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Classification and Regression Trees
Jussi Klemeld, Sigbert Klinke, and Hizir Sofyan

We will call an estimator for the regression function defined by the CART
methodology a regression tree. The word CART means classification and
regression tree. This chapter will focus only on the regression trees.

Regression trees are regression function estimators that are constant in rectan-
gels. The rectangles need not have equal size, as in the case of the (standard)
histogram estimators. Regression trees have the special property that they
are representable as binary trees. This makes the graphical presentation of
estimates possible, even in the case of many regression variables. Indeed, the
regression tree is especially useful in the multidimensional cases. Furthermore,
the regression tree has the advantage that it works also when the regression
variables are a mixture of categorical and continuous variables. The response
variable is assumed to be a continuous variable. Regression tree is well suited
for the random design as well as for the fixed design. The theory of regression
trees was developed by Breiman et al. (1984).

CART methodology consists of three parts. First, we grow a regression tree
which overfits the data. Secondly we prune from the overfitting tree a sequence
of subtrees and lastly we try to select from the sequence of subtrees a subtree
which estimates the true regression function as best as possible.

1 Growing the Tree

cs = cartsplit(x, y, type{, opt})
grows the tree




opt = cartsplitopt(si{, s2, s3,...})
sets the parameters for growing the tree

Growing the tree proceeds sequentially. As a first step we take the regression
estimator to be just a constant over the sample space. The constant in question
is the mean value of the response variable. Thus, when the observed values of
the response variable are Y7,...Y,,, the regression estimator is given by

fla) = (%Zy) In()

where R is the sample space and Ig is the indicator function of R. We assume
that the sample space R, that is, the space of the values of the regression
variables, is a rectangle.

Secondly the sample space is divided into two parts. Some regression variable
X is chosen, and if X is a continuous random variable, then some real number
a is chosen, and we define

Ri={z€R:z;<a}, Ro={zx€R:z; >a}.

If X is categorical random variable with values Ai,... , A4, then some subset
IC{A4,...,A;} is chosen, and we define

Ri={reR:z;€l}, Roy={zcR:zjc{A,..., A }\I}.

The regression estimator in the second step is

where I = {i: X; € Ry} and |I1] is the number of elements in I;.

The splitting of R to R1 and R» is chosen in such a way that the sum of squared
residuals of the estimator f is minimized. The sum of squared residuals is
defined as

(Yi - f(Xi))2-

1

n
=



Now we proceed to split Ry and R, separately. Splitting is continued in this
way until the number of observations in every rectangle is small or the sum of
squared residuals is small. The rectangle R corresponds to the root node of
the binary tree. The rectangle R; is the left child node and the rectangle Rs
is the right child node. The end result is a binary tree.

2 Pruning the Tree

subcs = prune(cs, alfa)
prunes a subtree from the given tree, given the complexity pa-
rameter alfa

subcs = prunetot(cs, lnum)
prunes a subtree from a tree, given desired number of leaves

subcs = maketr(cs, node)
forms a subtree, cutting at a given node

resu = prunecv(tr, alfaseq, x, y, type)
for a given tree, this quantlet calculates the MSE of squared resid-
uals for the subtrees of a given tree

seq = pruneseq(cs)
for a given tree, this quantlet gives the sequence of a values and
numbers of leaves of the pruned subtrees

One might think that the optimal way of choosing a regression tree is to stop
growing the tree before it gets too large. For example, one could stop growing
when the sum of the mean squared residuals of the regression estimator does not
decrease substantially anymore. However, it might happen that the decrease in
the sum of the mean squared residuals is momentarily slow, but some further
splits result again in considerable decrease in this sum.

Let us denote



and for 0 < a < oo,

A, A

Ro(f) = R(f) + aLeaves(f)

where Leaves( f) is the number of the leaves of the regression tree f , which
could be viewed as the number of rectangulars on which f is constant. The
criterion R, (f) takes into account not only the sum of the squared residuals
but it also penalizes with respect to the complexity of the tree, measured by
number of leaves in the tree. The number «a is like smoothing parameter in

kernel estimation.

Let f be a large, overfitting tree and let f, be a subtree of f for which R() is
minimal. Note that fo is f , and when « is sufficiently large, fa is the constant
estimator, that is, it consists of the root node only. When «a increases from 0
to infinity, there are only finite number of values of a at which f, is different.
Let us call those values Q = < < Q. Thq number k is less or equal to
the number of leaves in f. For ay, < a < a1, fa is the smallest subtree of f
minimizing R, (). Now the sequence f,,,... , fa, forms a decreasing sequence
of trees, fal is the original tree f , and fak consists of the root node only.

3 Selecting the Final Tree

cross = cartcv(x, y, type, opt, wv)
cross-validation is done by this quantlet, which calculates the se-
quence of a values, number of leaves of the corresponding pruned
subtrees, estimates of the expected values of the mean squared
residuals and their standard errors

1n = leafnum(cs, node)
gives the number of leaves for a given tree

res = ssr(cs, node)
calculates the sum of squared residuals

enn = pred (tr, x, type)
calculates the prediction of the regression tree for a point x




mssr = prederr(tr, x, y, type)
calculates the sum of prediction errors for given tree and number
of x and y values

Now we have to choose the best tree from the sequence fal, cee fak. In other
words, we have to choose the smoothing parameter a. We will try to estimate
the expectation of the mean of squared residuals R(f,,), and then choose the
regression estimate for which this estimate is minimal. This can be done by
way of cross-validation.

For example, in the ten fold cross-validation we take 90% of the sample, grow
the tree using this part of the sample, prune a sequence of subtrees and calculate
the mean of squared residuals for every subtree in the sequence using the rest
10% of the sample as a test set. This is repeated 10 times, every time using
different part of the sample as an estimation set and as a test set.

There is a problem that because we have used every time different data to grow
and prune, we get every time different a-sequences. The approach proposed
by Breiman, Friedman, Olshen, and Stone (1984, Section 8.5.2, page 234) is to
first grow and prune using all of the data, which gives us the sequence {«;},
then form a new sequence 3; = \/a;a;r1. The number j; is the geometric mean
of a; and ;1. When pruning trees grown with 90% of the sample, we choose
subtrees which minimize Rg, ().

Finally, the estimate for the expectation of R(f,,) is the mean of R( f;a)) Mean

is over 10 cross-validation estimates fgi, v =1,...,10. In practice, the esti-
mates for the expectation of R() do not have clear minimum, and it is reason-
able to choose the smallest tree such that the estimate for the expectation of
R() is reasonably close to the minimum.

4 Plotting the Result of CART

plotcarttree(carttree{, outval})
plots the CART tree




dispcarttree(ctdisp, xn, yn, carttree{, outval})
plots the CART tree in an user given display ctdisp

{tree, treelabel} = grcarttree(carttree{, outval})
generates two graphical objects which contain the plot of the
CART tree and the labels in the CART tree

plotcart2(x, tree{, xname})
plots the cuts of CART in a two-dimensional projection of the
dataset x

dispcart2(cartdisp, xn, yn, x, carttree, ix, iy, depth, ssr)
plots the cuts of CART in a twodimensional projection of the
dataset x in an user given display cartdisp

cut = grcart2(x, carttree, ix, iy, depth, ssr)
generates the cuts which contain a two-dimensional projection of
the data x

For visualizing the results two methods are provided:

1. plotting the tree via plotcarttree, dispcarttree or grcarttree

2. plotcart2, dispcart2 or grcart2 show how CART tesselates a two-
dimensional projection of the data

As an output of cartsplit we receive the CART tree (carttree). The first
method plots the CART tree. Depending on the value given in outval we get
as labels at the nodes in the tree the splitting rules (default), the numbers of
observations in a node ("nelem"), the mean value of the observations in a node
("mean") or the sum of squared residuals ("ssr") in a node.

To get an overview how CART tesselates the space we can plot the tesselations
in two dimensional projections of the data. The quantlet plotcart?2 allows the
user to interactively change the projections. Also interactively we can choose
if we want to see all cuts to a specified level (see depth) or all cuts where the
sum of squared residuals (see ssr) is above a specified limit.

Note: if you view the cuts at the projection then be aware that cuts could
appear in the tree which ar not visible. Thus the plot has to be interpreted with



care! Additionally the plot can only be applied to projections of continuous
variables.

5 Examples

5.1 Simulated Example

Let us generate the observations
Y;' Zf(Xz)+€zJ 1= ]-7 72007
where

f(.’ll'l,.’L'Q) = 100 I(O <z <05,05< 22 < 1)
+120 I(0.5 < 21 <1,0.5 < 23 < 1),

X, are independently uniformly distributed on [0, 1] x [0, 1], and ¢; are inde-
pendently standardly normally distributed.

Figure 1 shows the data simulated from the function f. The quantlet for
generating the observations is

proc(y)=tuto(seed,n)
randomize (seed)
xdat=uniform(n,?2)
index=(xdat[,2]<=0.5)+(xdat[,2]>0.5).*(xdat[,1]<=0.5)*2
layout=3*(index==1)+4.* (index==0)+5. * (index==2)
ydat=100.* (index==2)+120.* (index==0)
y=list(xdat,ydat,layout)

endp

library("xclust")

d=createdisplay(1,1)

data=tuto(1,100)

x=data.xdat

setmaskp(x, data.layout, data.layout, 8)
show(d,1,1,x)

QcartOi.xpl

Let us grow such a tree that the number of observations in a leaf nodes is less
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Figure 1: Plot of 100 simulated data from function f(x;,z2). The datapoints
in the upper left (marked with crosses) are in the area of f(z1,z2) = 100,
the datapoints in the upper right (marked with triangles) are in the area of
f(z1,22) = 120 and the datapoints in the lower part (marked with circles) are
in the area of f(x1,z2) =0.



or equal to 5 (mincut), the deviation in a leaf node is larger or equal 0 (mindev)
and cut will be only done if the number of the resulting nodes is larger as 1
(minsize). The type of variable is continuous.

library("xclust")

data=tuto(1,100)

type=#(1,1)

opt=cartsplitopt ("minsize",1,"mindev",0,"mincut",5)
tr=cartsplit(data.xdat,data.ydat,type,opt)
totleaves=leafnum(tr,1)

totleaves

plotcarttree(tr)

Q cart02.xpl

Figure 2 shows the regression tree tr with 41 leaves. From this figure, we prefer
to choose the tree with 3 leaves because it is easier to see that in general it has
three groups.

Let us choose the tree with 3 leaves with the following command.

trfin=prunetot (tr,3)
plotcarttree(trfin)

Q cart03.xpl

Figure 3 shows the final tree for simulated data.

5.2 Boston Housing Data

The Boston housing data set bostonh was collected by Harrison and Rubinfeld
(1978). The following variables are in the data:

1. crime rate
2. percent of land zoned for large lots
percent non retail business

Charles river indicator, 1 if on Charles river, 0 otherwise

ANl

nitrogen oxide concentration
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Figure 2: Initial regression tree for 100 simulated data from function f(z1,x2)
(left). The total number of leaves (41) is shown at the right.
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Figure 3: Final regression tree for 100 simulated data from function f(z1,z2)
after pruning. The final tree consists of three leaves which separate the x;, za-
plane into three parts.
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average number of rooms
percent built before 1980

weighted distance to employment centers

© © N o

accessibility to radial highways
10. tax rate

11. pupil-teacher ratio

12. percent black

13. percent lower status

14. median value of owner-occupied homes in thousands of dollars.

The variable 14 is the response variable. The variables 1-13 are predictor
variables. The 4-th and 9-th are categorical variables, the other are continuous.
There are 506 observations. Let us generate such a tree that the number of
observations in leaf nodes is less or equal to 8.

library("xclust")

randomize (10)

boston=read ("bostonh")

boston=paf (boston,uniform(rows (boston))<0.20)
yvar=boston[, 14]

xvar=boston[,1:13]

type=matrix(13)

type[4]1=0

type[9]1=0

opt=cartsplitopt ("minsize",1,"mindev",0,"mincut",8)
tr=cartsplit(xvar,yvar,type,opt)
totleaves=leafnum(tr,1)

totleaves

plotcarttree(tr)

Q cart04.xpl
We can observe that the tree tr with 29 leaves is large.

It is not so easy to read Figure 4. We can look at the optimal subtree consisting
of 10 leaves by using these commands:

12
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Figure 4: Initial regression tree for Boston housing data. The total number of
leaves (29) is shown at the right.
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prtr=prunetot(tr,10)
plotcarttree(prtr)

Q cart05.xpl

The Figure 5 shows pruning tree for Boston housing data. Let us try to choose
the optimal number of leaves with 10 fold cross validation.

cval=cartcv(xvar,yvar,type,opt,10)
res=cval.lnumber”cval.alfa"cval.cv™cval.cvstd
res=sort(res,1)

res=res[1:12,]

title=" no alfa cv cvstd"
restxt=title|string("%3.0f %6.2f %6.2f 76.2f",
res[,1], res[,2], res[,3], res[,4])

dd=createdisplay(2,2)
show(dd, 1, 1, cval.lnumber~cval.alfa)

setgopt(dd, 1, 1, "title","number obs. vs alpha")
show(dd, 1, 2, cval.lnumber~cval.cv)

setgopt(dd, 1, 2, "title","number obs. vs cv")
show(dd, 2, 1, cval.lnumber~cval.cvstd)
setgopt(dd, 2, 1, "title","number obs. vs cvstd")

show(dd, 2, 2, restxt)
@ cart06.xpl
We get the result shown in Figure 6.

The first column gives the numbers of leaves in the sequence of pruned subtrees
and the second column gives the sequence a;, The estimates for the expectation
of the mean of squared residuals, ER(f,,), are in the third column of the above
matrix. The fourth column gives the estimates of the standard error of the
corresponding estimators.

We can see that there is a clear minimum for the estimates for the expectation
of the mean of squared residuals.

Therefore, it seems reasonable to choose as final estimate the tree with 7 leaves.
Let us choose a = 0.9 and form the corresponding tree.

fin=prune(tr,0.9)
plotcarttree(fin)

14
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Figure 5: Sub-Tree consisisting of 10 leaves for 20% sample of the Boston
housing data
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Figure 6: Cross-validation for 20% sample of Boston housing data.
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Figure 7: Final tree for 20% sample of Boston housing data

Q cart07.xpl
The final estimate is in the Figure 7. Let us look at the numbers of observations

and the mean values in each node with command

plotcarttree(fin,"nelem")
plotcarttree(fin, "mean")

Q cart08.xpl
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The result is displayed in the Figure 8 and Figure 9 respectively.

5.3 Density Estimation

regdat = dentoreg(dendat, binlkm)
transforms density data to regression data using variance stabi-
lizing transform

Instead of writing separate procedures for the estimation of density functions,
we will transform density data to the regression data and use regression tree
to estimate density functions.

The basic idea is to divide the sample space into bins, calculate the number
of observations in every bin, and consider these frequencies as a dependent
regression variable. The independent regression variables are the midpoints of
the bins. To be more precise, after we have calculated the frequencies of the
bins Z;, we will transform these to

Yi = /Z; + 3/8.

This was suggested by Anscombe (1948) and Donoho, Johnstone, Kerkyachar-
ian, and Picard (1995, page 327).

Use the procedure first to make a histogram estimator for the density. This
estimator will have a large number of equal size bins and so it will not be a
good density estimator, but we will then combine some of these bins together
in an optimal way using CART. The new regression data will have dimension
equal to the number of bins to the power of the number of variables. Given
moment computing capability, probably 9 is the maximum number of variables
for this method.

As an example we will analyze data which consists of 200 measurements on
Swiss bank notes. These data are taken from Flury and Riedwyl (1988). One
half of these bank notes are genuine, the other half are forged bank notes. The
following variables are in the data.

1. length of the note (width)
2. height of the note (left)
3. height of the note (right)

18
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Figure 8: Final tree for 20% sample of Boston housing data with numbers of
observations
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21.45 24.46 43.00 3159 20.60 14.69 7,L

Figure 9: Final tree for 20% sample of Boston housing data with mean values
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4. distance of the inner frame to the lower border (bottom)
5. distance of the inner frame to the upper border (top)

6. length of the diagonal of the central picture (diagonal)

The macro dentoreg transforms density data to regression data. Let us choose
9 bins for every coordinate axes because we for the last 3 variables in the data.

; load library xclust and plot
library("xclust")
library("plot")

; set random seed

randomize (1)

; read swiss banknote data
dendat=read ("bank2")

; select the last three variables
dendat=dendat [,4:6]

; choose 9 bins in each dimension
binlkm=9

; compute density estimate
regdat=dentoreg(dendat,binlkm)

; compute CART and tree
type=matrix(cols(dendat))

opt=cartsplitopt ("minsize",50, "mindev",0, " mincut",1)
tr=cartsplit(regdat.ind,regdat.dep,type,opt)
; color datapoints after node the fall in
g=cartregr(tr, dendat, '"node")
{gcat,gind}=groupcol(g, rows(g))

; compute cuts up level 2 for (X1,X2)
xdat=regdat.ind

gri2=grcart2(xdat, tr, 1, 2, 10, 0)
xdat12=dendat[,1]2]

setmaskp (xdat12, gind)

; compute cuts up level 2 for (X1,X3)
gri3=grcart2(xdat, tr, 1, 3, 10, 0)
xdat13=dendat[,1]3]

21



setmaskp(xdat13, gind)

; compute cuts up level 2 for (X2,X3)
gr23=grcart2(xdat, tr, 2, 3, 10, 0)
xdat23=dendat[,2]3]

setmaskp (xdat23, gind)

; compute tree and its labels

{tree, treelabell}=grcarttree(tr)

; show all projections and the tree in a display

setsize (640, 480)

d=createdisplay(2,2)

show(d, 1,1, xdatl2, gri2)

setgopt(d,1,1, "xlabel", "top (X1)", "ylabel", "bottom (X2)")

show(d,2,1, xdat13, gri3)

setgopt(d,2,1, "xlabel", "top (X1)")
setgopt(d,2,1, "ylabel", "diagonal (X3)")
show(d, 2,2, xdat23, gr23)

setgopt(d,2,2, "xlabel", "bottom (X2)")
setgopt(d,2,2, "ylabel", "diagonal (X3)")
axesoff ()

show(d, 1,2, tree, treelabel)

axeson()

Q cart09.xpl

The result is shown in Figure 10. The upper left plot gives the cuts in the
bottom-top plane, the lower left plot the cuts in the bottom-diagonal plane
and the lower right plot the cuts in the top-diagonal plane. The CART tree is
shown in the upper right window.

All splits are done in the bottom-diagonal plane. The lower right plot shows
that CART algorithm just cuts from the main bulk of the data. Note the
different colors in the left plots which shows that we have some cuts which are
not visible in the top-bottom or top-diagonal projection.

Since we have chosen to stop splitting if the number of the observations is less
than 75 (see the parameters cartsplitopt in @ cart09.xpl) we may choose
a smaller number.

In @cart10.xpl we have choosen a smaller number (20), do not color of the

22
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Figure 10: The upper left plot gives the cuts in the bottom-top plane, the
lower left plot the cuts in the bottom-diagonal plane and the lower right plot
the cuts in the top-diagonal plane. The CART tree is shown in the upper right
window.
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datapoints and omit the tree labels. The main result is here again that the
CART algorithm cuts away the tails of the distribution and generates at least
4 different group of nodes.

; load library xclust and plot

library("xclust")

library("plot")

; set random seed

randomize (1)

; read swiss banknote data

dendat=read ("bank2")

; select the last three variables
dendat=dendat[,4:6]

; choose 9 bins in each dimension

binlkm=9

; compute density estimate
regdat=dentoreg(dendat,binlkm)

; compute CART and tree
type=matrix(cols(dendat))
opt=cartsplitopt("minsize",20,"mindev",0,"mincut",1)
tr=cartsplit(regdat.ind,regdat.dep,type,opt)

; compute cuts up level 2 for (X1,X2)
xdat=regdat.ind

gri2=grcart2(xdat, tr, 1, 2, 10, 0)
xdat12=dendat[,1]2]

; compute cuts up level 2 for (X1,X3)
gri3=grcart2(xdat, tr, 1, 3, 10, 0)
xdat13=dendat[,1]3]

; compute cuts up level 2 for (X2,X3)
gr23=grcart2(xdat, tr, 2, 3, 10, 0)
xdat23=dendat[,2]3]

; compute tree and its labels

{tree, treelabell}=grcarttree(tr)

; show all projections and the tree in a display
setsize (640, 480)

d=createdisplay(2,2)

show(d, 1,1, xdatl12, gri2)

setgopt(d,1,1, "xlabel", "top (X1)", "ylabel", "bottom (X2)")
show(d, 2,1, xdatl13, gri3)

setgopt(d,2,1, "xlabel", "top (X1)", "ylabel", "diagonal (X3)")
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Figure 11: The upper left plot gives the cuts in the bottom-top plane, the
lower left plot the cuts in the bottom-diagonal plane and the lower right plot
the cuts in the top-diagonal plane. The CART tree is shown in the upper right
window.

show(d, 2,2, xdat23, gr23)

setgopt(d,2,2, "xlabel", "bottom (X2)", "ylabel", "diagonal (X3)")
show(d, 1,2, tree)

setgopt(d,1,2, "xlabel", " ", "ylabel", "loglO(1+SSR)")

Q cart10 .xpl

25



References
Anscombe, F. (1948). The transformation of Poisson, binomial and negative-
binomial data, Biometrika 35: 246-254.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. J. (1984). Classification
and Regression Trees, Chapman and Hall, New York.

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1995).
Wavelet shrinkage: asymptotia? (with discussion), J. Roy. Statist. Soc. B
57: 301-369.

Flury, B. and Riedwyl, H. (1981). Graphical representation of multivariate data
by means of asymmetrical faces, J. Amer. Statist. Assoc. 76: 757-765.

Harrison, D. and Rubinfeld, D. L. (1978). Hedonic prices and the demand for
clean air, J. Envir. Econ. and Management 5: 81-102.

26



