the corresponding
symmetric contamination neighborhood.

In view of all this, it seems desirable to construct estimators not with the
canonical influence curves g, but robust influence curves ny , instead, sacri-
ficing a few percent efficiency under g, to gain robustness against deviations
from @, . The problem has also been adressed, and declared a field of future
research, by Bickel et al. (1993; Introduction, p 4).

A first step in this direction has been made by Shen (1995; Theorem 2)
who derives a bounded influence curve 7y, = 7. minimizing E |¢)|*> among all
influence curves ¢ € ¥, as defined in (1.3) for a general semiparametric model,
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subject to || < sup |7|. In some sense, the result may be viewed an extension
of HR (1994; Theorem 5.5.1), from finite to infinite dimensional nuisance tangent
space 02Q (of a certain kind; namely, an L, space of functions, expectation
zero, and measurable relative to some sub o algebra of B).

The corresponding robust, and adaptive, estimator construction, however,
has not been done yet.

6 Semiparametric C(a)-Tests

The semiparametric approach is carried further to the testing of hypotheses
about the parameter of interest. The optimal tests are generalized C(«)-tests,
which are based on residual scores after an orthogonal projection on the closed
linear tangent space for the nuisance parameter. In connection with the robust
tangent balls, the nonlinear projection on these balls will be employed instead.

6.1 C(«)-Tests For Tangent Spaces

Recall the the general setup of Section 1: The semiparametric probability
model @ ={ Qs |6 € ©, v € Hy} with main parameter #, nuisance parame-
ter v, the fixed parameter value (6o, ) and corresponding element @ = Qg 5
the scores function A € Lk = L5(Q) of Q for § and the differentiablity (1.2)
of Q at (f,v), the orthogonal projection Ilp: L5 — (cflin 8,Q)*, and the
Fisher information J = CA of Q for 6 at (fy,vp), where A denotes the
residual scores

A=A—-TI(A) (6.1)

Given some numbers —oo < 21 < 29 < 00 and 0 < 23 < 24 < o0, local
asymptotic one- and multisided hypotheses about the difference between the
true 6 and its reference value 6y are defined by

H: JY%a< 2 vs. K':eJ'%a> 2 (6.2)
H': dJa<z vS. K": dJa>22 (6.3)
where e € R¥ | |e| = 1, is some fixed unit vector, and J'/? = A any k x k root

of J such that AA' = 7.
The hypotheses concern the sequence of laws @Q,, € Q of the n i.i.d. obser-

vations zi,...,Zn ~ Qn. It is assumed that, for any a € R¥ and g € 80,
eventually (that is, for all but finitely many n),
Qn = Qn(a7 g) = Q90+sna,ufn (64)

where s, =1/\/n and t — v{ € Hy 44, is some path with tangent g in (1.2).

We employ asymptotic tests § = (d,), that is, sequences of tests d, at
sample size n. Their error probabilities will be evaluated under the n fold
product measures Q7 , asymptotically, as n tends to infinity.
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For a € (0,1), let u, denote the upper « point of the standard normal dis-
tribution @, such that ®(—us) = a. By x2(k,2?) denote the x? distribution
with % degress of freedom and noncentrality 22, respectively a random variable
having this distribution, and by c,(k, 2?) its upper a point.

Theorem 6.1 Let 6 = (§,,) be any sequence of tests.
(a) Then, in the one-sided case,

sup lim sup/dn dQn(a,9) < a (6.5)
H' n—oo
implies
1nf lim sup/&n dQr(a,g9) < ®(—uq + (22 — 21)) (6.6)
n—oo
(b) In the multisided case,
sup lim sup/dn dQr(a,9) <« (6.7)
H" n—oo
implies
inf lim sup/&n dQ"(a,g) < Pr(x*(k,23) > ca(k,23)) (6.8)
n—roo

(¢) Bounds (6.6) and (6.8), with limsup replaced by liminf, are achieved
by the asymptotic tests

8 =(4,), = (e J V27, > ua +21) (6.9)
& = (52)7 (5" — Jtz, > ca(k,z3)) (6.10)

respectively, where Z, =1/\/n > 1, A( i)

PRrOOF The differentiability (1.2), for every a € R¥, g € 9,Q, entails the
following loglikelihood expansion,

dQn(aa g) 1 ! 1., 2 0
log =i = Un 2:} A+9)(@:) = lla'A+gll” +0gr(n®)  (6.11)
Thus, given a € R* | the Fisher information ||a’A + g||> at ¢ = 0 of the one
parameter family Q(a,g) = {Qgy4ta,,#} is minimized with respect to g € 9>Q
by g, = —7r2( 'A) = —a'II3(A). Therefore, associating with each a € R¥ any
path v¢ = v¢* | the sequence of k parameter submodels Q,, = { Qn.. | a € R*}
of {Qn(a,g)|a€R", gedQ}, consisting of the elements Q. = Qn(a,ga),
will turn out least favorable. B

In fact, as a’'A + g, = d’A and CA = 7, expansion (6.11) specializes to

dQ" = \/_ Z (z;) a']a + 0gn (n°) (6.12)
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Because of this asymptotic normality, of the sequence of product models OF,
Theorems 3.4.6, 3.4.11 of HR, (1994) are in force and, subject to (6.5) and (6.7),
respectively, furnish the power bounds (6.6) and (6.8), as well as the asymptot-
ically most powerful level « tests &' and §", for the sequence of submodels.

But, for arbitrary tangents g € 02Q, (6.11) implies the following asymptotic
normality of Z,, under Q%(a,g),

Z,(Q™(a,9)) —— N(EA(d'A +g),J) (6.13)
where
EA(d'A+g)=EAANa=Ja (6.14)

since A is orthogonal to II(A) and g. Hence, the asymptotic error probabilities
of the tests &' and 4" do not depend on g € 3:Q. Y/

Remark 6.2 The orthogonality of A on 9;Q may be used a second time to
construct test statistics that do not require knowledge of vg.

In the finite dimensional case, confer Remark 1.3, upon a regularization of
the likelihoods, (total) scores function, and Fisher information, estimates of v
which are y/n consistent and suitably discretized may be inserted for vg; confer
HR (1994; Lemmas 6.4.1 and 6.4.4). Thus Neyman’s C(a)-tests are obtained.

The test statistics Z, may also be replaced by an estimator S = (S,,) of §
which is asymptotically linear, in the sense of (1.5), at each Qg ., , with canonical
influence curve gy, = Jgj,}/_xo,u; confer HR, (1994; Theorem 6.4.8). This leads
to Wald’s estimator tests A’ and ',

N=0), X, =ITY?/n(Sp—6) > ua+2) (6.15)
M=\, X =T(n(Sn —00)' T (Sn — o) > calk,23)) (6.16)

Like 0" and §"”, also the test sequences A’ and A" achieve maxmin asymptotic
power subject to level a for H' vs. K', respectively for H" vs. K" .

In the infinite dimensional case, the estimation of Ag, ,, and Jy, ., (With 6o
known, vy unknown), and the construction of an asymptotically linear estimator
with canonical influence curve gg,, = .79*’,/117&9,,, at Qo,, (at least for 6 = 6y and
every v € Hy,) is more difficult. The methods of Klaassen (1987) and the
references mentioned therein may prove useful. /i

6.2 ((a)-Tests For Tangent Balls

Recall the setup of Section 2: Starting from an ideal, smooth k parametric
model P = {Py | § € ©} without nuisance parameter, Theorem 6.1 first
specializes with 9,7 = {0}. Thus, the classical test sequences §' and §",

&, =X(e'T7V% 2 > ug + 21) (6.17)
§ =X(ZL T 2, > calk, 22)) (6.18)
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based on Z, = 1/\/n 3" A(x;), as well as the test sequences XN and X" employ-
ing an asymptotically linear estimator S = (S,,) with influence curve g = Z'A
at P=F,,

N, =X(e' T2 /n (S — 60) > ug + 21) (6.19)

Xy =1(n(Sn — 00)'Z (S — bo) > ca(k, 23)) (6.20)

achieve maxmin asymptotic power subject to level «, for the following paramet-
ric local asymptotic one- and multisided hypotheses about 6 — 6, respectively,

H : TV < 2 vs. K': €TIY?a> 2z (6.21)
H': dTa<z? vs. K'": dZIa>2) (6.22)

Now enlarge the parametric measures Py to neighborhoods U(#;r¢) under
the null hypothesis, respectively U(6;r;) under the alternative. Thus, robust
local asymptotic one- and multisided hypotheses H' vs. K', and H" vs. K"
about 6 — 6 are obtained. These concern the laws Q@ € U(6o + 5,0; 8n70/1)
at sample size n, where s, = 1/A/n, and a € R is subject to the conditions
of the corresponding parametric hypotheses v, K . g, I?: "' respectively.

By this enlargement, size and power of the tests ¢’ and ¢” will be affected
without control. Conceptually, a robustification is appealing that interpretes
model deviations as nuisance parameter. Then, to the neighborhood model Q
of semiparametric form (2.1), Theorem 6.1 may again be applied, and leads to
the semiparametric recipe: From A subtract the component II5(A) explained
by the nuisance parameter, and exchange the test statistics 7~/ 27, basedon A
for the test statistics J~'/2Z, based on A = A —TI5(A).

Remark 6.3 In the context of testing, contrary to estimation, there is no Fisher
consistency requirement, that is, E¢YA’ = I in (1.3) and the corresponding
standardization by 7! in (1.7). The present standardization of A by J /2
shall achieve unit covariance of the limit normals to obtain invariance under the
orthogonal group, which is needed in the proof of the maxmin testing result.

However, in the case of Hellinger, total variation, and contamination neighbor-
hoods, the tangent sets 029, determined by Proposition 2.2, where *x = h,v,c,
satisfy ¢flin9;Q. = Ly N {E = 0} . Therefore, as in Section 3, we replace
and _II, by the nonlinear projection 7o: Ly — Gi on 02Q« = G., respectively
by Iy = (F2,...,7) : Lk — G¥ (acting coordinatewise).

Actually, the situation is more complex for testing than for estimation in Sec-
tion 3, since now two neighborhoods (null hypothesis, alternative) are involved.
This will be clarified in Remark 7.3 below.

We first put r = ro + r1 and naively project on G, (of this radius). Thus,
let

A =A-TI,(A) (6.23)
and suppose that
J=CA>0 (6.24)
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Then, based on Z,, =1 Ny A(z;), the semiparametric approach leads to the
scores statistics,

gV 2z, 20 J7'Z, (6.25)

for testing the robust one- and multisided hypotheses H' vs. K' and H"
vs. K" respectively. The corresponding semiparametric estimator tests would
employ the statistics

e T 2K (S, —6), n(Sp —60) K'T~1K (Sn — o) (6.26)

based on an asymptoticaly linear estimator S = (S,) with semiparametric
influence curve g = K~ 'A, provided K = EAA’ is regular; confer (3.1), (3.2).

The semiparametric asymptotic tests thus obtained are denoted by &', ",
and X, X', respectively. The suitable choice of the critical values for their test
statistics must however be left open so far.

Hellinger Model By Theorem 3.3, under condition (3.5): 8r% < min Z;;,
we have A = DA with regular matrix D = diag(1 — -y;), where 7]2- 7, =8r?.
It follows that J = DZD, JY? = DI'/?, and so J~1/2A = I-1/2A.
Moreover, K = DT, hence K'J 'K =7,and 5= 9 =7 'A by Theorem 4.2.
Therefore, the semiparametric test statistics (6.25), (6.26) agree with the
parametric test statistics in (6.17)—(6.20). The result matches Theorem 4.2.

Total Variation Model Under condition (3.8): 2r < min E|A;|, Theo-
rem 3.4 furnishes A with coordinates A; = v; VA Av} and clipping constants
are determined by (3.10). Thus the coordinates of J~'/?A are linear combina-
tions of v; V A; Av}, hence are bounded.

Boundedness of the semiparametric test statistics and influence curve 9, ,
confer (4.16), ensures a minimal robustness of the corresponding semiparametric
tests &/, AL, for H! vs. K',and §", \! for H! vs. K!.

Contamination Model Under condition (3.11): r < —max infp Aj, The-
orem 3.5 supplies A]‘ = (Aj +7) A uj, whose upper clipping constant wu; is
defined by (3.13). Thus the coordinates of 7 ~'/2A | certain linear combinations
of (Aj +r) Auj, may be unbounded.

Unboundedness of the semiparametric test statistics and influence curve g.,
confer (4.19), entails maximum asymptotic error probabilities 1 of the corre-
sponding tests for the robust hypotheses; as with estimation in Subsection 4.3.

However, Remark 7.3 says that, instead on G, = rG,., we must actually
project on the set r¢G.—r1 G, (which makes no difference in the Hellinger and
total variation models.) The correct A and §., therefore, are determined by
Theorem 7.7, and turn out bounded towards both sides.
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Boundedness of the semiparametric test statistics and influence curve g.,
now essentially of form (4.16), ensures some minimal robustness of the corre-
sponding tests o., A, for H. vs. K., and o, Al! for H!' vs. K.

Multiparameter, Multisided Case _In this general case, an exact evaluation
of the asymptotic maximum size over H"” and minimum power over K" of the
derived semiparametric tests, and other tests based on quadratic forms in sums
or in asymptotically linear estimators, is rather complicated; confer HR, (1994;
§ 5.4, pp 192-194), especially equation (54) there. Optimization problems arise
for the maximum eigenvalue of the information standardized covariance subject
to bounds on the self-standardized sensitivity; see equation (55), p 194.

As these problems have not been solved yet, no optimally robust test is
distinguished, in comparison of which the semiparametric tests might be judged.

It certainly is an advantage of the semiparametric approach to robust testing
that it works in higher dimensions as it works in one, and that it yields test
statistics which seem reasonably, if not optimally, robust.

One Parameter, One-Sided Case In the simplest case, a strong justifica-
tion of the semiparametric approach is possible. Section 7 will establish optimal
robustness: For the one parameter, one-sided, robust hypotheses H' vs. K',
the semiparametric test 6’ (and \') is asymptotically maxmin.

7 Saddle Points For Testing Convex Sets

Consider hypotheses which consist of local alternatives generated by any two
disjoint closed convex sets Gy and G; of tangents at some probability P.
Picking the unique minimum norm element of G; — Gy, and the corresponding
sequence of Neyman—Pearson tests, seems to fit the semiparametric projection
arguments—and furnishes a saddle point.

The result applies to infinitesimal Hellinger, total variation, and contamina-
tion neighborhoods around P and a local alternative of P with fixed tangent,
respectively. In the total variation and contamination cases, the maxmin asymp-
totic tests thus obtained by projection agree with the robust asymptotic tests
based on the least favorable pairs in the sense of Huber and Strassen (1973).

7.1 Convex Sets Defining Local Alternatives

Let P € M be some probability. Every tangent p € Lo N {E = 0} at P gives
rise to a sequence of local alternatives P, , of P such that, in the Hilbert space
of square root densities,

VAP, = (1+ 1s,p)VdP +0(s,) asn— (7.1)

where s, = 1/A/n . Constructions to achieve (7.1) are
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2
dP,., = (Lsup+1/1-Ls2lpll? ) dP (7.2)

dP, , = (1+ spp)dP if p€ Lo (7.3)

or

Let Go,G1 C L2 N {E = 0} be any two disjoint sets of tangents. The obser-
vations x1,...,T, at sample size n are assumed independent identically dis-
tributed with distribution @, . For fixed g = (go,91) € Go x G1, preliminary
simple asymptotic hypotheses concerning (), are that, eventually,

Hy : Qn =Py, Ky :Qn=~F,4 (7.4)

As in Section 6, asymptotic tests & = (d,,), that is, sequences of tests d, at
sample size n, are employed, and their error probabilities are evaluated under
the n fold product measures Q7.

Then the testing problem Hy, vs. K,, at level a € (0,1),

linn_1>i£f/6n dpy, =max! (7.5)
subject to
lim sup/dn Py, <a (7.6)
n— 00

has the solution 4 = (0p.g),

Ong =1 [% Zglo(wi) > ||lg10l|ue + (g1o|go)] (7.7)

i=1

where g = (g0,91), 910 =91 — 9o, and u, denotes the standard normal upper
o point. Under Hy,, J, achieves asymptotic size o and under K, , asymp-
totic power ®(—uq + ||g10||). The tests 0,4 are unique up to terms tending
to 0 in P™ probability. All these statements follow from the loglikelihood
expansion (7.13) below and HR (1994; Corollary 3.4.22).

Put Hg, = U{Hgo |go S G()} and Kg, = U{.K—g1 | g1 € G1}

7.2 The Maxmin Test Result

Then the maxmin testing problem Hg, vs. Kg, at level a € (0,1) is

inf liminf [ §,dP;, = max! (7.8)
91€G1 n—o0 ?
subject to
sup limsup/én rPy . <a (7.9)
go€Gp n—oo

2 Note that ¢ > 0 must be assumed in part (b).
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Convex Closed Tangent Sets The tangent sets
Go,G1 C Lyn{E =0}, GonNG1 =10 (7.10)
are each assumed convex and closed in Ly. The set of differences
Gio=G1— Gy (7.11)

which is again convex, may not be closed if dim Ls > 2, and therefore explicitly
assumed to be also closed. Then denote by q10 = ¢1 — ¢o the unique minimum
norm element of Gig; as Go NGy = 0, we have g9 # 0.

Theorem 7.1 The asymptotic testing problem Hg, vs. Kg, atlevel a has a
saddle point at ¢ = (qgo,¢1), and the maxmin asymptotic power achieved by d,
equals ®(—ua + [|quoll ) -

Proor For any tangent p, the following loglikelihood expansion holds,

dPy
log 5 = sn ), p(z) = 3 lIoll” + 0pn (n) (7.12)
Hence ipn
n,91 __ . 0
8 gpp = D, 10(xi) + const + opn (n) (7.13)

by mutual contiguity, for every g = (go,91) € Go X G1 and gi10 = g1 — go -
Therefore, the test sequence J, is indeed the optimum one at level o for Hy,
vs. K, ; confer HR (1994; Corollary 3.4.2).

Let us evaluate d,, for any ¢ = (go,¢1) € Go x G1 fixed, under other
tangents p € Go U G1. In view of (7.12), by one of LeCam’s lemmas, confer
HR (1994; Corollary 2.2.6), the sequence of test statistics s, )., qio(z;) are
asymptotically normal under P ,,

Sn Zz qio(xi) —— N ({q10lp); llgroll*) (7.14)
hence (qo \
. q10|P — Qo

lim OnqdP) = ®—uq+ ——7— 7.15

n—oo 4 P ( ||q10|| ) ( )

Therefore, the asymptotic size under go € Gy becomes maximal at go = qo,
and the asymptotic power under g; € G1 becomes minimal at g1 = ¢, iff

(g10lg10 — g10) <O Vgi0 € Gio (7.16)
By Lemma 3.2, this characterizes the minimum norm element ¢19 of Gio- ///

While ¢19 = g1 — qo is unique, there may exist other least favorable pairs of
tangents g = (go,91) in Go X G achieving the same g10 = g1 — go = quo0 of
minimum norm in Gy9 = G1 —Gp. But then d, = J,, by the following corollary.
So the maxmin asymptotic level o test for Hg, vs. Kg, is unique.
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Corollary 7.2 Let g = (go,91) and q¢ = (qo,q1) be two least favorable tangent
pairs in Gg X G1. Then

{q10/90) = (q10]90), {q10/91) = {gqrolq1) (7.17)

PRrOOF By the saddle point, §, achieves asymptotic size < o under Hy, and
asymptotic power > ®(—uq + ||qi0||) = ®(—uq + ||g10]|) under K,, . However,
strict inequalities cannot hold since &, is optimal for Hy, vs. K, . Inserting
P = 90,91 in (7.15) and (7.16), (7.17) follows. Hence, in particular, d, = d,. //

7.3 Robust Asymptotic Tests

In the setup of Section 2, with P = Py, , the normed robust tangent balls G.
are

Gh={g9€Ly|Eg=0,Eg* <8} (7.18)
G,={geLy|Eg=0,Elg| <2} (7.19)
Ge={gely|Eg=0,g>-1} (7.20)

Thus G. = rG. are the balls of radius r introduced in (2.5)—(2.7); * = h,v,c.

We assume parameter dimension k = 1. Invoke the scores function A for
the parameter 6 of the ideal model P at 6y, and let numbers rg,r;,7 € [0, 00)
be given. Then Theorem 7.1 is going to be applied to the tangent sets

Geo=10Gx,  Gu1=7TA+1G, (7.21)

Remark 7.3 The minimum norm element g., 10 of G110 = Gx,1 —Gx,0, there-
fore, will be 7A minus its projection on the set of differences roG. —r1 Gy ./

Abbreviate the corresponding hypotheses by H, = Hg,, and K, = Kg, , .
As shown in the proof to Proposition 2.2, H, and K, represent the neighbor-
hoods U, (6o; snro) and U.(Bo+snT; Spr1) about Py, and Py, s, of radii s,mg
and s,r; respectively, up to some o(s,) where s, =1/4/n. Put r =rg+ry.

Maxmin Tests for Hellinger Balls

Theorem 7.4 Let
872 < 12T, where T = ||A|? (7.22)

Then the least favorable tangent pair qn, = (gn,0,4qn,1) in Gpo X Gp,1 is unique,
qno =ToYA, gna =TA-—r1vA, where v= V8 A~ (7.23)
The maxmin asymptotic level . test 64, = (dp,q,) for Hp vs. K}, is given by

S =I[ 1

vnI

i A(zi) > uq + V8 rg] (7.24)

and achieves maxmin asymptotic power ®(—uq + T||A|| — V87).
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PROOF Since G}, is symmetric convex, G1g = TA+r1Gp —roGr = TA—1rGy,
and the minimum norm element qi¢ is supplied by g0 =709, g1 = 7A—1r1 9,
where § € G}, is the unique minimizer of ||[TA —rg|| among all g € G,

The projection of 7A on rG}, is determined by Theorem 3.3 and its proof,
with A replaced by 7A. Then condition (7.22) coincides with condition (3.5),
and is equivalent to r§ # 7A, that is, GLoNGr1 = 0. Thus g=~A.

With g9 = (7 —vr)A and (gi0|g0) = ||gi0]| V80, Theorem 7.1 applies.

The pair (go,q1) is unique: go = rogo and ¢1 = 7A + r; g1 for arbitrary
elements go,91 € G, entails that 7§ = rogo — r191, and then go = —g1 = g
because ||gol|, |lg1|| < /8 = ||| and the norm is strictly convex. Y/

Thus the least favorable tangents—multiples of A —generate local alternatives
within the parametric model P, and the asymptotic maxmin test J,, agrees
with the asymptotic most powerful test for (Pj) vs. (Pgl,, ) at the smaller
level ®(—uq —v/87¢). The result compares with Theorem 4.2 and Remark 4.3.

Least Favorable Pairs of Probabilities For Hellinger balls, least favorable
pairs of probabilities in the sense of Huber and Strassen (1973) do not exist;
confer Birgé (1980).

For total variation and contamination neighborhoods, such Huber—Strassen
pairs exist, While the least favorable pairs are not unique, their likelihood and
its distribution under each of the two probabilities of least favorable pairs is
unique; confer HR (1977). The Neyman-Pearson tests based on the likelihoods
of the product measures of least favorable probability pairs furnish finite sample
size, hence also asymptotic, maxmin tests.

The robust asymptotic tests derived from Huber—Strassen pairs have been
evaluated by Huber—Carol (1970), HR (1978), Wang (1981), and Quang (1985).

Maxmin Tests for Total Variation Balls

Theorem 7.5 Let
2r < T E|A] (7.25)

(a) Then a least favorable tangent pair ¢, = (Qv,0,qv,1) in Gyo X Gy1 I
given by

Q.0 =ToGv Qo1 =TA—7T1Gy (7.26)

where
gy =T7(A—v")y —7(W' — A)4 (7.27)

with clipping constants v' = v'(r/7) < 0 <v"(r/7) = v" determined by

rE@W —A)y =r=71EA —v"), (7.28)
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Setting A") =o' vV A Av", the maxmin asymptotic level o test d,, = (0n,q,)
for H, vs. K, is given by

1 n
=T —=> AW (z) > AW "y 2
(Sn,lh [\/’E e (xl) > || ||ua + 7o (U v ) (7 9)

and achieves maxmin asymptotic power ®(—uq +7||A®]]).

(b) The test sequence &, coincides with the robust asymptotic test based on
least favorable probability pairs for Uy (Pyy;ro/\/m) V8. Uy(PyyyrpymiTi/NT)
hence maximizes the asymptotic minimum power over U, (P, riymi T )
subject to asymptotic maximum size < o over U, (Pyy;r0/\/0) -

Proor

(a) Also G, is symmetric convex, so Gio = TA+1r1 Gy —10Gy = TA—7G,,
and the minimum norm element ¢;¢ is supplied by g9 = r0g, ¢1 = 7A —r1 g,
where § € G, is the unique minimizer of ||[TA —rg|| among all g € G, .

The projection of 7A on rGp is determined by Theorem 3.4, with 7A
in the place of A. Then condition (7.25) coincides with condition (3.8), and is
equivalent to g # 7A, that is, G, 0NG,1 = 0. Thus § is of form (7.27), (7.28).

With ¢10 = 7A® and (gio|go) = 770 (v" —v'), Theorem 7.1 applies.

(b) We invoke the results of HR (1978), replacing P_, by P, in (2.8)
there. This reduces 27 to 7 in that paper. Then the radius condition (2.6) of
HR (1978): r/7 < EA,, coincides with (7.25). Moreover, the clipping equa-
tions (3.9) of HR (1978) agree with (7.28), and then the function A(®) equals
the function (3.10) of HR (1978).

Therefore, Theorems 3.4 and 4.1 of HR (1978) tell us that §,, maximizes
the asymptotic minimum power over U,(Py,+s,+; SnT1) subject to asymptotic
maximum size < a over U,(Py,; $nTo) - /i

Remark 7.6 Under condition (7.25), all least favorable pairs g, = (gv,0,9v,1)
of tangents in G, X Gy,1 are characterized by

9v,0 =T090, Gu1 =TA =119 (7.30)

where go and g1 may be any elements of G, whose positive and negative parts
make up those of §, given by (7.27) and (7.28) such that

rogo +rigi =T(A=v")y,  rogy +rigr =70 —A)s (7.31)

The least favorable tangent pair ¢, = (gv,0,qv,1) , which results from the special
choice go = g1 = g, is not the only one in general. Other choices of go and g;
may be based on suitable partitions of the events {A > v"} and {A <¢'}.
For testing U, (Pgo;ro/\/ﬁ) vs. U, (P90+T/\/ﬁ;n/\/ﬁ), all least favorable
pairs of probabilities have been characterized by HR (1977; Theorem 5.2).
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Maxmin Tests for Contamination Neighborhoods

Theorem 7.7 Let

ro < E(TA —(r - ro)) (7.32)

+

(a) Then the least favorable tangent pair q. = (¢c,0,4c,1) In Geo X Ge Is
unique,
TA+7( = Ay —m

T(Avd)—r (7.33)

geo =T(A=¢")y =10, geq = {
with clipping constants ¢’ = ¢ (r1/7) < z < '(ro/7) = ¢" determined by
TE([ - Ay =r, TEA-C")y =10 (7.34)

where z = (r; —rq)/T. Setting A{®) = ¢V AAc" — z, the maxmin asymptotic
level a test §,, = (0pn,q.) for H. vs. K. is given by

1 n
=TI| - ©) (g, (e "n_
Ong. =1 [ 7 ;:1 AN z;) > |AJug + 70 (c z)] (7.35)

and achieves maxmin asymptotic power ®(—uq + 7||A)]|).

(b) The test sequence d,, coincides with the robust asymptotic test based on
least favorable probability pairs for Ue(Pay;ro/v/n) vs. U (P, frpms T )
hence maximizes the asymptotic minimum power over U.(Pp, i/ /m;T1/v/M)
subject to asymptotic maximum size < a over U.(Py,;r0/\/n)

PrOOF
(a) We can show that Gip = 7A +r1 G, — roG. equals the closed set

TA — (r1 —r0)+{g€L2 | Eg=ri—r9,Egt <ri,Eg™ Sro} (7.36)

As E(TA — ¢); = E(c — 7A)+ — ¢, radius condition (7.32) is equivalent to
r <BE((r1 —ro) —TA) | (7.37)

If (7.32) and (7.37) are violated, the zero function is in Gig as
0=7A—(r —ro) + ((r1 —ro) —TA)+ —(tA—(ry —ro))+

Under conditions (7.32) and (7.37), equivalently ¢' < z = (11 — ro)/7 < " for
the solutions ¢’ and ¢” to (7.34), the function ¢ig = ¢¢,1 — gc,0 is nonzero,

qo=TA—(r1 —ro)+7(c' —AN)y —7(A=C")4

7.38
=7( VAN = (r, —mg) =TAE) (7.38)
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and, by Lemma 3.2, the minimum norm element of Gy . In fact, for all g € G,

<A(C)|r090 - Qc,o) = <CI VAA c"|r0 (14go) —7(A = c//)+>

<d'r E o o _ (7'39)
<d"rgE(1+go) —"TEA—-("); =

as d VAN <" and 1+ go > 0, and by (7.34). Likewise, for all g; € G,,

(AOlgey —7A —rig1) ={c' VAA c"|T(c' —AN)y—ri(1+q))

(7.40)
<dTE(C —A);—rEQ1+¢1)=0
With (A(9)]g.0) =r0(c" — 2), Theorem 7.1 applies.
Now let (rogo,TA 4+ r1g1) be any least favorable tangent pair, that is, with
elements gg,91 € G, such that TA+r1g1 —r0go = q10. Then, in view of (7.38),

ri(l+g1)—ro(L+go) =7 —A)y —7(A=C")+ (7.41)

The RHS, since ¢' < ¢, is a decomposition into positive and negative parts.
As also 14+ g; >0 and 1+ go > 0 this implies that

7 =Ny <r(1+aq), T(A=")y <ro(1+ go) (7.42)

But by (7.34), the functions compared have the same expectations. Hence strict
inequalities cannot hold. It follows that

rogo=7(A—-c")y —ro, rigr=7(c —A)y—m (7.43)

which proves uniqueness of the least favorable tangent pair g. = (gc,0,4c,1) -

(b) The substitution of P_, by P, in HR (1978) reduces 27 to 7 there.
Then the radius condition (2.6) of HR (1978) is (7.32). Moreover, the clipping
equations (3.9) of HR (1978) agree with (7.34), and the present function A(°)
equals the function defined by (3.10) in HR (1978).

Therefore, Theorems 3.4 and 4.1 of HR (1978) tell us that J,, maximizes
the asymptotic minimum power over U.(Py,+s,+;SnT1) Subject to asymptotic
maximum size < a over U.(Py,;8nr0)- Y/

Remark 7.8 The radius condition (7.32), being equivalent to 7¢” > r; — rg
for ¢ satistying (7.34), is stronger than 7¢" > —rg. In turn, 7¢” > —rg for ¢”
satisfying (7.34), can be shown to be equivalent to ro < —7 infp A.

Under this radius condition (3.11): ro < —7infp A, Theorem 3.5 (with 7A
in the place of A) yields the element §o of G, minimizing ||7A — rog|| among
all g e G,:

rogo =TA— (TA+r0) ANu=7(A—c")y — 10 (7.44)

with 4 and 7¢" = u — r¢ determined by E gy = 0. Thus, ¢.0 =70 do-
Likewise, the radius condition (7.37), being equivalent to 7¢' < ry —7¢ for ¢’
satisfying (7.34), implies that 7¢' < 71, equivalently r; < 7 supp A.
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Under this radius condition (3.11): 71 < 7 supp A, Theorem 3.5 (with —7A
in the place of A) yields the element §; of G. minimizing ||7A + 71 g|| among
all g € G.. And then it may again be verified that g.1 =7A+ 7181 .

Therefore, according to Lemma 3.2, it follows that, for all gg,9; € G,

(TA—rodolrogo —r0go) <0,  (TA+rigi|rigr—rig1) <0 (7.45)
But the bounds (7.39) and (7.40) established in the preceeding proof tell us
that this remains true for 7A) = 7A + 71§ —rogo in the place of TA — 7o,

respectively of 7A + r1 §;. This is remarkable since the two additional terms
are always nonnegative,

(r1gilrogo —rogoy = (7(¢' = A)y —ri|rogo+ 710 —T(A — "))

=7r0((c = A)+|1 + 90) > 0 (7.46)
(rogolrigi —m1G1) = (T(A = ") —rofrigr + 11 —7(c = A)4)
=7ri{(A=c")+|1+g1) >0 (7.47)

where use has been made of ¢’ < ¢, which is garanteed by the stronger radius
condition (7.32), (7.37). Y/

Remark 7.9 For testing U.(Pgo;r0/v/n) vs. Ue (P90+T/\/ﬁ;r1/\/ﬁ), all least
favorable pairs of probabilities have been characterized in terms of their densities
by HR (1977; Theorem 5.2). The uniqueness of the least favorable tangent
pair ¢. = (gc,0,4c,1) gives rise to the conjecture that, contrary to the total
variation case,

if (Qn,0,Q@n,1) and (Q} o, Q7 1) are any two, possibly different, least favorable
probability pairs for Ue(Pgy;r0/\/n) V8. Ue(PyyyrpymiTi/N/T) - I

Remark 7.10 For shrinking contamination neighborhoods of a one-parameter
family involving a finite dimensional nuisance parameter, the robust asymptotic
tests based on least favorable pairs were investigated by Wang (1981). It would
be interesting to derive the maxmin asymptotic tests by projection arguments,
and also for total variation balls. Y/
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